free-space-cache.c 92.7 KB
Newer Older
J
Josef Bacik 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * Copyright (C) 2008 Red Hat.  All rights reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

19
#include <linux/pagemap.h>
J
Josef Bacik 已提交
20
#include <linux/sched.h>
21
#include <linux/slab.h>
22
#include <linux/math64.h>
23
#include <linux/ratelimit.h>
J
Josef Bacik 已提交
24
#include "ctree.h"
25 26
#include "free-space-cache.h"
#include "transaction.h"
27
#include "disk-io.h"
28
#include "extent_io.h"
29
#include "inode-map.h"
30
#include "volumes.h"
31

32
#define BITS_PER_BITMAP		(PAGE_SIZE * 8UL)
33
#define MAX_CACHE_BYTES_PER_GIG	SZ_32K
J
Josef Bacik 已提交
34

35 36 37 38 39 40
struct btrfs_trim_range {
	u64 start;
	u64 bytes;
	struct list_head list;
};

41
static int link_free_space(struct btrfs_free_space_ctl *ctl,
J
Josef Bacik 已提交
42
			   struct btrfs_free_space *info);
43 44
static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
			      struct btrfs_free_space *info);
45 46 47 48
static int btrfs_wait_cache_io_root(struct btrfs_root *root,
			     struct btrfs_trans_handle *trans,
			     struct btrfs_io_ctl *io_ctl,
			     struct btrfs_path *path);
J
Josef Bacik 已提交
49

50 51 52
static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
					       struct btrfs_path *path,
					       u64 offset)
53
{
54
	struct btrfs_fs_info *fs_info = root->fs_info;
55 56 57 58 59 60 61 62 63
	struct btrfs_key key;
	struct btrfs_key location;
	struct btrfs_disk_key disk_key;
	struct btrfs_free_space_header *header;
	struct extent_buffer *leaf;
	struct inode *inode = NULL;
	int ret;

	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
64
	key.offset = offset;
65 66 67 68 69 70
	key.type = 0;

	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		return ERR_PTR(ret);
	if (ret > 0) {
71
		btrfs_release_path(path);
72 73 74 75 76 77 78 79
		return ERR_PTR(-ENOENT);
	}

	leaf = path->nodes[0];
	header = btrfs_item_ptr(leaf, path->slots[0],
				struct btrfs_free_space_header);
	btrfs_free_space_key(leaf, header, &disk_key);
	btrfs_disk_key_to_cpu(&location, &disk_key);
80
	btrfs_release_path(path);
81

82
	inode = btrfs_iget(fs_info->sb, &location, root, NULL);
83 84 85 86 87 88 89
	if (IS_ERR(inode))
		return inode;
	if (is_bad_inode(inode)) {
		iput(inode);
		return ERR_PTR(-ENOENT);
	}

A
Al Viro 已提交
90
	mapping_set_gfp_mask(inode->i_mapping,
91 92
			mapping_gfp_constraint(inode->i_mapping,
			~(__GFP_FS | __GFP_HIGHMEM)));
93

94 95 96 97 98 99 100 101
	return inode;
}

struct inode *lookup_free_space_inode(struct btrfs_root *root,
				      struct btrfs_block_group_cache
				      *block_group, struct btrfs_path *path)
{
	struct inode *inode = NULL;
102
	struct btrfs_fs_info *fs_info = root->fs_info;
103
	u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
104 105 106 107 108 109 110 111 112 113 114 115 116

	spin_lock(&block_group->lock);
	if (block_group->inode)
		inode = igrab(block_group->inode);
	spin_unlock(&block_group->lock);
	if (inode)
		return inode;

	inode = __lookup_free_space_inode(root, path,
					  block_group->key.objectid);
	if (IS_ERR(inode))
		return inode;

117
	spin_lock(&block_group->lock);
118
	if (!((BTRFS_I(inode)->flags & flags) == flags)) {
119
		btrfs_info(fs_info, "Old style space inode found, converting.");
120 121
		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
			BTRFS_INODE_NODATACOW;
122 123 124
		block_group->disk_cache_state = BTRFS_DC_CLEAR;
	}

125
	if (!block_group->iref) {
126 127 128 129 130 131 132 133
		block_group->inode = igrab(inode);
		block_group->iref = 1;
	}
	spin_unlock(&block_group->lock);

	return inode;
}

134 135 136 137
static int __create_free_space_inode(struct btrfs_root *root,
				     struct btrfs_trans_handle *trans,
				     struct btrfs_path *path,
				     u64 ino, u64 offset)
138 139 140 141 142 143
{
	struct btrfs_key key;
	struct btrfs_disk_key disk_key;
	struct btrfs_free_space_header *header;
	struct btrfs_inode_item *inode_item;
	struct extent_buffer *leaf;
144
	u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
145 146
	int ret;

147
	ret = btrfs_insert_empty_inode(trans, root, path, ino);
148 149 150
	if (ret)
		return ret;

151 152 153 154
	/* We inline crc's for the free disk space cache */
	if (ino != BTRFS_FREE_INO_OBJECTID)
		flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;

155 156 157 158
	leaf = path->nodes[0];
	inode_item = btrfs_item_ptr(leaf, path->slots[0],
				    struct btrfs_inode_item);
	btrfs_item_key(leaf, &disk_key, path->slots[0]);
159
	memzero_extent_buffer(leaf, (unsigned long)inode_item,
160 161 162 163 164 165 166
			     sizeof(*inode_item));
	btrfs_set_inode_generation(leaf, inode_item, trans->transid);
	btrfs_set_inode_size(leaf, inode_item, 0);
	btrfs_set_inode_nbytes(leaf, inode_item, 0);
	btrfs_set_inode_uid(leaf, inode_item, 0);
	btrfs_set_inode_gid(leaf, inode_item, 0);
	btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
167
	btrfs_set_inode_flags(leaf, inode_item, flags);
168 169
	btrfs_set_inode_nlink(leaf, inode_item, 1);
	btrfs_set_inode_transid(leaf, inode_item, trans->transid);
170
	btrfs_set_inode_block_group(leaf, inode_item, offset);
171
	btrfs_mark_buffer_dirty(leaf);
172
	btrfs_release_path(path);
173 174

	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
175
	key.offset = offset;
176 177 178 179
	key.type = 0;
	ret = btrfs_insert_empty_item(trans, root, path, &key,
				      sizeof(struct btrfs_free_space_header));
	if (ret < 0) {
180
		btrfs_release_path(path);
181 182
		return ret;
	}
183

184 185 186
	leaf = path->nodes[0];
	header = btrfs_item_ptr(leaf, path->slots[0],
				struct btrfs_free_space_header);
187
	memzero_extent_buffer(leaf, (unsigned long)header, sizeof(*header));
188 189
	btrfs_set_free_space_key(leaf, header, &disk_key);
	btrfs_mark_buffer_dirty(leaf);
190
	btrfs_release_path(path);
191 192 193 194

	return 0;
}

195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
int create_free_space_inode(struct btrfs_root *root,
			    struct btrfs_trans_handle *trans,
			    struct btrfs_block_group_cache *block_group,
			    struct btrfs_path *path)
{
	int ret;
	u64 ino;

	ret = btrfs_find_free_objectid(root, &ino);
	if (ret < 0)
		return ret;

	return __create_free_space_inode(root, trans, path, ino,
					 block_group->key.objectid);
}

211
int btrfs_check_trunc_cache_free_space(struct btrfs_fs_info *fs_info,
212
				       struct btrfs_block_rsv *rsv)
213
{
214
	u64 needed_bytes;
215
	int ret;
216 217

	/* 1 for slack space, 1 for updating the inode */
218 219
	needed_bytes = btrfs_calc_trunc_metadata_size(fs_info, 1) +
		btrfs_calc_trans_metadata_size(fs_info, 1);
220

221 222 223 224 225 226
	spin_lock(&rsv->lock);
	if (rsv->reserved < needed_bytes)
		ret = -ENOSPC;
	else
		ret = 0;
	spin_unlock(&rsv->lock);
227
	return ret;
228 229 230 231
}

int btrfs_truncate_free_space_cache(struct btrfs_root *root,
				    struct btrfs_trans_handle *trans,
232
				    struct btrfs_block_group_cache *block_group,
233 234 235
				    struct inode *inode)
{
	int ret = 0;
236
	struct btrfs_path *path = btrfs_alloc_path();
237
	bool locked = false;
238 239 240 241 242 243 244

	if (!path) {
		ret = -ENOMEM;
		goto fail;
	}

	if (block_group) {
245
		locked = true;
246 247 248 249
		mutex_lock(&trans->transaction->cache_write_mutex);
		if (!list_empty(&block_group->io_list)) {
			list_del_init(&block_group->io_list);

