percpu.c 66.4 KB
Newer Older
1
/*
2
 * mm/percpu.c - percpu memory allocator
3 4 5 6 7 8 9
 *
 * Copyright (C) 2009		SUSE Linux Products GmbH
 * Copyright (C) 2009		Tejun Heo <tj@kernel.org>
 *
 * This file is released under the GPLv2.
 *
 * This is percpu allocator which can handle both static and dynamic
10 11 12
 * areas.  Percpu areas are allocated in chunks.  Each chunk is
 * consisted of boot-time determined number of units and the first
 * chunk is used for static percpu variables in the kernel image
13 14 15
 * (special boot time alloc/init handling necessary as these areas
 * need to be brought up before allocation services are running).
 * Unit grows as necessary and all units grow or shrink in unison.
16
 * When a chunk is filled up, another chunk is allocated.
17 18 19 20 21 22 23 24
 *
 *  c0                           c1                         c2
 *  -------------------          -------------------        ------------
 * | u0 | u1 | u2 | u3 |        | u0 | u1 | u2 | u3 |      | u0 | u1 | u
 *  -------------------  ......  -------------------  ....  ------------
 *
 * Allocation is done in offset-size areas of single unit space.  Ie,
 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
25 26 27 28
 * c1:u1, c1:u2 and c1:u3.  On UMA, units corresponds directly to
 * cpus.  On NUMA, the mapping can be non-linear and even sparse.
 * Percpu access can be done by configuring percpu base registers
 * according to cpu to unit mapping and pcpu_unit_size.
29
 *
30 31
 * There are usually many small percpu allocations many of them being
 * as small as 4 bytes.  The allocator organizes chunks into lists
32 33
 * according to free size and tries to allocate from the fullest one.
 * Each chunk keeps the maximum contiguous area size hint which is
34
 * guaranteed to be equal to or larger than the maximum contiguous
35 36 37 38 39 40 41 42
 * area in the chunk.  This helps the allocator not to iterate the
 * chunk maps unnecessarily.
 *
 * Allocation state in each chunk is kept using an array of integers
 * on chunk->map.  A positive value in the map represents a free
 * region and negative allocated.  Allocation inside a chunk is done
 * by scanning this map sequentially and serving the first matching
 * entry.  This is mostly copied from the percpu_modalloc() allocator.
43 44
 * Chunks can be determined from the address using the index field
 * in the page struct. The index field contains a pointer to the chunk.
45
 *
46
 * To use this allocator, arch code should do the following:
47 48
 *
 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
49 50
 *   regular address to percpu pointer and back if they need to be
 *   different from the default
51
 *
52 53
 * - use pcpu_setup_first_chunk() during percpu area initialization to
 *   setup the first chunk containing the kernel static percpu area
54 55
 */

56 57
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

58 59
#include <linux/bitmap.h>
#include <linux/bootmem.h>
60
#include <linux/err.h>
61
#include <linux/list.h>
62
#include <linux/log2.h>
63 64 65 66 67 68
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/percpu.h>
#include <linux/pfn.h>
#include <linux/slab.h>
69
#include <linux/spinlock.h>
70
#include <linux/vmalloc.h>
71
#include <linux/workqueue.h>
72
#include <linux/kmemleak.h>
73 74

#include <asm/cacheflush.h>
75
#include <asm/sections.h>
76
#include <asm/tlbflush.h>
77
#include <asm/io.h>
78 79 80

#define PCPU_SLOT_BASE_SHIFT		5	/* 1-31 shares the same slot */
#define PCPU_DFL_MAP_ALLOC		16	/* start a map with 16 ents */
81 82
#define PCPU_ATOMIC_MAP_MARGIN_LOW	32
#define PCPU_ATOMIC_MAP_MARGIN_HIGH	64
83 84
#define PCPU_EMPTY_POP_PAGES_LOW	2
#define PCPU_EMPTY_POP_PAGES_HIGH	4
85

86
#ifdef CONFIG_SMP
87 88 89
/* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
#ifndef __addr_to_pcpu_ptr
#define __addr_to_pcpu_ptr(addr)					\
90 91 92
	(void __percpu *)((unsigned long)(addr) -			\
			  (unsigned long)pcpu_base_addr	+		\
			  (unsigned long)__per_cpu_start)
93 94 95
#endif
#ifndef __pcpu_ptr_to_addr
#define __pcpu_ptr_to_addr(ptr)						\
96 97 98
	(void __force *)((unsigned long)(ptr) +				\
			 (unsigned long)pcpu_base_addr -		\
			 (unsigned long)__per_cpu_start)
99
#endif
100 101 102 103 104
#else	/* CONFIG_SMP */
/* on UP, it's always identity mapped */
#define __addr_to_pcpu_ptr(addr)	(void __percpu *)(addr)
#define __pcpu_ptr_to_addr(ptr)		(void __force *)(ptr)
#endif	/* CONFIG_SMP */
105

106 107 108 109
struct pcpu_chunk {
	struct list_head	list;		/* linked to pcpu_slot lists */
	int			free_size;	/* free bytes in the chunk */
	int			contig_hint;	/* max contiguous size hint */
T
Tejun Heo 已提交
110
	void			*base_addr;	/* base address of this chunk */
111

112
	int			map_used;	/* # of map entries used before the sentry */
113 114
	int			map_alloc;	/* # of map entries allocated */
	int			*map;		/* allocation map */
115
	struct list_head	map_extend_list;/* on pcpu_map_extend_chunks */
116

117
	void			*data;		/* chunk data */
A
Al Viro 已提交
118
	int			first_free;	/* no free below this */
119
	bool			immutable;	/* no [de]population allowed */
120
	int			nr_populated;	/* # of populated pages */
T
Tejun Heo 已提交
121
	unsigned long		populated[];	/* populated bitmap */
122 123
};

124 125
static int pcpu_unit_pages __read_mostly;
static int pcpu_unit_size __read_mostly;
126
static int pcpu_nr_units __read_mostly;
127
static int pcpu_atom_size __read_mostly;
128 129
static int pcpu_nr_slots __read_mostly;
static size_t pcpu_chunk_struct_size __read_mostly;
130

T
Tejun Heo 已提交
131 132 133
/* cpus with the lowest and highest unit addresses */
static unsigned int pcpu_low_unit_cpu __read_mostly;
static unsigned int pcpu_high_unit_cpu __read_mostly;
134

135
/* the address of the first chunk which starts with the kernel static area */
136
void *pcpu_base_addr __read_mostly;
137 138
EXPORT_SYMBOL_GPL(pcpu_base_addr);

T
Tejun Heo 已提交
139 140
static const int *pcpu_unit_map __read_mostly;		/* cpu -> unit */
const unsigned long *pcpu_unit_offsets __read_mostly;	/* cpu -> unit offset */
141

142 143 144 145 146
/* group information, used for vm allocation */
static int pcpu_nr_groups __read_mostly;
static const unsigned long *pcpu_group_offsets __read_mostly;
static const size_t *pcpu_group_sizes __read_mostly;

147 148 149 150 151 152 153 154 155 156 157 158 159 160
/*
 * The first chunk which always exists.  Note that unlike other
 * chunks, this one can be allocated and mapped in several different
 * ways and thus often doesn't live in the vmalloc area.
 */
static struct pcpu_chunk *pcpu_first_chunk;

/*
 * Optional reserved chunk.  This chunk reserves part of the first
 * chunk and serves it for reserved allocations.  The amount of
 * reserved offset is in pcpu_reserved_chunk_limit.  When reserved
 * area doesn't exist, the following variables contain NULL and 0
 * respectively.
 */
161 162 163
static struct pcpu_chunk *pcpu_reserved_chunk;
static int pcpu_reserved_chunk_limit;

T
Tejun Heo 已提交
164
static DEFINE_SPINLOCK(pcpu_lock);	/* all internal data structures */
165
static DEFINE_MUTEX(pcpu_alloc_mutex);	/* chunk create/destroy, [de]pop, map ext */
166

167
static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
168

169 170 171
/* chunks which need their map areas extended, protected by pcpu_lock */
static LIST_HEAD(pcpu_map_extend_chunks);

172 173 174 175 176 177
/*
 * The number of empty populated pages, protected by pcpu_lock.  The
 * reserved chunk doesn't contribute to the count.
 */
static int pcpu_nr_empty_pop_pages;

178 179 180 181 182 183
/*
 * Balance work is used to populate or destroy chunks asynchronously.  We
 * try to keep the number of populated free pages between
 * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
 * empty chunk.
 */
184 185
static void pcpu_balance_workfn(struct work_struct *work);
static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn);
186 187 188 189 190 191 192 193
static bool pcpu_async_enabled __read_mostly;
static bool pcpu_atomic_alloc_failed;

static void pcpu_schedule_balance_work(void)
{
	if (pcpu_async_enabled)
		schedule_work(&pcpu_balance_work);
}
194

195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
static bool pcpu_addr_in_first_chunk(void *addr)
{
	void *first_start = pcpu_first_chunk->base_addr;

	return addr >= first_start && addr < first_start + pcpu_unit_size;
}

static bool pcpu_addr_in_reserved_chunk(void *addr)
{
	void *first_start = pcpu_first_chunk->base_addr;

	return addr >= first_start &&
		addr < first_start + pcpu_reserved_chunk_limit;
}

210
static int __pcpu_size_to_slot(int size)
211
{
T
Tejun Heo 已提交
212
	int highbit = fls(size);	/* size is in bytes */
213 214 215
	return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
}

216 217 218 219 220 221 222
static int pcpu_size_to_slot(int size)
{
	if (size == pcpu_unit_size)
		return pcpu_nr_slots - 1;
	return __pcpu_size_to_slot(size);
}

223 224 225 226 227 228 229 230
static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
{
	if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
		return 0;

	return pcpu_size_to_slot(chunk->free_size);
}

231 232 233 234 235 236 237 238 239 240 241 242 243
/* set the pointer to a chunk in a page struct */
static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
{
	page->index = (unsigned long)pcpu;
}

/* obtain pointer to a chunk from a page struct */
static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
{
	return (struct pcpu_chunk *)page->index;
}

static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
244
{
245
	return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
246 247
}

248 249
static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
				     unsigned int cpu, int page_idx)
250
{
T
Tejun Heo 已提交
251
	return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] +
T
Tejun Heo 已提交
252
		(page_idx << PAGE_SHIFT);
253 254
}

255 256
static void __maybe_unused pcpu_next_unpop(struct pcpu_chunk *chunk,
					   int *rs, int *re, int end)
T
Tejun Heo 已提交
257 258 259 260 261
{
	*rs = find_next_zero_bit(chunk->populated, end, *rs);
	*re = find_next_bit(chunk->populated, end, *rs + 1);
}

