vsp1_video.c 31.7 KB
Newer Older
1 2 3
/*
 * vsp1_video.c  --  R-Car VSP1 Video Node
 *
4
 * Copyright (C) 2013-2015 Renesas Electronics Corporation
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 *
 * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 */

#include <linux/list.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/slab.h>
#include <linux/v4l2-mediabus.h>
#include <linux/videodev2.h>
20
#include <linux/wait.h>
21 22 23 24 25 26

#include <media/media-entity.h>
#include <media/v4l2-dev.h>
#include <media/v4l2-fh.h>
#include <media/v4l2-ioctl.h>
#include <media/v4l2-subdev.h>
27
#include <media/videobuf2-v4l2.h>
28 29 30
#include <media/videobuf2-dma-contig.h>

#include "vsp1.h"
31
#include "vsp1_bru.h"
32
#include "vsp1_dl.h"
33
#include "vsp1_entity.h"
34
#include "vsp1_pipe.h"
35
#include "vsp1_rwpf.h"
36
#include "vsp1_uds.h"
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
#include "vsp1_video.h"

#define VSP1_VIDEO_DEF_FORMAT		V4L2_PIX_FMT_YUYV
#define VSP1_VIDEO_DEF_WIDTH		1024
#define VSP1_VIDEO_DEF_HEIGHT		768

#define VSP1_VIDEO_MIN_WIDTH		2U
#define VSP1_VIDEO_MAX_WIDTH		8190U
#define VSP1_VIDEO_MIN_HEIGHT		2U
#define VSP1_VIDEO_MAX_HEIGHT		8190U

/* -----------------------------------------------------------------------------
 * Helper functions
 */

static struct v4l2_subdev *
vsp1_video_remote_subdev(struct media_pad *local, u32 *pad)
{
	struct media_pad *remote;

	remote = media_entity_remote_pad(local);
58
	if (!remote || !is_media_entity_v4l2_subdev(remote->entity))
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
		return NULL;

	if (pad)
		*pad = remote->index;

	return media_entity_to_v4l2_subdev(remote->entity);
}

static int vsp1_video_verify_format(struct vsp1_video *video)
{
	struct v4l2_subdev_format fmt;
	struct v4l2_subdev *subdev;
	int ret;

	subdev = vsp1_video_remote_subdev(&video->pad, &fmt.pad);
	if (subdev == NULL)
		return -EINVAL;

	fmt.which = V4L2_SUBDEV_FORMAT_ACTIVE;
	ret = v4l2_subdev_call(subdev, pad, get_fmt, NULL, &fmt);
	if (ret < 0)
		return ret == -ENOIOCTLCMD ? -EINVAL : ret;

82 83 84
	if (video->rwpf->fmtinfo->mbus != fmt.format.code ||
	    video->rwpf->format.height != fmt.format.height ||
	    video->rwpf->format.width != fmt.format.width)
85 86 87 88 89 90 91 92 93
		return -EINVAL;

	return 0;
}

static int __vsp1_video_try_format(struct vsp1_video *video,
				   struct v4l2_pix_format_mplane *pix,
				   const struct vsp1_format_info **fmtinfo)
{
94 95 96 97 98 99 100
	static const u32 xrgb_formats[][2] = {
		{ V4L2_PIX_FMT_RGB444, V4L2_PIX_FMT_XRGB444 },
		{ V4L2_PIX_FMT_RGB555, V4L2_PIX_FMT_XRGB555 },
		{ V4L2_PIX_FMT_BGR32, V4L2_PIX_FMT_XBGR32 },
		{ V4L2_PIX_FMT_RGB32, V4L2_PIX_FMT_XRGB32 },
	};

101 102 103 104 105
	const struct vsp1_format_info *info;
	unsigned int width = pix->width;
	unsigned int height = pix->height;
	unsigned int i;

106 107
	/*
	 * Backward compatibility: replace deprecated RGB formats by their XRGB
108 109 110 111 112 113 114 115 116 117
	 * equivalent. This selects the format older userspace applications want
	 * while still exposing the new format.
	 */
	for (i = 0; i < ARRAY_SIZE(xrgb_formats); ++i) {
		if (xrgb_formats[i][0] == pix->pixelformat) {
			pix->pixelformat = xrgb_formats[i][1];
			break;
		}
	}

118 119
	/*
	 * Retrieve format information and select the default format if the
120 121
	 * requested format isn't supported.
	 */
122
	info = vsp1_get_format_info(video->vsp1, pix->pixelformat);
123
	if (info == NULL)
124
		info = vsp1_get_format_info(video->vsp1, VSP1_VIDEO_DEF_FORMAT);
125 126 127 128

	pix->pixelformat = info->fourcc;
	pix->colorspace = V4L2_COLORSPACE_SRGB;
	pix->field = V4L2_FIELD_NONE;
129 130 131 132 133

	if (info->fourcc == V4L2_PIX_FMT_HSV24 ||
	    info->fourcc == V4L2_PIX_FMT_HSV32)
		pix->hsv_enc = V4L2_HSV_ENC_256;

134 135 136 137 138 139 140 141 142 143 144
	memset(pix->reserved, 0, sizeof(pix->reserved));

	/* Align the width and height for YUV 4:2:2 and 4:2:0 formats. */
	width = round_down(width, info->hsub);
	height = round_down(height, info->vsub);

	/* Clamp the width and height. */
	pix->width = clamp(width, VSP1_VIDEO_MIN_WIDTH, VSP1_VIDEO_MAX_WIDTH);
	pix->height = clamp(height, VSP1_VIDEO_MIN_HEIGHT,
			    VSP1_VIDEO_MAX_HEIGHT);