250
			btrfs_wait_cache_io(trans, block_group, path);
251 252 253 254 255 256 257 258 259 260 261 262
			btrfs_put_block_group(block_group);
		}

		/*
		 * now that we've truncated the cache away, its no longer
		 * setup or written
		 */
		spin_lock(&block_group->lock);
		block_group->disk_cache_state = BTRFS_DC_CLEAR;
		spin_unlock(&block_group->lock);
	}
	btrfs_free_path(path);
263 264

	btrfs_i_size_write(inode, 0);
265
	truncate_pagecache(inode, 0);
266 267 268 269

	/*
	 * We don't need an orphan item because truncating the free space cache
	 * will never be split across transactions.
270 271
	 * We don't need to check for -EAGAIN because we're a free space
	 * cache inode
272 273 274
	 */
	ret = btrfs_truncate_inode_items(trans, root, inode,
					 0, BTRFS_EXTENT_DATA_KEY);
275 276
	if (ret)
		goto fail;
277

278
	ret = btrfs_update_inode(trans, root, inode);
279 280

fail:
281 282
	if (locked)
		mutex_unlock(&trans->transaction->cache_write_mutex);
283
	if (ret)
284
		btrfs_abort_transaction(trans, ret);
285

286
	return ret;
287 288
}

289 290 291 292 293 294 295 296 297 298
static int readahead_cache(struct inode *inode)
{
	struct file_ra_state *ra;
	unsigned long last_index;

	ra = kzalloc(sizeof(*ra), GFP_NOFS);
	if (!ra)
		return -ENOMEM;

	file_ra_state_init(ra, inode->i_mapping);
299
	last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
300 301 302 303 304 305 306 307

	page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);

	kfree(ra);

	return 0;
}

308
static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode,
309
		       int write)
310
{
311 312 313
	int num_pages;
	int check_crcs = 0;

314
	num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
315 316 317 318 319 320

	if (btrfs_ino(inode) != BTRFS_FREE_INO_OBJECTID)
		check_crcs = 1;

	/* Make sure we can fit our crcs into the first page */
	if (write && check_crcs &&
321
	    (num_pages * sizeof(u32)) >= PAGE_SIZE)
322 323
		return -ENOSPC;

324
	memset(io_ctl, 0, sizeof(struct btrfs_io_ctl));
325

326
	io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS);
327 328
	if (!io_ctl->pages)
		return -ENOMEM;
329 330

	io_ctl->num_pages = num_pages;
331
	io_ctl->fs_info = btrfs_sb(inode->i_sb);
332
	io_ctl->check_crcs = check_crcs;
333
	io_ctl->inode = inode;
334

335 336 337
	return 0;
}

338
static void io_ctl_free(struct btrfs_io_ctl *io_ctl)
339 340
{
	kfree(io_ctl->pages);
341
	io_ctl->pages = NULL;
342 343
}

344
static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl)
345 346 347 348 349 350 351
{
	if (io_ctl->cur) {
		io_ctl->cur = NULL;
		io_ctl->orig = NULL;
	}
}

352
static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear)
353
{
354
	ASSERT(io_ctl->index < io_ctl->num_pages);
355
	io_ctl->page = io_ctl->pages[io_ctl->index++];
356
	io_ctl->cur = page_address(io_ctl->page);
357
	io_ctl->orig = io_ctl->cur;
358
	io_ctl->size = PAGE_SIZE;
359
	if (clear)
360
		memset(io_ctl->cur, 0, PAGE_SIZE);
361 362
}

363
static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl)
364 365 366 367 368 369
{
	int i;

	io_ctl_unmap_page(io_ctl);

	for (i = 0; i < io_ctl->num_pages; i++) {
370 371 372
		if (io_ctl->pages[i]) {
			ClearPageChecked(io_ctl->pages[i]);
			unlock_page(io_ctl->pages[i]);
373
			put_page(io_ctl->pages[i]);
374
		}
375 376 377
	}
}

378
static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, struct inode *inode,
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
				int uptodate)
{
	struct page *page;
	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
	int i;

	for (i = 0; i < io_ctl->num_pages; i++) {
		page = find_or_create_page(inode->i_mapping, i, mask);
		if (!page) {
			io_ctl_drop_pages(io_ctl);
			return -ENOMEM;
		}
		io_ctl->pages[i] = page;
		if (uptodate && !PageUptodate(page)) {
			btrfs_readpage(NULL, page);
			lock_page(page);
			if (!PageUptodate(page)) {
396 397
				btrfs_err(BTRFS_I(inode)->root->fs_info,
					   "error reading free space cache");
398 399 400 401 402 403
				io_ctl_drop_pages(io_ctl);
				return -EIO;
			}
		}
	}

404 405 406 407 408
	for (i = 0; i < io_ctl->num_pages; i++) {
		clear_page_dirty_for_io(io_ctl->pages[i]);
		set_page_extent_mapped(io_ctl->pages[i]);
	}

409 410 411
	return 0;
}

412
static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
413
{
A
Al Viro 已提交
414
	__le64 *val;
415 416 417 418

	io_ctl_map_page(io_ctl, 1);

	/*
419 420
	 * Skip the csum areas.  If we don't check crcs then we just have a
	 * 64bit chunk at the front of the first page.
421
	 */
422 423 424 425 426 427 428
	if (io_ctl->check_crcs) {
		io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
		io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
	} else {
		io_ctl->cur += sizeof(u64);
		io_ctl->size -= sizeof(u64) * 2;
	}
429 430 431 432 433 434

	val = io_ctl->cur;
	*val = cpu_to_le64(generation);
	io_ctl->cur += sizeof(u64);
}

435
static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
436
{
A
Al Viro 已提交
437
	__le64 *gen;
438

439 440 441 442 443 444 445 446 447 448 449 450
	/*
	 * Skip the crc area.  If we don't check crcs then we just have a 64bit
	 * chunk at the front of the first page.
	 */
	if (io_ctl->check_crcs) {
		io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
		io_ctl->size -= sizeof(u64) +
			(sizeof(u32) * io_ctl->num_pages);
	} else {
		io_ctl->cur += sizeof(u64);
		io_ctl->size -= sizeof(u64) * 2;
	}
451 452 453

	gen = io_ctl->cur;
	if (le64_to_cpu(*gen) != generation) {
454
		btrfs_err_rl(io_ctl->fs_info,
455 456
			"space cache generation (%llu) does not match inode (%llu)",
				*gen, generation);
457 458 459 460
		io_ctl_unmap_page(io_ctl);
		return -EIO;
	}
	io_ctl->cur += sizeof(u64);
461 462 463
	return 0;
}

464
static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index)
465 466 467 468 469 470 471 472 473 474 475
{
	u32 *tmp;
	u32 crc = ~(u32)0;
	unsigned offset = 0;

	if (!io_ctl->check_crcs) {
		io_ctl_unmap_page(io_ctl);
		return;
	}

	if (index == 0)
476
		offset = sizeof(u32) * io_ctl->num_pages;
477

478
	crc = btrfs_csum_data(io_ctl->orig + offset, crc,
479
			      PAGE_SIZE - offset);
480
	btrfs_csum_final(crc, (u8 *)&crc);
481
	io_ctl_unmap_page(io_ctl);
482
	tmp = page_address(io_ctl->pages[0]);
483 484 485 486
	tmp += index;
	*tmp = crc;
}

487
static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index)
488 489 490 491 492 493 494 495 496 497 498 499 500
{
	u32 *tmp, val;
	u32 crc = ~(u32)0;
	unsigned offset = 0;

	if (!io_ctl->check_crcs) {
		io_ctl_map_page(io_ctl, 0);
		return 0;
	}

	if (index == 0)
		offset = sizeof(u32) * io_ctl->num_pages;

501
	tmp = page_address(io_ctl->pages[0]);
502 503 504 505
	tmp += index;
	val = *tmp;

	io_ctl_map_page(io_ctl, 0);
506
	crc = btrfs_csum_data(io_ctl->orig + offset, crc,
507
			      PAGE_SIZE - offset);
508
	btrfs_csum_final(crc, (u8 *)&crc);
509
	if (val != crc) {
510
		btrfs_err_rl(io_ctl->fs_info,
511
			"csum mismatch on free space cache");
512 513 514 515
		io_ctl_unmap_page(io_ctl);
		return -EIO;
	}

516 517 518
	return 0;
}

519
static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes,
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
			    void *bitmap)
{
	struct btrfs_free_space_entry *entry;

	if (!io_ctl->cur)
		return -ENOSPC;

	entry = io_ctl->cur;
	entry->offset = cpu_to_le64(offset);
	entry->bytes = cpu_to_le64(bytes);
	entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
		BTRFS_FREE_SPACE_EXTENT;
	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
	io_ctl->size -= sizeof(struct btrfs_free_space_entry);