262 263
static void __maybe_unused pcpu_next_pop(struct pcpu_chunk *chunk,
					 int *rs, int *re, int end)
T
Tejun Heo 已提交
264 265 266 267 268 269 270
{
	*rs = find_next_bit(chunk->populated, end, *rs);
	*re = find_next_zero_bit(chunk->populated, end, *rs + 1);
}

/*
 * (Un)populated page region iterators.  Iterate over (un)populated
271
 * page regions between @start and @end in @chunk.  @rs and @re should
T
Tejun Heo 已提交
272 273 274 275 276 277 278 279 280 281 282 283 284
 * be integer variables and will be set to start and end page index of
 * the current region.
 */
#define pcpu_for_each_unpop_region(chunk, rs, re, start, end)		    \
	for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
	     (rs) < (re);						    \
	     (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))

#define pcpu_for_each_pop_region(chunk, rs, re, start, end)		    \
	for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end));   \
	     (rs) < (re);						    \
	     (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))

285
/**
286
 * pcpu_mem_zalloc - allocate memory
287
 * @size: bytes to allocate
288
 *
289
 * Allocate @size bytes.  If @size is smaller than PAGE_SIZE,
290
 * kzalloc() is used; otherwise, vzalloc() is used.  The returned
291
 * memory is always zeroed.
292
 *
293 294 295
 * CONTEXT:
 * Does GFP_KERNEL allocation.
 *
296
 * RETURNS:
297
 * Pointer to the allocated area on success, NULL on failure.
298
 */
299
static void *pcpu_mem_zalloc(size_t size)
300
{
301 302 303
	if (WARN_ON_ONCE(!slab_is_available()))
		return NULL;

304 305
	if (size <= PAGE_SIZE)
		return kzalloc(size, GFP_KERNEL);
306 307
	else
		return vzalloc(size);
308
}
309

310 311 312 313
/**
 * pcpu_mem_free - free memory
 * @ptr: memory to free
 *
314
 * Free @ptr.  @ptr should have been allocated using pcpu_mem_zalloc().
315
 */
316
static void pcpu_mem_free(void *ptr)
317
{
318
	kvfree(ptr);
319 320
}

321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
/**
 * pcpu_count_occupied_pages - count the number of pages an area occupies
 * @chunk: chunk of interest
 * @i: index of the area in question
 *
 * Count the number of pages chunk's @i'th area occupies.  When the area's
 * start and/or end address isn't aligned to page boundary, the straddled
 * page is included in the count iff the rest of the page is free.
 */
static int pcpu_count_occupied_pages(struct pcpu_chunk *chunk, int i)
{
	int off = chunk->map[i] & ~1;
	int end = chunk->map[i + 1] & ~1;

	if (!PAGE_ALIGNED(off) && i > 0) {
		int prev = chunk->map[i - 1];

		if (!(prev & 1) && prev <= round_down(off, PAGE_SIZE))
			off = round_down(off, PAGE_SIZE);
	}

	if (!PAGE_ALIGNED(end) && i + 1 < chunk->map_used) {
		int next = chunk->map[i + 1];
		int nend = chunk->map[i + 2] & ~1;

		if (!(next & 1) && nend >= round_up(end, PAGE_SIZE))
			end = round_up(end, PAGE_SIZE);
	}

	return max_t(int, PFN_DOWN(end) - PFN_UP(off), 0);
}

353 354 355 356 357 358 359
/**
 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
 * @chunk: chunk of interest
 * @oslot: the previous slot it was on
 *
 * This function is called after an allocation or free changed @chunk.
 * New slot according to the changed state is determined and @chunk is
360 361
 * moved to the slot.  Note that the reserved chunk is never put on
 * chunk slots.
362 363 364
 *
 * CONTEXT:
 * pcpu_lock.
365 366 367 368 369
 */
static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
{
	int nslot = pcpu_chunk_slot(chunk);

370
	if (chunk != pcpu_reserved_chunk && oslot != nslot) {
371 372 373 374 375 376 377
		if (oslot < nslot)
			list_move(&chunk->list, &pcpu_slot[nslot]);
		else
			list_move_tail(&chunk->list, &pcpu_slot[nslot]);
	}
}

378
/**
379 380
 * pcpu_need_to_extend - determine whether chunk area map needs to be extended
 * @chunk: chunk of interest
381
 * @is_atomic: the allocation context
382
 *
383 384 385 386 387 388
 * Determine whether area map of @chunk needs to be extended.  If
 * @is_atomic, only the amount necessary for a new allocation is
 * considered; however, async extension is scheduled if the left amount is
 * low.  If !@is_atomic, it aims for more empty space.  Combined, this
 * ensures that the map is likely to have enough available space to
 * accomodate atomic allocations which can't extend maps directly.
389
 *
390
 * CONTEXT:
391
 * pcpu_lock.
392
 *
393
 * RETURNS:
394 395
 * New target map allocation length if extension is necessary, 0
 * otherwise.
396
 */
397
static int pcpu_need_to_extend(struct pcpu_chunk *chunk, bool is_atomic)
398
{
399 400
	int margin, new_alloc;

401 402
	lockdep_assert_held(&pcpu_lock);

403 404
	if (is_atomic) {
		margin = 3;
405

406
		if (chunk->map_alloc <
407 408 409 410 411 412 413
		    chunk->map_used + PCPU_ATOMIC_MAP_MARGIN_LOW) {
			if (list_empty(&chunk->map_extend_list)) {
				list_add_tail(&chunk->map_extend_list,
					      &pcpu_map_extend_chunks);
				pcpu_schedule_balance_work();
			}
		}
414 415 416 417 418
	} else {
		margin = PCPU_ATOMIC_MAP_MARGIN_HIGH;
	}

	if (chunk->map_alloc >= chunk->map_used + margin)
419 420 421
		return 0;

	new_alloc = PCPU_DFL_MAP_ALLOC;
422
	while (new_alloc < chunk->map_used + margin)
423 424
		new_alloc *= 2;

425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
	return new_alloc;
}

/**
 * pcpu_extend_area_map - extend area map of a chunk
 * @chunk: chunk of interest
 * @new_alloc: new target allocation length of the area map
 *
 * Extend area map of @chunk to have @new_alloc entries.
 *
 * CONTEXT:
 * Does GFP_KERNEL allocation.  Grabs and releases pcpu_lock.
 *
 * RETURNS:
 * 0 on success, -errno on failure.
 */
static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc)
{
	int *old = NULL, *new = NULL;
	size_t old_size = 0, new_size = new_alloc * sizeof(new[0]);
	unsigned long flags;

447 448
	lockdep_assert_held(&pcpu_alloc_mutex);

449
	new = pcpu_mem_zalloc(new_size);
450
	if (!new)
451
		return -ENOMEM;
452

453 454 455 456 457
	/* acquire pcpu_lock and switch to new area map */
	spin_lock_irqsave(&pcpu_lock, flags);

	if (new_alloc <= chunk->map_alloc)
		goto out_unlock;
458

459
	old_size = chunk->map_alloc * sizeof(chunk->map[0]);
460 461 462
	old = chunk->map;

	memcpy(new, old, old_size);
463 464 465

	chunk->map_alloc = new_alloc;
	chunk->map = new;
466 467 468 469 470 471 472 473 474
	new = NULL;

out_unlock:
	spin_unlock_irqrestore(&pcpu_lock, flags);

	/*
	 * pcpu_mem_free() might end up calling vfree() which uses
	 * IRQ-unsafe lock and thus can't be called under pcpu_lock.
	 */
475 476
	pcpu_mem_free(old);
	pcpu_mem_free(new);
477

478 479 480
	return 0;
}

481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
/**
 * pcpu_fit_in_area - try to fit the requested allocation in a candidate area
 * @chunk: chunk the candidate area belongs to
 * @off: the offset to the start of the candidate area
 * @this_size: the size of the candidate area
 * @size: the size of the target allocation
 * @align: the alignment of the target allocation
 * @pop_only: only allocate from already populated region
 *
 * We're trying to allocate @size bytes aligned at @align.  @chunk's area
 * at @off sized @this_size is a candidate.  This function determines
 * whether the target allocation fits in the candidate area and returns the
 * number of bytes to pad after @off.  If the target area doesn't fit, -1
 * is returned.
 *
 * If @pop_only is %true, this function only considers the already
 * populated part of the candidate area.
 */
static int pcpu_fit_in_area(struct pcpu_chunk *chunk, int off, int this_size,
			    int size, int align, bool pop_only)
{
	int cand_off = off;

	while (true) {
		int head = ALIGN(cand_off, align) - off;
		int page_start, page_end, rs, re;

		if (this_size < head + size)
			return -1;

		if (!pop_only)
			return head;

		/*
		 * If the first unpopulated page is beyond the end of the
		 * allocation, the whole allocation is populated;
		 * otherwise, retry from the end of the unpopulated area.
		 */
		page_start = PFN_DOWN(head + off);
		page_end = PFN_UP(head + off + size);

		rs = page_start;
		pcpu_next_unpop(chunk, &rs, &re, PFN_UP(off + this_size));
		if (rs >= page_end)
			return head;
		cand_off = re * PAGE_SIZE;
	}
}

530 531 532
/**
 * pcpu_alloc_area - allocate area from a pcpu_chunk
 * @chunk: chunk of interest
T
Tejun Heo 已提交
533
 * @size: wanted size in bytes
534
 * @align: wanted align
535
 * @pop_only: allocate only from the populated area
536
 * @occ_pages_p: out param for the number of pages the area occupies
537 538 539 540 541
 *
 * Try to allocate @size bytes area aligned at @align from @chunk.
 * Note that this function only allocates the offset.  It doesn't
 * populate or map the area.
 *
542 543
 * @chunk->map must have at least two free slots.
 *
544 545 546
 * CONTEXT:
 * pcpu_lock.
 *
547
 * RETURNS:
548 549
 * Allocated offset in @chunk on success, -1 if no matching area is
 * found.
550
 */
551
static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align,
552
			   bool pop_only, int *occ_pages_p)
553 554 555 556
{
	int oslot = pcpu_chunk_slot(chunk);
	int max_contig = 0;
	int i, off;
A
Al Viro 已提交
557
	bool seen_free = false;
558
	int *p;
559