145 146
	/*
	 * Compute and clamp the stride and image size. While not documented in
147 148 149
	 * the datasheet, strides not aligned to a multiple of 128 bytes result
	 * in image corruption.
	 */
150
	for (i = 0; i < min(info->planes, 2U); ++i) {
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
		unsigned int hsub = i > 0 ? info->hsub : 1;
		unsigned int vsub = i > 0 ? info->vsub : 1;
		unsigned int align = 128;
		unsigned int bpl;

		bpl = clamp_t(unsigned int, pix->plane_fmt[i].bytesperline,
			      pix->width / hsub * info->bpp[i] / 8,
			      round_down(65535U, align));

		pix->plane_fmt[i].bytesperline = round_up(bpl, align);
		pix->plane_fmt[i].sizeimage = pix->plane_fmt[i].bytesperline
					    * pix->height / vsub;
	}

	if (info->planes == 3) {
		/* The second and third planes must have the same stride. */
		pix->plane_fmt[2].bytesperline = pix->plane_fmt[1].bytesperline;
		pix->plane_fmt[2].sizeimage = pix->plane_fmt[1].sizeimage;
	}

	pix->num_planes = info->planes;

	if (fmtinfo)
		*fmtinfo = info;

	return 0;
}

179 180 181 182 183 184 185 186 187 188 189
/* -----------------------------------------------------------------------------
 * VSP1 Partition Algorithm support
 */

static void vsp1_video_pipeline_setup_partitions(struct vsp1_pipeline *pipe)
{
	struct vsp1_device *vsp1 = pipe->output->entity.vsp1;
	const struct v4l2_mbus_framefmt *format;
	struct vsp1_entity *entity;
	unsigned int div_size;

190 191 192 193
	/*
	 * Partitions are computed on the size before rotation, use the format
	 * at the WPF sink.
	 */
194 195
	format = vsp1_entity_get_pad_format(&pipe->output->entity,
					    pipe->output->entity.config,
196
					    RWPF_PAD_SINK);
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
	div_size = format->width;

	/* Gen2 hardware doesn't require image partitioning. */
	if (vsp1->info->gen == 2) {
		pipe->div_size = div_size;
		pipe->partitions = 1;
		return;
	}

	list_for_each_entry(entity, &pipe->entities, list_pipe) {
		unsigned int entity_max = VSP1_VIDEO_MAX_WIDTH;

		if (entity->ops->max_width) {
			entity_max = entity->ops->max_width(entity, pipe);
			if (entity_max)
				div_size = min(div_size, entity_max);
		}
	}

	pipe->div_size = div_size;
	pipe->partitions = DIV_ROUND_UP(format->width, div_size);
}

220
/**
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
 * vsp1_video_partition - Calculate the active partition output window
 *
 * @div_size: pre-determined maximum partition division size
 * @index: partition index
 *
 * Returns a v4l2_rect describing the partition window.
 */
static struct v4l2_rect vsp1_video_partition(struct vsp1_pipeline *pipe,
					     unsigned int div_size,
					     unsigned int index)
{
	const struct v4l2_mbus_framefmt *format;
	struct v4l2_rect partition;
	unsigned int modulus;

236 237 238 239
	/*
	 * Partitions are computed on the size before rotation, use the format
	 * at the WPF sink.
	 */
240 241
	format = vsp1_entity_get_pad_format(&pipe->output->entity,
					    pipe->output->entity.config,
242
					    RWPF_PAD_SINK);
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260

	/* A single partition simply processes the output size in full. */
	if (pipe->partitions <= 1) {
		partition.left = 0;
		partition.top = 0;
		partition.width = format->width;
		partition.height = format->height;
		return partition;
	}

	/* Initialise the partition with sane starting conditions. */
	partition.left = index * div_size;
	partition.top = 0;
	partition.width = div_size;
	partition.height = format->height;

	modulus = format->width % div_size;

261 262
	/*
	 * We need to prevent the last partition from being smaller than the
263 264 265 266 267 268 269 270
	 * *minimum* width of the hardware capabilities.
	 *
	 * If the modulus is less than half of the partition size,
	 * the penultimate partition is reduced to half, which is added
	 * to the final partition: |1234|1234|1234|12|341|
	 * to prevents this:       |1234|1234|1234|1234|1|.
	 */
	if (modulus) {
271 272
		/*
		 * pipe->partitions is 1 based, whilst index is a 0 based index.
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
		 * Normalise this locally.
		 */
		unsigned int partitions = pipe->partitions - 1;

		if (modulus < div_size / 2) {
			if (index == partitions - 1) {
				/* Halve the penultimate partition. */
				partition.width = div_size / 2;
			} else if (index == partitions) {
				/* Increase the final partition. */
				partition.width = (div_size / 2) + modulus;
				partition.left -= div_size / 2;
			}
		} else if (index == partitions) {
			partition.width = modulus;
		}
	}

	return partition;
}

294 295 296 297
/* -----------------------------------------------------------------------------
 * Pipeline Management
 */

298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
/*
 * vsp1_video_complete_buffer - Complete the current buffer
 * @video: the video node
 *
 * This function completes the current buffer by filling its sequence number,
 * time stamp and payload size, and hands it back to the videobuf core.
 *
 * When operating in DU output mode (deep pipeline to the DU through the LIF),
 * the VSP1 needs to constantly supply frames to the display. In that case, if
 * no other buffer is queued, reuse the one that has just been processed instead
 * of handing it back to the videobuf core.
 *
 * Return the next queued buffer or NULL if the queue is empty.
 */
static struct vsp1_vb2_buffer *
vsp1_video_complete_buffer(struct vsp1_video *video)
{
	struct vsp1_pipeline *pipe = video->rwpf->pipe;
	struct vsp1_vb2_buffer *next = NULL;
	struct vsp1_vb2_buffer *done;
	unsigned long flags;
	unsigned int i;

	spin_lock_irqsave(&video->irqlock, flags);

	if (list_empty(&video->irqqueue)) {
		spin_unlock_irqrestore(&video->irqlock, flags);
		return NULL;
	}

	done = list_first_entry(&video->irqqueue,
				struct vsp1_vb2_buffer, queue);