	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
		return 0;

538
	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
539 540 541 542 543 544 545 546 547 548

	/* No more pages to map */
	if (io_ctl->index >= io_ctl->num_pages)
		return 0;

	/* map the next page */
	io_ctl_map_page(io_ctl, 1);
	return 0;
}

549
static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap)
550 551 552 553 554 555 556 557 558
{
	if (!io_ctl->cur)
		return -ENOSPC;

	/*
	 * If we aren't at the start of the current page, unmap this one and
	 * map the next one if there is any left.
	 */
	if (io_ctl->cur != io_ctl->orig) {
559
		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
560 561 562 563 564
		if (io_ctl->index >= io_ctl->num_pages)
			return -ENOSPC;
		io_ctl_map_page(io_ctl, 0);
	}

565
	memcpy(io_ctl->cur, bitmap, PAGE_SIZE);
566
	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
567 568 569 570 571
	if (io_ctl->index < io_ctl->num_pages)
		io_ctl_map_page(io_ctl, 0);
	return 0;
}

572
static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl)
573
{
574 575 576 577 578 579 580 581
	/*
	 * If we're not on the boundary we know we've modified the page and we
	 * need to crc the page.
	 */
	if (io_ctl->cur != io_ctl->orig)
		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
	else
		io_ctl_unmap_page(io_ctl);
582 583 584

	while (io_ctl->index < io_ctl->num_pages) {
		io_ctl_map_page(io_ctl, 1);
585
		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
586 587 588
	}
}

589
static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl,
590
			    struct btrfs_free_space *entry, u8 *type)
591 592
{
	struct btrfs_free_space_entry *e;
593 594 595 596 597 598 599
	int ret;

	if (!io_ctl->cur) {
		ret = io_ctl_check_crc(io_ctl, io_ctl->index);
		if (ret)
			return ret;
	}
600 601 602 603

	e = io_ctl->cur;
	entry->offset = le64_to_cpu(e->offset);
	entry->bytes = le64_to_cpu(e->bytes);
604
	*type = e->type;
605 606 607 608
	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
	io_ctl->size -= sizeof(struct btrfs_free_space_entry);

	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
609
		return 0;
610 611 612

	io_ctl_unmap_page(io_ctl);

613
	return 0;
614 615
}

616
static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl,
617
			      struct btrfs_free_space *entry)
618
{
619 620 621 622 623 624
	int ret;

	ret = io_ctl_check_crc(io_ctl, io_ctl->index);
	if (ret)
		return ret;

625
	memcpy(entry->bitmap, io_ctl->cur, PAGE_SIZE);
626
	io_ctl_unmap_page(io_ctl);
627 628

	return 0;
629 630
}

631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
/*
 * Since we attach pinned extents after the fact we can have contiguous sections
 * of free space that are split up in entries.  This poses a problem with the
 * tree logging stuff since it could have allocated across what appears to be 2
 * entries since we would have merged the entries when adding the pinned extents
 * back to the free space cache.  So run through the space cache that we just
 * loaded and merge contiguous entries.  This will make the log replay stuff not
 * blow up and it will make for nicer allocator behavior.
 */
static void merge_space_tree(struct btrfs_free_space_ctl *ctl)
{
	struct btrfs_free_space *e, *prev = NULL;
	struct rb_node *n;

again:
	spin_lock(&ctl->tree_lock);
	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
		e = rb_entry(n, struct btrfs_free_space, offset_index);
		if (!prev)
			goto next;
		if (e->bitmap || prev->bitmap)
			goto next;
		if (prev->offset + prev->bytes == e->offset) {
			unlink_free_space(ctl, prev);
			unlink_free_space(ctl, e);
			prev->bytes += e->bytes;
			kmem_cache_free(btrfs_free_space_cachep, e);
			link_free_space(ctl, prev);
			prev = NULL;
			spin_unlock(&ctl->tree_lock);
			goto again;
		}
next:
		prev = e;
	}
	spin_unlock(&ctl->tree_lock);
}

669 670 671
static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
				   struct btrfs_free_space_ctl *ctl,
				   struct btrfs_path *path, u64 offset)
672
{
673
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
674 675
	struct btrfs_free_space_header *header;
	struct extent_buffer *leaf;
676
	struct btrfs_io_ctl io_ctl;
677
	struct btrfs_key key;
678
	struct btrfs_free_space *e, *n;
679
	LIST_HEAD(bitmaps);
680 681 682
	u64 num_entries;
	u64 num_bitmaps;
	u64 generation;
683
	u8 type;
684
	int ret = 0;
685 686

	/* Nothing in the space cache, goodbye */
687
	if (!i_size_read(inode))
688
		return 0;
689 690

	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
691
	key.offset = offset;
692 693 694
	key.type = 0;

	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
695
	if (ret < 0)
696
		return 0;
697
	else if (ret > 0) {
698
		btrfs_release_path(path);
699
		return 0;
700 701
	}

702 703
	ret = -1;

704 705 706 707 708 709
	leaf = path->nodes[0];
	header = btrfs_item_ptr(leaf, path->slots[0],
				struct btrfs_free_space_header);
	num_entries = btrfs_free_space_entries(leaf, header);
	num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
	generation = btrfs_free_space_generation(leaf, header);
710
	btrfs_release_path(path);
711

712
	if (!BTRFS_I(inode)->generation) {
713
		btrfs_info(fs_info,
714 715 716 717 718
			   "The free space cache file (%llu) is invalid. skip it\n",
			   offset);
		return 0;
	}

719
	if (BTRFS_I(inode)->generation != generation) {
720 721 722
		btrfs_err(fs_info,
			  "free space inode generation (%llu) did not match free space cache generation (%llu)",
			  BTRFS_I(inode)->generation, generation);
723
		return 0;
724 725 726
	}

	if (!num_entries)
727
		return 0;
728

729
	ret = io_ctl_init(&io_ctl, inode, 0);
730 731 732
	if (ret)
		return ret;

733
	ret = readahead_cache(inode);
734
	if (ret)
735 736
		goto out;

737 738 739
	ret = io_ctl_prepare_pages(&io_ctl, inode, 1);
	if (ret)
		goto out;
740

741 742 743 744
	ret = io_ctl_check_crc(&io_ctl, 0);
	if (ret)
		goto free_cache;

745 746 747
	ret = io_ctl_check_generation(&io_ctl, generation);
	if (ret)
		goto free_cache;
748

749 750 751 752
	while (num_entries) {
		e = kmem_cache_zalloc(btrfs_free_space_cachep,
				      GFP_NOFS);
		if (!e)
753 754
			goto free_cache;

755 756 757 758 759 760
		ret = io_ctl_read_entry(&io_ctl, e, &type);
		if (ret) {
			kmem_cache_free(btrfs_free_space_cachep, e);
			goto free_cache;
		}

761 762 763
		if (!e->bytes) {
			kmem_cache_free(btrfs_free_space_cachep, e);
			goto free_cache;
764
		}
765 766 767 768 769 770

		if (type == BTRFS_FREE_SPACE_EXTENT) {
			spin_lock(&ctl->tree_lock);
			ret = link_free_space(ctl, e);
			spin_unlock(&ctl->tree_lock);
			if (ret) {
771
				btrfs_err(fs_info,
772
					"Duplicate entries in free space cache, dumping");
773
				kmem_cache_free(btrfs_free_space_cachep, e);
774 775
				goto free_cache;
			}
776
		} else {
777
			ASSERT(num_bitmaps);
778
			num_bitmaps--;
779
			e->bitmap = kzalloc(PAGE_SIZE, GFP_NOFS);
780 781 782
			if (!e->bitmap) {
				kmem_cache_free(
					btrfs_free_space_cachep, e);
783 784
				goto free_cache;
			}
785 786 787 788 789 790
			spin_lock(&ctl->tree_lock);
			ret = link_free_space(ctl, e);
			ctl->total_bitmaps++;
			ctl->op->recalc_thresholds(ctl);
			spin_unlock(&ctl->tree_lock);
			if (ret) {
791
				btrfs_err(fs_info,
792
					"Duplicate entries in free space cache, dumping");
793
				kmem_cache_free(btrfs_free_space_cachep, e);
794 795
				goto free_cache;
			}
796
			list_add_tail(&e->list, &bitmaps);
797 798
		}

799 800
		num_entries--;
	}
801

802 803
	io_ctl_unmap_page(&io_ctl);

804 805 806 807 808
	/*
	 * We add the bitmaps at the end of the entries in order that
	 * the bitmap entries are added to the cache.
	 */
	list_for_each_entry_safe(e, n, &bitmaps, list) {
809
		list_del_init(&e->list);
810 811 812
		ret = io_ctl_read_bitmap(&io_ctl, e);
		if (ret)
			goto free_cache;
813 814
	}

