percpu.c 55.4 KB
Newer Older
1
/*
2
 * mm/percpu.c - percpu memory allocator
3 4 5 6 7 8 9
 *
 * Copyright (C) 2009		SUSE Linux Products GmbH
 * Copyright (C) 2009		Tejun Heo <tj@kernel.org>
 *
 * This file is released under the GPLv2.
 *
 * This is percpu allocator which can handle both static and dynamic
10 11 12
 * areas.  Percpu areas are allocated in chunks.  Each chunk is
 * consisted of boot-time determined number of units and the first
 * chunk is used for static percpu variables in the kernel image
13 14 15
 * (special boot time alloc/init handling necessary as these areas
 * need to be brought up before allocation services are running).
 * Unit grows as necessary and all units grow or shrink in unison.
16
 * When a chunk is filled up, another chunk is allocated.
17 18 19 20 21 22 23 24
 *
 *  c0                           c1                         c2
 *  -------------------          -------------------        ------------
 * | u0 | u1 | u2 | u3 |        | u0 | u1 | u2 | u3 |      | u0 | u1 | u
 *  -------------------  ......  -------------------  ....  ------------
 *
 * Allocation is done in offset-size areas of single unit space.  Ie,
 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
25 26 27 28
 * c1:u1, c1:u2 and c1:u3.  On UMA, units corresponds directly to
 * cpus.  On NUMA, the mapping can be non-linear and even sparse.
 * Percpu access can be done by configuring percpu base registers
 * according to cpu to unit mapping and pcpu_unit_size.
29
 *
30 31
 * There are usually many small percpu allocations many of them being
 * as small as 4 bytes.  The allocator organizes chunks into lists
32 33 34 35 36 37 38 39 40 41 42
 * according to free size and tries to allocate from the fullest one.
 * Each chunk keeps the maximum contiguous area size hint which is
 * guaranteed to be eqaul to or larger than the maximum contiguous
 * area in the chunk.  This helps the allocator not to iterate the
 * chunk maps unnecessarily.
 *
 * Allocation state in each chunk is kept using an array of integers
 * on chunk->map.  A positive value in the map represents a free
 * region and negative allocated.  Allocation inside a chunk is done
 * by scanning this map sequentially and serving the first matching
 * entry.  This is mostly copied from the percpu_modalloc() allocator.
43 44
 * Chunks can be determined from the address using the index field
 * in the page struct. The index field contains a pointer to the chunk.
45 46 47 48
 *
 * To use this allocator, arch code should do the followings.
 *
 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
49 50
 *   regular address to percpu pointer and back if they need to be
 *   different from the default
51
 *
52 53
 * - use pcpu_setup_first_chunk() during percpu area initialization to
 *   setup the first chunk containing the kernel static percpu area
54 55 56 57
 */

#include <linux/bitmap.h>
#include <linux/bootmem.h>
58
#include <linux/err.h>
59
#include <linux/list.h>
60
#include <linux/log2.h>
61 62 63 64 65 66
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/percpu.h>
#include <linux/pfn.h>
#include <linux/slab.h>
67
#include <linux/spinlock.h>
68
#include <linux/vmalloc.h>
69
#include <linux/workqueue.h>
70 71

#include <asm/cacheflush.h>
72
#include <asm/sections.h>
73
#include <asm/tlbflush.h>
74
#include <asm/io.h>
75 76 77 78

#define PCPU_SLOT_BASE_SHIFT		5	/* 1-31 shares the same slot */
#define PCPU_DFL_MAP_ALLOC		16	/* start a map with 16 ents */

79
#ifdef CONFIG_SMP
80 81 82
/* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
#ifndef __addr_to_pcpu_ptr
#define __addr_to_pcpu_ptr(addr)					\
83 84 85
	(void __percpu *)((unsigned long)(addr) -			\
			  (unsigned long)pcpu_base_addr	+		\
			  (unsigned long)__per_cpu_start)
86 87 88
#endif
#ifndef __pcpu_ptr_to_addr
#define __pcpu_ptr_to_addr(ptr)						\
89 90 91
	(void __force *)((unsigned long)(ptr) +				\
			 (unsigned long)pcpu_base_addr -		\
			 (unsigned long)__per_cpu_start)
92
#endif
93 94 95 96 97
#else	/* CONFIG_SMP */
/* on UP, it's always identity mapped */
#define __addr_to_pcpu_ptr(addr)	(void __percpu *)(addr)
#define __pcpu_ptr_to_addr(ptr)		(void __force *)(ptr)
#endif	/* CONFIG_SMP */
98

99 100 101 102
struct pcpu_chunk {
	struct list_head	list;		/* linked to pcpu_slot lists */
	int			free_size;	/* free bytes in the chunk */
	int			contig_hint;	/* max contiguous size hint */
T
Tejun Heo 已提交
103
	void			*base_addr;	/* base address of this chunk */
104 105 106
	int			map_used;	/* # of map entries used */
	int			map_alloc;	/* # of map entries allocated */
	int			*map;		/* allocation map */
107
	void			*data;		/* chunk data */
108
	bool			immutable;	/* no [de]population allowed */
T
Tejun Heo 已提交
109
	unsigned long		populated[];	/* populated bitmap */
110 111
};

112 113
static int pcpu_unit_pages __read_mostly;
static int pcpu_unit_size __read_mostly;
114
static int pcpu_nr_units __read_mostly;
115
static int pcpu_atom_size __read_mostly;
116 117
static int pcpu_nr_slots __read_mostly;
static size_t pcpu_chunk_struct_size __read_mostly;
118

119 120 121 122
/* cpus with the lowest and highest unit numbers */
static unsigned int pcpu_first_unit_cpu __read_mostly;
static unsigned int pcpu_last_unit_cpu __read_mostly;

123
/* the address of the first chunk which starts with the kernel static area */
124
void *pcpu_base_addr __read_mostly;
125 126
EXPORT_SYMBOL_GPL(pcpu_base_addr);

T
Tejun Heo 已提交
127 128
static const int *pcpu_unit_map __read_mostly;		/* cpu -> unit */
const unsigned long *pcpu_unit_offsets __read_mostly;	/* cpu -> unit offset */
129

130 131 132 133 134
/* group information, used for vm allocation */
static int pcpu_nr_groups __read_mostly;
static const unsigned long *pcpu_group_offsets __read_mostly;
static const size_t *pcpu_group_sizes __read_mostly;

135 136 137 138 139 140 141 142 143 144 145 146 147 148
/*
 * The first chunk which always exists.  Note that unlike other
 * chunks, this one can be allocated and mapped in several different
 * ways and thus often doesn't live in the vmalloc area.
 */
static struct pcpu_chunk *pcpu_first_chunk;

/*
 * Optional reserved chunk.  This chunk reserves part of the first
 * chunk and serves it for reserved allocations.  The amount of
 * reserved offset is in pcpu_reserved_chunk_limit.  When reserved
 * area doesn't exist, the following variables contain NULL and 0
 * respectively.
 */
149 150 151
static struct pcpu_chunk *pcpu_reserved_chunk;
static int pcpu_reserved_chunk_limit;

152
/*
153 154 155
 * Synchronization rules.
 *
 * There are two locks - pcpu_alloc_mutex and pcpu_lock.  The former
T
Tejun Heo 已提交
156 157 158
 * protects allocation/reclaim paths, chunks, populated bitmap and
 * vmalloc mapping.  The latter is a spinlock and protects the index
 * data structures - chunk slots, chunks and area maps in chunks.
159 160 161
 *
 * During allocation, pcpu_alloc_mutex is kept locked all the time and
 * pcpu_lock is grabbed and released as necessary.  All actual memory
162 163 164 165
 * allocations are done using GFP_KERNEL with pcpu_lock released.  In
 * general, percpu memory can't be allocated with irq off but
 * irqsave/restore are still used in alloc path so that it can be used
 * from early init path - sched_init() specifically.
166 167 168 169 170 171 172 173 174
 *
 * Free path accesses and alters only the index data structures, so it
 * can be safely called from atomic context.  When memory needs to be
 * returned to the system, free path schedules reclaim_work which
 * grabs both pcpu_alloc_mutex and pcpu_lock, unlinks chunks to be
 * reclaimed, release both locks and frees the chunks.  Note that it's
 * necessary to grab both locks to remove a chunk from circulation as
 * allocation path might be referencing the chunk with only
 * pcpu_alloc_mutex locked.
175
 */
176 177
static DEFINE_MUTEX(pcpu_alloc_mutex);	/* protects whole alloc and reclaim */
static DEFINE_SPINLOCK(pcpu_lock);	/* protects index data structures */
178

179
static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
180

181 182 183 184
/* reclaim work to release fully free chunks, scheduled from free path */
static void pcpu_reclaim(struct work_struct *work);
static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim);