	/* In DU output mode reuse the buffer if the list is singular. */
	if (pipe->lif && list_is_singular(&video->irqqueue)) {
		spin_unlock_irqrestore(&video->irqlock, flags);
		return done;
	}

	list_del(&done->queue);

	if (!list_empty(&video->irqqueue))
		next = list_first_entry(&video->irqqueue,
					struct vsp1_vb2_buffer, queue);

	spin_unlock_irqrestore(&video->irqlock, flags);

345
	done->buf.sequence = pipe->sequence;
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
	done->buf.vb2_buf.timestamp = ktime_get_ns();
	for (i = 0; i < done->buf.vb2_buf.num_planes; ++i)
		vb2_set_plane_payload(&done->buf.vb2_buf, i,
				      vb2_plane_size(&done->buf.vb2_buf, i));
	vb2_buffer_done(&done->buf.vb2_buf, VB2_BUF_STATE_DONE);

	return next;
}

static void vsp1_video_frame_end(struct vsp1_pipeline *pipe,
				 struct vsp1_rwpf *rwpf)
{
	struct vsp1_video *video = rwpf->video;
	struct vsp1_vb2_buffer *buf;

	buf = vsp1_video_complete_buffer(video);
	if (buf == NULL)
		return;

	video->rwpf->mem = buf->mem;
	pipe->buffers_ready |= 1 << video->pipe_index;
}

369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
static void vsp1_video_pipeline_run_partition(struct vsp1_pipeline *pipe,
					      struct vsp1_dl_list *dl)
{
	struct vsp1_entity *entity;

	pipe->partition = vsp1_video_partition(pipe, pipe->div_size,
					       pipe->current_partition);

	list_for_each_entry(entity, &pipe->entities, list_pipe) {
		if (entity->ops->configure)
			entity->ops->configure(entity, pipe, dl,
					       VSP1_ENTITY_PARAMS_PARTITION);
	}
}

384 385
static void vsp1_video_pipeline_run(struct vsp1_pipeline *pipe)
{
386
	struct vsp1_device *vsp1 = pipe->output->entity.vsp1;
387
	struct vsp1_entity *entity;
388 389 390 391

	if (!pipe->dl)
		pipe->dl = vsp1_dl_list_get(pipe->output->dlm);

392 393
	/*
	 * Start with the runtime parameters as the configure operation can
394 395 396
	 * compute/cache information needed when configuring partitions. This
	 * is the case with flipping in the WPF.
	 */
397
	list_for_each_entry(entity, &pipe->entities, list_pipe) {
398
		if (entity->ops->configure)
399 400
			entity->ops->configure(entity, pipe, pipe->dl,
					       VSP1_ENTITY_PARAMS_RUNTIME);
401 402 403 404 405 406 407 408 409 410 411 412
	}

	/* Run the first partition */
	pipe->current_partition = 0;
	vsp1_video_pipeline_run_partition(pipe, pipe->dl);

	/* Process consecutive partitions as necessary */
	for (pipe->current_partition = 1;
	     pipe->current_partition < pipe->partitions;
	     pipe->current_partition++) {
		struct vsp1_dl_list *dl;

413 414
		/*
		 * Partition configuration operations will utilise
415 416 417 418 419
		 * the pipe->current_partition variable to determine
		 * the work they should complete.
		 */
		dl = vsp1_dl_list_get(pipe->output->dlm);

420 421
		/*
		 * An incomplete chain will still function, but output only
422 423 424 425 426 427
		 * the partitions that had a dl available. The frame end
		 * interrupt will be marked on the last dl in the chain.
		 */
		if (!dl) {
			dev_err(vsp1->dev, "Failed to obtain a dl list. Frame will be incomplete\n");
			break;
428
		}
429 430 431

		vsp1_video_pipeline_run_partition(pipe, dl);
		vsp1_dl_list_add_chain(pipe->dl, dl);
432 433
	}

434
	/* Complete, and commit the head display list. */
435 436 437 438 439 440 441 442 443 444 445 446 447
	vsp1_dl_list_commit(pipe->dl);
	pipe->dl = NULL;

	vsp1_pipeline_run(pipe);
}

static void vsp1_video_pipeline_frame_end(struct vsp1_pipeline *pipe)
{
	struct vsp1_device *vsp1 = pipe->output->entity.vsp1;
	enum vsp1_pipeline_state state;
	unsigned long flags;
	unsigned int i;

448 449
	spin_lock_irqsave(&pipe->irqlock, flags);

450 451 452 453 454 455 456 457 458 459 460 461 462
	/* Complete buffers on all video nodes. */
	for (i = 0; i < vsp1->info->rpf_count; ++i) {
		if (!pipe->inputs[i])
			continue;

		vsp1_video_frame_end(pipe, pipe->inputs[i]);
	}

	vsp1_video_frame_end(pipe, pipe->output);

	state = pipe->state;
	pipe->state = VSP1_PIPELINE_STOPPED;

