percpu.c 26.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
/*
 * linux/mm/percpu.c - percpu memory allocator
 *
 * Copyright (C) 2009		SUSE Linux Products GmbH
 * Copyright (C) 2009		Tejun Heo <tj@kernel.org>
 *
 * This file is released under the GPLv2.
 *
 * This is percpu allocator which can handle both static and dynamic
 * areas.  Percpu areas are allocated in chunks in vmalloc area.  Each
 * chunk is consisted of num_possible_cpus() units and the first chunk
 * is used for static percpu variables in the kernel image (special
 * boot time alloc/init handling necessary as these areas need to be
 * brought up before allocation services are running).  Unit grows as
 * necessary and all units grow or shrink in unison.  When a chunk is
 * filled up, another chunk is allocated.  ie. in vmalloc area
 *
 *  c0                           c1                         c2
 *  -------------------          -------------------        ------------
 * | u0 | u1 | u2 | u3 |        | u0 | u1 | u2 | u3 |      | u0 | u1 | u
 *  -------------------  ......  -------------------  ....  ------------
 *
 * Allocation is done in offset-size areas of single unit space.  Ie,
 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
 * c1:u1, c1:u2 and c1:u3.  Percpu access can be done by configuring
 * percpu base registers UNIT_SIZE apart.
 *
 * There are usually many small percpu allocations many of them as
 * small as 4 bytes.  The allocator organizes chunks into lists
 * according to free size and tries to allocate from the fullest one.
 * Each chunk keeps the maximum contiguous area size hint which is
 * guaranteed to be eqaul to or larger than the maximum contiguous
 * area in the chunk.  This helps the allocator not to iterate the
 * chunk maps unnecessarily.
 *
 * Allocation state in each chunk is kept using an array of integers
 * on chunk->map.  A positive value in the map represents a free
 * region and negative allocated.  Allocation inside a chunk is done
 * by scanning this map sequentially and serving the first matching
 * entry.  This is mostly copied from the percpu_modalloc() allocator.
 * Chunks are also linked into a rb tree to ease address to chunk
 * mapping during free.
 *
 * To use this allocator, arch code should do the followings.
 *
 * - define CONFIG_HAVE_DYNAMIC_PER_CPU_AREA
 *
 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
 *   regular address to percpu pointer and back
 *
51 52
 * - use pcpu_setup_first_chunk() during percpu area initialization to
 *   setup the first chunk containing the kernel static percpu area
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
 */

#include <linux/bitmap.h>
#include <linux/bootmem.h>
#include <linux/list.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/percpu.h>
#include <linux/pfn.h>
#include <linux/rbtree.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>

#include <asm/cacheflush.h>
#include <asm/tlbflush.h>

#define PCPU_SLOT_BASE_SHIFT		5	/* 1-31 shares the same slot */
#define PCPU_DFL_MAP_ALLOC		16	/* start a map with 16 ents */

struct pcpu_chunk {
	struct list_head	list;		/* linked to pcpu_slot lists */
	struct rb_node		rb_node;	/* key is chunk->vm->addr */
	int			free_size;	/* free bytes in the chunk */
	int			contig_hint;	/* max contiguous size hint */
	struct vm_struct	*vm;		/* mapped vmalloc region */
	int			map_used;	/* # of map entries used */
	int			map_alloc;	/* # of map entries allocated */
	int			*map;		/* allocation map */
82
	bool			immutable;	/* no [de]population allowed */
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
	struct page		*page[];	/* #cpus * UNIT_PAGES */
};

static int pcpu_unit_pages;
static int pcpu_unit_size;
static int pcpu_chunk_size;
static int pcpu_nr_slots;
static size_t pcpu_chunk_struct_size;

/* the address of the first chunk which starts with the kernel static area */
void *pcpu_base_addr;
EXPORT_SYMBOL_GPL(pcpu_base_addr);

/* the size of kernel static area */
static int pcpu_static_size;