A
Al Viro 已提交
560
	for (i = chunk->first_free, p = chunk->map + i; i < chunk->map_used; i++, p++) {
561
		int head, tail;
562 563 564 565 566
		int this_size;

		off = *p;
		if (off & 1)
			continue;
567

568
		this_size = (p[1] & ~1) - off;
569 570 571 572

		head = pcpu_fit_in_area(chunk, off, this_size, size, align,
					pop_only);
		if (head < 0) {
A
Al Viro 已提交
573 574 575 576
			if (!seen_free) {
				chunk->first_free = i;
				seen_free = true;
			}
577
			max_contig = max(this_size, max_contig);
578 579 580 581 582 583 584 585 586
			continue;
		}

		/*
		 * If head is small or the previous block is free,
		 * merge'em.  Note that 'small' is defined as smaller
		 * than sizeof(int), which is very small but isn't too
		 * uncommon for percpu allocations.
		 */
587
		if (head && (head < sizeof(int) || !(p[-1] & 1))) {
588
			*p = off += head;
589
			if (p[-1] & 1)
590
				chunk->free_size -= head;
591 592
			else
				max_contig = max(*p - p[-1], max_contig);
593
			this_size -= head;
594 595 596 597
			head = 0;
		}

		/* if tail is small, just keep it around */
598 599
		tail = this_size - head - size;
		if (tail < sizeof(int)) {
600
			tail = 0;
601 602
			size = this_size - head;
		}
603 604 605

		/* split if warranted */
		if (head || tail) {
606 607 608
			int nr_extra = !!head + !!tail;

			/* insert new subblocks */
609
			memmove(p + nr_extra + 1, p + 1,
610 611 612
				sizeof(chunk->map[0]) * (chunk->map_used - i));
			chunk->map_used += nr_extra;

613
			if (head) {
A
Al Viro 已提交
614 615 616 617
				if (!seen_free) {
					chunk->first_free = i;
					seen_free = true;
				}
618 619
				*++p = off += head;
				++i;
620 621 622
				max_contig = max(head, max_contig);
			}
			if (tail) {
623
				p[1] = off + size;
624
				max_contig = max(tail, max_contig);
625 626 627
			}
		}

A
Al Viro 已提交
628 629 630
		if (!seen_free)
			chunk->first_free = i + 1;

631
		/* update hint and mark allocated */
632
		if (i + 1 == chunk->map_used)
633 634 635 636 637
			chunk->contig_hint = max_contig; /* fully scanned */
		else
			chunk->contig_hint = max(chunk->contig_hint,
						 max_contig);

638 639
		chunk->free_size -= size;
		*p |= 1;
640

641
		*occ_pages_p = pcpu_count_occupied_pages(chunk, i);
642 643 644 645 646 647 648
		pcpu_chunk_relocate(chunk, oslot);
		return off;
	}

	chunk->contig_hint = max_contig;	/* fully scanned */
	pcpu_chunk_relocate(chunk, oslot);

649 650
	/* tell the upper layer that this chunk has no matching area */
	return -1;
651 652 653 654 655 656
}

/**
 * pcpu_free_area - free area to a pcpu_chunk
 * @chunk: chunk of interest
 * @freeme: offset of area to free
657
 * @occ_pages_p: out param for the number of pages the area occupies
658 659 660 661
 *
 * Free area starting from @freeme to @chunk.  Note that this function
 * only modifies the allocation map.  It doesn't depopulate or unmap
 * the area.
662 663 664
 *
 * CONTEXT:
 * pcpu_lock.
665
 */
666 667
static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme,
			   int *occ_pages_p)
668 669
{
	int oslot = pcpu_chunk_slot(chunk);
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
	int off = 0;
	unsigned i, j;
	int to_free = 0;
	int *p;

	freeme |= 1;	/* we are searching for <given offset, in use> pair */

	i = 0;
	j = chunk->map_used;
	while (i != j) {
		unsigned k = (i + j) / 2;
		off = chunk->map[k];
		if (off < freeme)
			i = k + 1;
		else if (off > freeme)
			j = k;
		else
			i = j = k;
	}
689 690
	BUG_ON(off != freeme);

A
Al Viro 已提交
691 692 693
	if (i < chunk->first_free)
		chunk->first_free = i;

694 695 696
	p = chunk->map + i;
	*p = off &= ~1;
	chunk->free_size += (p[1] & ~1) - off;
697

698 699
	*occ_pages_p = pcpu_count_occupied_pages(chunk, i);

700 701 702
	/* merge with next? */
	if (!(p[1] & 1))
		to_free++;
703
	/* merge with previous? */
704 705
	if (i > 0 && !(p[-1] & 1)) {
		to_free++;
706
		i--;
707
		p--;
708
	}
709 710 711 712
	if (to_free) {
		chunk->map_used -= to_free;
		memmove(p + 1, p + 1 + to_free,
			(chunk->map_used - i) * sizeof(chunk->map[0]));
713 714
	}

715
	chunk->contig_hint = max(chunk->map[i + 1] - chunk->map[i] - 1, chunk->contig_hint);
716 717 718
	pcpu_chunk_relocate(chunk, oslot);
}

719 720 721 722
static struct pcpu_chunk *pcpu_alloc_chunk(void)
{
	struct pcpu_chunk *chunk;

723
	chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size);
724 725 726
	if (!chunk)
		return NULL;

727 728
	chunk->map = pcpu_mem_zalloc(PCPU_DFL_MAP_ALLOC *
						sizeof(chunk->map[0]));
729
	if (!chunk->map) {
730
		pcpu_mem_free(chunk);
731 732 733 734
		return NULL;
	}

	chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
735 736 737
	chunk->map[0] = 0;
	chunk->map[1] = pcpu_unit_size | 1;
	chunk->map_used = 1;
738 739

	INIT_LIST_HEAD(&chunk->list);
740
	INIT_LIST_HEAD(&chunk->map_extend_list);
741 742 743 744 745 746 747 748 749 750
	chunk->free_size = pcpu_unit_size;
	chunk->contig_hint = pcpu_unit_size;

	return chunk;
}

static void pcpu_free_chunk(struct pcpu_chunk *chunk)
{
	if (!chunk)
		return;
751 752
	pcpu_mem_free(chunk->map);
	pcpu_mem_free(chunk);
753 754
}

755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
/**
 * pcpu_chunk_populated - post-population bookkeeping
 * @chunk: pcpu_chunk which got populated
 * @page_start: the start page
 * @page_end: the end page
 *
 * Pages in [@page_start,@page_end) have been populated to @chunk.  Update
 * the bookkeeping information accordingly.  Must be called after each
 * successful population.
 */
static void pcpu_chunk_populated(struct pcpu_chunk *chunk,
				 int page_start, int page_end)
{
	int nr = page_end - page_start;

	lockdep_assert_held(&pcpu_lock);

	bitmap_set(chunk->populated, page_start, nr);
	chunk->nr_populated += nr;
	pcpu_nr_empty_pop_pages += nr;
}

/**
 * pcpu_chunk_depopulated - post-depopulation bookkeeping
 * @chunk: pcpu_chunk which got depopulated
 * @page_start: the start page
 * @page_end: the end page
 *
 * Pages in [@page_start,@page_end) have been depopulated from @chunk.
 * Update the bookkeeping information accordingly.  Must be called after
 * each successful depopulation.
 */
static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk,
				   int page_start, int page_end)
{
	int nr = page_end - page_start;

	lockdep_assert_held(&pcpu_lock);

	bitmap_clear(chunk->populated, page_start, nr);
	chunk->nr_populated -= nr;
	pcpu_nr_empty_pop_pages -= nr;
}

799 800 801 802 803 804 805 806 807 808 809 810 811 812
/*
 * Chunk management implementation.
 *
 * To allow different implementations, chunk alloc/free and
 * [de]population are implemented in a separate file which is pulled
 * into this file and compiled together.  The following functions
 * should be implemented.
 *
 * pcpu_populate_chunk		- populate the specified range of a chunk
 * pcpu_depopulate_chunk	- depopulate the specified range of a chunk
 * pcpu_create_chunk		- create a new chunk
 * pcpu_destroy_chunk		- destroy a chunk, always preceded by full depop
 * pcpu_addr_to_page		- translate address to physical address
 * pcpu_verify_alloc_info	- check alloc_info is acceptable during init
813
 */
814 815 816 817 818 819
static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size);
static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size);
static struct pcpu_chunk *pcpu_create_chunk(void);
static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
static struct page *pcpu_addr_to_page(void *addr);
static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
820

821 822 823
#ifdef CONFIG_NEED_PER_CPU_KM
#include "percpu-km.c"
#else
824
#include "percpu-vm.c"
825
#endif
826

827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
/**
 * pcpu_chunk_addr_search - determine chunk containing specified address
 * @addr: address for which the chunk needs to be determined.
 *
 * RETURNS:
 * The address of the found chunk.
 */
static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
{
	/* is it in the first chunk? */
	if (pcpu_addr_in_first_chunk(addr)) {
		/* is it in the reserved area? */
		if (pcpu_addr_in_reserved_chunk(addr))
			return pcpu_reserved_chunk;
		return pcpu_first_chunk;
	}

	/*
	 * The address is relative to unit0 which might be unused and
	 * thus unmapped.  Offset the address to the unit space of the
	 * current processor before looking it up in the vmalloc
	 * space.  Note that any possible cpu id can be used here, so
	 * there's no need to worry about preemption or cpu hotplug.
	 */
	addr += pcpu_unit_offsets[raw_smp_processor_id()];
852
	return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
853 854
}

855
/**
856
 * pcpu_alloc - the percpu allocator
T
Tejun Heo 已提交
857
 * @size: size of area to allocate in bytes
858
 * @align: alignment of area (max PAGE_SIZE)
859
 * @reserved: allocate from the reserved chunk if available
860
 * @gfp: allocation flags
861
 *
862 863
 * Allocate percpu area of @size bytes aligned at @align.  If @gfp doesn't
 * contain %GFP_KERNEL, the allocation is atomic.
864 865 866 867
 *
 * RETURNS:
 * Percpu pointer to the allocated area on success, NULL on failure.
 */
868 869
static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved,
				 gfp_t gfp)
870
{
871
	static int warn_limit = 10;
872
	struct pcpu_chunk *chunk;
873
	const char *err;
874
	bool is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL;
875
	int occ_pages = 0;
T
Tejun Heo 已提交
876
	int slot, off, new_alloc, cpu, ret;
877
	unsigned long flags;
878
	void __percpu *ptr;
879

880 881
	/*
	 * We want the lowest bit of offset available for in-use/free
V
Viro 已提交
882
	 * indicator, so force >= 16bit alignment and make size even.
883 884 885 886
	 */
	if (unlikely(align < 2))
		align = 2;