815
	io_ctl_drop_pages(&io_ctl);
816
	merge_space_tree(ctl);
817 818
	ret = 1;
out:
819
	io_ctl_free(&io_ctl);
820 821
	return ret;
free_cache:
822
	io_ctl_drop_pages(&io_ctl);
823
	__btrfs_remove_free_space_cache(ctl);
824 825 826
	goto out;
}

827 828
int load_free_space_cache(struct btrfs_fs_info *fs_info,
			  struct btrfs_block_group_cache *block_group)
J
Josef Bacik 已提交
829
{
830
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
831 832 833
	struct btrfs_root *root = fs_info->tree_root;
	struct inode *inode;
	struct btrfs_path *path;
834
	int ret = 0;
835 836 837 838 839 840 841
	bool matched;
	u64 used = btrfs_block_group_used(&block_group->item);

	/*
	 * If this block group has been marked to be cleared for one reason or
	 * another then we can't trust the on disk cache, so just return.
	 */
842
	spin_lock(&block_group->lock);
843 844 845 846
	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
		spin_unlock(&block_group->lock);
		return 0;
	}
847
	spin_unlock(&block_group->lock);
848 849 850 851

	path = btrfs_alloc_path();
	if (!path)
		return 0;
852 853
	path->search_commit_root = 1;
	path->skip_locking = 1;
854 855 856 857 858 859 860

	inode = lookup_free_space_inode(root, block_group, path);
	if (IS_ERR(inode)) {
		btrfs_free_path(path);
		return 0;
	}

861 862 863 864
	/* We may have converted the inode and made the cache invalid. */
	spin_lock(&block_group->lock);
	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
		spin_unlock(&block_group->lock);
865
		btrfs_free_path(path);
866 867 868 869
		goto out;
	}
	spin_unlock(&block_group->lock);

870 871 872 873 874 875 876 877 878 879 880 881 882
	ret = __load_free_space_cache(fs_info->tree_root, inode, ctl,
				      path, block_group->key.objectid);
	btrfs_free_path(path);
	if (ret <= 0)
		goto out;

	spin_lock(&ctl->tree_lock);
	matched = (ctl->free_space == (block_group->key.offset - used -
				       block_group->bytes_super));
	spin_unlock(&ctl->tree_lock);

	if (!matched) {
		__btrfs_remove_free_space_cache(ctl);
J
Jeff Mahoney 已提交
883 884 885
		btrfs_warn(fs_info,
			   "block group %llu has wrong amount of free space",
			   block_group->key.objectid);
886 887 888 889 890 891 892 893
		ret = -1;
	}
out:
	if (ret < 0) {
		/* This cache is bogus, make sure it gets cleared */
		spin_lock(&block_group->lock);
		block_group->disk_cache_state = BTRFS_DC_CLEAR;
		spin_unlock(&block_group->lock);
894
		ret = 0;
895

J
Jeff Mahoney 已提交
896 897 898
		btrfs_warn(fs_info,
			   "failed to load free space cache for block group %llu, rebuilding it now",
			   block_group->key.objectid);
899 900 901 902
	}

	iput(inode);
	return ret;
903 904
}

905
static noinline_for_stack
906
int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl,
907 908 909 910
			      struct btrfs_free_space_ctl *ctl,
			      struct btrfs_block_group_cache *block_group,
			      int *entries, int *bitmaps,
			      struct list_head *bitmap_list)
J
Josef Bacik 已提交
911
{
912
	int ret;
913
	struct btrfs_free_cluster *cluster = NULL;
914
	struct btrfs_free_cluster *cluster_locked = NULL;
915
	struct rb_node *node = rb_first(&ctl->free_space_offset);
916
	struct btrfs_trim_range *trim_entry;
917

918
	/* Get the cluster for this block_group if it exists */
919
	if (block_group && !list_empty(&block_group->cluster_list)) {
920 921 922
		cluster = list_entry(block_group->cluster_list.next,
				     struct btrfs_free_cluster,
				     block_group_list);
923
	}
924

925
	if (!node && cluster) {
926 927
		cluster_locked = cluster;
		spin_lock(&cluster_locked->lock);
928 929 930 931
		node = rb_first(&cluster->root);
		cluster = NULL;
	}

932 933 934
	/* Write out the extent entries */
	while (node) {
		struct btrfs_free_space *e;
J
Josef Bacik 已提交
935

936
		e = rb_entry(node, struct btrfs_free_space, offset_index);
937
		*entries += 1;
J
Josef Bacik 已提交
938

939
		ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
940 941
				       e->bitmap);
		if (ret)
942
			goto fail;
943

944
		if (e->bitmap) {
945 946
			list_add_tail(&e->list, bitmap_list);
			*bitmaps += 1;
947
		}
948 949 950
		node = rb_next(node);
		if (!node && cluster) {
			node = rb_first(&cluster->root);
951 952
			cluster_locked = cluster;
			spin_lock(&cluster_locked->lock);
953
			cluster = NULL;
954
		}
955
	}
956 957 958 959
	if (cluster_locked) {
		spin_unlock(&cluster_locked->lock);
		cluster_locked = NULL;
	}
960 961 962 963 964 965 966 967 968 969 970 971 972 973 974

	/*
	 * Make sure we don't miss any range that was removed from our rbtree
	 * because trimming is running. Otherwise after a umount+mount (or crash
	 * after committing the transaction) we would leak free space and get
	 * an inconsistent free space cache report from fsck.
	 */
	list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) {
		ret = io_ctl_add_entry(io_ctl, trim_entry->start,
				       trim_entry->bytes, NULL);
		if (ret)
			goto fail;
		*entries += 1;
	}

975 976
	return 0;
fail:
977 978
	if (cluster_locked)
		spin_unlock(&cluster_locked->lock);
979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
	return -ENOSPC;
}

static noinline_for_stack int
update_cache_item(struct btrfs_trans_handle *trans,
		  struct btrfs_root *root,
		  struct inode *inode,
		  struct btrfs_path *path, u64 offset,
		  int entries, int bitmaps)
{
	struct btrfs_key key;
	struct btrfs_free_space_header *header;
	struct extent_buffer *leaf;
	int ret;

	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
	key.offset = offset;
	key.type = 0;

	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
	if (ret < 0) {
		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
				 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL,
				 GFP_NOFS);
		goto fail;
	}
	leaf = path->nodes[0];
	if (ret > 0) {
		struct btrfs_key found_key;
		ASSERT(path->slots[0]);
		path->slots[0]--;
		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
		if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
		    found_key.offset != offset) {
			clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
					 inode->i_size - 1,
					 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0,
					 NULL, GFP_NOFS);
			btrfs_release_path(path);
			goto fail;
		}
	}

	BTRFS_I(inode)->generation = trans->transid;
	header = btrfs_item_ptr(leaf, path->slots[0],
				struct btrfs_free_space_header);
	btrfs_set_free_space_entries(leaf, header, entries);
	btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
	btrfs_set_free_space_generation(leaf, header, trans->transid);
	btrfs_mark_buffer_dirty(leaf);
	btrfs_release_path(path);

	return 0;

fail:
	return -1;
}

static noinline_for_stack int
1038
write_pinned_extent_entries(struct btrfs_fs_info *fs_info,
1039
			    struct btrfs_block_group_cache *block_group,
1040
			    struct btrfs_io_ctl *io_ctl,
1041
			    int *entries)
1042 1043 1044 1045
{
	u64 start, extent_start, extent_end, len;
	struct extent_io_tree *unpin = NULL;
	int ret;
1046

1047 1048 1049
	if (!block_group)
		return 0;

1050 1051 1052
	/*
	 * We want to add any pinned extents to our free space cache
	 * so we don't leak the space
1053
	 *
1054 1055 1056
	 * We shouldn't have switched the pinned extents yet so this is the
	 * right one
	 */
1057
	unpin = fs_info->pinned_extents;
1058

1059
	start = block_group->key.objectid;
1060

1061
	while (start < block_group->key.objectid + block_group->key.offset) {
1062 1063
		ret = find_first_extent_bit(unpin, start,
					    &extent_start, &extent_end,
1064
					    EXTENT_DIRTY, NULL);
1065 1066
		if (ret)
			return 0;
J
Josef Bacik 已提交
1067

1068
		/* This pinned extent is out of our range */
1069
		if (extent_start >= block_group->key.objectid +
1070
		    block_group->key.offset)
1071
			return 0;
1072

1073 1074 1075 1076
		extent_start = max(extent_start, start);
		extent_end = min(block_group->key.objectid +
				 block_group->key.offset, extent_end + 1);
		len = extent_end - extent_start;
J
Josef Bacik 已提交
1077