185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
static bool pcpu_addr_in_first_chunk(void *addr)
{
	void *first_start = pcpu_first_chunk->base_addr;

	return addr >= first_start && addr < first_start + pcpu_unit_size;
}

static bool pcpu_addr_in_reserved_chunk(void *addr)
{
	void *first_start = pcpu_first_chunk->base_addr;

	return addr >= first_start &&
		addr < first_start + pcpu_reserved_chunk_limit;
}

200
static int __pcpu_size_to_slot(int size)
201
{
T
Tejun Heo 已提交
202
	int highbit = fls(size);	/* size is in bytes */
203 204 205
	return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
}

206 207 208 209 210 211 212
static int pcpu_size_to_slot(int size)
{
	if (size == pcpu_unit_size)
		return pcpu_nr_slots - 1;
	return __pcpu_size_to_slot(size);
}

213 214 215 216 217 218 219 220
static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
{
	if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
		return 0;

	return pcpu_size_to_slot(chunk->free_size);
}

221 222 223 224 225 226 227 228 229 230 231 232 233
/* set the pointer to a chunk in a page struct */
static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
{
	page->index = (unsigned long)pcpu;
}

/* obtain pointer to a chunk from a page struct */
static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
{
	return (struct pcpu_chunk *)page->index;
}

static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
234
{
235
	return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
236 237
}

238 239
static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
				     unsigned int cpu, int page_idx)
240
{
T
Tejun Heo 已提交
241
	return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] +
T
Tejun Heo 已提交
242
		(page_idx << PAGE_SHIFT);
243 244
}

245 246
static void __maybe_unused pcpu_next_unpop(struct pcpu_chunk *chunk,
					   int *rs, int *re, int end)
T
Tejun Heo 已提交
247 248 249 250 251
{
	*rs = find_next_zero_bit(chunk->populated, end, *rs);
	*re = find_next_bit(chunk->populated, end, *rs + 1);
}

252 253
static void __maybe_unused pcpu_next_pop(struct pcpu_chunk *chunk,
					 int *rs, int *re, int end)
T
Tejun Heo 已提交
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
{
	*rs = find_next_bit(chunk->populated, end, *rs);
	*re = find_next_zero_bit(chunk->populated, end, *rs + 1);
}

/*
 * (Un)populated page region iterators.  Iterate over (un)populated
 * page regions betwen @start and @end in @chunk.  @rs and @re should
 * be integer variables and will be set to start and end page index of
 * the current region.
 */
#define pcpu_for_each_unpop_region(chunk, rs, re, start, end)		    \
	for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
	     (rs) < (re);						    \
	     (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))

#define pcpu_for_each_pop_region(chunk, rs, re, start, end)		    \
	for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end));   \
	     (rs) < (re);						    \
	     (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))

275
/**
276 277
 * pcpu_mem_alloc - allocate memory
 * @size: bytes to allocate
278
 *
279 280 281
 * Allocate @size bytes.  If @size is smaller than PAGE_SIZE,
 * kzalloc() is used; otherwise, vmalloc() is used.  The returned
 * memory is always zeroed.
282
 *
283 284 285
 * CONTEXT:
 * Does GFP_KERNEL allocation.
 *
286
 * RETURNS:
287
 * Pointer to the allocated area on success, NULL on failure.
288
 */
289
static void *pcpu_mem_alloc(size_t size)
290
{
291 292 293
	if (WARN_ON_ONCE(!slab_is_available()))
		return NULL;

294 295 296 297 298 299 300 301 302
	if (size <= PAGE_SIZE)
		return kzalloc(size, GFP_KERNEL);
	else {
		void *ptr = vmalloc(size);
		if (ptr)
			memset(ptr, 0, size);
		return ptr;
	}
}
303

304 305 306 307 308 309 310 311 312
/**
 * pcpu_mem_free - free memory
 * @ptr: memory to free
 * @size: size of the area
 *
 * Free @ptr.  @ptr should have been allocated using pcpu_mem_alloc().
 */
static void pcpu_mem_free(void *ptr, size_t size)
{
313
	if (size <= PAGE_SIZE)
314
		kfree(ptr);
315
	else
316
		vfree(ptr);
317 318 319 320 321 322 323 324 325
}

/**
 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
 * @chunk: chunk of interest
 * @oslot: the previous slot it was on
 *
 * This function is called after an allocation or free changed @chunk.
 * New slot according to the changed state is determined and @chunk is
326 327
 * moved to the slot.  Note that the reserved chunk is never put on
 * chunk slots.
328 329 330
 *
 * CONTEXT:
 * pcpu_lock.
331 332 333 334 335
 */
static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
{
	int nslot = pcpu_chunk_slot(chunk);

336
	if (chunk != pcpu_reserved_chunk && oslot != nslot) {
337 338 339 340 341 342 343
		if (oslot < nslot)
			list_move(&chunk->list, &pcpu_slot[nslot]);
		else
			list_move_tail(&chunk->list, &pcpu_slot[nslot]);
	}
}

344
/**
345 346
 * pcpu_need_to_extend - determine whether chunk area map needs to be extended
 * @chunk: chunk of interest
347
 *
348 349
 * Determine whether area map of @chunk needs to be extended to
 * accomodate a new allocation.
350
 *
351
 * CONTEXT:
352
 * pcpu_lock.
353
 *
354
 * RETURNS:
355 356
 * New target map allocation length if extension is necessary, 0
 * otherwise.
357
 */
358
static int pcpu_need_to_extend(struct pcpu_chunk *chunk)
359 360 361 362 363 364 365 366 367 368
{
	int new_alloc;

	if (chunk->map_alloc >= chunk->map_used + 2)
		return 0;

	new_alloc = PCPU_DFL_MAP_ALLOC;
	while (new_alloc < chunk->map_used + 2)
		new_alloc *= 2;

369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
	return new_alloc;
}

/**
 * pcpu_extend_area_map - extend area map of a chunk
 * @chunk: chunk of interest
 * @new_alloc: new target allocation length of the area map
 *
 * Extend area map of @chunk to have @new_alloc entries.
 *
 * CONTEXT:
 * Does GFP_KERNEL allocation.  Grabs and releases pcpu_lock.
 *
 * RETURNS:
 * 0 on success, -errno on failure.
 */
static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc)
{
	int *old = NULL, *new = NULL;
	size_t old_size = 0, new_size = new_alloc * sizeof(new[0]);
	unsigned long flags;

	new = pcpu_mem_alloc(new_size);
	if (!new)
393
		return -ENOMEM;
394

395 396 397 398 399
	/* acquire pcpu_lock and switch to new area map */
	spin_lock_irqsave(&pcpu_lock, flags);

	if (new_alloc <= chunk->map_alloc)
		goto out_unlock;
400

401
	old_size = chunk->map_alloc * sizeof(chunk->map[0]);
402 403 404
	old = chunk->map;

	memcpy(new, old, old_size);
405 406 407

	chunk->map_alloc = new_alloc;
	chunk->map = new;
408 409 410 411 412 413 414 415 416 417 418 419
	new = NULL;

out_unlock:
	spin_unlock_irqrestore(&pcpu_lock, flags);

	/*
	 * pcpu_mem_free() might end up calling vfree() which uses
	 * IRQ-unsafe lock and thus can't be called under pcpu_lock.
	 */
	pcpu_mem_free(old, old_size);
	pcpu_mem_free(new, new_size);

420 421 422
	return 0;
}

423 424 425 426
/**
 * pcpu_split_block - split a map block
 * @chunk: chunk of interest
 * @i: index of map block to split
T
Tejun Heo 已提交
427 428
 * @head: head size in bytes (can be 0)
 * @tail: tail size in bytes (can be 0)
429 430 431 432 433 434 435 436 437
 *
 * Split the @i'th map block into two or three blocks.  If @head is
 * non-zero, @head bytes block is inserted before block @i moving it
 * to @i+1 and reducing its size by @head bytes.
 *
 * If @tail is non-zero, the target block, which can be @i or @i+1
 * depending on @head, is reduced by @tail bytes and @tail byte block
 * is inserted after the target block.
 *
438
 * @chunk->map must have enough free slots to accomodate the split.
439 440 441
 *
 * CONTEXT:
 * pcpu_lock.
442
 */
443 444
static void pcpu_split_block(struct pcpu_chunk *chunk, int i,
			     int head, int tail)
445 446
{
	int nr_extra = !!head + !!tail;
447