887
	size = ALIGN(size, 2);
V
Viro 已提交
888

889 890
	if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE ||
		     !is_power_of_2(align))) {
J
Joe Perches 已提交
891 892
		WARN(true, "illegal size (%zu) or align (%zu) for percpu allocation\n",
		     size, align);
893 894 895
		return NULL;
	}

896 897 898
	if (!is_atomic)
		mutex_lock(&pcpu_alloc_mutex);

899
	spin_lock_irqsave(&pcpu_lock, flags);
900

901 902 903
	/* serve reserved allocations from the reserved chunk if available */
	if (reserved && pcpu_reserved_chunk) {
		chunk = pcpu_reserved_chunk;
904 905 906

		if (size > chunk->contig_hint) {
			err = "alloc from reserved chunk failed";
907
			goto fail_unlock;
908
		}
909

910
		while ((new_alloc = pcpu_need_to_extend(chunk, is_atomic))) {
911
			spin_unlock_irqrestore(&pcpu_lock, flags);
912 913
			if (is_atomic ||
			    pcpu_extend_area_map(chunk, new_alloc) < 0) {
914
				err = "failed to extend area map of reserved chunk";
T
Tejun Heo 已提交
915
				goto fail;
916 917 918 919
			}
			spin_lock_irqsave(&pcpu_lock, flags);
		}

920 921
		off = pcpu_alloc_area(chunk, size, align, is_atomic,
				      &occ_pages);
922 923
		if (off >= 0)
			goto area_found;
924

925
		err = "alloc from reserved chunk failed";
926
		goto fail_unlock;
927 928
	}

929
restart:
930
	/* search through normal chunks */
931 932 933 934
	for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
		list_for_each_entry(chunk, &pcpu_slot[slot], list) {
			if (size > chunk->contig_hint)
				continue;
935

936
			new_alloc = pcpu_need_to_extend(chunk, is_atomic);
937
			if (new_alloc) {
938 939
				if (is_atomic)
					continue;
940 941 942 943
				spin_unlock_irqrestore(&pcpu_lock, flags);
				if (pcpu_extend_area_map(chunk,
							 new_alloc) < 0) {
					err = "failed to extend area map";
T
Tejun Heo 已提交
944
					goto fail;
945 946 947 948 949 950 951
				}
				spin_lock_irqsave(&pcpu_lock, flags);
				/*
				 * pcpu_lock has been dropped, need to
				 * restart cpu_slot list walking.
				 */
				goto restart;
952 953
			}

954 955
			off = pcpu_alloc_area(chunk, size, align, is_atomic,
					      &occ_pages);
956 957 958 959 960
			if (off >= 0)
				goto area_found;
		}
	}

961
	spin_unlock_irqrestore(&pcpu_lock, flags);
962

T
Tejun Heo 已提交
963 964 965 966 967
	/*
	 * No space left.  Create a new chunk.  We don't want multiple
	 * tasks to create chunks simultaneously.  Serialize and create iff
	 * there's still no empty chunk after grabbing the mutex.
	 */
968 969 970
	if (is_atomic)
		goto fail;

T
Tejun Heo 已提交
971 972 973 974 975 976 977 978 979 980 981
	if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) {
		chunk = pcpu_create_chunk();
		if (!chunk) {
			err = "failed to allocate new chunk";
			goto fail;
		}

		spin_lock_irqsave(&pcpu_lock, flags);
		pcpu_chunk_relocate(chunk, -1);
	} else {
		spin_lock_irqsave(&pcpu_lock, flags);
982
	}
983 984

	goto restart;
985 986

area_found:
987
	spin_unlock_irqrestore(&pcpu_lock, flags);
988

989
	/* populate if not all pages are already there */
990
	if (!is_atomic) {
991
		int page_start, page_end, rs, re;
992

993 994
		page_start = PFN_DOWN(off);
		page_end = PFN_UP(off + size);
T
Tejun Heo 已提交
995

996 997 998 999 1000 1001 1002
		pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
			WARN_ON(chunk->immutable);

			ret = pcpu_populate_chunk(chunk, rs, re);

			spin_lock_irqsave(&pcpu_lock, flags);
			if (ret) {
1003
				pcpu_free_area(chunk, off, &occ_pages);
1004 1005 1006
				err = "failed to populate";
				goto fail_unlock;
			}
1007
			pcpu_chunk_populated(chunk, rs, re);
1008
			spin_unlock_irqrestore(&pcpu_lock, flags);
1009
		}
1010

1011 1012
		mutex_unlock(&pcpu_alloc_mutex);
	}
1013

1014 1015 1016
	if (chunk != pcpu_reserved_chunk)
		pcpu_nr_empty_pop_pages -= occ_pages;

1017 1018 1019
	if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW)
		pcpu_schedule_balance_work();

1020 1021 1022 1023
	/* clear the areas and return address relative to base address */
	for_each_possible_cpu(cpu)
		memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);

1024
	ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
1025
	kmemleak_alloc_percpu(ptr, size, gfp);
1026
	return ptr;
1027 1028

fail_unlock:
1029
	spin_unlock_irqrestore(&pcpu_lock, flags);
T
Tejun Heo 已提交
1030
fail:
1031
	if (!is_atomic && warn_limit) {
1032
		pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n",
J
Joe Perches 已提交
1033
			size, align, is_atomic, err);
1034 1035
		dump_stack();
		if (!--warn_limit)
1036
			pr_info("limit reached, disable warning\n");
1037
	}
1038 1039 1040 1041
	if (is_atomic) {
		/* see the flag handling in pcpu_blance_workfn() */
		pcpu_atomic_alloc_failed = true;
		pcpu_schedule_balance_work();
1042 1043
	} else {
		mutex_unlock(&pcpu_alloc_mutex);
1044
	}
1045
	return NULL;
1046
}
1047 1048

/**
1049
 * __alloc_percpu_gfp - allocate dynamic percpu area
1050 1051
 * @size: size of area to allocate in bytes
 * @align: alignment of area (max PAGE_SIZE)
1052
 * @gfp: allocation flags
1053
 *
1054 1055 1056
 * Allocate zero-filled percpu area of @size bytes aligned at @align.  If
 * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can
 * be called from any context but is a lot more likely to fail.
1057
 *
1058 1059 1060
 * RETURNS:
 * Percpu pointer to the allocated area on success, NULL on failure.
 */
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp)
{
	return pcpu_alloc(size, align, false, gfp);
}
EXPORT_SYMBOL_GPL(__alloc_percpu_gfp);

/**
 * __alloc_percpu - allocate dynamic percpu area
 * @size: size of area to allocate in bytes
 * @align: alignment of area (max PAGE_SIZE)
 *
 * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL).
 */
1074
void __percpu *__alloc_percpu(size_t size, size_t align)
1075
{
1076
	return pcpu_alloc(size, align, false, GFP_KERNEL);
1077
}
1078 1079
EXPORT_SYMBOL_GPL(__alloc_percpu);

1080 1081 1082 1083 1084
/**
 * __alloc_reserved_percpu - allocate reserved percpu area
 * @size: size of area to allocate in bytes
 * @align: alignment of area (max PAGE_SIZE)
 *
1085 1086 1087 1088
 * Allocate zero-filled percpu area of @size bytes aligned at @align
 * from reserved percpu area if arch has set it up; otherwise,
 * allocation is served from the same dynamic area.  Might sleep.
 * Might trigger writeouts.
1089
 *
1090 1091 1092
 * CONTEXT:
 * Does GFP_KERNEL allocation.
 *
1093 1094 1095
 * RETURNS:
 * Percpu pointer to the allocated area on success, NULL on failure.
 */
1096
void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
1097
{
1098
	return pcpu_alloc(size, align, true, GFP_KERNEL);
1099 1100
}

1101
/**
1102
 * pcpu_balance_workfn - manage the amount of free chunks and populated pages
1103 1104 1105 1106
 * @work: unused
 *
 * Reclaim all fully free chunks except for the first one.
 */
1107
static void pcpu_balance_workfn(struct work_struct *work)
1108
{
1109 1110
	LIST_HEAD(to_free);
	struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1];
1111
	struct pcpu_chunk *chunk, *next;
1112
	int slot, nr_to_pop, ret;
1113

1114 1115 1116 1117
	/*
	 * There's no reason to keep around multiple unused chunks and VM
	 * areas can be scarce.  Destroy all free chunks except for one.
	 */
1118 1119
	mutex_lock(&pcpu_alloc_mutex);
	spin_lock_irq(&pcpu_lock);
1120

1121
	list_for_each_entry_safe(chunk, next, free_head, list) {
1122 1123 1124
		WARN_ON(chunk->immutable);

		/* spare the first one */
1125
		if (chunk == list_first_entry(free_head, struct pcpu_chunk, list))
1126 1127
			continue;

1128
		list_del_init(&chunk->map_extend_list);
1129
		list_move(&chunk->list, &to_free);
1130 1131
	}

1132
	spin_unlock_irq(&pcpu_lock);
1133

1134
	list_for_each_entry_safe(chunk, next, &to_free, list) {
1135
		int rs, re;
1136

1137 1138
		pcpu_for_each_pop_region(chunk, rs, re, 0, pcpu_unit_pages) {
			pcpu_depopulate_chunk(chunk, rs, re);
1139 1140 1141
			spin_lock_irq(&pcpu_lock);
			pcpu_chunk_depopulated(chunk, rs, re);
			spin_unlock_irq(&pcpu_lock);
1142
		}
1143
		pcpu_destroy_chunk(chunk);
1144
	}
T
Tejun Heo 已提交
1145

1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
	/* service chunks which requested async area map extension */
	do {
		int new_alloc = 0;

		spin_lock_irq(&pcpu_lock);

		chunk = list_first_entry_or_null(&pcpu_map_extend_chunks,
					struct pcpu_chunk, map_extend_list);
		if (chunk) {
			list_del_init(&chunk->map_extend_list);
			new_alloc = pcpu_need_to_extend(chunk, false);
		}

		spin_unlock_irq(&pcpu_lock);

		if (new_alloc)
			pcpu_extend_area_map(chunk, new_alloc);
	} while (chunk);

1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
	/*
	 * Ensure there are certain number of free populated pages for
	 * atomic allocs.  Fill up from the most packed so that atomic
	 * allocs don't increase fragmentation.  If atomic allocation
	 * failed previously, always populate the maximum amount.  This
	 * should prevent atomic allocs larger than PAGE_SIZE from keeping
	 * failing indefinitely; however, large atomic allocs are not
	 * something we support properly and can be highly unreliable and
	 * inefficient.
	 */
retry_pop:
	if (pcpu_atomic_alloc_failed) {
		nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH;
		/* best effort anyway, don't worry about synchronization */
		pcpu_atomic_alloc_failed = false;
	} else {
		nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH -
				  pcpu_nr_empty_pop_pages,
				  0, PCPU_EMPTY_POP_PAGES_HIGH);
	}

	for (slot = pcpu_size_to_slot(PAGE_SIZE); slot < pcpu_nr_slots; slot++) {
		int nr_unpop = 0, rs, re;

		if (!nr_to_pop)
			break;

		spin_lock_irq(&pcpu_lock);
		list_for_each_entry(chunk, &pcpu_slot[slot], list) {
			nr_unpop = pcpu_unit_pages - chunk->nr_populated;
			if (nr_unpop)
				break;
		}
		spin_unlock_irq(&pcpu_lock);

		if (!nr_unpop)
			continue;