1078 1079
		*entries += 1;
		ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
1080
		if (ret)
1081
			return -ENOSPC;
J
Josef Bacik 已提交
1082

1083
		start = extent_end;
1084
	}
J
Josef Bacik 已提交
1085

1086 1087 1088 1089
	return 0;
}

static noinline_for_stack int
1090
write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list)
1091
{
1092
	struct btrfs_free_space *entry, *next;
1093 1094
	int ret;

J
Josef Bacik 已提交
1095
	/* Write out the bitmaps */
1096
	list_for_each_entry_safe(entry, next, bitmap_list, list) {
1097
		ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
1098
		if (ret)
1099
			return -ENOSPC;
J
Josef Bacik 已提交
1100
		list_del_init(&entry->list);
1101 1102
	}

1103 1104
	return 0;
}
J
Josef Bacik 已提交
1105

1106 1107 1108
static int flush_dirty_cache(struct inode *inode)
{
	int ret;
1109

1110
	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
1111
	if (ret)
1112 1113 1114
		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
				 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL,
				 GFP_NOFS);
J
Josef Bacik 已提交
1115

1116
	return ret;
1117 1118 1119
}

static void noinline_for_stack
1120
cleanup_bitmap_list(struct list_head *bitmap_list)
1121
{
1122
	struct btrfs_free_space *entry, *next;
1123

1124
	list_for_each_entry_safe(entry, next, bitmap_list, list)
1125
		list_del_init(&entry->list);
1126 1127 1128 1129 1130 1131 1132 1133
}

static void noinline_for_stack
cleanup_write_cache_enospc(struct inode *inode,
			   struct btrfs_io_ctl *io_ctl,
			   struct extent_state **cached_state,
			   struct list_head *bitmap_list)
{
1134 1135 1136 1137 1138
	io_ctl_drop_pages(io_ctl);
	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
			     i_size_read(inode) - 1, cached_state,
			     GFP_NOFS);
}
1139

1140 1141 1142 1143 1144
static int __btrfs_wait_cache_io(struct btrfs_root *root,
				 struct btrfs_trans_handle *trans,
				 struct btrfs_block_group_cache *block_group,
				 struct btrfs_io_ctl *io_ctl,
				 struct btrfs_path *path, u64 offset)
1145 1146 1147
{
	int ret;
	struct inode *inode = io_ctl->inode;
1148
	struct btrfs_fs_info *fs_info;
1149

1150 1151 1152
	if (!inode)
		return 0;

1153 1154
	fs_info = btrfs_sb(inode->i_sb);

1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
	/* Flush the dirty pages in the cache file. */
	ret = flush_dirty_cache(inode);
	if (ret)
		goto out;

	/* Update the cache item to tell everyone this cache file is valid. */
	ret = update_cache_item(trans, root, inode, path, offset,
				io_ctl->entries, io_ctl->bitmaps);
out:
	io_ctl_free(io_ctl);
	if (ret) {
		invalidate_inode_pages2(inode->i_mapping);
		BTRFS_I(inode)->generation = 0;
		if (block_group) {
#ifdef DEBUG
1170 1171 1172
			btrfs_err(fs_info,
				  "failed to write free space cache for block group %llu",
				  block_group->key.objectid);
1173 1174 1175 1176 1177 1178
#endif
		}
	}
	btrfs_update_inode(trans, root, inode);

	if (block_group) {
1179 1180 1181 1182
		/* the dirty list is protected by the dirty_bgs_lock */
		spin_lock(&trans->transaction->dirty_bgs_lock);

		/* the disk_cache_state is protected by the block group lock */
1183 1184 1185 1186
		spin_lock(&block_group->lock);

		/*
		 * only mark this as written if we didn't get put back on
1187 1188
		 * the dirty list while waiting for IO.   Otherwise our
		 * cache state won't be right, and we won't get written again
1189 1190 1191 1192 1193 1194 1195
		 */
		if (!ret && list_empty(&block_group->dirty_list))
			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
		else if (ret)
			block_group->disk_cache_state = BTRFS_DC_ERROR;

		spin_unlock(&block_group->lock);
1196
		spin_unlock(&trans->transaction->dirty_bgs_lock);
1197 1198 1199 1200 1201 1202 1203 1204
		io_ctl->inode = NULL;
		iput(inode);
	}

	return ret;

}

1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
static int btrfs_wait_cache_io_root(struct btrfs_root *root,
				    struct btrfs_trans_handle *trans,
				    struct btrfs_io_ctl *io_ctl,
				    struct btrfs_path *path)
{
	return __btrfs_wait_cache_io(root, trans, NULL, io_ctl, path, 0);
}

int btrfs_wait_cache_io(struct btrfs_trans_handle *trans,
			struct btrfs_block_group_cache *block_group,
			struct btrfs_path *path)
{
	return __btrfs_wait_cache_io(block_group->fs_info->tree_root, trans,
				     block_group, &block_group->io_ctl,
				     path, block_group->key.objectid);
}

1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
/**
 * __btrfs_write_out_cache - write out cached info to an inode
 * @root - the root the inode belongs to
 * @ctl - the free space cache we are going to write out
 * @block_group - the block_group for this cache if it belongs to a block_group
 * @trans - the trans handle
 * @path - the path to use
 * @offset - the offset for the key we'll insert
 *
 * This function writes out a free space cache struct to disk for quick recovery
G
Geliang Tang 已提交
1232
 * on mount.  This will return 0 if it was successful in writing the cache out,
1233
 * or an errno if it was not.
1234 1235 1236 1237
 */
static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
				   struct btrfs_free_space_ctl *ctl,
				   struct btrfs_block_group_cache *block_group,
1238
				   struct btrfs_io_ctl *io_ctl,
1239 1240 1241
				   struct btrfs_trans_handle *trans,
				   struct btrfs_path *path, u64 offset)
{
1242
	struct btrfs_fs_info *fs_info = root->fs_info;
1243
	struct extent_state *cached_state = NULL;
1244
	LIST_HEAD(bitmap_list);
1245 1246 1247
	int entries = 0;
	int bitmaps = 0;
	int ret;
1248
	int must_iput = 0;
1249 1250

	if (!i_size_read(inode))
1251
		return -EIO;
1252

1253
	WARN_ON(io_ctl->pages);
1254
	ret = io_ctl_init(io_ctl, inode, 1);
1255
	if (ret)
1256
		return ret;
1257

1258 1259 1260 1261 1262 1263 1264 1265 1266
	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
		down_write(&block_group->data_rwsem);
		spin_lock(&block_group->lock);
		if (block_group->delalloc_bytes) {
			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
			spin_unlock(&block_group->lock);
			up_write(&block_group->data_rwsem);
			BTRFS_I(inode)->generation = 0;
			ret = 0;
1267
			must_iput = 1;
1268 1269 1270 1271 1272
			goto out;
		}
		spin_unlock(&block_group->lock);
	}

1273
	/* Lock all pages first so we can lock the extent safely. */
1274 1275 1276
	ret = io_ctl_prepare_pages(io_ctl, inode, 0);
	if (ret)
		goto out;
1277 1278

	lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1279
			 &cached_state);
1280

1281
	io_ctl_set_generation(io_ctl, trans->transid);
1282

1283
	mutex_lock(&ctl->cache_writeout_mutex);
1284
	/* Write out the extent entries in the free space cache */
1285
	spin_lock(&ctl->tree_lock);
1286
	ret = write_cache_extent_entries(io_ctl, ctl,
1287 1288
					 block_group, &entries, &bitmaps,
					 &bitmap_list);
1289 1290
	if (ret)
		goto out_nospc_locked;
1291

1292 1293 1294 1295
	/*
	 * Some spaces that are freed in the current transaction are pinned,
	 * they will be added into free space cache after the transaction is
	 * committed, we shouldn't lose them.
1296 1297 1298
	 *
	 * If this changes while we are working we'll get added back to
	 * the dirty list and redo it.  No locking needed
1299
	 */
1300 1301
	ret = write_pinned_extent_entries(fs_info, block_group,
					  io_ctl, &entries);
1302 1303
	if (ret)
		goto out_nospc_locked;
1304

1305 1306 1307 1308 1309
	/*
	 * At last, we write out all the bitmaps and keep cache_writeout_mutex
	 * locked while doing it because a concurrent trim can be manipulating
	 * or freeing the bitmap.
	 */
1310
	ret = write_bitmap_entries(io_ctl, &bitmap_list);
1311
	spin_unlock(&ctl->tree_lock);
1312
	mutex_unlock(&ctl->cache_writeout_mutex);
1313 1314 1315 1316
	if (ret)
		goto out_nospc;