/*
 * One mutex to rule them all.
 *
 * The following mutex is grabbed in the outermost public alloc/free
 * interface functions and released only when the operation is
 * complete.  As such, every function in this file other than the
 * outermost functions are called under pcpu_mutex.
 *
 * It can easily be switched to use spinlock such that only the area
 * allocation and page population commit are protected with it doing
 * actual [de]allocation without holding any lock.  However, given
 * what this allocator does, I think it's better to let them run
 * sequentially.
 */
static DEFINE_MUTEX(pcpu_mutex);

static struct list_head *pcpu_slot;		/* chunk list slots */
static struct rb_root pcpu_addr_root = RB_ROOT;	/* chunks by address */

118
static int __pcpu_size_to_slot(int size)
119
{
T
Tejun Heo 已提交
120
	int highbit = fls(size);	/* size is in bytes */
121 122 123
	return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
}

124 125 126 127 128 129 130
static int pcpu_size_to_slot(int size)
{
	if (size == pcpu_unit_size)
		return pcpu_nr_slots - 1;
	return __pcpu_size_to_slot(size);
}

131 132 133 134 135 136 137 138 139 140
static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
{
	if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
		return 0;

	return pcpu_size_to_slot(chunk->free_size);
}

static int pcpu_page_idx(unsigned int cpu, int page_idx)
{
141
	return cpu * pcpu_unit_pages + page_idx;
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
}

static struct page **pcpu_chunk_pagep(struct pcpu_chunk *chunk,
				      unsigned int cpu, int page_idx)
{
	return &chunk->page[pcpu_page_idx(cpu, page_idx)];
}

static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
				     unsigned int cpu, int page_idx)
{
	return (unsigned long)chunk->vm->addr +
		(pcpu_page_idx(cpu, page_idx) << PAGE_SHIFT);
}

static bool pcpu_chunk_page_occupied(struct pcpu_chunk *chunk,
				     int page_idx)
{
	return *pcpu_chunk_pagep(chunk, 0, page_idx) != NULL;
}

/**
 * pcpu_realloc - versatile realloc
 * @p: the current pointer (can be NULL for new allocations)
T
Tejun Heo 已提交
166 167
 * @size: the current size in bytes (can be 0 for new allocations)
 * @new_size: the wanted new size in bytes (can be 0 for free)
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
 *
 * More robust realloc which can be used to allocate, resize or free a
 * memory area of arbitrary size.  If the needed size goes over
 * PAGE_SIZE, kernel VM is used.
 *
 * RETURNS:
 * The new pointer on success, NULL on failure.
 */
static void *pcpu_realloc(void *p, size_t size, size_t new_size)
{
	void *new;

	if (new_size <= PAGE_SIZE)
		new = kmalloc(new_size, GFP_KERNEL);
	else
		new = vmalloc(new_size);
	if (new_size && !new)
		return NULL;

	memcpy(new, p, min(size, new_size));
	if (new_size > size)
		memset(new + size, 0, new_size - size);

	if (size <= PAGE_SIZE)
		kfree(p);
	else
		vfree(p);

	return new;
}

/**
 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
 * @chunk: chunk of interest
 * @oslot: the previous slot it was on
 *
 * This function is called after an allocation or free changed @chunk.
 * New slot according to the changed state is determined and @chunk is
 * moved to the slot.
 */
static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
{
	int nslot = pcpu_chunk_slot(chunk);

	if (oslot != nslot) {
		if (oslot < nslot)
			list_move(&chunk->list, &pcpu_slot[nslot]);
		else
			list_move_tail(&chunk->list, &pcpu_slot[nslot]);
	}
}

static struct rb_node **pcpu_chunk_rb_search(void *addr,
					     struct rb_node **parentp)
{
	struct rb_node **p = &pcpu_addr_root.rb_node;
	struct rb_node *parent = NULL;
	struct pcpu_chunk *chunk;

	while (*p) {
		parent = *p;
		chunk = rb_entry(parent, struct pcpu_chunk, rb_node);

		if (addr < chunk->vm->addr)
			p = &(*p)->rb_left;
		else if (addr > chunk->vm->addr)
			p = &(*p)->rb_right;
		else
			break;
	}