463 464
	/*
	 * If a stop has been requested, mark the pipeline as stopped and
465 466 467 468 469 470 471 472 473 474
	 * return. Otherwise restart the pipeline if ready.
	 */
	if (state == VSP1_PIPELINE_STOPPING)
		wake_up(&pipe->wq);
	else if (vsp1_pipeline_ready(pipe))
		vsp1_video_pipeline_run(pipe);

	spin_unlock_irqrestore(&pipe->irqlock, flags);
}

475 476 477
static int vsp1_video_pipeline_build_branch(struct vsp1_pipeline *pipe,
					    struct vsp1_rwpf *input,
					    struct vsp1_rwpf *output)
478
{
479
	struct media_entity_enum ent_enum;
480
	struct vsp1_entity *entity;
481
	struct media_pad *pad;
482
	bool bru_found = false;
483
	int ret;
484

485 486 487
	ret = media_entity_enum_init(&ent_enum, &input->entity.vsp1->media_dev);
	if (ret < 0)
		return ret;
488

489 490 491
	pad = media_entity_remote_pad(&input->entity.pads[RWPF_PAD_SOURCE]);

	while (1) {
492
		if (pad == NULL) {
493
			ret = -EPIPE;
494 495
			goto out;
		}
496 497

		/* We've reached a video node, that shouldn't have happened. */
498
		if (!is_media_entity_v4l2_subdev(pad->entity)) {
499
			ret = -EPIPE;
500 501
			goto out;
		}
502

503 504
		entity = to_vsp1_entity(
			media_entity_to_v4l2_subdev(pad->entity));
505

506 507
		/*
		 * A BRU is present in the pipeline, store the BRU input pad
508
		 * number in the input RPF for use when configuring the RPF.
509 510 511
		 */
		if (entity->type == VSP1_ENTITY_BRU) {
			struct vsp1_bru *bru = to_bru(&entity->subdev);
512 513

			bru->inputs[pad->index].rpf = input;
514
			input->bru_input = pad->index;
515 516

			bru_found = true;
517 518
		}

519 520 521 522 523
		/* We've reached the WPF, we're done. */
		if (entity->type == VSP1_ENTITY_WPF)
			break;

		/* Ensure the branch has no loop. */
524 525
		if (media_entity_enum_test_and_set(&ent_enum,
						   &entity->subdev.entity)) {
526
			ret = -EPIPE;
527 528
			goto out;
		}
529 530 531

		/* UDS can't be chained. */
		if (entity->type == VSP1_ENTITY_UDS) {
532
			if (pipe->uds) {
533
				ret = -EPIPE;
534 535
				goto out;
			}
536 537 538 539

			pipe->uds = entity;
			pipe->uds_input = bru_found ? pipe->bru
					: &input->entity;
540 541
		}

542 543
		/*
		 * Follow the source link. The link setup operations ensure
544 545 546 547 548 549 550 551 552 553
		 * that the output fan-out can't be more than one, there is thus
		 * no need to verify here that only a single source link is
		 * activated.
		 */
		pad = &entity->pads[entity->source_pad];
		pad = media_entity_remote_pad(pad);
	}

	/* The last entity must be the output WPF. */
	if (entity != &output->entity)
554
		ret = -EPIPE;
555

556 557 558
out:
	media_entity_enum_cleanup(&ent_enum);

559
	return ret;
560 561
}

562 563
static int vsp1_video_pipeline_build(struct vsp1_pipeline *pipe,
				     struct vsp1_video *video)
564
{
565
	struct media_graph graph;
566
	struct media_entity *entity = &video->video.entity;
567
	struct media_device *mdev = entity->graph_obj.mdev;
568 569 570 571
	unsigned int i;
	int ret;

	/* Walk the graph to locate the entities and video nodes. */
572
	ret = media_graph_walk_init(&graph, mdev);
573
	if (ret)
574 575
		return ret;

576
	media_graph_walk_start(&graph, entity);
577

578
	while ((entity = media_graph_walk_next(&graph))) {
579 580 581 582
		struct v4l2_subdev *subdev;
		struct vsp1_rwpf *rwpf;
		struct vsp1_entity *e;

583
		if (!is_media_entity_v4l2_subdev(entity))
584 585 586 587 588 589 590 591
			continue;

		subdev = media_entity_to_v4l2_subdev(entity);
		e = to_vsp1_entity(subdev);
		list_add_tail(&e->list_pipe, &pipe->entities);

		if (e->type == VSP1_ENTITY_RPF) {
			rwpf = to_rwpf(subdev);
592 593
			pipe->inputs[rwpf->entity.index] = rwpf;
			rwpf->video->pipe_index = ++pipe->num_inputs;
594
			rwpf->pipe = pipe;
595 596
		} else if (e->type == VSP1_ENTITY_WPF) {
			rwpf = to_rwpf(subdev);
597
			pipe->output = rwpf;
598
			rwpf->video->pipe_index = 0;
599
			rwpf->pipe = pipe;
600 601
		} else if (e->type == VSP1_ENTITY_LIF) {
			pipe->lif = e;
602 603
		} else if (e->type == VSP1_ENTITY_BRU) {
			pipe->bru = e;
604 605 606
		}
	}

607
	media_graph_walk_cleanup(&graph);
608

609
	/* We need one output and at least one input. */
610 611
	if (pipe->num_inputs == 0 || !pipe->output)
		return -EPIPE;
612

613 614
	/*
	 * Follow links downstream for each input and make sure the graph
615 616
	 * contains no loop and that all branches end at the output WPF.
	 */
617
	for (i = 0; i < video->vsp1->info->rpf_count; ++i) {
618 619 620
		if (!pipe->inputs[i])
			continue;