	/* Zero out the rest of the pages just to make sure */
1317
	io_ctl_zero_remaining_pages(io_ctl);
1318

1319
	/* Everything is written out, now we dirty the pages in the file. */
1320 1321
	ret = btrfs_dirty_pages(inode, io_ctl->pages, io_ctl->num_pages, 0,
				i_size_read(inode), &cached_state);
1322
	if (ret)
1323
		goto out_nospc;
1324

1325 1326
	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
		up_write(&block_group->data_rwsem);
1327 1328 1329 1330
	/*
	 * Release the pages and unlock the extent, we will flush
	 * them out later
	 */
1331
	io_ctl_drop_pages(io_ctl);
1332 1333 1334 1335

	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
			     i_size_read(inode) - 1, &cached_state, GFP_NOFS);

1336 1337 1338 1339 1340 1341 1342 1343 1344
	/*
	 * at this point the pages are under IO and we're happy,
	 * The caller is responsible for waiting on them and updating the
	 * the cache and the inode
	 */
	io_ctl->entries = entries;
	io_ctl->bitmaps = bitmaps;

	ret = btrfs_fdatawrite_range(inode, 0, (u64)-1);
1345
	if (ret)
1346 1347
		goto out;

1348 1349
	return 0;

1350
out:
1351 1352
	io_ctl->inode = NULL;
	io_ctl_free(io_ctl);
1353
	if (ret) {
1354
		invalidate_inode_pages2(inode->i_mapping);
J
Josef Bacik 已提交
1355 1356 1357
		BTRFS_I(inode)->generation = 0;
	}
	btrfs_update_inode(trans, root, inode);
1358 1359
	if (must_iput)
		iput(inode);
1360
	return ret;
1361

1362 1363 1364 1365 1366
out_nospc_locked:
	cleanup_bitmap_list(&bitmap_list);
	spin_unlock(&ctl->tree_lock);
	mutex_unlock(&ctl->cache_writeout_mutex);

1367
out_nospc:
1368
	cleanup_write_cache_enospc(inode, io_ctl, &cached_state, &bitmap_list);
1369 1370 1371 1372

	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
		up_write(&block_group->data_rwsem);

1373
	goto out;
1374 1375
}

1376
int btrfs_write_out_cache(struct btrfs_fs_info *fs_info,
1377 1378 1379 1380
			  struct btrfs_trans_handle *trans,
			  struct btrfs_block_group_cache *block_group,
			  struct btrfs_path *path)
{
1381
	struct btrfs_root *root = fs_info->tree_root;
1382 1383 1384 1385 1386 1387 1388
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
	struct inode *inode;
	int ret = 0;

	spin_lock(&block_group->lock);
	if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
		spin_unlock(&block_group->lock);
1389 1390
		return 0;
	}
1391 1392 1393 1394 1395 1396
	spin_unlock(&block_group->lock);

	inode = lookup_free_space_inode(root, block_group, path);
	if (IS_ERR(inode))
		return 0;

1397 1398
	ret = __btrfs_write_out_cache(root, inode, ctl, block_group,
				      &block_group->io_ctl, trans,
1399
				      path, block_group->key.objectid);
1400 1401
	if (ret) {
#ifdef DEBUG
1402 1403 1404
		btrfs_err(fs_info,
			  "failed to write free space cache for block group %llu",
			  block_group->key.objectid);
1405
#endif
1406 1407 1408 1409 1410 1411
		spin_lock(&block_group->lock);
		block_group->disk_cache_state = BTRFS_DC_ERROR;
		spin_unlock(&block_group->lock);

		block_group->io_ctl.inode = NULL;
		iput(inode);
1412 1413
	}

1414 1415 1416 1417 1418
	/*
	 * if ret == 0 the caller is expected to call btrfs_wait_cache_io
	 * to wait for IO and put the inode
	 */

J
Josef Bacik 已提交
1419 1420 1421
	return ret;
}

1422
static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1423
					  u64 offset)
J
Josef Bacik 已提交
1424
{
1425
	ASSERT(offset >= bitmap_start);
1426
	offset -= bitmap_start;
1427
	return (unsigned long)(div_u64(offset, unit));
1428
}
J
Josef Bacik 已提交
1429

1430
static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1431
{
1432
	return (unsigned long)(div_u64(bytes, unit));
1433
}
J
Josef Bacik 已提交
1434

1435
static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1436 1437 1438
				   u64 offset)
{
	u64 bitmap_start;
1439
	u64 bytes_per_bitmap;
J
Josef Bacik 已提交
1440

1441 1442
	bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
	bitmap_start = offset - ctl->start;
1443
	bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1444
	bitmap_start *= bytes_per_bitmap;
1445
	bitmap_start += ctl->start;
J
Josef Bacik 已提交
1446

1447
	return bitmap_start;
J
Josef Bacik 已提交
1448 1449
}

1450 1451
static int tree_insert_offset(struct rb_root *root, u64 offset,
			      struct rb_node *node, int bitmap)
J
Josef Bacik 已提交
1452 1453 1454 1455 1456 1457 1458
{
	struct rb_node **p = &root->rb_node;
	struct rb_node *parent = NULL;
	struct btrfs_free_space *info;

	while (*p) {
		parent = *p;
1459
		info = rb_entry(parent, struct btrfs_free_space, offset_index);
J
Josef Bacik 已提交
1460

1461
		if (offset < info->offset) {
J
Josef Bacik 已提交
1462
			p = &(*p)->rb_left;
1463
		} else if (offset > info->offset) {
J
Josef Bacik 已提交
1464
			p = &(*p)->rb_right;
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
		} else {
			/*
			 * we could have a bitmap entry and an extent entry
			 * share the same offset.  If this is the case, we want
			 * the extent entry to always be found first if we do a
			 * linear search through the tree, since we want to have
			 * the quickest allocation time, and allocating from an
			 * extent is faster than allocating from a bitmap.  So
			 * if we're inserting a bitmap and we find an entry at
			 * this offset, we want to go right, or after this entry
			 * logically.  If we are inserting an extent and we've
			 * found a bitmap, we want to go left, or before
			 * logically.
			 */
			if (bitmap) {
1480 1481 1482 1483
				if (info->bitmap) {
					WARN_ON_ONCE(1);
					return -EEXIST;
				}
1484 1485
				p = &(*p)->rb_right;
			} else {
1486 1487 1488 1489
				if (!info->bitmap) {
					WARN_ON_ONCE(1);
					return -EEXIST;
				}
1490 1491 1492
				p = &(*p)->rb_left;
			}
		}
J
Josef Bacik 已提交
1493 1494 1495 1496 1497 1498 1499 1500 1501
	}

	rb_link_node(node, parent, p);
	rb_insert_color(node, root);

	return 0;
}

/*
J
Josef Bacik 已提交
1502 1503
 * searches the tree for the given offset.
 *
1504 1505 1506
 * fuzzy - If this is set, then we are trying to make an allocation, and we just
 * want a section that has at least bytes size and comes at or after the given
 * offset.
J
Josef Bacik 已提交
1507
 */
1508
static struct btrfs_free_space *
1509
tree_search_offset(struct btrfs_free_space_ctl *ctl,
1510
		   u64 offset, int bitmap_only, int fuzzy)
J
Josef Bacik 已提交
1511
{
1512
	struct rb_node *n = ctl->free_space_offset.rb_node;
1513 1514 1515 1516 1517 1518 1519 1520
	struct btrfs_free_space *entry, *prev = NULL;

	/* find entry that is closest to the 'offset' */
	while (1) {
		if (!n) {
			entry = NULL;
			break;
		}
J
Josef Bacik 已提交
1521 1522

		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1523
		prev = entry;
J
Josef Bacik 已提交
1524

1525
		if (offset < entry->offset)
J
Josef Bacik 已提交
1526
			n = n->rb_left;
1527
		else if (offset > entry->offset)
J
Josef Bacik 已提交
1528
			n = n->rb_right;
1529
		else
J
Josef Bacik 已提交
1530 1531 1532
			break;
	}

1533 1534 1535 1536 1537
	if (bitmap_only) {
		if (!entry)
			return NULL;
		if (entry->bitmap)
			return entry;
J
Josef Bacik 已提交
1538

1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
		/*
		 * bitmap entry and extent entry may share same offset,
		 * in that case, bitmap entry comes after extent entry.
		 */
		n = rb_next(n);
		if (!n)
			return NULL;
		entry = rb_entry(n, struct btrfs_free_space, offset_index);
		if (entry->offset != offset)
			return NULL;
J
Josef Bacik 已提交
1549