	if (parentp)
		*parentp = parent;
	return p;
}

/**
 * pcpu_chunk_addr_search - search for chunk containing specified address
 * @addr: address to search for
 *
 * Look for chunk which might contain @addr.  More specifically, it
 * searchs for the chunk with the highest start address which isn't
 * beyond @addr.
 *
 * RETURNS:
 * The address of the found chunk.
 */
static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
{
	struct rb_node *n, *parent;
	struct pcpu_chunk *chunk;

	n = *pcpu_chunk_rb_search(addr, &parent);
	if (!n) {
		/* no exactly matching chunk, the parent is the closest */
		n = parent;
		BUG_ON(!n);
	}
	chunk = rb_entry(n, struct pcpu_chunk, rb_node);

	if (addr < chunk->vm->addr) {
		/* the parent was the next one, look for the previous one */
		n = rb_prev(n);
		BUG_ON(!n);
		chunk = rb_entry(n, struct pcpu_chunk, rb_node);
	}

	return chunk;
}

/**
 * pcpu_chunk_addr_insert - insert chunk into address rb tree
 * @new: chunk to insert
 *
 * Insert @new into address rb tree.
 */
static void pcpu_chunk_addr_insert(struct pcpu_chunk *new)
{
	struct rb_node **p, *parent;

	p = pcpu_chunk_rb_search(new->vm->addr, &parent);
	BUG_ON(*p);
	rb_link_node(&new->rb_node, parent, p);
	rb_insert_color(&new->rb_node, &pcpu_addr_root);
}

/**
 * pcpu_split_block - split a map block
 * @chunk: chunk of interest
 * @i: index of map block to split
T
Tejun Heo 已提交
298 299
 * @head: head size in bytes (can be 0)
 * @tail: tail size in bytes (can be 0)
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
 *
 * Split the @i'th map block into two or three blocks.  If @head is
 * non-zero, @head bytes block is inserted before block @i moving it
 * to @i+1 and reducing its size by @head bytes.
 *
 * If @tail is non-zero, the target block, which can be @i or @i+1
 * depending on @head, is reduced by @tail bytes and @tail byte block
 * is inserted after the target block.
 *
 * RETURNS:
 * 0 on success, -errno on failure.
 */
static int pcpu_split_block(struct pcpu_chunk *chunk, int i, int head, int tail)
{
	int nr_extra = !!head + !!tail;
	int target = chunk->map_used + nr_extra;

	/* reallocation required? */
	if (chunk->map_alloc < target) {
		int new_alloc = chunk->map_alloc;
		int *new;

		while (new_alloc < target)
			new_alloc *= 2;

		new = pcpu_realloc(chunk->map,
				   chunk->map_alloc * sizeof(new[0]),
				   new_alloc * sizeof(new[0]));
		if (!new)
			return -ENOMEM;

		chunk->map_alloc = new_alloc;
		chunk->map = new;
	}

	/* insert a new subblock */
	memmove(&chunk->map[i + nr_extra], &chunk->map[i],
		sizeof(chunk->map[0]) * (chunk->map_used - i));
	chunk->map_used += nr_extra;

	if (head) {
		chunk->map[i + 1] = chunk->map[i] - head;
		chunk->map[i++] = head;
	}
	if (tail) {
		chunk->map[i++] -= tail;
		chunk->map[i] = tail;
	}
	return 0;
}

/**
 * pcpu_alloc_area - allocate area from a pcpu_chunk
 * @chunk: chunk of interest
T
Tejun Heo 已提交
354
 * @size: wanted size in bytes
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
 * @align: wanted align
 *
 * Try to allocate @size bytes area aligned at @align from @chunk.
 * Note that this function only allocates the offset.  It doesn't
 * populate or map the area.
 *
 * RETURNS:
 * Allocated offset in @chunk on success, -errno on failure.
 */
static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align)
{
	int oslot = pcpu_chunk_slot(chunk);
	int max_contig = 0;
	int i, off;