448
	BUG_ON(chunk->map_alloc < chunk->map_used + nr_extra);
449

450
	/* insert new subblocks */
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
	memmove(&chunk->map[i + nr_extra], &chunk->map[i],
		sizeof(chunk->map[0]) * (chunk->map_used - i));
	chunk->map_used += nr_extra;

	if (head) {
		chunk->map[i + 1] = chunk->map[i] - head;
		chunk->map[i++] = head;
	}
	if (tail) {
		chunk->map[i++] -= tail;
		chunk->map[i] = tail;
	}
}

/**
 * pcpu_alloc_area - allocate area from a pcpu_chunk
 * @chunk: chunk of interest
T
Tejun Heo 已提交
468
 * @size: wanted size in bytes
469 470 471 472 473 474
 * @align: wanted align
 *
 * Try to allocate @size bytes area aligned at @align from @chunk.
 * Note that this function only allocates the offset.  It doesn't
 * populate or map the area.
 *
475 476
 * @chunk->map must have at least two free slots.
 *
477 478 479
 * CONTEXT:
 * pcpu_lock.
 *
480
 * RETURNS:
481 482
 * Allocated offset in @chunk on success, -1 if no matching area is
 * found.
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
 */
static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align)
{
	int oslot = pcpu_chunk_slot(chunk);
	int max_contig = 0;
	int i, off;

	for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) {
		bool is_last = i + 1 == chunk->map_used;
		int head, tail;

		/* extra for alignment requirement */
		head = ALIGN(off, align) - off;
		BUG_ON(i == 0 && head != 0);

		if (chunk->map[i] < 0)
			continue;
		if (chunk->map[i] < head + size) {
			max_contig = max(chunk->map[i], max_contig);
			continue;
		}

		/*
		 * If head is small or the previous block is free,
		 * merge'em.  Note that 'small' is defined as smaller
		 * than sizeof(int), which is very small but isn't too
		 * uncommon for percpu allocations.
		 */
		if (head && (head < sizeof(int) || chunk->map[i - 1] > 0)) {
			if (chunk->map[i - 1] > 0)
				chunk->map[i - 1] += head;
			else {
				chunk->map[i - 1] -= head;
				chunk->free_size -= head;
			}
			chunk->map[i] -= head;
			off += head;
			head = 0;
		}

		/* if tail is small, just keep it around */
		tail = chunk->map[i] - head - size;
		if (tail < sizeof(int))
			tail = 0;

		/* split if warranted */
		if (head || tail) {
530
			pcpu_split_block(chunk, i, head, tail);
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
			if (head) {
				i++;
				off += head;
				max_contig = max(chunk->map[i - 1], max_contig);
			}
			if (tail)
				max_contig = max(chunk->map[i + 1], max_contig);
		}

		/* update hint and mark allocated */
		if (is_last)
			chunk->contig_hint = max_contig; /* fully scanned */
		else
			chunk->contig_hint = max(chunk->contig_hint,
						 max_contig);

		chunk->free_size -= chunk->map[i];
		chunk->map[i] = -chunk->map[i];

		pcpu_chunk_relocate(chunk, oslot);
		return off;
	}

	chunk->contig_hint = max_contig;	/* fully scanned */
	pcpu_chunk_relocate(chunk, oslot);

557 558
	/* tell the upper layer that this chunk has no matching area */
	return -1;
559 560 561 562 563 564 565 566 567 568
}

/**
 * pcpu_free_area - free area to a pcpu_chunk
 * @chunk: chunk of interest
 * @freeme: offset of area to free
 *
 * Free area starting from @freeme to @chunk.  Note that this function
 * only modifies the allocation map.  It doesn't depopulate or unmap
 * the area.
569 570 571
 *
 * CONTEXT:
 * pcpu_lock.
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
 */
static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme)
{
	int oslot = pcpu_chunk_slot(chunk);
	int i, off;

	for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++]))
		if (off == freeme)
			break;
	BUG_ON(off != freeme);
	BUG_ON(chunk->map[i] > 0);

	chunk->map[i] = -chunk->map[i];
	chunk->free_size += chunk->map[i];

	/* merge with previous? */
	if (i > 0 && chunk->map[i - 1] >= 0) {
		chunk->map[i - 1] += chunk->map[i];
		chunk->map_used--;
		memmove(&chunk->map[i], &chunk->map[i + 1],
			(chunk->map_used - i) * sizeof(chunk->map[0]));
		i--;
	}
	/* merge with next? */
	if (i + 1 < chunk->map_used && chunk->map[i + 1] >= 0) {
		chunk->map[i] += chunk->map[i + 1];
		chunk->map_used--;
		memmove(&chunk->map[i + 1], &chunk->map[i + 2],
			(chunk->map_used - (i + 1)) * sizeof(chunk->map[0]));
	}

	chunk->contig_hint = max(chunk->map[i], chunk->contig_hint);
	pcpu_chunk_relocate(chunk, oslot);
}

607 608 609 610
static struct pcpu_chunk *pcpu_alloc_chunk(void)
{
	struct pcpu_chunk *chunk;

611
	chunk = pcpu_mem_alloc(pcpu_chunk_struct_size);
612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
	if (!chunk)
		return NULL;

	chunk->map = pcpu_mem_alloc(PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0]));
	if (!chunk->map) {
		kfree(chunk);
		return NULL;
	}

	chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
	chunk->map[chunk->map_used++] = pcpu_unit_size;

	INIT_LIST_HEAD(&chunk->list);
	chunk->free_size = pcpu_unit_size;
	chunk->contig_hint = pcpu_unit_size;

	return chunk;
}

static void pcpu_free_chunk(struct pcpu_chunk *chunk)
{
	if (!chunk)
		return;
	pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0]));
	kfree(chunk);
}

639 640 641 642 643 644 645 646 647 648 649 650 651 652
/*
 * Chunk management implementation.
 *
 * To allow different implementations, chunk alloc/free and
 * [de]population are implemented in a separate file which is pulled
 * into this file and compiled together.  The following functions
 * should be implemented.
 *
 * pcpu_populate_chunk		- populate the specified range of a chunk
 * pcpu_depopulate_chunk	- depopulate the specified range of a chunk
 * pcpu_create_chunk		- create a new chunk
 * pcpu_destroy_chunk		- destroy a chunk, always preceded by full depop
 * pcpu_addr_to_page		- translate address to physical address
 * pcpu_verify_alloc_info	- check alloc_info is acceptable during init
653
 */
654 655 656 657 658 659
static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size);
static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size);
static struct pcpu_chunk *pcpu_create_chunk(void);
static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
static struct page *pcpu_addr_to_page(void *addr);
static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
660

661 662 663
#ifdef CONFIG_NEED_PER_CPU_KM
#include "percpu-km.c"
#else
664
#include "percpu-vm.c"
665
#endif
666

667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
/**
 * pcpu_chunk_addr_search - determine chunk containing specified address
 * @addr: address for which the chunk needs to be determined.
 *
 * RETURNS:
 * The address of the found chunk.
 */
static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
{
	/* is it in the first chunk? */
	if (pcpu_addr_in_first_chunk(addr)) {
		/* is it in the reserved area? */
		if (pcpu_addr_in_reserved_chunk(addr))
			return pcpu_reserved_chunk;
		return pcpu_first_chunk;
	}

	/*
	 * The address is relative to unit0 which might be unused and
	 * thus unmapped.  Offset the address to the unit space of the
	 * current processor before looking it up in the vmalloc
	 * space.  Note that any possible cpu id can be used here, so
	 * there's no need to worry about preemption or cpu hotplug.
	 */
	addr += pcpu_unit_offsets[raw_smp_processor_id()];
692
	return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
693 694
}

695
/**
696
 * pcpu_alloc - the percpu allocator
T
Tejun Heo 已提交
697
 * @size: size of area to allocate in bytes
698
 * @align: alignment of area (max PAGE_SIZE)
699
 * @reserved: allocate from the reserved chunk if available
700
 *
701 702 703 704
 * Allocate percpu area of @size bytes aligned at @align.
 *
 * CONTEXT:
 * Does GFP_KERNEL allocation.
705 706 707 708
 *
 * RETURNS:
 * Percpu pointer to the allocated area on success, NULL on failure.
 */
709
static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved)
710
{
711
	static int warn_limit = 10;
712
	struct pcpu_chunk *chunk;
713
	const char *err;
714
	int slot, off, new_alloc;
715
	unsigned long flags;
716

717
	if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) {
718 719 720 721 722
		WARN(true, "illegal size (%zu) or align (%zu) for "
		     "percpu allocation\n", size, align);
		return NULL;
	}

723
	mutex_lock(&pcpu_alloc_mutex);
724
	spin_lock_irqsave(&pcpu_lock, flags);
725