		/* @chunk can't go away while pcpu_alloc_mutex is held */
		pcpu_for_each_unpop_region(chunk, rs, re, 0, pcpu_unit_pages) {
			int nr = min(re - rs, nr_to_pop);

			ret = pcpu_populate_chunk(chunk, rs, rs + nr);
			if (!ret) {
				nr_to_pop -= nr;
				spin_lock_irq(&pcpu_lock);
				pcpu_chunk_populated(chunk, rs, rs + nr);
				spin_unlock_irq(&pcpu_lock);
			} else {
				nr_to_pop = 0;
			}

			if (!nr_to_pop)
				break;
		}
	}

	if (nr_to_pop) {
		/* ran out of chunks to populate, create a new one and retry */
		chunk = pcpu_create_chunk();
		if (chunk) {
			spin_lock_irq(&pcpu_lock);
			pcpu_chunk_relocate(chunk, -1);
			spin_unlock_irq(&pcpu_lock);
			goto retry_pop;
		}
	}

T
Tejun Heo 已提交
1233
	mutex_unlock(&pcpu_alloc_mutex);
1234 1235 1236 1237 1238 1239
}

/**
 * free_percpu - free percpu area
 * @ptr: pointer to area to free
 *
1240 1241 1242 1243
 * Free percpu area @ptr.
 *
 * CONTEXT:
 * Can be called from atomic context.
1244
 */
1245
void free_percpu(void __percpu *ptr)
1246
{
1247
	void *addr;
1248
	struct pcpu_chunk *chunk;
1249
	unsigned long flags;
1250
	int off, occ_pages;
1251 1252 1253 1254

	if (!ptr)
		return;

1255 1256
	kmemleak_free_percpu(ptr);

1257 1258
	addr = __pcpu_ptr_to_addr(ptr);

1259
	spin_lock_irqsave(&pcpu_lock, flags);
1260 1261

	chunk = pcpu_chunk_addr_search(addr);
T
Tejun Heo 已提交
1262
	off = addr - chunk->base_addr;
1263

1264 1265 1266 1267
	pcpu_free_area(chunk, off, &occ_pages);

	if (chunk != pcpu_reserved_chunk)
		pcpu_nr_empty_pop_pages += occ_pages;
1268

1269
	/* if there are more than one fully free chunks, wake up grim reaper */
1270 1271 1272
	if (chunk->free_size == pcpu_unit_size) {
		struct pcpu_chunk *pos;

1273
		list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
1274
			if (pos != chunk) {
1275
				pcpu_schedule_balance_work();
1276 1277 1278 1279
				break;
			}
	}

1280
	spin_unlock_irqrestore(&pcpu_lock, flags);
1281 1282 1283
}
EXPORT_SYMBOL_GPL(free_percpu);

1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
/**
 * is_kernel_percpu_address - test whether address is from static percpu area
 * @addr: address to test
 *
 * Test whether @addr belongs to in-kernel static percpu area.  Module
 * static percpu areas are not considered.  For those, use
 * is_module_percpu_address().
 *
 * RETURNS:
 * %true if @addr is from in-kernel static percpu area, %false otherwise.
 */
bool is_kernel_percpu_address(unsigned long addr)
{
1297
#ifdef CONFIG_SMP
1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
	const size_t static_size = __per_cpu_end - __per_cpu_start;
	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
	unsigned int cpu;

	for_each_possible_cpu(cpu) {
		void *start = per_cpu_ptr(base, cpu);

		if ((void *)addr >= start && (void *)addr < start + static_size)
			return true;
        }
1308 1309
#endif
	/* on UP, can't distinguish from other static vars, always false */
1310 1311 1312
	return false;
}

1313 1314 1315 1316 1317 1318 1319 1320 1321
/**
 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
 * @addr: the address to be converted to physical address
 *
 * Given @addr which is dereferenceable address obtained via one of
 * percpu access macros, this function translates it into its physical
 * address.  The caller is responsible for ensuring @addr stays valid
 * until this function finishes.
 *
1322 1323 1324 1325 1326
 * percpu allocator has special setup for the first chunk, which currently
 * supports either embedding in linear address space or vmalloc mapping,
 * and, from the second one, the backing allocator (currently either vm or
 * km) provides translation.
 *
1327
 * The addr can be translated simply without checking if it falls into the
1328 1329 1330 1331 1332
 * first chunk. But the current code reflects better how percpu allocator
 * actually works, and the verification can discover both bugs in percpu
 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
 * code.
 *
1333 1334 1335 1336 1337
 * RETURNS:
 * The physical address for @addr.
 */
phys_addr_t per_cpu_ptr_to_phys(void *addr)
{
1338 1339
	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
	bool in_first_chunk = false;
T
Tejun Heo 已提交
1340
	unsigned long first_low, first_high;
1341 1342 1343
	unsigned int cpu;

	/*
T
Tejun Heo 已提交
1344
	 * The following test on unit_low/high isn't strictly
1345 1346 1347
	 * necessary but will speed up lookups of addresses which
	 * aren't in the first chunk.
	 */
T
Tejun Heo 已提交
1348 1349 1350 1351 1352
	first_low = pcpu_chunk_addr(pcpu_first_chunk, pcpu_low_unit_cpu, 0);
	first_high = pcpu_chunk_addr(pcpu_first_chunk, pcpu_high_unit_cpu,
				     pcpu_unit_pages);
	if ((unsigned long)addr >= first_low &&
	    (unsigned long)addr < first_high) {
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
		for_each_possible_cpu(cpu) {
			void *start = per_cpu_ptr(base, cpu);

			if (addr >= start && addr < start + pcpu_unit_size) {
				in_first_chunk = true;
				break;
			}
		}
	}

	if (in_first_chunk) {
1364
		if (!is_vmalloc_addr(addr))
1365 1366
			return __pa(addr);
		else
1367 1368
			return page_to_phys(vmalloc_to_page(addr)) +
			       offset_in_page(addr);
1369
	} else
1370 1371
		return page_to_phys(pcpu_addr_to_page(addr)) +
		       offset_in_page(addr);
1372 1373
}

1374
/**
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
 * pcpu_alloc_alloc_info - allocate percpu allocation info
 * @nr_groups: the number of groups
 * @nr_units: the number of units
 *
 * Allocate ai which is large enough for @nr_groups groups containing
 * @nr_units units.  The returned ai's groups[0].cpu_map points to the
 * cpu_map array which is long enough for @nr_units and filled with
 * NR_CPUS.  It's the caller's responsibility to initialize cpu_map
 * pointer of other groups.
 *
 * RETURNS:
 * Pointer to the allocated pcpu_alloc_info on success, NULL on
 * failure.
 */
struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
						      int nr_units)
{
	struct pcpu_alloc_info *ai;
	size_t base_size, ai_size;
	void *ptr;
	int unit;

	base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
			  __alignof__(ai->groups[0].cpu_map[0]));
	ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);

1401
	ptr = memblock_virt_alloc_nopanic(PFN_ALIGN(ai_size), 0);
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
	if (!ptr)
		return NULL;
	ai = ptr;
	ptr += base_size;

	ai->groups[0].cpu_map = ptr;

	for (unit = 0; unit < nr_units; unit++)
		ai->groups[0].cpu_map[unit] = NR_CPUS;

	ai->nr_groups = nr_groups;
	ai->__ai_size = PFN_ALIGN(ai_size);

	return ai;
}

/**
 * pcpu_free_alloc_info - free percpu allocation info
 * @ai: pcpu_alloc_info to free
 *
 * Free @ai which was allocated by pcpu_alloc_alloc_info().
 */
void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
{
1426
	memblock_free_early(__pa(ai), ai->__ai_size);
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
}

/**
 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
 * @lvl: loglevel
 * @ai: allocation info to dump
 *
 * Print out information about @ai using loglevel @lvl.
 */
static void pcpu_dump_alloc_info(const char *lvl,
				 const struct pcpu_alloc_info *ai)
1438
{
1439
	int group_width = 1, cpu_width = 1, width;
1440
	char empty_str[] = "--------";
1441 1442 1443 1444 1445 1446 1447
	int alloc = 0, alloc_end = 0;
	int group, v;
	int upa, apl;	/* units per alloc, allocs per line */

	v = ai->nr_groups;
	while (v /= 10)
		group_width++;
1448

1449
	v = num_possible_cpus();
1450
	while (v /= 10)
1451 1452
		cpu_width++;
	empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
1453

1454 1455 1456
	upa = ai->alloc_size / ai->unit_size;
	width = upa * (cpu_width + 1) + group_width + 3;
	apl = rounddown_pow_of_two(max(60 / width, 1));
1457

1458 1459 1460
	printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
	       lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
	       ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
1461

1462 1463 1464 1465 1466 1467 1468 1469
	for (group = 0; group < ai->nr_groups; group++) {
		const struct pcpu_group_info *gi = &ai->groups[group];
		int unit = 0, unit_end = 0;

		BUG_ON(gi->nr_units % upa);
		for (alloc_end += gi->nr_units / upa;
		     alloc < alloc_end; alloc++) {
			if (!(alloc % apl)) {
1470
				pr_cont("\n");
1471 1472
				printk("%spcpu-alloc: ", lvl);
			}
1473
			pr_cont("[%0*d] ", group_width, group);
1474 1475 1476

			for (unit_end += upa; unit < unit_end; unit++)
				if (gi->cpu_map[unit] != NR_CPUS)
1477 1478
					pr_cont("%0*d ",
						cpu_width, gi->cpu_map[unit]);
1479
				else
1480
					pr_cont("%s ", empty_str);
1481 1482
		}
	}
1483
	pr_cont("\n");
1484 1485
}