	/*
	 * The static chunk initially doesn't have map attached
	 * because kmalloc wasn't available during init.  Give it one.
	 */
	if (unlikely(!chunk->map)) {
		chunk->map = pcpu_realloc(NULL, 0,
				PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0]));
		if (!chunk->map)
			return -ENOMEM;

		chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
		chunk->map[chunk->map_used++] = -pcpu_static_size;
		if (chunk->free_size)
			chunk->map[chunk->map_used++] = chunk->free_size;
	}

	for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) {
		bool is_last = i + 1 == chunk->map_used;
		int head, tail;

		/* extra for alignment requirement */
		head = ALIGN(off, align) - off;
		BUG_ON(i == 0 && head != 0);

		if (chunk->map[i] < 0)
			continue;
		if (chunk->map[i] < head + size) {
			max_contig = max(chunk->map[i], max_contig);
			continue;
		}

		/*
		 * If head is small or the previous block is free,
		 * merge'em.  Note that 'small' is defined as smaller
		 * than sizeof(int), which is very small but isn't too
		 * uncommon for percpu allocations.
		 */
		if (head && (head < sizeof(int) || chunk->map[i - 1] > 0)) {
			if (chunk->map[i - 1] > 0)
				chunk->map[i - 1] += head;
			else {
				chunk->map[i - 1] -= head;
				chunk->free_size -= head;
			}
			chunk->map[i] -= head;
			off += head;
			head = 0;
		}

		/* if tail is small, just keep it around */
		tail = chunk->map[i] - head - size;
		if (tail < sizeof(int))
			tail = 0;

		/* split if warranted */
		if (head || tail) {
			if (pcpu_split_block(chunk, i, head, tail))
				return -ENOMEM;
			if (head) {
				i++;
				off += head;
				max_contig = max(chunk->map[i - 1], max_contig);
			}
			if (tail)
				max_contig = max(chunk->map[i + 1], max_contig);
		}

		/* update hint and mark allocated */
		if (is_last)
			chunk->contig_hint = max_contig; /* fully scanned */
		else
			chunk->contig_hint = max(chunk->contig_hint,
						 max_contig);

		chunk->free_size -= chunk->map[i];
		chunk->map[i] = -chunk->map[i];

		pcpu_chunk_relocate(chunk, oslot);
		return off;
	}

	chunk->contig_hint = max_contig;	/* fully scanned */
	pcpu_chunk_relocate(chunk, oslot);

	/*
	 * Tell the upper layer that this chunk has no area left.
	 * Note that this is not an error condition but a notification
	 * to upper layer that it needs to look at other chunks.
	 * -ENOSPC is chosen as it isn't used in memory subsystem and
	 * matches the meaning in a way.
	 */
	return -ENOSPC;
}

/**
 * pcpu_free_area - free area to a pcpu_chunk
 * @chunk: chunk of interest
 * @freeme: offset of area to free
 *
 * Free area starting from @freeme to @chunk.  Note that this function
 * only modifies the allocation map.  It doesn't depopulate or unmap
 * the area.
 */
static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme)
{
	int oslot = pcpu_chunk_slot(chunk);
	int i, off;

	for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++]))
		if (off == freeme)
			break;
	BUG_ON(off != freeme);
	BUG_ON(chunk->map[i] > 0);

	chunk->map[i] = -chunk->map[i];
	chunk->free_size += chunk->map[i];

	/* merge with previous? */
	if (i > 0 && chunk->map[i - 1] >= 0) {
		chunk->map[i - 1] += chunk->map[i];
		chunk->map_used--;
		memmove(&chunk->map[i], &chunk->map[i + 1],
			(chunk->map_used - i) * sizeof(chunk->map[0]));
		i--;
	}
	/* merge with next? */
	if (i + 1 < chunk->map_used && chunk->map[i + 1] >= 0) {
		chunk->map[i] += chunk->map[i + 1];
		chunk->map_used--;
		memmove(&chunk->map[i + 1], &chunk->map[i + 2],
			(chunk->map_used - (i + 1)) * sizeof(chunk->map[0]));
	}

	chunk->contig_hint = max(chunk->map[i], chunk->contig_hint);
	pcpu_chunk_relocate(chunk, oslot);
}