726 727 728
	/* serve reserved allocations from the reserved chunk if available */
	if (reserved && pcpu_reserved_chunk) {
		chunk = pcpu_reserved_chunk;
729 730 731

		if (size > chunk->contig_hint) {
			err = "alloc from reserved chunk failed";
732
			goto fail_unlock;
733
		}
734 735 736 737 738 739 740 741 742 743

		while ((new_alloc = pcpu_need_to_extend(chunk))) {
			spin_unlock_irqrestore(&pcpu_lock, flags);
			if (pcpu_extend_area_map(chunk, new_alloc) < 0) {
				err = "failed to extend area map of reserved chunk";
				goto fail_unlock_mutex;
			}
			spin_lock_irqsave(&pcpu_lock, flags);
		}

744 745 746
		off = pcpu_alloc_area(chunk, size, align);
		if (off >= 0)
			goto area_found;
747

748
		err = "alloc from reserved chunk failed";
749
		goto fail_unlock;
750 751
	}

752
restart:
753
	/* search through normal chunks */
754 755 756 757
	for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
		list_for_each_entry(chunk, &pcpu_slot[slot], list) {
			if (size > chunk->contig_hint)
				continue;
758

759 760 761 762 763 764 765 766 767 768 769 770 771 772
			new_alloc = pcpu_need_to_extend(chunk);
			if (new_alloc) {
				spin_unlock_irqrestore(&pcpu_lock, flags);
				if (pcpu_extend_area_map(chunk,
							 new_alloc) < 0) {
					err = "failed to extend area map";
					goto fail_unlock_mutex;
				}
				spin_lock_irqsave(&pcpu_lock, flags);
				/*
				 * pcpu_lock has been dropped, need to
				 * restart cpu_slot list walking.
				 */
				goto restart;
773 774
			}

775 776 777 778 779 780 781
			off = pcpu_alloc_area(chunk, size, align);
			if (off >= 0)
				goto area_found;
		}
	}

	/* hmmm... no space left, create a new chunk */
782
	spin_unlock_irqrestore(&pcpu_lock, flags);
783

784
	chunk = pcpu_create_chunk();
785 786
	if (!chunk) {
		err = "failed to allocate new chunk";
787
		goto fail_unlock_mutex;
788
	}
789

790
	spin_lock_irqsave(&pcpu_lock, flags);
791
	pcpu_chunk_relocate(chunk, -1);
792
	goto restart;
793 794

area_found:
795
	spin_unlock_irqrestore(&pcpu_lock, flags);
796

797 798
	/* populate, map and clear the area */
	if (pcpu_populate_chunk(chunk, off, size)) {
799
		spin_lock_irqsave(&pcpu_lock, flags);
800
		pcpu_free_area(chunk, off);
801
		err = "failed to populate";
802
		goto fail_unlock;
803 804
	}

805 806
	mutex_unlock(&pcpu_alloc_mutex);

T
Tejun Heo 已提交
807 808
	/* return address relative to base address */
	return __addr_to_pcpu_ptr(chunk->base_addr + off);
809 810

fail_unlock:
811
	spin_unlock_irqrestore(&pcpu_lock, flags);
812 813
fail_unlock_mutex:
	mutex_unlock(&pcpu_alloc_mutex);
814 815 816 817 818 819 820
	if (warn_limit) {
		pr_warning("PERCPU: allocation failed, size=%zu align=%zu, "
			   "%s\n", size, align, err);
		dump_stack();
		if (!--warn_limit)
			pr_info("PERCPU: limit reached, disable warning\n");
	}
821
	return NULL;
822
}
823 824 825 826 827 828 829 830 831

/**
 * __alloc_percpu - allocate dynamic percpu area
 * @size: size of area to allocate in bytes
 * @align: alignment of area (max PAGE_SIZE)
 *
 * Allocate percpu area of @size bytes aligned at @align.  Might
 * sleep.  Might trigger writeouts.
 *
832 833 834
 * CONTEXT:
 * Does GFP_KERNEL allocation.
 *
835 836 837
 * RETURNS:
 * Percpu pointer to the allocated area on success, NULL on failure.
 */
838
void __percpu *__alloc_percpu(size_t size, size_t align)
839 840 841
{
	return pcpu_alloc(size, align, false);
}
842 843
EXPORT_SYMBOL_GPL(__alloc_percpu);

844 845 846 847 848 849 850 851 852
/**
 * __alloc_reserved_percpu - allocate reserved percpu area
 * @size: size of area to allocate in bytes
 * @align: alignment of area (max PAGE_SIZE)
 *
 * Allocate percpu area of @size bytes aligned at @align from reserved
 * percpu area if arch has set it up; otherwise, allocation is served
 * from the same dynamic area.  Might sleep.  Might trigger writeouts.
 *
853 854 855
 * CONTEXT:
 * Does GFP_KERNEL allocation.
 *
856 857 858
 * RETURNS:
 * Percpu pointer to the allocated area on success, NULL on failure.
 */
859
void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
860 861 862 863
{
	return pcpu_alloc(size, align, true);
}

864 865 866 867 868
/**
 * pcpu_reclaim - reclaim fully free chunks, workqueue function
 * @work: unused
 *
 * Reclaim all fully free chunks except for the first one.
869 870 871
 *
 * CONTEXT:
 * workqueue context.
872 873
 */
static void pcpu_reclaim(struct work_struct *work)
874
{
875 876 877 878
	LIST_HEAD(todo);
	struct list_head *head = &pcpu_slot[pcpu_nr_slots - 1];
	struct pcpu_chunk *chunk, *next;

879 880
	mutex_lock(&pcpu_alloc_mutex);
	spin_lock_irq(&pcpu_lock);
881 882 883 884 885 886 887 888 889 890 891

	list_for_each_entry_safe(chunk, next, head, list) {
		WARN_ON(chunk->immutable);

		/* spare the first one */
		if (chunk == list_first_entry(head, struct pcpu_chunk, list))
			continue;

		list_move(&chunk->list, &todo);
	}

892
	spin_unlock_irq(&pcpu_lock);
893 894

	list_for_each_entry_safe(chunk, next, &todo, list) {
T
Tejun Heo 已提交
895
		pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size);
896
		pcpu_destroy_chunk(chunk);
897
	}
T
Tejun Heo 已提交
898 899

	mutex_unlock(&pcpu_alloc_mutex);
900 901 902 903 904 905
}

/**
 * free_percpu - free percpu area
 * @ptr: pointer to area to free
 *
906 907 908 909
 * Free percpu area @ptr.
 *
 * CONTEXT:
 * Can be called from atomic context.
910
 */
911
void free_percpu(void __percpu *ptr)
912
{
913
	void *addr;
914
	struct pcpu_chunk *chunk;
915
	unsigned long flags;
916 917 918 919 920
	int off;

	if (!ptr)
		return;

921 922
	addr = __pcpu_ptr_to_addr(ptr);

923
	spin_lock_irqsave(&pcpu_lock, flags);
924 925

	chunk = pcpu_chunk_addr_search(addr);
T
Tejun Heo 已提交
926
	off = addr - chunk->base_addr;
927 928 929

	pcpu_free_area(chunk, off);

930
	/* if there are more than one fully free chunks, wake up grim reaper */
931 932 933
	if (chunk->free_size == pcpu_unit_size) {
		struct pcpu_chunk *pos;

934
		list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
935
			if (pos != chunk) {
936
				schedule_work(&pcpu_reclaim_work);
937 938 939 940
				break;
			}
	}

941
	spin_unlock_irqrestore(&pcpu_lock, flags);
942 943 944
}
EXPORT_SYMBOL_GPL(free_percpu);

945 946 947 948 949 950 951 952 953 954 955 956 957
/**
 * is_kernel_percpu_address - test whether address is from static percpu area
 * @addr: address to test
 *
 * Test whether @addr belongs to in-kernel static percpu area.  Module
 * static percpu areas are not considered.  For those, use
 * is_module_percpu_address().
 *
 * RETURNS:
 * %true if @addr is from in-kernel static percpu area, %false otherwise.
 */
bool is_kernel_percpu_address(unsigned long addr)
{
958
#ifdef CONFIG_SMP
959 960 961 962 963 964 965 966 967 968
	const size_t static_size = __per_cpu_end - __per_cpu_start;
	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
	unsigned int cpu;

	for_each_possible_cpu(cpu) {
		void *start = per_cpu_ptr(base, cpu);

		if ((void *)addr >= start && (void *)addr < start + static_size)
			return true;
        }
969 970
#endif
	/* on UP, can't distinguish from other static vars, always false */
971 972 973
	return false;
}

974 975 976 977 978 979 980 981 982 983 984 985 986 987
/**
 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
 * @addr: the address to be converted to physical address
 *
 * Given @addr which is dereferenceable address obtained via one of
 * percpu access macros, this function translates it into its physical
 * address.  The caller is responsible for ensuring @addr stays valid
 * until this function finishes.
 *
 * RETURNS:
 * The physical address for @addr.
 */
phys_addr_t per_cpu_ptr_to_phys(void *addr)
{
988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
	bool in_first_chunk = false;
	unsigned long first_start, first_end;
	unsigned int cpu;