1486
/**
1487
 * pcpu_setup_first_chunk - initialize the first percpu chunk
1488
 * @ai: pcpu_alloc_info describing how to percpu area is shaped
1489
 * @base_addr: mapped address
1490 1491 1492
 *
 * Initialize the first percpu chunk which contains the kernel static
 * perpcu area.  This function is to be called from arch percpu area
1493
 * setup path.
1494
 *
1495 1496 1497 1498 1499 1500
 * @ai contains all information necessary to initialize the first
 * chunk and prime the dynamic percpu allocator.
 *
 * @ai->static_size is the size of static percpu area.
 *
 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
1501 1502 1503 1504 1505 1506 1507
 * reserve after the static area in the first chunk.  This reserves
 * the first chunk such that it's available only through reserved
 * percpu allocation.  This is primarily used to serve module percpu
 * static areas on architectures where the addressing model has
 * limited offset range for symbol relocations to guarantee module
 * percpu symbols fall inside the relocatable range.
 *
1508 1509 1510
 * @ai->dyn_size determines the number of bytes available for dynamic
 * allocation in the first chunk.  The area between @ai->static_size +
 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
1511
 *
1512 1513 1514
 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
 * and equal to or larger than @ai->static_size + @ai->reserved_size +
 * @ai->dyn_size.
1515
 *
1516 1517
 * @ai->atom_size is the allocation atom size and used as alignment
 * for vm areas.
1518
 *
1519 1520 1521 1522 1523 1524 1525 1526 1527
 * @ai->alloc_size is the allocation size and always multiple of
 * @ai->atom_size.  This is larger than @ai->atom_size if
 * @ai->unit_size is larger than @ai->atom_size.
 *
 * @ai->nr_groups and @ai->groups describe virtual memory layout of
 * percpu areas.  Units which should be colocated are put into the
 * same group.  Dynamic VM areas will be allocated according to these
 * groupings.  If @ai->nr_groups is zero, a single group containing
 * all units is assumed.
1528
 *
1529 1530
 * The caller should have mapped the first chunk at @base_addr and
 * copied static data to each unit.
1531
 *
1532 1533 1534 1535 1536 1537 1538
 * If the first chunk ends up with both reserved and dynamic areas, it
 * is served by two chunks - one to serve the core static and reserved
 * areas and the other for the dynamic area.  They share the same vm
 * and page map but uses different area allocation map to stay away
 * from each other.  The latter chunk is circulated in the chunk slots
 * and available for dynamic allocation like any other chunks.
 *
1539
 * RETURNS:
T
Tejun Heo 已提交
1540
 * 0 on success, -errno on failure.
1541
 */
T
Tejun Heo 已提交
1542 1543
int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
				  void *base_addr)
1544
{
1545 1546
	static int smap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
	static int dmap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
1547 1548
	size_t dyn_size = ai->dyn_size;
	size_t size_sum = ai->static_size + ai->reserved_size + dyn_size;
1549
	struct pcpu_chunk *schunk, *dchunk = NULL;
1550 1551
	unsigned long *group_offsets;
	size_t *group_sizes;
T
Tejun Heo 已提交
1552
	unsigned long *unit_off;
1553
	unsigned int cpu;
1554 1555
	int *unit_map;
	int group, unit, i;
1556

1557 1558
#define PCPU_SETUP_BUG_ON(cond)	do {					\
	if (unlikely(cond)) {						\
1559 1560
		pr_emerg("failed to initialize, %s\n", #cond);		\
		pr_emerg("cpu_possible_mask=%*pb\n",			\
1561
			 cpumask_pr_args(cpu_possible_mask));		\
1562 1563 1564 1565 1566
		pcpu_dump_alloc_info(KERN_EMERG, ai);			\
		BUG();							\
	}								\
} while (0)

1567
	/* sanity checks */
1568
	PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
1569
#ifdef CONFIG_SMP
1570
	PCPU_SETUP_BUG_ON(!ai->static_size);
1571
	PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start));
1572
#endif
1573
	PCPU_SETUP_BUG_ON(!base_addr);
1574
	PCPU_SETUP_BUG_ON(offset_in_page(base_addr));
1575
	PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
1576
	PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size));
1577
	PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
1578
	PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
1579
	PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
1580

1581
	/* process group information and build config tables accordingly */
1582 1583 1584 1585 1586 1587
	group_offsets = memblock_virt_alloc(ai->nr_groups *
					     sizeof(group_offsets[0]), 0);
	group_sizes = memblock_virt_alloc(ai->nr_groups *
					   sizeof(group_sizes[0]), 0);
	unit_map = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_map[0]), 0);
	unit_off = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_off[0]), 0);
1588

1589
	for (cpu = 0; cpu < nr_cpu_ids; cpu++)
1590
		unit_map[cpu] = UINT_MAX;
T
Tejun Heo 已提交
1591 1592 1593

	pcpu_low_unit_cpu = NR_CPUS;
	pcpu_high_unit_cpu = NR_CPUS;
1594

1595 1596
	for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
		const struct pcpu_group_info *gi = &ai->groups[group];
1597

1598 1599 1600
		group_offsets[group] = gi->base_offset;
		group_sizes[group] = gi->nr_units * ai->unit_size;

1601 1602 1603 1604
		for (i = 0; i < gi->nr_units; i++) {
			cpu = gi->cpu_map[i];
			if (cpu == NR_CPUS)
				continue;
1605

D
Dan Carpenter 已提交
1606
			PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids);
1607 1608
			PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
			PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
1609

1610
			unit_map[cpu] = unit + i;
T
Tejun Heo 已提交
1611 1612
			unit_off[cpu] = gi->base_offset + i * ai->unit_size;

T
Tejun Heo 已提交
1613 1614 1615 1616 1617 1618 1619
			/* determine low/high unit_cpu */
			if (pcpu_low_unit_cpu == NR_CPUS ||
			    unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
				pcpu_low_unit_cpu = cpu;
			if (pcpu_high_unit_cpu == NR_CPUS ||
			    unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
				pcpu_high_unit_cpu = cpu;
1620
		}
1621
	}
1622 1623 1624
	pcpu_nr_units = unit;

	for_each_possible_cpu(cpu)
1625 1626 1627 1628
		PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);

	/* we're done parsing the input, undefine BUG macro and dump config */
#undef PCPU_SETUP_BUG_ON
1629
	pcpu_dump_alloc_info(KERN_DEBUG, ai);
1630

1631 1632 1633
	pcpu_nr_groups = ai->nr_groups;
	pcpu_group_offsets = group_offsets;
	pcpu_group_sizes = group_sizes;
1634
	pcpu_unit_map = unit_map;
T
Tejun Heo 已提交
1635
	pcpu_unit_offsets = unit_off;
1636 1637

	/* determine basic parameters */
1638
	pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
1639
	pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
1640
	pcpu_atom_size = ai->atom_size;
T
Tejun Heo 已提交
1641 1642
	pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
		BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
1643

1644 1645 1646 1647 1648
	/*
	 * Allocate chunk slots.  The additional last slot is for
	 * empty chunks.
	 */
	pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
1649 1650
	pcpu_slot = memblock_virt_alloc(
			pcpu_nr_slots * sizeof(pcpu_slot[0]), 0);
1651 1652 1653
	for (i = 0; i < pcpu_nr_slots; i++)
		INIT_LIST_HEAD(&pcpu_slot[i]);

1654 1655 1656 1657 1658 1659 1660
	/*
	 * Initialize static chunk.  If reserved_size is zero, the
	 * static chunk covers static area + dynamic allocation area
	 * in the first chunk.  If reserved_size is not zero, it
	 * covers static area + reserved area (mostly used for module
	 * static percpu allocation).
	 */
1661
	schunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0);
1662
	INIT_LIST_HEAD(&schunk->list);
1663
	INIT_LIST_HEAD(&schunk->map_extend_list);
T
Tejun Heo 已提交
1664
	schunk->base_addr = base_addr;
1665 1666
	schunk->map = smap;
	schunk->map_alloc = ARRAY_SIZE(smap);
1667
	schunk->immutable = true;
T
Tejun Heo 已提交
1668
	bitmap_fill(schunk->populated, pcpu_unit_pages);
1669
	schunk->nr_populated = pcpu_unit_pages;
1670

1671 1672
	if (ai->reserved_size) {
		schunk->free_size = ai->reserved_size;
1673
		pcpu_reserved_chunk = schunk;
1674
		pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size;
1675 1676 1677 1678
	} else {
		schunk->free_size = dyn_size;
		dyn_size = 0;			/* dynamic area covered */
	}
1679
	schunk->contig_hint = schunk->free_size;
1680

1681 1682 1683
	schunk->map[0] = 1;
	schunk->map[1] = ai->static_size;
	schunk->map_used = 1;
1684
	if (schunk->free_size)
1685 1686
		schunk->map[++schunk->map_used] = ai->static_size + schunk->free_size;
	schunk->map[schunk->map_used] |= 1;
1687

1688 1689
	/* init dynamic chunk if necessary */
	if (dyn_size) {
1690
		dchunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0);
1691
		INIT_LIST_HEAD(&dchunk->list);
1692
		INIT_LIST_HEAD(&dchunk->map_extend_list);
T
Tejun Heo 已提交
1693
		dchunk->base_addr = base_addr;
1694 1695
		dchunk->map = dmap;
		dchunk->map_alloc = ARRAY_SIZE(dmap);
1696
		dchunk->immutable = true;
T
Tejun Heo 已提交
1697
		bitmap_fill(dchunk->populated, pcpu_unit_pages);
1698
		dchunk->nr_populated = pcpu_unit_pages;
1699 1700

		dchunk->contig_hint = dchunk->free_size = dyn_size;
1701 1702 1703 1704
		dchunk->map[0] = 1;
		dchunk->map[1] = pcpu_reserved_chunk_limit;
		dchunk->map[2] = (pcpu_reserved_chunk_limit + dchunk->free_size) | 1;
		dchunk->map_used = 2;
1705 1706
	}

1707
	/* link the first chunk in */
1708
	pcpu_first_chunk = dchunk ?: schunk;
1709 1710
	pcpu_nr_empty_pop_pages +=
		pcpu_count_occupied_pages(pcpu_first_chunk, 1);
1711
	pcpu_chunk_relocate(pcpu_first_chunk, -1);
1712 1713

	/* we're done */
T
Tejun Heo 已提交
1714
	pcpu_base_addr = base_addr;
T
Tejun Heo 已提交
1715
	return 0;
1716
}
1717

1718 1719
#ifdef CONFIG_SMP

1720
const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
1721 1722 1723 1724
	[PCPU_FC_AUTO]	= "auto",
	[PCPU_FC_EMBED]	= "embed",
	[PCPU_FC_PAGE]	= "page",
};
1725

1726
enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
1727

1728 1729
static int __init percpu_alloc_setup(char *str)
{
1730 1731 1732
	if (!str)
		return -EINVAL;