/**
 * pcpu_unmap - unmap pages out of a pcpu_chunk
 * @chunk: chunk of interest
 * @page_start: page index of the first page to unmap
 * @page_end: page index of the last page to unmap + 1
 * @flush: whether to flush cache and tlb or not
 *
 * For each cpu, unmap pages [@page_start,@page_end) out of @chunk.
 * If @flush is true, vcache is flushed before unmapping and tlb
 * after.
 */
static void pcpu_unmap(struct pcpu_chunk *chunk, int page_start, int page_end,
		       bool flush)
{
	unsigned int last = num_possible_cpus() - 1;
	unsigned int cpu;

524 525 526
	/* unmap must not be done on immutable chunk */
	WARN_ON(chunk->immutable);

527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
	/*
	 * Each flushing trial can be very expensive, issue flush on
	 * the whole region at once rather than doing it for each cpu.
	 * This could be an overkill but is more scalable.
	 */
	if (flush)
		flush_cache_vunmap(pcpu_chunk_addr(chunk, 0, page_start),
				   pcpu_chunk_addr(chunk, last, page_end));

	for_each_possible_cpu(cpu)
		unmap_kernel_range_noflush(
				pcpu_chunk_addr(chunk, cpu, page_start),
				(page_end - page_start) << PAGE_SHIFT);

	/* ditto as flush_cache_vunmap() */
	if (flush)
		flush_tlb_kernel_range(pcpu_chunk_addr(chunk, 0, page_start),
				       pcpu_chunk_addr(chunk, last, page_end));
}

/**
 * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk
 * @chunk: chunk to depopulate
 * @off: offset to the area to depopulate
T
Tejun Heo 已提交
551
 * @size: size of the area to depopulate in bytes
552 553 554 555 556 557
 * @flush: whether to flush cache and tlb or not
 *
 * For each cpu, depopulate and unmap pages [@page_start,@page_end)
 * from @chunk.  If @flush is true, vcache is flushed before unmapping
 * and tlb after.
 */
T
Tejun Heo 已提交
558 559
static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size,
				  bool flush)
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
{
	int page_start = PFN_DOWN(off);
	int page_end = PFN_UP(off + size);
	int unmap_start = -1;
	int uninitialized_var(unmap_end);
	unsigned int cpu;
	int i;

	for (i = page_start; i < page_end; i++) {
		for_each_possible_cpu(cpu) {
			struct page **pagep = pcpu_chunk_pagep(chunk, cpu, i);

			if (!*pagep)
				continue;

			__free_page(*pagep);

			/*
			 * If it's partial depopulation, it might get
			 * populated or depopulated again.  Mark the
			 * page gone.
			 */
			*pagep = NULL;

			unmap_start = unmap_start < 0 ? i : unmap_start;
			unmap_end = i + 1;
		}
	}

	if (unmap_start >= 0)
		pcpu_unmap(chunk, unmap_start, unmap_end, flush);
}

/**
 * pcpu_map - map pages into a pcpu_chunk
 * @chunk: chunk of interest
 * @page_start: page index of the first page to map
 * @page_end: page index of the last page to map + 1
 *
 * For each cpu, map pages [@page_start,@page_end) into @chunk.
 * vcache is flushed afterwards.
 */
static int pcpu_map(struct pcpu_chunk *chunk, int page_start, int page_end)
{
	unsigned int last = num_possible_cpus() - 1;
	unsigned int cpu;
	int err;

608 609 610
	/* map must not be done on immutable chunk */
	WARN_ON(chunk->immutable);

611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
	for_each_possible_cpu(cpu) {
		err = map_kernel_range_noflush(
				pcpu_chunk_addr(chunk, cpu, page_start),
				(page_end - page_start) << PAGE_SHIFT,
				PAGE_KERNEL,
				pcpu_chunk_pagep(chunk, cpu, page_start));
		if (err < 0)
			return err;
	}

	/* flush at once, please read comments in pcpu_unmap() */
	flush_cache_vmap(pcpu_chunk_addr(chunk, 0, page_start),
			 pcpu_chunk_addr(chunk, last, page_end));
	return 0;
}