	/*
	 * The following test on first_start/end isn't strictly
	 * necessary but will speed up lookups of addresses which
	 * aren't in the first chunk.
	 */
	first_start = pcpu_chunk_addr(pcpu_first_chunk, pcpu_first_unit_cpu, 0);
	first_end = pcpu_chunk_addr(pcpu_first_chunk, pcpu_last_unit_cpu,
				    pcpu_unit_pages);
	if ((unsigned long)addr >= first_start &&
	    (unsigned long)addr < first_end) {
		for_each_possible_cpu(cpu) {
			void *start = per_cpu_ptr(base, cpu);

			if (addr >= start && addr < start + pcpu_unit_size) {
				in_first_chunk = true;
				break;
			}
		}
	}

	if (in_first_chunk) {
1014 1015 1016 1017 1018 1019
		if ((unsigned long)addr < VMALLOC_START ||
		    (unsigned long)addr >= VMALLOC_END)
			return __pa(addr);
		else
			return page_to_phys(vmalloc_to_page(addr));
	} else
1020
		return page_to_phys(pcpu_addr_to_page(addr));
1021 1022
}

1023
/**
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
 * pcpu_alloc_alloc_info - allocate percpu allocation info
 * @nr_groups: the number of groups
 * @nr_units: the number of units
 *
 * Allocate ai which is large enough for @nr_groups groups containing
 * @nr_units units.  The returned ai's groups[0].cpu_map points to the
 * cpu_map array which is long enough for @nr_units and filled with
 * NR_CPUS.  It's the caller's responsibility to initialize cpu_map
 * pointer of other groups.
 *
 * RETURNS:
 * Pointer to the allocated pcpu_alloc_info on success, NULL on
 * failure.
 */
struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
						      int nr_units)
{
	struct pcpu_alloc_info *ai;
	size_t base_size, ai_size;
	void *ptr;
	int unit;

	base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
			  __alignof__(ai->groups[0].cpu_map[0]));
	ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);

	ptr = alloc_bootmem_nopanic(PFN_ALIGN(ai_size));
	if (!ptr)
		return NULL;
	ai = ptr;
	ptr += base_size;

	ai->groups[0].cpu_map = ptr;

	for (unit = 0; unit < nr_units; unit++)
		ai->groups[0].cpu_map[unit] = NR_CPUS;

	ai->nr_groups = nr_groups;
	ai->__ai_size = PFN_ALIGN(ai_size);

	return ai;
}

/**
 * pcpu_free_alloc_info - free percpu allocation info
 * @ai: pcpu_alloc_info to free
 *
 * Free @ai which was allocated by pcpu_alloc_alloc_info().
 */
void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
{
	free_bootmem(__pa(ai), ai->__ai_size);
}

/**
 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
 * @lvl: loglevel
 * @ai: allocation info to dump
 *
 * Print out information about @ai using loglevel @lvl.
 */
static void pcpu_dump_alloc_info(const char *lvl,
				 const struct pcpu_alloc_info *ai)
1087
{
1088
	int group_width = 1, cpu_width = 1, width;
1089
	char empty_str[] = "--------";
1090 1091 1092 1093 1094 1095 1096
	int alloc = 0, alloc_end = 0;
	int group, v;
	int upa, apl;	/* units per alloc, allocs per line */

	v = ai->nr_groups;
	while (v /= 10)
		group_width++;
1097

1098
	v = num_possible_cpus();
1099
	while (v /= 10)
1100 1101
		cpu_width++;
	empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
1102

1103 1104 1105
	upa = ai->alloc_size / ai->unit_size;
	width = upa * (cpu_width + 1) + group_width + 3;
	apl = rounddown_pow_of_two(max(60 / width, 1));
1106

1107 1108 1109
	printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
	       lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
	       ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
1110

1111 1112 1113 1114 1115 1116 1117 1118
	for (group = 0; group < ai->nr_groups; group++) {
		const struct pcpu_group_info *gi = &ai->groups[group];
		int unit = 0, unit_end = 0;

		BUG_ON(gi->nr_units % upa);
		for (alloc_end += gi->nr_units / upa;
		     alloc < alloc_end; alloc++) {
			if (!(alloc % apl)) {
1119
				printk("\n");
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
				printk("%spcpu-alloc: ", lvl);
			}
			printk("[%0*d] ", group_width, group);

			for (unit_end += upa; unit < unit_end; unit++)
				if (gi->cpu_map[unit] != NR_CPUS)
					printk("%0*d ", cpu_width,
					       gi->cpu_map[unit]);
				else
					printk("%s ", empty_str);
1130 1131 1132 1133 1134
		}
	}
	printk("\n");
}

1135
/**
1136
 * pcpu_setup_first_chunk - initialize the first percpu chunk
1137
 * @ai: pcpu_alloc_info describing how to percpu area is shaped
1138
 * @base_addr: mapped address
1139 1140 1141
 *
 * Initialize the first percpu chunk which contains the kernel static
 * perpcu area.  This function is to be called from arch percpu area
1142
 * setup path.
1143
 *
1144 1145 1146 1147 1148 1149
 * @ai contains all information necessary to initialize the first
 * chunk and prime the dynamic percpu allocator.
 *
 * @ai->static_size is the size of static percpu area.
 *
 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
1150 1151 1152 1153 1154 1155 1156
 * reserve after the static area in the first chunk.  This reserves
 * the first chunk such that it's available only through reserved
 * percpu allocation.  This is primarily used to serve module percpu
 * static areas on architectures where the addressing model has
 * limited offset range for symbol relocations to guarantee module
 * percpu symbols fall inside the relocatable range.
 *
1157 1158 1159
 * @ai->dyn_size determines the number of bytes available for dynamic
 * allocation in the first chunk.  The area between @ai->static_size +
 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
1160
 *
1161 1162 1163
 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
 * and equal to or larger than @ai->static_size + @ai->reserved_size +
 * @ai->dyn_size.
1164
 *
1165 1166
 * @ai->atom_size is the allocation atom size and used as alignment
 * for vm areas.
1167
 *
1168 1169 1170 1171 1172 1173 1174 1175 1176
 * @ai->alloc_size is the allocation size and always multiple of
 * @ai->atom_size.  This is larger than @ai->atom_size if
 * @ai->unit_size is larger than @ai->atom_size.
 *
 * @ai->nr_groups and @ai->groups describe virtual memory layout of
 * percpu areas.  Units which should be colocated are put into the
 * same group.  Dynamic VM areas will be allocated according to these
 * groupings.  If @ai->nr_groups is zero, a single group containing
 * all units is assumed.
1177
 *
1178 1179
 * The caller should have mapped the first chunk at @base_addr and
 * copied static data to each unit.
1180
 *
1181 1182 1183 1184 1185 1186 1187
 * If the first chunk ends up with both reserved and dynamic areas, it
 * is served by two chunks - one to serve the core static and reserved
 * areas and the other for the dynamic area.  They share the same vm
 * and page map but uses different area allocation map to stay away
 * from each other.  The latter chunk is circulated in the chunk slots
 * and available for dynamic allocation like any other chunks.
 *
1188
 * RETURNS:
T
Tejun Heo 已提交
1189
 * 0 on success, -errno on failure.
1190
 */
T
Tejun Heo 已提交
1191 1192
int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
				  void *base_addr)
1193
{
1194
	static char cpus_buf[4096] __initdata;
1195 1196
	static int smap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
	static int dmap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
1197 1198
	size_t dyn_size = ai->dyn_size;
	size_t size_sum = ai->static_size + ai->reserved_size + dyn_size;
1199
	struct pcpu_chunk *schunk, *dchunk = NULL;
1200 1201
	unsigned long *group_offsets;
	size_t *group_sizes;
T
Tejun Heo 已提交
1202
	unsigned long *unit_off;
1203
	unsigned int cpu;
1204 1205
	int *unit_map;
	int group, unit, i;
1206

1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
	cpumask_scnprintf(cpus_buf, sizeof(cpus_buf), cpu_possible_mask);

#define PCPU_SETUP_BUG_ON(cond)	do {					\
	if (unlikely(cond)) {						\
		pr_emerg("PERCPU: failed to initialize, %s", #cond);	\
		pr_emerg("PERCPU: cpu_possible_mask=%s\n", cpus_buf);	\
		pcpu_dump_alloc_info(KERN_EMERG, ai);			\
		BUG();							\
	}								\
} while (0)