1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
	if (0)
		/* nada */;
#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
	else if (!strcmp(str, "embed"))
		pcpu_chosen_fc = PCPU_FC_EMBED;
#endif
#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
	else if (!strcmp(str, "page"))
		pcpu_chosen_fc = PCPU_FC_PAGE;
#endif
	else
1744
		pr_warn("unknown allocator %s specified\n", str);
1745

1746
	return 0;
1747
}
1748
early_param("percpu_alloc", percpu_alloc_setup);
1749

1750 1751 1752 1753 1754
/*
 * pcpu_embed_first_chunk() is used by the generic percpu setup.
 * Build it if needed by the arch config or the generic setup is going
 * to be used.
 */
1755 1756
#if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
	!defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777
#define BUILD_EMBED_FIRST_CHUNK
#endif

/* build pcpu_page_first_chunk() iff needed by the arch config */
#if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
#define BUILD_PAGE_FIRST_CHUNK
#endif

/* pcpu_build_alloc_info() is used by both embed and page first chunk */
#if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
/**
 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
 * @reserved_size: the size of reserved percpu area in bytes
 * @dyn_size: minimum free size for dynamic allocation in bytes
 * @atom_size: allocation atom size
 * @cpu_distance_fn: callback to determine distance between cpus, optional
 *
 * This function determines grouping of units, their mappings to cpus
 * and other parameters considering needed percpu size, allocation
 * atom size and distances between CPUs.
 *
1778
 * Groups are always multiples of atom size and CPUs which are of
1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815
 * LOCAL_DISTANCE both ways are grouped together and share space for
 * units in the same group.  The returned configuration is guaranteed
 * to have CPUs on different nodes on different groups and >=75% usage
 * of allocated virtual address space.
 *
 * RETURNS:
 * On success, pointer to the new allocation_info is returned.  On
 * failure, ERR_PTR value is returned.
 */
static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
				size_t reserved_size, size_t dyn_size,
				size_t atom_size,
				pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
{
	static int group_map[NR_CPUS] __initdata;
	static int group_cnt[NR_CPUS] __initdata;
	const size_t static_size = __per_cpu_end - __per_cpu_start;
	int nr_groups = 1, nr_units = 0;
	size_t size_sum, min_unit_size, alloc_size;
	int upa, max_upa, uninitialized_var(best_upa);	/* units_per_alloc */
	int last_allocs, group, unit;
	unsigned int cpu, tcpu;
	struct pcpu_alloc_info *ai;
	unsigned int *cpu_map;

	/* this function may be called multiple times */
	memset(group_map, 0, sizeof(group_map));
	memset(group_cnt, 0, sizeof(group_cnt));

	/* calculate size_sum and ensure dyn_size is enough for early alloc */
	size_sum = PFN_ALIGN(static_size + reserved_size +
			    max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
	dyn_size = size_sum - static_size - reserved_size;

	/*
	 * Determine min_unit_size, alloc_size and max_upa such that
	 * alloc_size is multiple of atom_size and is the smallest
L
Lucas De Marchi 已提交
1816
	 * which can accommodate 4k aligned segments which are equal to
1817 1818 1819 1820 1821 1822
	 * or larger than min_unit_size.
	 */
	min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);

	alloc_size = roundup(min_unit_size, atom_size);
	upa = alloc_size / min_unit_size;
1823
	while (alloc_size % upa || (offset_in_page(alloc_size / upa)))
1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854
		upa--;
	max_upa = upa;

	/* group cpus according to their proximity */
	for_each_possible_cpu(cpu) {
		group = 0;
	next_group:
		for_each_possible_cpu(tcpu) {
			if (cpu == tcpu)
				break;
			if (group_map[tcpu] == group && cpu_distance_fn &&
			    (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
			     cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
				group++;
				nr_groups = max(nr_groups, group + 1);
				goto next_group;
			}
		}
		group_map[cpu] = group;
		group_cnt[group]++;
	}

	/*
	 * Expand unit size until address space usage goes over 75%
	 * and then as much as possible without using more address
	 * space.
	 */
	last_allocs = INT_MAX;
	for (upa = max_upa; upa; upa--) {
		int allocs = 0, wasted = 0;

1855
		if (alloc_size % upa || (offset_in_page(alloc_size / upa)))
1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
			continue;

		for (group = 0; group < nr_groups; group++) {
			int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
			allocs += this_allocs;
			wasted += this_allocs * upa - group_cnt[group];
		}

		/*
		 * Don't accept if wastage is over 1/3.  The
		 * greater-than comparison ensures upa==1 always
		 * passes the following check.
		 */
		if (wasted > num_possible_cpus() / 3)
			continue;

		/* and then don't consume more memory */
		if (allocs > last_allocs)
			break;
		last_allocs = allocs;
		best_upa = upa;
	}
	upa = best_upa;

	/* allocate and fill alloc_info */
	for (group = 0; group < nr_groups; group++)
		nr_units += roundup(group_cnt[group], upa);

	ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
	if (!ai)
		return ERR_PTR(-ENOMEM);
	cpu_map = ai->groups[0].cpu_map;

	for (group = 0; group < nr_groups; group++) {
		ai->groups[group].cpu_map = cpu_map;
		cpu_map += roundup(group_cnt[group], upa);
	}

	ai->static_size = static_size;
	ai->reserved_size = reserved_size;
	ai->dyn_size = dyn_size;
	ai->unit_size = alloc_size / upa;
	ai->atom_size = atom_size;
	ai->alloc_size = alloc_size;

	for (group = 0, unit = 0; group_cnt[group]; group++) {
		struct pcpu_group_info *gi = &ai->groups[group];

		/*
		 * Initialize base_offset as if all groups are located
		 * back-to-back.  The caller should update this to
		 * reflect actual allocation.
		 */
		gi->base_offset = unit * ai->unit_size;

		for_each_possible_cpu(cpu)
			if (group_map[cpu] == group)
				gi->cpu_map[gi->nr_units++] = cpu;
		gi->nr_units = roundup(gi->nr_units, upa);
		unit += gi->nr_units;
	}
	BUG_ON(unit != nr_units);

	return ai;
}
#endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */

#if defined(BUILD_EMBED_FIRST_CHUNK)
1924 1925 1926
/**
 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
 * @reserved_size: the size of reserved percpu area in bytes
1927
 * @dyn_size: minimum free size for dynamic allocation in bytes
1928 1929 1930
 * @atom_size: allocation atom size
 * @cpu_distance_fn: callback to determine distance between cpus, optional
 * @alloc_fn: function to allocate percpu page
L
Lucas De Marchi 已提交
1931
 * @free_fn: function to free percpu page
1932 1933 1934 1935 1936
 *
 * This is a helper to ease setting up embedded first percpu chunk and
 * can be called where pcpu_setup_first_chunk() is expected.
 *
 * If this function is used to setup the first chunk, it is allocated
1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
 * by calling @alloc_fn and used as-is without being mapped into
 * vmalloc area.  Allocations are always whole multiples of @atom_size
 * aligned to @atom_size.
 *
 * This enables the first chunk to piggy back on the linear physical
 * mapping which often uses larger page size.  Please note that this
 * can result in very sparse cpu->unit mapping on NUMA machines thus
 * requiring large vmalloc address space.  Don't use this allocator if
 * vmalloc space is not orders of magnitude larger than distances
 * between node memory addresses (ie. 32bit NUMA machines).
1947
 *
1948
 * @dyn_size specifies the minimum dynamic area size.
1949 1950
 *
 * If the needed size is smaller than the minimum or specified unit
1951
 * size, the leftover is returned using @free_fn.
1952 1953
 *
 * RETURNS:
T
Tejun Heo 已提交
1954
 * 0 on success, -errno on failure.
1955
 */
1956
int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
1957 1958 1959 1960
				  size_t atom_size,
				  pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
				  pcpu_fc_alloc_fn_t alloc_fn,
				  pcpu_fc_free_fn_t free_fn)
1961
{
1962 1963
	void *base = (void *)ULONG_MAX;
	void **areas = NULL;
1964
	struct pcpu_alloc_info *ai;
1965 1966
	size_t size_sum, areas_size;
	unsigned long max_distance;
1967
	int group, i, highest_group, rc;
1968

1969 1970
	ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
				   cpu_distance_fn);
1971 1972
	if (IS_ERR(ai))
		return PTR_ERR(ai);
1973

1974
	size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
1975
	areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
1976

1977
	areas = memblock_virt_alloc_nopanic(areas_size, 0);
1978
	if (!areas) {
T
Tejun Heo 已提交
1979
		rc = -ENOMEM;
1980
		goto out_free;
1981
	}
1982

1983 1984
	/* allocate, copy and determine base address & max_distance */
	highest_group = 0;
1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
	for (group = 0; group < ai->nr_groups; group++) {
		struct pcpu_group_info *gi = &ai->groups[group];
		unsigned int cpu = NR_CPUS;
		void *ptr;

		for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
			cpu = gi->cpu_map[i];
		BUG_ON(cpu == NR_CPUS);

		/* allocate space for the whole group */
		ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
		if (!ptr) {
			rc = -ENOMEM;
			goto out_free_areas;
		}
2000 2001
		/* kmemleak tracks the percpu allocations separately */
		kmemleak_free(ptr);
2002
		areas[group] = ptr;
2003

2004
		base = min(ptr, base);
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
		if (ptr > areas[highest_group])
			highest_group = group;
	}
	max_distance = areas[highest_group] - base;
	max_distance += ai->unit_size * ai->groups[highest_group].nr_units;

	/* warn if maximum distance is further than 75% of vmalloc space */
	if (max_distance > VMALLOC_TOTAL * 3 / 4) {
		pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n",
				max_distance, VMALLOC_TOTAL);
#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
		/* and fail if we have fallback */
		rc = -EINVAL;
		goto out_free_areas;
#endif
2020 2021 2022 2023 2024 2025 2026 2027 2028 2029
	}

	/*
	 * Copy data and free unused parts.  This should happen after all
	 * allocations are complete; otherwise, we may end up with
	 * overlapping groups.
	 */
	for (group = 0; group < ai->nr_groups; group++) {
		struct pcpu_group_info *gi = &ai->groups[group];
		void *ptr = areas[group];
2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040

		for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
			if (gi->cpu_map[i] == NR_CPUS) {
				/* unused unit, free whole */
				free_fn(ptr, ai->unit_size);
				continue;
			}
			/* copy and return the unused part */
			memcpy(ptr, __per_cpu_load, ai->static_size);
			free_fn(ptr + size_sum, ai->unit_size - size_sum);
		}
2041
	}
2042