1550 1551 1552 1553
		WARN_ON(!entry->bitmap);
		return entry;
	} else if (entry) {
		if (entry->bitmap) {
J
Josef Bacik 已提交
1554
			/*
1555 1556
			 * if previous extent entry covers the offset,
			 * we should return it instead of the bitmap entry
J
Josef Bacik 已提交
1557
			 */
1558 1559
			n = rb_prev(&entry->offset_index);
			if (n) {
1560 1561
				prev = rb_entry(n, struct btrfs_free_space,
						offset_index);
1562 1563 1564
				if (!prev->bitmap &&
				    prev->offset + prev->bytes > offset)
					entry = prev;
J
Josef Bacik 已提交
1565
			}
1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
		}
		return entry;
	}

	if (!prev)
		return NULL;

	/* find last entry before the 'offset' */
	entry = prev;
	if (entry->offset > offset) {
		n = rb_prev(&entry->offset_index);
		if (n) {
			entry = rb_entry(n, struct btrfs_free_space,
					offset_index);
1580
			ASSERT(entry->offset <= offset);
J
Josef Bacik 已提交
1581
		} else {
1582 1583 1584 1585
			if (fuzzy)
				return entry;
			else
				return NULL;
J
Josef Bacik 已提交
1586 1587 1588
		}
	}

1589
	if (entry->bitmap) {
1590 1591
		n = rb_prev(&entry->offset_index);
		if (n) {
1592 1593
			prev = rb_entry(n, struct btrfs_free_space,
					offset_index);
1594 1595 1596
			if (!prev->bitmap &&
			    prev->offset + prev->bytes > offset)
				return prev;
1597
		}
1598
		if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
			return entry;
	} else if (entry->offset + entry->bytes > offset)
		return entry;

	if (!fuzzy)
		return NULL;

	while (1) {
		if (entry->bitmap) {
			if (entry->offset + BITS_PER_BITMAP *
1609
			    ctl->unit > offset)
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
				break;
		} else {
			if (entry->offset + entry->bytes > offset)
				break;
		}

		n = rb_next(&entry->offset_index);
		if (!n)
			return NULL;
		entry = rb_entry(n, struct btrfs_free_space, offset_index);
	}
	return entry;
J
Josef Bacik 已提交
1622 1623
}

1624
static inline void
1625
__unlink_free_space(struct btrfs_free_space_ctl *ctl,
1626
		    struct btrfs_free_space *info)
J
Josef Bacik 已提交
1627
{
1628 1629
	rb_erase(&info->offset_index, &ctl->free_space_offset);
	ctl->free_extents--;
1630 1631
}

1632
static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1633 1634
			      struct btrfs_free_space *info)
{
1635 1636
	__unlink_free_space(ctl, info);
	ctl->free_space -= info->bytes;
J
Josef Bacik 已提交
1637 1638
}

1639
static int link_free_space(struct btrfs_free_space_ctl *ctl,
J
Josef Bacik 已提交
1640 1641 1642 1643
			   struct btrfs_free_space *info)
{
	int ret = 0;

1644
	ASSERT(info->bytes || info->bitmap);
1645
	ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
1646
				 &info->offset_index, (info->bitmap != NULL));
J
Josef Bacik 已提交
1647 1648 1649
	if (ret)
		return ret;

1650 1651
	ctl->free_space += info->bytes;
	ctl->free_extents++;
1652 1653 1654
	return ret;
}

1655
static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
1656
{
1657
	struct btrfs_block_group_cache *block_group = ctl->private;
1658 1659 1660
	u64 max_bytes;
	u64 bitmap_bytes;
	u64 extent_bytes;
1661
	u64 size = block_group->key.offset;
1662 1663
	u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
	u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
1664

1665
	max_bitmaps = max_t(u64, max_bitmaps, 1);
1666

1667
	ASSERT(ctl->total_bitmaps <= max_bitmaps);
1668 1669 1670 1671 1672 1673

	/*
	 * The goal is to keep the total amount of memory used per 1gb of space
	 * at or below 32k, so we need to adjust how much memory we allow to be
	 * used by extent based free space tracking
	 */
1674
	if (size < SZ_1G)
1675 1676
		max_bytes = MAX_CACHE_BYTES_PER_GIG;
	else
1677
		max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G);
1678

1679 1680 1681 1682 1683
	/*
	 * we want to account for 1 more bitmap than what we have so we can make
	 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
	 * we add more bitmaps.
	 */
1684
	bitmap_bytes = (ctl->total_bitmaps + 1) * ctl->unit;
1685

1686
	if (bitmap_bytes >= max_bytes) {
1687
		ctl->extents_thresh = 0;
1688 1689
		return;
	}
1690

1691
	/*
1692
	 * we want the extent entry threshold to always be at most 1/2 the max
1693 1694 1695
	 * bytes we can have, or whatever is less than that.
	 */
	extent_bytes = max_bytes - bitmap_bytes;
1696
	extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1);
1697

1698
	ctl->extents_thresh =
1699
		div_u64(extent_bytes, sizeof(struct btrfs_free_space));
1700 1701
}

1702 1703 1704
static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
				       struct btrfs_free_space *info,
				       u64 offset, u64 bytes)
1705
{
L
Li Zefan 已提交
1706
	unsigned long start, count;
1707

1708 1709
	start = offset_to_bit(info->offset, ctl->unit, offset);
	count = bytes_to_bits(bytes, ctl->unit);
1710
	ASSERT(start + count <= BITS_PER_BITMAP);
1711

L
Li Zefan 已提交
1712
	bitmap_clear(info->bitmap, start, count);
1713 1714

	info->bytes -= bytes;
1715 1716 1717 1718 1719 1720 1721
}

static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
			      struct btrfs_free_space *info, u64 offset,
			      u64 bytes)
{
	__bitmap_clear_bits(ctl, info, offset, bytes);
1722
	ctl->free_space -= bytes;
1723 1724
}

1725
static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
J
Josef Bacik 已提交
1726 1727
			    struct btrfs_free_space *info, u64 offset,
			    u64 bytes)
1728
{
L
Li Zefan 已提交
1729
	unsigned long start, count;
1730

1731 1732
	start = offset_to_bit(info->offset, ctl->unit, offset);
	count = bytes_to_bits(bytes, ctl->unit);
1733
	ASSERT(start + count <= BITS_PER_BITMAP);
1734

L
Li Zefan 已提交
1735
	bitmap_set(info->bitmap, start, count);
1736 1737

	info->bytes += bytes;
1738
	ctl->free_space += bytes;
1739 1740
}

1741 1742 1743 1744
/*
 * If we can not find suitable extent, we will use bytes to record
 * the size of the max extent.
 */
1745
static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1746
			 struct btrfs_free_space *bitmap_info, u64 *offset,
1747
			 u64 *bytes, bool for_alloc)
1748 1749
{
	unsigned long found_bits = 0;
1750
	unsigned long max_bits = 0;
1751 1752
	unsigned long bits, i;
	unsigned long next_zero;
1753
	unsigned long extent_bits;
1754

1755 1756 1757 1758
	/*
	 * Skip searching the bitmap if we don't have a contiguous section that
	 * is large enough for this allocation.
	 */
1759 1760
	if (for_alloc &&
	    bitmap_info->max_extent_size &&
1761 1762 1763 1764 1765
	    bitmap_info->max_extent_size < *bytes) {
		*bytes = bitmap_info->max_extent_size;
		return -1;
	}

1766
	i = offset_to_bit(bitmap_info->offset, ctl->unit,
1767
			  max_t(u64, *offset, bitmap_info->offset));
1768
	bits = bytes_to_bits(*bytes, ctl->unit);
1769

1770
	for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1771 1772 1773 1774
		if (for_alloc && bits == 1) {
			found_bits = 1;
			break;
		}
1775 1776
		next_zero = find_next_zero_bit(bitmap_info->bitmap,
					       BITS_PER_BITMAP, i);
1777 1778 1779
		extent_bits = next_zero - i;
		if (extent_bits >= bits) {
			found_bits = extent_bits;
1780
			break;
1781 1782
		} else if (extent_bits > max_bits) {
			max_bits = extent_bits;
1783 1784 1785 1786 1787
		}
		i = next_zero;
	}

	if (found_bits) {
1788 1789
		*offset = (u64)(i * ctl->unit) + bitmap_info->offset;
		*bytes = (u64)(found_bits) * ctl->unit;
1790 1791 1792
		return 0;
	}

1793
	*bytes = (u64)(max_bits) * ctl->unit;
1794
	bitmap_info->max_extent_size = *bytes;
1795 1796 1797
	return -1;
}

1798
/* Cache the size of the max extent in bytes */
1799
static struct btrfs_free_space *
D
David Woodhouse 已提交
1800
find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
1801
		unsigned long align, u64 *max_extent_size)
1802 1803 1804
{
	struct btrfs_free_space *entry;
	struct rb_node *node;
D
David Woodhouse 已提交
1805 1806
	u64 tmp;
	u64 align_off;
1807 1808
	int ret;