621 622
		ret = vsp1_video_pipeline_build_branch(pipe, pipe->inputs[i],
						       pipe->output);
623
		if (ret < 0)
624
			return ret;
625 626 627 628 629
	}

	return 0;
}

630 631
static int vsp1_video_pipeline_init(struct vsp1_pipeline *pipe,
				    struct vsp1_video *video)
632
{
633 634 635 636 637 638 639 640 641 642
	vsp1_pipeline_init(pipe);

	pipe->frame_end = vsp1_video_pipeline_frame_end;

	return vsp1_video_pipeline_build(pipe, video);
}

static struct vsp1_pipeline *vsp1_video_pipeline_get(struct vsp1_video *video)
{
	struct vsp1_pipeline *pipe;
643 644
	int ret;

645 646
	/*
	 * Get a pipeline object for the video node. If a pipeline has already
647 648 649 650 651 652 653 654
	 * been allocated just increment its reference count and return it.
	 * Otherwise allocate a new pipeline and initialize it, it will be freed
	 * when the last reference is released.
	 */
	if (!video->rwpf->pipe) {
		pipe = kzalloc(sizeof(*pipe), GFP_KERNEL);
		if (!pipe)
			return ERR_PTR(-ENOMEM);
655

656 657 658 659 660 661 662 663 664
		ret = vsp1_video_pipeline_init(pipe, video);
		if (ret < 0) {
			vsp1_pipeline_reset(pipe);
			kfree(pipe);
			return ERR_PTR(ret);
		}
	} else {
		pipe = video->rwpf->pipe;
		kref_get(&pipe->kref);
665 666
	}

667
	return pipe;
668 669
}

670
static void vsp1_video_pipeline_release(struct kref *kref)
671
{
672
	struct vsp1_pipeline *pipe = container_of(kref, typeof(*pipe), kref);
673

674 675 676
	vsp1_pipeline_reset(pipe);
	kfree(pipe);
}
677

678 679 680 681 682 683 684
static void vsp1_video_pipeline_put(struct vsp1_pipeline *pipe)
{
	struct media_device *mdev = &pipe->output->entity.vsp1->media_dev;

	mutex_lock(&mdev->graph_mutex);
	kref_put(&pipe->kref, vsp1_video_pipeline_release);
	mutex_unlock(&mdev->graph_mutex);
685 686 687 688 689 690 691
}

/* -----------------------------------------------------------------------------
 * videobuf2 Queue Operations
 */

static int
692
vsp1_video_queue_setup(struct vb2_queue *vq,
693 694
		       unsigned int *nbuffers, unsigned int *nplanes,
		       unsigned int sizes[], struct device *alloc_devs[])
695 696
{
	struct vsp1_video *video = vb2_get_drv_priv(vq);
697
	const struct v4l2_pix_format_mplane *format = &video->rwpf->format;
698 699
	unsigned int i;

700 701
	if (*nplanes) {
		if (*nplanes != format->num_planes)
702 703
			return -EINVAL;

704
		for (i = 0; i < *nplanes; i++)
705 706 707
			if (sizes[i] < format->plane_fmt[i].sizeimage)
				return -EINVAL;
		return 0;
708 709 710 711
	}

	*nplanes = format->num_planes;

712
	for (i = 0; i < format->num_planes; ++i)
713 714 715 716 717 718 719
		sizes[i] = format->plane_fmt[i].sizeimage;

	return 0;
}

static int vsp1_video_buffer_prepare(struct vb2_buffer *vb)
{
720
	struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
721
	struct vsp1_video *video = vb2_get_drv_priv(vb->vb2_queue);
722
	struct vsp1_vb2_buffer *buf = to_vsp1_vb2_buffer(vbuf);
723
	const struct v4l2_pix_format_mplane *format = &video->rwpf->format;
724 725 726 727 728 729
	unsigned int i;

	if (vb->num_planes < format->num_planes)
		return -EINVAL;

	for (i = 0; i < vb->num_planes; ++i) {
730
		buf->mem.addr[i] = vb2_dma_contig_plane_dma_addr(vb, i);
731

732
		if (vb2_plane_size(vb, i) < format->plane_fmt[i].sizeimage)
733 734 735
			return -EINVAL;
	}

736
	for ( ; i < 3; ++i)
737 738
		buf->mem.addr[i] = 0;

739 740 741 742 743
	return 0;
}

static void vsp1_video_buffer_queue(struct vb2_buffer *vb)
{
744
	struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
745
	struct vsp1_video *video = vb2_get_drv_priv(vb->vb2_queue);
746
	struct vsp1_pipeline *pipe = video->rwpf->pipe;
747
	struct vsp1_vb2_buffer *buf = to_vsp1_vb2_buffer(vbuf);
748 749 750 751 752 753 754 755 756 757 758 759 760
	unsigned long flags;
	bool empty;

	spin_lock_irqsave(&video->irqlock, flags);
	empty = list_empty(&video->irqqueue);
	list_add_tail(&buf->queue, &video->irqqueue);
	spin_unlock_irqrestore(&video->irqlock, flags);

	if (!empty)
		return;

	spin_lock_irqsave(&pipe->irqlock, flags);

761
	video->rwpf->mem = buf->mem;
762 763 764 765
	pipe->buffers_ready |= 1 << video->pipe_index;

	if (vb2_is_streaming(&video->queue) &&
	    vsp1_pipeline_ready(pipe))
766
		vsp1_video_pipeline_run(pipe);
767 768 769 770

	spin_unlock_irqrestore(&pipe->irqlock, flags);
}

771 772 773 774
static int vsp1_video_setup_pipeline(struct vsp1_pipeline *pipe)
{
	struct vsp1_entity *entity;