1218
	/* sanity checks */
1219
	PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
1220
#ifdef CONFIG_SMP
1221
	PCPU_SETUP_BUG_ON(!ai->static_size);
1222
#endif
1223 1224 1225 1226
	PCPU_SETUP_BUG_ON(!base_addr);
	PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
	PCPU_SETUP_BUG_ON(ai->unit_size & ~PAGE_MASK);
	PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
1227
	PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
1228
	PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
1229

1230 1231 1232
	/* process group information and build config tables accordingly */
	group_offsets = alloc_bootmem(ai->nr_groups * sizeof(group_offsets[0]));
	group_sizes = alloc_bootmem(ai->nr_groups * sizeof(group_sizes[0]));
1233
	unit_map = alloc_bootmem(nr_cpu_ids * sizeof(unit_map[0]));
T
Tejun Heo 已提交
1234
	unit_off = alloc_bootmem(nr_cpu_ids * sizeof(unit_off[0]));
1235

1236
	for (cpu = 0; cpu < nr_cpu_ids; cpu++)
1237
		unit_map[cpu] = UINT_MAX;
1238
	pcpu_first_unit_cpu = NR_CPUS;
1239

1240 1241
	for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
		const struct pcpu_group_info *gi = &ai->groups[group];
1242

1243 1244 1245
		group_offsets[group] = gi->base_offset;
		group_sizes[group] = gi->nr_units * ai->unit_size;

1246 1247 1248 1249
		for (i = 0; i < gi->nr_units; i++) {
			cpu = gi->cpu_map[i];
			if (cpu == NR_CPUS)
				continue;
1250

1251 1252 1253
			PCPU_SETUP_BUG_ON(cpu > nr_cpu_ids);
			PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
			PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
1254

1255
			unit_map[cpu] = unit + i;
T
Tejun Heo 已提交
1256 1257
			unit_off[cpu] = gi->base_offset + i * ai->unit_size;

1258 1259 1260
			if (pcpu_first_unit_cpu == NR_CPUS)
				pcpu_first_unit_cpu = cpu;
		}
1261
	}
1262 1263 1264 1265
	pcpu_last_unit_cpu = cpu;
	pcpu_nr_units = unit;

	for_each_possible_cpu(cpu)
1266 1267 1268 1269 1270
		PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);

	/* we're done parsing the input, undefine BUG macro and dump config */
#undef PCPU_SETUP_BUG_ON
	pcpu_dump_alloc_info(KERN_INFO, ai);
1271

1272 1273 1274
	pcpu_nr_groups = ai->nr_groups;
	pcpu_group_offsets = group_offsets;
	pcpu_group_sizes = group_sizes;
1275
	pcpu_unit_map = unit_map;
T
Tejun Heo 已提交
1276
	pcpu_unit_offsets = unit_off;
1277 1278

	/* determine basic parameters */
1279
	pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
1280
	pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
1281
	pcpu_atom_size = ai->atom_size;
T
Tejun Heo 已提交
1282 1283
	pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
		BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
1284

1285 1286 1287 1288 1289
	/*
	 * Allocate chunk slots.  The additional last slot is for
	 * empty chunks.
	 */
	pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
1290 1291 1292 1293
	pcpu_slot = alloc_bootmem(pcpu_nr_slots * sizeof(pcpu_slot[0]));
	for (i = 0; i < pcpu_nr_slots; i++)
		INIT_LIST_HEAD(&pcpu_slot[i]);

1294 1295 1296 1297 1298 1299 1300
	/*
	 * Initialize static chunk.  If reserved_size is zero, the
	 * static chunk covers static area + dynamic allocation area
	 * in the first chunk.  If reserved_size is not zero, it
	 * covers static area + reserved area (mostly used for module
	 * static percpu allocation).
	 */
1301 1302
	schunk = alloc_bootmem(pcpu_chunk_struct_size);
	INIT_LIST_HEAD(&schunk->list);
T
Tejun Heo 已提交
1303
	schunk->base_addr = base_addr;
1304 1305
	schunk->map = smap;
	schunk->map_alloc = ARRAY_SIZE(smap);
1306
	schunk->immutable = true;
T
Tejun Heo 已提交
1307
	bitmap_fill(schunk->populated, pcpu_unit_pages);
1308

1309 1310
	if (ai->reserved_size) {
		schunk->free_size = ai->reserved_size;
1311
		pcpu_reserved_chunk = schunk;
1312
		pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size;
1313 1314 1315 1316
	} else {
		schunk->free_size = dyn_size;
		dyn_size = 0;			/* dynamic area covered */
	}
1317
	schunk->contig_hint = schunk->free_size;
1318

1319
	schunk->map[schunk->map_used++] = -ai->static_size;
1320 1321 1322
	if (schunk->free_size)
		schunk->map[schunk->map_used++] = schunk->free_size;

1323 1324
	/* init dynamic chunk if necessary */
	if (dyn_size) {
T
Tejun Heo 已提交
1325
		dchunk = alloc_bootmem(pcpu_chunk_struct_size);
1326
		INIT_LIST_HEAD(&dchunk->list);
T
Tejun Heo 已提交
1327
		dchunk->base_addr = base_addr;
1328 1329
		dchunk->map = dmap;
		dchunk->map_alloc = ARRAY_SIZE(dmap);
1330
		dchunk->immutable = true;
T
Tejun Heo 已提交
1331
		bitmap_fill(dchunk->populated, pcpu_unit_pages);
1332 1333 1334 1335 1336 1337

		dchunk->contig_hint = dchunk->free_size = dyn_size;
		dchunk->map[dchunk->map_used++] = -pcpu_reserved_chunk_limit;
		dchunk->map[dchunk->map_used++] = dchunk->free_size;
	}

1338
	/* link the first chunk in */
1339 1340
	pcpu_first_chunk = dchunk ?: schunk;
	pcpu_chunk_relocate(pcpu_first_chunk, -1);
1341 1342

	/* we're done */
T
Tejun Heo 已提交
1343
	pcpu_base_addr = base_addr;
T
Tejun Heo 已提交
1344
	return 0;
1345
}
1346

1347 1348
#ifdef CONFIG_SMP

1349 1350 1351 1352 1353
const char *pcpu_fc_names[PCPU_FC_NR] __initdata = {
	[PCPU_FC_AUTO]	= "auto",
	[PCPU_FC_EMBED]	= "embed",
	[PCPU_FC_PAGE]	= "page",
};
1354

1355
enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
1356

1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
static int __init percpu_alloc_setup(char *str)
{
	if (0)
		/* nada */;
#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
	else if (!strcmp(str, "embed"))
		pcpu_chosen_fc = PCPU_FC_EMBED;
#endif
#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
	else if (!strcmp(str, "page"))
		pcpu_chosen_fc = PCPU_FC_PAGE;
#endif
	else
		pr_warning("PERCPU: unknown allocator %s specified\n", str);
1371

1372
	return 0;
1373
}
1374
early_param("percpu_alloc", percpu_alloc_setup);
1375

1376 1377 1378 1379 1380
/*
 * pcpu_embed_first_chunk() is used by the generic percpu setup.
 * Build it if needed by the arch config or the generic setup is going
 * to be used.
 */
1381 1382
#if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
	!defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
#define BUILD_EMBED_FIRST_CHUNK
#endif

/* build pcpu_page_first_chunk() iff needed by the arch config */
#if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
#define BUILD_PAGE_FIRST_CHUNK
#endif

/* pcpu_build_alloc_info() is used by both embed and page first chunk */
#if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
/**
 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
 * @reserved_size: the size of reserved percpu area in bytes
 * @dyn_size: minimum free size for dynamic allocation in bytes
 * @atom_size: allocation atom size
 * @cpu_distance_fn: callback to determine distance between cpus, optional
 *
 * This function determines grouping of units, their mappings to cpus
 * and other parameters considering needed percpu size, allocation
 * atom size and distances between CPUs.
 *
 * Groups are always mutliples of atom size and CPUs which are of
 * LOCAL_DISTANCE both ways are grouped together and share space for
 * units in the same group.  The returned configuration is guaranteed
 * to have CPUs on different nodes on different groups and >=75% usage
 * of allocated virtual address space.
 *
 * RETURNS:
 * On success, pointer to the new allocation_info is returned.  On
 * failure, ERR_PTR value is returned.
 */
static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
				size_t reserved_size, size_t dyn_size,
				size_t atom_size,
				pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
{
	static int group_map[NR_CPUS] __initdata;
	static int group_cnt[NR_CPUS] __initdata;
	const size_t static_size = __per_cpu_end - __per_cpu_start;
	int nr_groups = 1, nr_units = 0;
	size_t size_sum, min_unit_size, alloc_size;
	int upa, max_upa, uninitialized_var(best_upa);	/* units_per_alloc */
	int last_allocs, group, unit;
	unsigned int cpu, tcpu;
	struct pcpu_alloc_info *ai;
	unsigned int *cpu_map;