/**
 * pcpu_populate_chunk - populate and map an area of a pcpu_chunk
 * @chunk: chunk of interest
 * @off: offset to the area to populate
T
Tejun Heo 已提交
631
 * @size: size of the area to populate in bytes
632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
 *
 * For each cpu, populate and map pages [@page_start,@page_end) into
 * @chunk.  The area is cleared on return.
 */
static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size)
{
	const gfp_t alloc_mask = GFP_KERNEL | __GFP_HIGHMEM | __GFP_COLD;
	int page_start = PFN_DOWN(off);
	int page_end = PFN_UP(off + size);
	int map_start = -1;
	int map_end;
	unsigned int cpu;
	int i;

	for (i = page_start; i < page_end; i++) {
		if (pcpu_chunk_page_occupied(chunk, i)) {
			if (map_start >= 0) {
				if (pcpu_map(chunk, map_start, map_end))
					goto err;
				map_start = -1;
			}
			continue;
		}

		map_start = map_start < 0 ? i : map_start;
		map_end = i + 1;

		for_each_possible_cpu(cpu) {
			struct page **pagep = pcpu_chunk_pagep(chunk, cpu, i);

			*pagep = alloc_pages_node(cpu_to_node(cpu),
						  alloc_mask, 0);
			if (!*pagep)
				goto err;
		}
	}

	if (map_start >= 0 && pcpu_map(chunk, map_start, map_end))
		goto err;

	for_each_possible_cpu(cpu)
673
		memset(chunk->vm->addr + cpu * pcpu_unit_size + off, 0,
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
		       size);

	return 0;
err:
	/* likely under heavy memory pressure, give memory back */
	pcpu_depopulate_chunk(chunk, off, size, true);
	return -ENOMEM;
}

static void free_pcpu_chunk(struct pcpu_chunk *chunk)
{
	if (!chunk)
		return;
	if (chunk->vm)
		free_vm_area(chunk->vm);
	pcpu_realloc(chunk->map, chunk->map_alloc * sizeof(chunk->map[0]), 0);
	kfree(chunk);
}

static struct pcpu_chunk *alloc_pcpu_chunk(void)
{
	struct pcpu_chunk *chunk;

	chunk = kzalloc(pcpu_chunk_struct_size, GFP_KERNEL);
	if (!chunk)
		return NULL;

	chunk->map = pcpu_realloc(NULL, 0,
				  PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0]));
	chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
	chunk->map[chunk->map_used++] = pcpu_unit_size;

	chunk->vm = get_vm_area(pcpu_chunk_size, GFP_KERNEL);
	if (!chunk->vm) {
		free_pcpu_chunk(chunk);
		return NULL;
	}

	INIT_LIST_HEAD(&chunk->list);
	chunk->free_size = pcpu_unit_size;
	chunk->contig_hint = pcpu_unit_size;

	return chunk;
}

/**
 * __alloc_percpu - allocate percpu area
T
Tejun Heo 已提交
721
 * @size: size of area to allocate in bytes
722 723 724 725 726 727 728 729 730 731 732 733 734 735
 * @align: alignment of area (max PAGE_SIZE)
 *
 * Allocate percpu area of @size bytes aligned at @align.  Might
 * sleep.  Might trigger writeouts.
 *
 * RETURNS:
 * Percpu pointer to the allocated area on success, NULL on failure.
 */
void *__alloc_percpu(size_t size, size_t align)
{
	void *ptr = NULL;
	struct pcpu_chunk *chunk;
	int slot, off;

736
	if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) {
737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
		WARN(true, "illegal size (%zu) or align (%zu) for "
		     "percpu allocation\n", size, align);
		return NULL;
	}

	mutex_lock(&pcpu_mutex);

	/* allocate area */
	for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
		list_for_each_entry(chunk, &pcpu_slot[slot], list) {
			if (size > chunk->contig_hint)
				continue;
			off = pcpu_alloc_area(chunk, size, align);
			if (off >= 0)
				goto area_found;
			if (off != -ENOSPC)
				goto out_unlock;
		}
	}