775 776 777
	/* Determine this pipelines sizes for image partitioning support. */
	vsp1_video_pipeline_setup_partitions(pipe);

778 779 780 781 782 783 784 785
	/* Prepare the display list. */
	pipe->dl = vsp1_dl_list_get(pipe->output->dlm);
	if (!pipe->dl)
		return -ENOMEM;

	if (pipe->uds) {
		struct vsp1_uds *uds = to_uds(&pipe->uds->subdev);

786 787
		/*
		 * If a BRU is present in the pipeline before the UDS, the alpha
788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
		 * component doesn't need to be scaled as the BRU output alpha
		 * value is fixed to 255. Otherwise we need to scale the alpha
		 * component only when available at the input RPF.
		 */
		if (pipe->uds_input->type == VSP1_ENTITY_BRU) {
			uds->scale_alpha = false;
		} else {
			struct vsp1_rwpf *rpf =
				to_rwpf(&pipe->uds_input->subdev);

			uds->scale_alpha = rpf->fmtinfo->alpha;
		}
	}

	list_for_each_entry(entity, &pipe->entities, list_pipe) {
803
		vsp1_entity_route_setup(entity, pipe->dl);
804

805
		if (entity->ops->configure)
806 807
			entity->ops->configure(entity, pipe, pipe->dl,
					       VSP1_ENTITY_PARAMS_INIT);
808 809
	}

810
	return 0;
811 812
}

813 814 815
static int vsp1_video_start_streaming(struct vb2_queue *vq, unsigned int count)
{
	struct vsp1_video *video = vb2_get_drv_priv(vq);
816
	struct vsp1_pipeline *pipe = video->rwpf->pipe;
817
	bool start_pipeline = false;
818 819 820 821
	unsigned long flags;
	int ret;

	mutex_lock(&pipe->lock);
822
	if (pipe->stream_count == pipe->num_inputs) {
823 824 825 826
		ret = vsp1_video_setup_pipeline(pipe);
		if (ret < 0) {
			mutex_unlock(&pipe->lock);
			return ret;
827
		}
828 829

		start_pipeline = true;
830 831 832 833 834
	}

	pipe->stream_count++;
	mutex_unlock(&pipe->lock);

835 836 837 838 839 840 841 842 843 844
	/*
	 * vsp1_pipeline_ready() is not sufficient to establish that all streams
	 * are prepared and the pipeline is configured, as multiple streams
	 * can race through streamon with buffers already queued; Therefore we
	 * don't even attempt to start the pipeline until the last stream has
	 * called through here.
	 */
	if (!start_pipeline)
		return 0;

845 846
	spin_lock_irqsave(&pipe->irqlock, flags);
	if (vsp1_pipeline_ready(pipe))
847
		vsp1_video_pipeline_run(pipe);
848 849 850 851 852
	spin_unlock_irqrestore(&pipe->irqlock, flags);

	return 0;
}

853
static void vsp1_video_stop_streaming(struct vb2_queue *vq)
854 855
{
	struct vsp1_video *video = vb2_get_drv_priv(vq);
856
	struct vsp1_pipeline *pipe = video->rwpf->pipe;
857
	struct vsp1_vb2_buffer *buffer;
858 859 860
	unsigned long flags;
	int ret;

861 862
	/*
	 * Clear the buffers ready flag to make sure the device won't be started
863 864 865 866 867 868
	 * by a QBUF on the video node on the other side of the pipeline.
	 */
	spin_lock_irqsave(&video->irqlock, flags);
	pipe->buffers_ready &= ~(1 << video->pipe_index);
	spin_unlock_irqrestore(&video->irqlock, flags);

869
	mutex_lock(&pipe->lock);
870
	if (--pipe->stream_count == pipe->num_inputs) {
871 872 873 874
		/* Stop the pipeline. */
		ret = vsp1_pipeline_stop(pipe);
		if (ret == -ETIMEDOUT)
			dev_err(video->vsp1->dev, "pipeline stop timeout\n");
875 876 877

		vsp1_dl_list_put(pipe->dl);
		pipe->dl = NULL;
878 879 880
	}
	mutex_unlock(&pipe->lock);

881
	media_pipeline_stop(&video->video.entity);
882
	vsp1_video_pipeline_put(pipe);
883 884 885

	/* Remove all buffers from the IRQ queue. */
	spin_lock_irqsave(&video->irqlock, flags);
886
	list_for_each_entry(buffer, &video->irqqueue, queue)
887
		vb2_buffer_done(&buffer->buf.vb2_buf, VB2_BUF_STATE_ERROR);
888 889 890 891
	INIT_LIST_HEAD(&video->irqqueue);
	spin_unlock_irqrestore(&video->irqlock, flags);
}

892
static const struct vb2_ops vsp1_video_queue_qops = {
893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940
	.queue_setup = vsp1_video_queue_setup,
	.buf_prepare = vsp1_video_buffer_prepare,
	.buf_queue = vsp1_video_buffer_queue,
	.wait_prepare = vb2_ops_wait_prepare,
	.wait_finish = vb2_ops_wait_finish,
	.start_streaming = vsp1_video_start_streaming,
	.stop_streaming = vsp1_video_stop_streaming,
};