	/* this function may be called multiple times */
	memset(group_map, 0, sizeof(group_map));
	memset(group_cnt, 0, sizeof(group_cnt));

	/* calculate size_sum and ensure dyn_size is enough for early alloc */
	size_sum = PFN_ALIGN(static_size + reserved_size +
			    max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
	dyn_size = size_sum - static_size - reserved_size;

	/*
	 * Determine min_unit_size, alloc_size and max_upa such that
	 * alloc_size is multiple of atom_size and is the smallest
	 * which can accomodate 4k aligned segments which are equal to
	 * or larger than min_unit_size.
	 */
	min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);

	alloc_size = roundup(min_unit_size, atom_size);
	upa = alloc_size / min_unit_size;
	while (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
		upa--;
	max_upa = upa;

	/* group cpus according to their proximity */
	for_each_possible_cpu(cpu) {
		group = 0;
	next_group:
		for_each_possible_cpu(tcpu) {
			if (cpu == tcpu)
				break;
			if (group_map[tcpu] == group && cpu_distance_fn &&
			    (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
			     cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
				group++;
				nr_groups = max(nr_groups, group + 1);
				goto next_group;
			}
		}
		group_map[cpu] = group;
		group_cnt[group]++;
	}

	/*
	 * Expand unit size until address space usage goes over 75%
	 * and then as much as possible without using more address
	 * space.
	 */
	last_allocs = INT_MAX;
	for (upa = max_upa; upa; upa--) {
		int allocs = 0, wasted = 0;

		if (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
			continue;

		for (group = 0; group < nr_groups; group++) {
			int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
			allocs += this_allocs;
			wasted += this_allocs * upa - group_cnt[group];
		}

		/*
		 * Don't accept if wastage is over 1/3.  The
		 * greater-than comparison ensures upa==1 always
		 * passes the following check.
		 */
		if (wasted > num_possible_cpus() / 3)
			continue;

		/* and then don't consume more memory */
		if (allocs > last_allocs)
			break;
		last_allocs = allocs;
		best_upa = upa;
	}
	upa = best_upa;

	/* allocate and fill alloc_info */
	for (group = 0; group < nr_groups; group++)
		nr_units += roundup(group_cnt[group], upa);

	ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
	if (!ai)
		return ERR_PTR(-ENOMEM);
	cpu_map = ai->groups[0].cpu_map;

	for (group = 0; group < nr_groups; group++) {
		ai->groups[group].cpu_map = cpu_map;
		cpu_map += roundup(group_cnt[group], upa);
	}

	ai->static_size = static_size;
	ai->reserved_size = reserved_size;
	ai->dyn_size = dyn_size;
	ai->unit_size = alloc_size / upa;
	ai->atom_size = atom_size;
	ai->alloc_size = alloc_size;

	for (group = 0, unit = 0; group_cnt[group]; group++) {
		struct pcpu_group_info *gi = &ai->groups[group];

		/*
		 * Initialize base_offset as if all groups are located
		 * back-to-back.  The caller should update this to
		 * reflect actual allocation.
		 */
		gi->base_offset = unit * ai->unit_size;

		for_each_possible_cpu(cpu)
			if (group_map[cpu] == group)
				gi->cpu_map[gi->nr_units++] = cpu;
		gi->nr_units = roundup(gi->nr_units, upa);
		unit += gi->nr_units;
	}
	BUG_ON(unit != nr_units);

	return ai;
}
#endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */

#if defined(BUILD_EMBED_FIRST_CHUNK)
1550 1551 1552
/**
 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
 * @reserved_size: the size of reserved percpu area in bytes
1553
 * @dyn_size: minimum free size for dynamic allocation in bytes
1554 1555 1556 1557
 * @atom_size: allocation atom size
 * @cpu_distance_fn: callback to determine distance between cpus, optional
 * @alloc_fn: function to allocate percpu page
 * @free_fn: funtion to free percpu page
1558 1559 1560 1561 1562
 *
 * This is a helper to ease setting up embedded first percpu chunk and
 * can be called where pcpu_setup_first_chunk() is expected.
 *
 * If this function is used to setup the first chunk, it is allocated
1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
 * by calling @alloc_fn and used as-is without being mapped into
 * vmalloc area.  Allocations are always whole multiples of @atom_size
 * aligned to @atom_size.
 *
 * This enables the first chunk to piggy back on the linear physical
 * mapping which often uses larger page size.  Please note that this
 * can result in very sparse cpu->unit mapping on NUMA machines thus
 * requiring large vmalloc address space.  Don't use this allocator if
 * vmalloc space is not orders of magnitude larger than distances
 * between node memory addresses (ie. 32bit NUMA machines).
1573
 *
1574
 * @dyn_size specifies the minimum dynamic area size.
1575 1576
 *
 * If the needed size is smaller than the minimum or specified unit
1577
 * size, the leftover is returned using @free_fn.
1578 1579
 *
 * RETURNS:
T
Tejun Heo 已提交
1580
 * 0 on success, -errno on failure.
1581
 */
1582
int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
1583 1584 1585 1586
				  size_t atom_size,
				  pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
				  pcpu_fc_alloc_fn_t alloc_fn,
				  pcpu_fc_free_fn_t free_fn)
1587
{
1588 1589
	void *base = (void *)ULONG_MAX;
	void **areas = NULL;
1590
	struct pcpu_alloc_info *ai;
1591
	size_t size_sum, areas_size, max_distance;
1592
	int group, i, rc;
1593

1594 1595
	ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
				   cpu_distance_fn);
1596 1597
	if (IS_ERR(ai))
		return PTR_ERR(ai);
1598

1599
	size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
1600
	areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
1601

1602 1603
	areas = alloc_bootmem_nopanic(areas_size);
	if (!areas) {
T
Tejun Heo 已提交
1604
		rc = -ENOMEM;
1605
		goto out_free;
1606
	}
1607

1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
	/* allocate, copy and determine base address */
	for (group = 0; group < ai->nr_groups; group++) {
		struct pcpu_group_info *gi = &ai->groups[group];
		unsigned int cpu = NR_CPUS;
		void *ptr;

		for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
			cpu = gi->cpu_map[i];
		BUG_ON(cpu == NR_CPUS);

		/* allocate space for the whole group */
		ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
		if (!ptr) {
			rc = -ENOMEM;
			goto out_free_areas;
		}
		areas[group] = ptr;
1625

1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
		base = min(ptr, base);

		for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
			if (gi->cpu_map[i] == NR_CPUS) {
				/* unused unit, free whole */
				free_fn(ptr, ai->unit_size);
				continue;
			}
			/* copy and return the unused part */
			memcpy(ptr, __per_cpu_load, ai->static_size);
			free_fn(ptr + size_sum, ai->unit_size - size_sum);
		}
1638
	}
1639

1640
	/* base address is now known, determine group base offsets */
1641 1642
	max_distance = 0;
	for (group = 0; group < ai->nr_groups; group++) {
1643
		ai->groups[group].base_offset = areas[group] - base;
T
Tejun Heo 已提交
1644 1645
		max_distance = max_t(size_t, max_distance,
				     ai->groups[group].base_offset);
1646 1647 1648 1649 1650
	}
	max_distance += ai->unit_size;

	/* warn if maximum distance is further than 75% of vmalloc space */
	if (max_distance > (VMALLOC_END - VMALLOC_START) * 3 / 4) {
T
Tejun Heo 已提交
1651
		pr_warning("PERCPU: max_distance=0x%zx too large for vmalloc "
1652 1653 1654 1655 1656 1657 1658 1659
			   "space 0x%lx\n",
			   max_distance, VMALLOC_END - VMALLOC_START);
#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
		/* and fail if we have fallback */
		rc = -EINVAL;
		goto out_free;
#endif
	}
1660

T
Tejun Heo 已提交
1661
	pr_info("PERCPU: Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
1662 1663
		PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
		ai->dyn_size, ai->unit_size);
1664

T
Tejun Heo 已提交
1665
	rc = pcpu_setup_first_chunk(ai, base);
1666 1667 1668 1669 1670 1671 1672
	goto out_free;

out_free_areas:
	for (group = 0; group < ai->nr_groups; group++)
		free_fn(areas[group],
			ai->groups[group].nr_units * ai->unit_size);
out_free:
1673
	pcpu_free_alloc_info(ai);
1674 1675
	if (areas)
		free_bootmem(__pa(areas), areas_size);
T
Tejun Heo 已提交
1676
	return rc;
1677
}
1678
#endif /* BUILD_EMBED_FIRST_CHUNK */
1679