	/* hmmm... no space left, create a new chunk */
	chunk = alloc_pcpu_chunk();
	if (!chunk)
		goto out_unlock;
	pcpu_chunk_relocate(chunk, -1);
	pcpu_chunk_addr_insert(chunk);

	off = pcpu_alloc_area(chunk, size, align);
	if (off < 0)
		goto out_unlock;

area_found:
	/* populate, map and clear the area */
	if (pcpu_populate_chunk(chunk, off, size)) {
		pcpu_free_area(chunk, off);
		goto out_unlock;
	}

	ptr = __addr_to_pcpu_ptr(chunk->vm->addr + off);
out_unlock:
	mutex_unlock(&pcpu_mutex);
	return ptr;
}
EXPORT_SYMBOL_GPL(__alloc_percpu);

static void pcpu_kill_chunk(struct pcpu_chunk *chunk)
{
784
	WARN_ON(chunk->immutable);
785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
	pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size, false);
	list_del(&chunk->list);
	rb_erase(&chunk->rb_node, &pcpu_addr_root);
	free_pcpu_chunk(chunk);
}

/**
 * free_percpu - free percpu area
 * @ptr: pointer to area to free
 *
 * Free percpu area @ptr.  Might sleep.
 */
void free_percpu(void *ptr)
{
	void *addr = __pcpu_ptr_to_addr(ptr);
	struct pcpu_chunk *chunk;
	int off;

	if (!ptr)
		return;

	mutex_lock(&pcpu_mutex);

	chunk = pcpu_chunk_addr_search(addr);
	off = addr - chunk->vm->addr;

	pcpu_free_area(chunk, off);

	/* the chunk became fully free, kill one if there are other free ones */
	if (chunk->free_size == pcpu_unit_size) {
		struct pcpu_chunk *pos;

		list_for_each_entry(pos,
				    &pcpu_slot[pcpu_chunk_slot(chunk)], list)
			if (pos != chunk) {
				pcpu_kill_chunk(pos);
				break;
			}
	}

	mutex_unlock(&pcpu_mutex);
}
EXPORT_SYMBOL_GPL(free_percpu);

/**
830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
 * pcpu_setup_first_chunk - initialize the first percpu chunk
 * @get_page_fn: callback to fetch page pointer
 * @static_size: the size of static percpu area in bytes
 * @unit_size: unit size in bytes, must be multiple of PAGE_SIZE, 0 for auto
 * @free_size: free size in bytes, 0 for auto
 * @base_addr: mapped address, NULL for auto
 * @populate_pte_fn: callback to allocate pagetable, NULL if unnecessary
 *
 * Initialize the first percpu chunk which contains the kernel static
 * perpcu area.  This function is to be called from arch percpu area
 * setup path.  The first two parameters are mandatory.  The rest are
 * optional.
 *
 * @get_page_fn() should return pointer to percpu page given cpu
 * number and page number.  It should at least return enough pages to
 * cover the static area.  The returned pages for static area should
 * have been initialized with valid data.  If @unit_size is specified,
 * it can also return pages after the static area.  NULL return
 * indicates end of pages for the cpu.  Note that @get_page_fn() must
 * return the same number of pages for all cpus.
 *
 * @unit_size, if non-zero, determines unit size and must be aligned
 * to PAGE_SIZE and equal to or larger than @static_size + @free_size.
 *
 * @free_size determines the number of free bytes after the static
 * area in the first chunk.  If zero, whatever left is available.
 * Specifying non-zero value make percpu leave the area after
 * @static_size + @free_size alone.
 *
 * Non-null @base_addr means that the caller already allocated virtual
 * region for the first chunk and mapped it.  percpu must not mess
 * with the chunk.  Note that @base_addr with 0 @unit_size or non-NULL
 * @populate_pte_fn doesn't make any sense.
 *
 * @populate_pte_fn is used to populate the pagetable.  NULL means the
 * caller already populated the pagetable.
866 867 868 869 870
 *
 * RETURNS:
 * The determined pcpu_unit_size which can be used to initialize
 * percpu access.
 */
871 872 873 874
size_t __init pcpu_setup_first_chunk(pcpu_get_page_fn_t get_page_fn,
				     size_t static_size, size_t unit_size,
				     size_t free_size, void *base_addr,
				     pcpu_populate_pte_fn_t populate_pte_fn)
875 876 877 878
{
	static struct vm_struct static_vm;
	struct pcpu_chunk *static_chunk;
	unsigned int cpu;
879
	int nr_pages;
880 881
	int err, i;