/* -----------------------------------------------------------------------------
 * V4L2 ioctls
 */

static int
vsp1_video_querycap(struct file *file, void *fh, struct v4l2_capability *cap)
{
	struct v4l2_fh *vfh = file->private_data;
	struct vsp1_video *video = to_vsp1_video(vfh->vdev);

	cap->capabilities = V4L2_CAP_DEVICE_CAPS | V4L2_CAP_STREAMING
			  | V4L2_CAP_VIDEO_CAPTURE_MPLANE
			  | V4L2_CAP_VIDEO_OUTPUT_MPLANE;

	if (video->type == V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE)
		cap->device_caps = V4L2_CAP_VIDEO_CAPTURE_MPLANE
				 | V4L2_CAP_STREAMING;
	else
		cap->device_caps = V4L2_CAP_VIDEO_OUTPUT_MPLANE
				 | V4L2_CAP_STREAMING;

	strlcpy(cap->driver, "vsp1", sizeof(cap->driver));
	strlcpy(cap->card, video->video.name, sizeof(cap->card));
	snprintf(cap->bus_info, sizeof(cap->bus_info), "platform:%s",
		 dev_name(video->vsp1->dev));

	return 0;
}

static int
vsp1_video_get_format(struct file *file, void *fh, struct v4l2_format *format)
{
	struct v4l2_fh *vfh = file->private_data;
	struct vsp1_video *video = to_vsp1_video(vfh->vdev);

	if (format->type != video->queue.type)
		return -EINVAL;

	mutex_lock(&video->lock);
941
	format->fmt.pix_mp = video->rwpf->format;
942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
	mutex_unlock(&video->lock);

	return 0;
}

static int
vsp1_video_try_format(struct file *file, void *fh, struct v4l2_format *format)
{
	struct v4l2_fh *vfh = file->private_data;
	struct vsp1_video *video = to_vsp1_video(vfh->vdev);

	if (format->type != video->queue.type)
		return -EINVAL;

	return __vsp1_video_try_format(video, &format->fmt.pix_mp, NULL);
}

static int
vsp1_video_set_format(struct file *file, void *fh, struct v4l2_format *format)
{
	struct v4l2_fh *vfh = file->private_data;
	struct vsp1_video *video = to_vsp1_video(vfh->vdev);
	const struct vsp1_format_info *info;
	int ret;

	if (format->type != video->queue.type)
		return -EINVAL;

	ret = __vsp1_video_try_format(video, &format->fmt.pix_mp, &info);
	if (ret < 0)
		return ret;

	mutex_lock(&video->lock);

	if (vb2_is_busy(&video->queue)) {
		ret = -EBUSY;
		goto done;
	}

981 982
	video->rwpf->format = format->fmt.pix_mp;
	video->rwpf->fmtinfo = info;
983 984 985 986 987 988 989 990 991 992 993

done:
	mutex_unlock(&video->lock);
	return ret;
}

static int
vsp1_video_streamon(struct file *file, void *fh, enum v4l2_buf_type type)
{
	struct v4l2_fh *vfh = file->private_data;
	struct vsp1_video *video = to_vsp1_video(vfh->vdev);
994
	struct media_device *mdev = &video->vsp1->media_dev;
995 996 997 998 999 1000
	struct vsp1_pipeline *pipe;
	int ret;

	if (video->queue.owner && video->queue.owner != file->private_data)
		return -EBUSY;

1001 1002
	/*
	 * Get a pipeline for the video node and start streaming on it. No link
1003 1004
	 * touching an entity in the pipeline can be activated or deactivated
	 * once streaming is started.
1005
	 */
1006
	mutex_lock(&mdev->graph_mutex);
1007

1008 1009 1010 1011 1012 1013
	pipe = vsp1_video_pipeline_get(video);
	if (IS_ERR(pipe)) {
		mutex_unlock(&mdev->graph_mutex);
		return PTR_ERR(pipe);
	}

1014
	ret = __media_pipeline_start(&video->video.entity, &pipe->pipe);
1015 1016 1017 1018 1019 1020
	if (ret < 0) {
		mutex_unlock(&mdev->graph_mutex);
		goto err_pipe;
	}

	mutex_unlock(&mdev->graph_mutex);
1021

1022 1023
	/*
	 * Verify that the configured format matches the output of the connected
1024 1025 1026 1027 1028 1029 1030 1031 1032
	 * subdev.
	 */
	ret = vsp1_video_verify_format(video);
	if (ret < 0)
		goto err_stop;

	/* Start the queue. */
	ret = vb2_streamon(&video->queue, type);
	if (ret < 0)
1033
		goto err_stop;
1034 1035 1036 1037

	return 0;

err_stop:
1038
	media_pipeline_stop(&video->video.entity);
1039 1040
err_pipe:
	vsp1_video_pipeline_put(pipe);
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
	return ret;
}

static const struct v4l2_ioctl_ops vsp1_video_ioctl_ops = {
	.vidioc_querycap		= vsp1_video_querycap,
	.vidioc_g_fmt_vid_cap_mplane	= vsp1_video_get_format,
	.vidioc_s_fmt_vid_cap_mplane	= vsp1_video_set_format,
	.vidioc_try_fmt_vid_cap_mplane	= vsp1_video_try_format,
	.vidioc_g_fmt_vid_out_mplane	= vsp1_video_get_format,
	.vidioc_s_fmt_vid_out_mplane	= vsp1_video_set_format,
	.vidioc_try_fmt_vid_out_mplane	= vsp1_video_try_format,
	.vidioc_reqbufs			= vb2_ioctl_reqbufs,
	.vidioc_querybuf		= vb2_ioctl_querybuf,
	.vidioc_qbuf			= vb2_ioctl_qbuf,
	.vidioc_dqbuf			= vb2_ioctl_dqbuf,
1056
	.vidioc_expbuf			= vb2_ioctl_expbuf,
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
	.vidioc_create_bufs		= vb2_ioctl_create_bufs,
	.vidioc_prepare_buf		= vb2_ioctl_prepare_buf,
	.vidioc_streamon		= vsp1_video_streamon,
	.vidioc_streamoff		= vb2_ioctl_streamoff,
};