1680
#ifdef BUILD_PAGE_FIRST_CHUNK
1681
/**
1682
 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
1683 1684 1685 1686 1687
 * @reserved_size: the size of reserved percpu area in bytes
 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
 * @free_fn: funtion to free percpu page, always called with PAGE_SIZE
 * @populate_pte_fn: function to populate pte
 *
1688 1689
 * This is a helper to ease setting up page-remapped first percpu
 * chunk and can be called where pcpu_setup_first_chunk() is expected.
1690 1691 1692 1693 1694
 *
 * This is the basic allocator.  Static percpu area is allocated
 * page-by-page into vmalloc area.
 *
 * RETURNS:
T
Tejun Heo 已提交
1695
 * 0 on success, -errno on failure.
1696
 */
T
Tejun Heo 已提交
1697 1698 1699 1700
int __init pcpu_page_first_chunk(size_t reserved_size,
				 pcpu_fc_alloc_fn_t alloc_fn,
				 pcpu_fc_free_fn_t free_fn,
				 pcpu_fc_populate_pte_fn_t populate_pte_fn)
1701
{
1702
	static struct vm_struct vm;
1703
	struct pcpu_alloc_info *ai;
1704
	char psize_str[16];
T
Tejun Heo 已提交
1705
	int unit_pages;
1706
	size_t pages_size;
T
Tejun Heo 已提交
1707
	struct page **pages;
T
Tejun Heo 已提交
1708
	int unit, i, j, rc;
1709

1710 1711
	snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);

1712
	ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
1713 1714 1715 1716 1717 1718
	if (IS_ERR(ai))
		return PTR_ERR(ai);
	BUG_ON(ai->nr_groups != 1);
	BUG_ON(ai->groups[0].nr_units != num_possible_cpus());

	unit_pages = ai->unit_size >> PAGE_SHIFT;
1719 1720

	/* unaligned allocations can't be freed, round up to page size */
1721 1722
	pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
			       sizeof(pages[0]));
T
Tejun Heo 已提交
1723
	pages = alloc_bootmem(pages_size);
1724

1725
	/* allocate pages */
1726
	j = 0;
1727
	for (unit = 0; unit < num_possible_cpus(); unit++)
T
Tejun Heo 已提交
1728
		for (i = 0; i < unit_pages; i++) {
1729
			unsigned int cpu = ai->groups[0].cpu_map[unit];
1730 1731
			void *ptr;

1732
			ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
1733
			if (!ptr) {
1734 1735
				pr_warning("PERCPU: failed to allocate %s page "
					   "for cpu%u\n", psize_str, cpu);
1736 1737
				goto enomem;
			}
T
Tejun Heo 已提交
1738
			pages[j++] = virt_to_page(ptr);
1739 1740
		}

1741 1742
	/* allocate vm area, map the pages and copy static data */
	vm.flags = VM_ALLOC;
1743
	vm.size = num_possible_cpus() * ai->unit_size;
1744 1745
	vm_area_register_early(&vm, PAGE_SIZE);

1746
	for (unit = 0; unit < num_possible_cpus(); unit++) {
1747
		unsigned long unit_addr =
1748
			(unsigned long)vm.addr + unit * ai->unit_size;
1749

T
Tejun Heo 已提交
1750
		for (i = 0; i < unit_pages; i++)
1751 1752 1753
			populate_pte_fn(unit_addr + (i << PAGE_SHIFT));

		/* pte already populated, the following shouldn't fail */
T
Tejun Heo 已提交
1754 1755 1756 1757
		rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
				      unit_pages);
		if (rc < 0)
			panic("failed to map percpu area, err=%d\n", rc);
1758

1759 1760 1761 1762 1763 1764 1765 1766 1767
		/*
		 * FIXME: Archs with virtual cache should flush local
		 * cache for the linear mapping here - something
		 * equivalent to flush_cache_vmap() on the local cpu.
		 * flush_cache_vmap() can't be used as most supporting
		 * data structures are not set up yet.
		 */

		/* copy static data */
1768
		memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
1769 1770 1771
	}

	/* we're ready, commit */
1772
	pr_info("PERCPU: %d %s pages/cpu @%p s%zu r%zu d%zu\n",
1773 1774
		unit_pages, psize_str, vm.addr, ai->static_size,
		ai->reserved_size, ai->dyn_size);
1775

T
Tejun Heo 已提交
1776
	rc = pcpu_setup_first_chunk(ai, vm.addr);
1777 1778 1779 1780
	goto out_free_ar;

enomem:
	while (--j >= 0)
T
Tejun Heo 已提交
1781
		free_fn(page_address(pages[j]), PAGE_SIZE);
T
Tejun Heo 已提交
1782
	rc = -ENOMEM;
1783
out_free_ar:
T
Tejun Heo 已提交
1784
	free_bootmem(__pa(pages), pages_size);
1785
	pcpu_free_alloc_info(ai);
T
Tejun Heo 已提交
1786
	return rc;
1787
}
1788
#endif /* BUILD_PAGE_FIRST_CHUNK */
1789

1790
#ifndef	CONFIG_HAVE_SETUP_PER_CPU_AREA
1791
/*
1792
 * Generic SMP percpu area setup.
1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805
 *
 * The embedding helper is used because its behavior closely resembles
 * the original non-dynamic generic percpu area setup.  This is
 * important because many archs have addressing restrictions and might
 * fail if the percpu area is located far away from the previous
 * location.  As an added bonus, in non-NUMA cases, embedding is
 * generally a good idea TLB-wise because percpu area can piggy back
 * on the physical linear memory mapping which uses large page
 * mappings on applicable archs.
 */
unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
EXPORT_SYMBOL(__per_cpu_offset);

1806 1807 1808 1809 1810
static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
				       size_t align)
{
	return __alloc_bootmem_nopanic(size, align, __pa(MAX_DMA_ADDRESS));
}
1811

1812 1813 1814 1815 1816
static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
{
	free_bootmem(__pa(ptr), size);
}

1817 1818 1819 1820
void __init setup_per_cpu_areas(void)
{
	unsigned long delta;
	unsigned int cpu;
T
Tejun Heo 已提交
1821
	int rc;
1822 1823 1824 1825 1826

	/*
	 * Always reserve area for module percpu variables.  That's
	 * what the legacy allocator did.
	 */
T
Tejun Heo 已提交
1827
	rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
1828 1829
				    PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
				    pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
T
Tejun Heo 已提交
1830
	if (rc < 0)
1831
		panic("Failed to initialize percpu areas.");
1832 1833 1834

	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
	for_each_possible_cpu(cpu)
T
Tejun Heo 已提交
1835
		__per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
1836
}
1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
#endif	/* CONFIG_HAVE_SETUP_PER_CPU_AREA */

#else	/* CONFIG_SMP */

/*
 * UP percpu area setup.
 *
 * UP always uses km-based percpu allocator with identity mapping.
 * Static percpu variables are indistinguishable from the usual static
 * variables and don't require any special preparation.
 */
void __init setup_per_cpu_areas(void)
{
	const size_t unit_size =
		roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
					 PERCPU_DYNAMIC_RESERVE));
	struct pcpu_alloc_info *ai;
	void *fc;

	ai = pcpu_alloc_alloc_info(1, 1);
	fc = __alloc_bootmem(unit_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
	if (!ai || !fc)
		panic("Failed to allocate memory for percpu areas.");

	ai->dyn_size = unit_size;
	ai->unit_size = unit_size;
	ai->atom_size = unit_size;
	ai->alloc_size = unit_size;
	ai->groups[0].nr_units = 1;
	ai->groups[0].cpu_map[0] = 0;

	if (pcpu_setup_first_chunk(ai, fc) < 0)
		panic("Failed to initialize percpu areas.");
}

#endif	/* CONFIG_SMP */
1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902

/*
 * First and reserved chunks are initialized with temporary allocation
 * map in initdata so that they can be used before slab is online.
 * This function is called after slab is brought up and replaces those
 * with properly allocated maps.
 */
void __init percpu_init_late(void)
{
	struct pcpu_chunk *target_chunks[] =
		{ pcpu_first_chunk, pcpu_reserved_chunk, NULL };
	struct pcpu_chunk *chunk;
	unsigned long flags;
	int i;

	for (i = 0; (chunk = target_chunks[i]); i++) {
		int *map;
		const size_t size = PERCPU_DYNAMIC_EARLY_SLOTS * sizeof(map[0]);

		BUILD_BUG_ON(size > PAGE_SIZE);

		map = pcpu_mem_alloc(size);
		BUG_ON(!map);

		spin_lock_irqsave(&pcpu_lock, flags);
		memcpy(map, chunk->map, size);
		chunk->map = map;
		spin_unlock_irqrestore(&pcpu_lock, flags);
	}
}