882 883 884 885 886 887 888
	/* santiy checks */
	BUG_ON(!static_size);
	BUG_ON(!unit_size && free_size);
	BUG_ON(unit_size && unit_size < static_size + free_size);
	BUG_ON(unit_size & ~PAGE_MASK);
	BUG_ON(base_addr && !unit_size);
	BUG_ON(base_addr && populate_pte_fn);
889

890 891 892 893 894 895 896
	if (unit_size)
		pcpu_unit_pages = unit_size >> PAGE_SHIFT;
	else
		pcpu_unit_pages = max_t(int, PCPU_MIN_UNIT_SIZE >> PAGE_SHIFT,
					PFN_UP(static_size));

	pcpu_static_size = static_size;
897
	pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
898 899
	pcpu_chunk_size = num_possible_cpus() * pcpu_unit_size;
	pcpu_chunk_struct_size = sizeof(struct pcpu_chunk)
T
Tejun Heo 已提交
900
		+ num_possible_cpus() * pcpu_unit_pages * sizeof(struct page *);
901

902 903 904 905 906
	/*
	 * Allocate chunk slots.  The additional last slot is for
	 * empty chunks.
	 */
	pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
907 908 909 910 911 912 913 914
	pcpu_slot = alloc_bootmem(pcpu_nr_slots * sizeof(pcpu_slot[0]));
	for (i = 0; i < pcpu_nr_slots; i++)
		INIT_LIST_HEAD(&pcpu_slot[i]);

	/* init static_chunk */
	static_chunk = alloc_bootmem(pcpu_chunk_struct_size);
	INIT_LIST_HEAD(&static_chunk->list);
	static_chunk->vm = &static_vm;
915 916 917 918 919 920

	if (free_size)
		static_chunk->free_size = free_size;
	else
		static_chunk->free_size = pcpu_unit_size - pcpu_static_size;

921 922
	static_chunk->contig_hint = static_chunk->free_size;

923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941
	/* allocate vm address */
	static_vm.flags = VM_ALLOC;
	static_vm.size = pcpu_chunk_size;

	if (!base_addr)
		vm_area_register_early(&static_vm, PAGE_SIZE);
	else {
		/*
		 * Pages already mapped.  No need to remap into
		 * vmalloc area.  In this case the static chunk can't
		 * be mapped or unmapped by percpu and is marked
		 * immutable.
		 */
		static_vm.addr = base_addr;
		static_chunk->immutable = true;
	}

	/* assign pages */
	nr_pages = -1;
942
	for_each_possible_cpu(cpu) {
943 944 945 946 947 948
		for (i = 0; i < pcpu_unit_pages; i++) {
			struct page *page = get_page_fn(cpu, i);

			if (!page)
				break;
			*pcpu_chunk_pagep(static_chunk, cpu, i) = page;
949
		}
950 951 952 953 954 955 956

		BUG_ON(i < PFN_UP(pcpu_static_size));

		if (nr_pages < 0)
			nr_pages = i;
		else
			BUG_ON(nr_pages != i);
957 958
	}

959 960 961 962 963 964 965 966 967 968 969 970
	/* map them */
	if (populate_pte_fn) {
		for_each_possible_cpu(cpu)
			for (i = 0; i < nr_pages; i++)
				populate_pte_fn(pcpu_chunk_addr(static_chunk,
								cpu, i));

		err = pcpu_map(static_chunk, 0, nr_pages);
		if (err)
			panic("failed to setup static percpu area, err=%d\n",
			      err);
	}
971 972 973 974 975 976 977 978 979

	/* link static_chunk in */
	pcpu_chunk_relocate(static_chunk, -1);
	pcpu_chunk_addr_insert(static_chunk);

	/* we're done */
	pcpu_base_addr = (void *)pcpu_chunk_addr(static_chunk, 0, 0);
	return pcpu_unit_size;
}