/* -----------------------------------------------------------------------------
 * V4L2 File Operations
 */

static int vsp1_video_open(struct file *file)
{
	struct vsp1_video *video = video_drvdata(file);
	struct v4l2_fh *vfh;
	int ret = 0;

	vfh = kzalloc(sizeof(*vfh), GFP_KERNEL);
	if (vfh == NULL)
		return -ENOMEM;

	v4l2_fh_init(vfh, &video->video);
	v4l2_fh_add(vfh);

	file->private_data = vfh;

1082 1083
	ret = vsp1_device_get(video->vsp1);
	if (ret < 0) {
1084
		v4l2_fh_del(vfh);
1085
		v4l2_fh_exit(vfh);
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
		kfree(vfh);
	}

	return ret;
}

static int vsp1_video_release(struct file *file)
{
	struct vsp1_video *video = video_drvdata(file);
	struct v4l2_fh *vfh = file->private_data;

	mutex_lock(&video->lock);
	if (video->queue.owner == vfh) {
		vb2_queue_release(&video->queue);
		video->queue.owner = NULL;
	}
	mutex_unlock(&video->lock);

	vsp1_device_put(video->vsp1);

	v4l2_fh_release(file);

	file->private_data = NULL;

	return 0;
}

1113
static const struct v4l2_file_operations vsp1_video_fops = {
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
	.owner = THIS_MODULE,
	.unlocked_ioctl = video_ioctl2,
	.open = vsp1_video_open,
	.release = vsp1_video_release,
	.poll = vb2_fop_poll,
	.mmap = vb2_fop_mmap,
};

/* -----------------------------------------------------------------------------
 * Initialization and Cleanup
 */

1126 1127
struct vsp1_video *vsp1_video_create(struct vsp1_device *vsp1,
				     struct vsp1_rwpf *rwpf)
1128
{
1129
	struct vsp1_video *video;
1130 1131 1132
	const char *direction;
	int ret;

1133 1134 1135
	video = devm_kzalloc(vsp1->dev, sizeof(*video), GFP_KERNEL);
	if (!video)
		return ERR_PTR(-ENOMEM);
1136

1137
	rwpf->video = video;
1138 1139 1140 1141 1142

	video->vsp1 = vsp1;
	video->rwpf = rwpf;

	if (rwpf->entity.type == VSP1_ENTITY_RPF) {
1143
		direction = "input";
1144
		video->type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
1145 1146
		video->pad.flags = MEDIA_PAD_FL_SOURCE;
		video->video.vfl_dir = VFL_DIR_TX;
1147 1148 1149 1150 1151
	} else {
		direction = "output";
		video->type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
		video->pad.flags = MEDIA_PAD_FL_SINK;
		video->video.vfl_dir = VFL_DIR_RX;
1152 1153 1154 1155 1156 1157 1158
	}

	mutex_init(&video->lock);
	spin_lock_init(&video->irqlock);
	INIT_LIST_HEAD(&video->irqqueue);

	/* Initialize the media entity... */
1159
	ret = media_entity_pads_init(&video->video.entity, 1, &video->pad);
1160
	if (ret < 0)
1161
		return ERR_PTR(ret);
1162 1163

	/* ... and the format ... */
1164
	rwpf->format.pixelformat = VSP1_VIDEO_DEF_FORMAT;
1165 1166
	rwpf->format.width = VSP1_VIDEO_DEF_WIDTH;
	rwpf->format.height = VSP1_VIDEO_DEF_HEIGHT;
1167
	__vsp1_video_try_format(video, &rwpf->format, &rwpf->fmtinfo);
1168 1169 1170 1171 1172

	/* ... and the video node... */
	video->video.v4l2_dev = &video->vsp1->v4l2_dev;
	video->video.fops = &vsp1_video_fops;
	snprintf(video->video.name, sizeof(video->video.name), "%s %s",
1173
		 rwpf->entity.subdev.name, direction);
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
	video->video.vfl_type = VFL_TYPE_GRABBER;
	video->video.release = video_device_release_empty;
	video->video.ioctl_ops = &vsp1_video_ioctl_ops;

	video_set_drvdata(&video->video, video);

	video->queue.type = video->type;
	video->queue.io_modes = VB2_MMAP | VB2_USERPTR | VB2_DMABUF;
	video->queue.lock = &video->lock;
	video->queue.drv_priv = video;
1184
	video->queue.buf_struct_size = sizeof(struct vsp1_vb2_buffer);
1185 1186
	video->queue.ops = &vsp1_video_queue_qops;
	video->queue.mem_ops = &vb2_dma_contig_memops;
1187
	video->queue.timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY;
1188
	video->queue.dev = video->vsp1->dev;
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
	ret = vb2_queue_init(&video->queue);
	if (ret < 0) {
		dev_err(video->vsp1->dev, "failed to initialize vb2 queue\n");
		goto error;
	}

	/* ... and register the video device. */
	video->video.queue = &video->queue;
	ret = video_register_device(&video->video, VFL_TYPE_GRABBER, -1);
	if (ret < 0) {
		dev_err(video->vsp1->dev, "failed to register video device\n");
		goto error;
	}

1203
	return video;
1204 1205 1206

error:
	vsp1_video_cleanup(video);
1207
	return ERR_PTR(ret);
1208 1209 1210 1211 1212 1213 1214 1215 1216
}

void vsp1_video_cleanup(struct vsp1_video *video)
{
	if (video_is_registered(&video->video))
		video_unregister_device(&video->video);

	media_entity_cleanup(&video->video.entity);
}