2043
	/* base address is now known, determine group base offsets */
2044
	for (group = 0; group < ai->nr_groups; group++) {
2045
		ai->groups[group].base_offset = areas[group] - base;
2046
	}
2047

2048
	pr_info("Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
2049 2050
		PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
		ai->dyn_size, ai->unit_size);
2051

T
Tejun Heo 已提交
2052
	rc = pcpu_setup_first_chunk(ai, base);
2053 2054 2055 2056
	goto out_free;

out_free_areas:
	for (group = 0; group < ai->nr_groups; group++)
2057 2058 2059
		if (areas[group])
			free_fn(areas[group],
				ai->groups[group].nr_units * ai->unit_size);
2060
out_free:
2061
	pcpu_free_alloc_info(ai);
2062
	if (areas)
2063
		memblock_free_early(__pa(areas), areas_size);
T
Tejun Heo 已提交
2064
	return rc;
2065
}
2066
#endif /* BUILD_EMBED_FIRST_CHUNK */
2067

2068
#ifdef BUILD_PAGE_FIRST_CHUNK
2069
/**
2070
 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
2071 2072
 * @reserved_size: the size of reserved percpu area in bytes
 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
L
Lucas De Marchi 已提交
2073
 * @free_fn: function to free percpu page, always called with PAGE_SIZE
2074 2075
 * @populate_pte_fn: function to populate pte
 *
2076 2077
 * This is a helper to ease setting up page-remapped first percpu
 * chunk and can be called where pcpu_setup_first_chunk() is expected.
2078 2079 2080 2081 2082
 *
 * This is the basic allocator.  Static percpu area is allocated
 * page-by-page into vmalloc area.
 *
 * RETURNS:
T
Tejun Heo 已提交
2083
 * 0 on success, -errno on failure.
2084
 */
T
Tejun Heo 已提交
2085 2086 2087 2088
int __init pcpu_page_first_chunk(size_t reserved_size,
				 pcpu_fc_alloc_fn_t alloc_fn,
				 pcpu_fc_free_fn_t free_fn,
				 pcpu_fc_populate_pte_fn_t populate_pte_fn)
2089
{
2090
	static struct vm_struct vm;
2091
	struct pcpu_alloc_info *ai;
2092
	char psize_str[16];
T
Tejun Heo 已提交
2093
	int unit_pages;
2094
	size_t pages_size;
T
Tejun Heo 已提交
2095
	struct page **pages;
T
Tejun Heo 已提交
2096
	int unit, i, j, rc;
2097 2098
	int upa;
	int nr_g0_units;
2099

2100 2101
	snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);

2102
	ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
2103 2104 2105
	if (IS_ERR(ai))
		return PTR_ERR(ai);
	BUG_ON(ai->nr_groups != 1);
2106 2107 2108 2109 2110 2111
	upa = ai->alloc_size/ai->unit_size;
	nr_g0_units = roundup(num_possible_cpus(), upa);
	if (unlikely(WARN_ON(ai->groups[0].nr_units != nr_g0_units))) {
		pcpu_free_alloc_info(ai);
		return -EINVAL;
	}
2112 2113

	unit_pages = ai->unit_size >> PAGE_SHIFT;
2114 2115

	/* unaligned allocations can't be freed, round up to page size */
2116 2117
	pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
			       sizeof(pages[0]));
2118
	pages = memblock_virt_alloc(pages_size, 0);
2119

2120
	/* allocate pages */
2121
	j = 0;
2122 2123
	for (unit = 0; unit < num_possible_cpus(); unit++) {
		unsigned int cpu = ai->groups[0].cpu_map[unit];
T
Tejun Heo 已提交
2124
		for (i = 0; i < unit_pages; i++) {
2125 2126
			void *ptr;

2127
			ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
2128
			if (!ptr) {
2129
				pr_warn("failed to allocate %s page for cpu%u\n",
2130
						psize_str, cpu);
2131 2132
				goto enomem;
			}
2133 2134
			/* kmemleak tracks the percpu allocations separately */
			kmemleak_free(ptr);
T
Tejun Heo 已提交
2135
			pages[j++] = virt_to_page(ptr);
2136
		}
2137
	}
2138

2139 2140
	/* allocate vm area, map the pages and copy static data */
	vm.flags = VM_ALLOC;
2141
	vm.size = num_possible_cpus() * ai->unit_size;
2142 2143
	vm_area_register_early(&vm, PAGE_SIZE);

2144
	for (unit = 0; unit < num_possible_cpus(); unit++) {
2145
		unsigned long unit_addr =
2146
			(unsigned long)vm.addr + unit * ai->unit_size;
2147

T
Tejun Heo 已提交
2148
		for (i = 0; i < unit_pages; i++)
2149 2150 2151
			populate_pte_fn(unit_addr + (i << PAGE_SHIFT));

		/* pte already populated, the following shouldn't fail */
T
Tejun Heo 已提交
2152 2153 2154 2155
		rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
				      unit_pages);
		if (rc < 0)
			panic("failed to map percpu area, err=%d\n", rc);
2156

2157 2158 2159 2160 2161 2162 2163 2164 2165
		/*
		 * FIXME: Archs with virtual cache should flush local
		 * cache for the linear mapping here - something
		 * equivalent to flush_cache_vmap() on the local cpu.
		 * flush_cache_vmap() can't be used as most supporting
		 * data structures are not set up yet.
		 */

		/* copy static data */
2166
		memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
2167 2168 2169
	}

	/* we're ready, commit */
2170
	pr_info("%d %s pages/cpu @%p s%zu r%zu d%zu\n",
2171 2172
		unit_pages, psize_str, vm.addr, ai->static_size,
		ai->reserved_size, ai->dyn_size);
2173

T
Tejun Heo 已提交
2174
	rc = pcpu_setup_first_chunk(ai, vm.addr);
2175 2176 2177 2178
	goto out_free_ar;

enomem:
	while (--j >= 0)
T
Tejun Heo 已提交
2179
		free_fn(page_address(pages[j]), PAGE_SIZE);
T
Tejun Heo 已提交
2180
	rc = -ENOMEM;
2181
out_free_ar:
2182
	memblock_free_early(__pa(pages), pages_size);
2183
	pcpu_free_alloc_info(ai);
T
Tejun Heo 已提交
2184
	return rc;
2185
}
2186
#endif /* BUILD_PAGE_FIRST_CHUNK */
2187

2188
#ifndef	CONFIG_HAVE_SETUP_PER_CPU_AREA
2189
/*
2190
 * Generic SMP percpu area setup.
2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203
 *
 * The embedding helper is used because its behavior closely resembles
 * the original non-dynamic generic percpu area setup.  This is
 * important because many archs have addressing restrictions and might
 * fail if the percpu area is located far away from the previous
 * location.  As an added bonus, in non-NUMA cases, embedding is
 * generally a good idea TLB-wise because percpu area can piggy back
 * on the physical linear memory mapping which uses large page
 * mappings on applicable archs.
 */
unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
EXPORT_SYMBOL(__per_cpu_offset);

2204 2205 2206
static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
				       size_t align)
{
2207 2208
	return  memblock_virt_alloc_from_nopanic(
			size, align, __pa(MAX_DMA_ADDRESS));
2209
}
2210

2211 2212
static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
{
2213
	memblock_free_early(__pa(ptr), size);
2214 2215
}

2216 2217 2218 2219
void __init setup_per_cpu_areas(void)
{
	unsigned long delta;
	unsigned int cpu;
T
Tejun Heo 已提交
2220
	int rc;
2221 2222 2223 2224 2225

	/*
	 * Always reserve area for module percpu variables.  That's
	 * what the legacy allocator did.
	 */
T
Tejun Heo 已提交
2226
	rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
2227 2228
				    PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
				    pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
T
Tejun Heo 已提交
2229
	if (rc < 0)
2230
		panic("Failed to initialize percpu areas.");
2231 2232 2233

	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
	for_each_possible_cpu(cpu)
T
Tejun Heo 已提交
2234
		__per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
2235
}
2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
#endif	/* CONFIG_HAVE_SETUP_PER_CPU_AREA */

#else	/* CONFIG_SMP */

/*
 * UP percpu area setup.
 *
 * UP always uses km-based percpu allocator with identity mapping.
 * Static percpu variables are indistinguishable from the usual static
 * variables and don't require any special preparation.
 */
void __init setup_per_cpu_areas(void)
{
	const size_t unit_size =
		roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
					 PERCPU_DYNAMIC_RESERVE));
	struct pcpu_alloc_info *ai;
	void *fc;

	ai = pcpu_alloc_alloc_info(1, 1);
2256 2257 2258
	fc = memblock_virt_alloc_from_nopanic(unit_size,
					      PAGE_SIZE,
					      __pa(MAX_DMA_ADDRESS));
2259 2260
	if (!ai || !fc)
		panic("Failed to allocate memory for percpu areas.");
2261 2262
	/* kmemleak tracks the percpu allocations separately */
	kmemleak_free(fc);
2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275

	ai->dyn_size = unit_size;
	ai->unit_size = unit_size;
	ai->atom_size = unit_size;
	ai->alloc_size = unit_size;
	ai->groups[0].nr_units = 1;
	ai->groups[0].cpu_map[0] = 0;

	if (pcpu_setup_first_chunk(ai, fc) < 0)
		panic("Failed to initialize percpu areas.");
}

#endif	/* CONFIG_SMP */
2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296

/*
 * First and reserved chunks are initialized with temporary allocation
 * map in initdata so that they can be used before slab is online.
 * This function is called after slab is brought up and replaces those
 * with properly allocated maps.
 */
void __init percpu_init_late(void)
{
	struct pcpu_chunk *target_chunks[] =
		{ pcpu_first_chunk, pcpu_reserved_chunk, NULL };
	struct pcpu_chunk *chunk;
	unsigned long flags;
	int i;

	for (i = 0; (chunk = target_chunks[i]); i++) {
		int *map;
		const size_t size = PERCPU_DYNAMIC_EARLY_SLOTS * sizeof(map[0]);

		BUILD_BUG_ON(size > PAGE_SIZE);

2297
		map = pcpu_mem_zalloc(size);
2298 2299 2300 2301 2302 2303 2304 2305
		BUG_ON(!map);

		spin_lock_irqsave(&pcpu_lock, flags);
		memcpy(map, chunk->map, size);
		chunk->map = map;
		spin_unlock_irqrestore(&pcpu_lock, flags);
	}
}
2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317

/*
 * Percpu allocator is initialized early during boot when neither slab or
 * workqueue is available.  Plug async management until everything is up
 * and running.
 */
static int __init percpu_enable_async(void)
{
	pcpu_async_enabled = true;
	return 0;
}
subsys_initcall(percpu_enable_async);