1809
	if (!ctl->free_space_offset.rb_node)
1810
		goto out;
1811

1812
	entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
1813
	if (!entry)
1814
		goto out;
1815 1816 1817

	for (node = &entry->offset_index; node; node = rb_next(node)) {
		entry = rb_entry(node, struct btrfs_free_space, offset_index);
1818 1819 1820
		if (entry->bytes < *bytes) {
			if (entry->bytes > *max_extent_size)
				*max_extent_size = entry->bytes;
1821
			continue;
1822
		}
1823

D
David Woodhouse 已提交
1824 1825 1826 1827
		/* make sure the space returned is big enough
		 * to match our requested alignment
		 */
		if (*bytes >= align) {
1828
			tmp = entry->offset - ctl->start + align - 1;
1829
			tmp = div64_u64(tmp, align);
D
David Woodhouse 已提交
1830 1831 1832 1833 1834 1835 1836
			tmp = tmp * align + ctl->start;
			align_off = tmp - entry->offset;
		} else {
			align_off = 0;
			tmp = entry->offset;
		}

1837 1838 1839
		if (entry->bytes < *bytes + align_off) {
			if (entry->bytes > *max_extent_size)
				*max_extent_size = entry->bytes;
D
David Woodhouse 已提交
1840
			continue;
1841
		}
D
David Woodhouse 已提交
1842

1843
		if (entry->bitmap) {
1844 1845
			u64 size = *bytes;

1846
			ret = search_bitmap(ctl, entry, &tmp, &size, true);
D
David Woodhouse 已提交
1847 1848
			if (!ret) {
				*offset = tmp;
1849
				*bytes = size;
1850
				return entry;
1851 1852
			} else if (size > *max_extent_size) {
				*max_extent_size = size;
D
David Woodhouse 已提交
1853
			}
1854 1855 1856
			continue;
		}

D
David Woodhouse 已提交
1857 1858
		*offset = tmp;
		*bytes = entry->bytes - align_off;
1859 1860
		return entry;
	}
1861
out:
1862 1863 1864
	return NULL;
}

1865
static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
1866 1867
			   struct btrfs_free_space *info, u64 offset)
{
1868
	info->offset = offset_to_bitmap(ctl, offset);
J
Josef Bacik 已提交
1869
	info->bytes = 0;
1870
	INIT_LIST_HEAD(&info->list);
1871 1872
	link_free_space(ctl, info);
	ctl->total_bitmaps++;
1873

1874
	ctl->op->recalc_thresholds(ctl);
1875 1876
}

1877
static void free_bitmap(struct btrfs_free_space_ctl *ctl,
1878 1879
			struct btrfs_free_space *bitmap_info)
{
1880
	unlink_free_space(ctl, bitmap_info);
1881
	kfree(bitmap_info->bitmap);
1882
	kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
1883 1884
	ctl->total_bitmaps--;
	ctl->op->recalc_thresholds(ctl);
1885 1886
}

1887
static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
1888 1889 1890 1891
			      struct btrfs_free_space *bitmap_info,
			      u64 *offset, u64 *bytes)
{
	u64 end;
1892 1893
	u64 search_start, search_bytes;
	int ret;
1894 1895

again:
1896
	end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
1897

1898
	/*
1899 1900 1901 1902
	 * We need to search for bits in this bitmap.  We could only cover some
	 * of the extent in this bitmap thanks to how we add space, so we need
	 * to search for as much as it as we can and clear that amount, and then
	 * go searching for the next bit.
1903 1904
	 */
	search_start = *offset;
1905
	search_bytes = ctl->unit;
1906
	search_bytes = min(search_bytes, end - search_start + 1);
1907 1908
	ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes,
			    false);
1909 1910
	if (ret < 0 || search_start != *offset)
		return -EINVAL;
1911

1912 1913 1914 1915 1916 1917 1918 1919 1920
	/* We may have found more bits than what we need */
	search_bytes = min(search_bytes, *bytes);

	/* Cannot clear past the end of the bitmap */
	search_bytes = min(search_bytes, end - search_start + 1);

	bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes);
	*offset += search_bytes;
	*bytes -= search_bytes;
1921 1922

	if (*bytes) {
1923
		struct rb_node *next = rb_next(&bitmap_info->offset_index);
1924
		if (!bitmap_info->bytes)
1925
			free_bitmap(ctl, bitmap_info);
1926

1927 1928 1929 1930 1931
		/*
		 * no entry after this bitmap, but we still have bytes to
		 * remove, so something has gone wrong.
		 */
		if (!next)
1932 1933
			return -EINVAL;

1934 1935 1936 1937 1938 1939 1940
		bitmap_info = rb_entry(next, struct btrfs_free_space,
				       offset_index);

		/*
		 * if the next entry isn't a bitmap we need to return to let the
		 * extent stuff do its work.
		 */
1941 1942 1943
		if (!bitmap_info->bitmap)
			return -EAGAIN;

1944 1945 1946 1947 1948 1949 1950
		/*
		 * Ok the next item is a bitmap, but it may not actually hold
		 * the information for the rest of this free space stuff, so
		 * look for it, and if we don't find it return so we can try
		 * everything over again.
		 */
		search_start = *offset;
1951
		search_bytes = ctl->unit;
1952
		ret = search_bitmap(ctl, bitmap_info, &search_start,
1953
				    &search_bytes, false);
1954 1955 1956
		if (ret < 0 || search_start != *offset)
			return -EAGAIN;

1957
		goto again;
1958
	} else if (!bitmap_info->bytes)
1959
		free_bitmap(ctl, bitmap_info);
1960 1961 1962 1963

	return 0;
}

J
Josef Bacik 已提交
1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976
static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
			       struct btrfs_free_space *info, u64 offset,
			       u64 bytes)
{
	u64 bytes_to_set = 0;
	u64 end;

	end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);

	bytes_to_set = min(end - offset, bytes);

	bitmap_set_bits(ctl, info, offset, bytes_to_set);

1977 1978 1979 1980 1981 1982
	/*
	 * We set some bytes, we have no idea what the max extent size is
	 * anymore.
	 */
	info->max_extent_size = 0;

J
Josef Bacik 已提交
1983 1984 1985 1986
	return bytes_to_set;

}

1987 1988
static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
		      struct btrfs_free_space *info)
1989
{
1990
	struct btrfs_block_group_cache *block_group = ctl->private;
1991
	struct btrfs_fs_info *fs_info = block_group->fs_info;
1992 1993 1994
	bool forced = false;

#ifdef CONFIG_BTRFS_DEBUG
1995
	if (btrfs_should_fragment_free_space(block_group))
1996 1997
		forced = true;
#endif
1998 1999 2000 2001 2002

	/*
	 * If we are below the extents threshold then we can add this as an
	 * extent, and don't have to deal with the bitmap
	 */
2003
	if (!forced && ctl->free_extents < ctl->extents_thresh) {
2004 2005 2006
		/*
		 * If this block group has some small extents we don't want to
		 * use up all of our free slots in the cache with them, we want
2007
		 * to reserve them to larger extents, however if we have plenty
2008 2009 2010
		 * of cache left then go ahead an dadd them, no sense in adding
		 * the overhead of a bitmap if we don't have to.
		 */
2011
		if (info->bytes <= fs_info->sectorsize * 4) {
2012 2013
			if (ctl->free_extents * 2 <= ctl->extents_thresh)
				return false;
2014
		} else {
2015
			return false;
2016 2017
		}
	}
2018 2019

	/*
2020 2021 2022 2023 2024 2025
	 * The original block groups from mkfs can be really small, like 8
	 * megabytes, so don't bother with a bitmap for those entries.  However
	 * some block groups can be smaller than what a bitmap would cover but
	 * are still large enough that they could overflow the 32k memory limit,
	 * so allow those block groups to still be allowed to have a bitmap
	 * entry.
2026
	 */
2027
	if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->key.offset)
2028 2029 2030 2031 2032
		return false;

	return true;
}

2033
static const struct btrfs_free_space_op free_space_op = {
J
Josef Bacik 已提交
2034 2035 2036 2037
	.recalc_thresholds	= recalculate_thresholds,
	.use_bitmap		= use_bitmap,
};

2038 2039 2040 2041
static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
			      struct btrfs_free_space *info)
{
	struct btrfs_free_space *bitmap_info;
J
Josef Bacik 已提交
2042
	struct btrfs_block_group_cache *block_group = NULL;
2043
	int added = 0;
J
Josef Bacik 已提交
2044
	u64 bytes, offset, bytes_added;
2045
	int ret;
2046 2047 2048 2049

	bytes = info->bytes;
	offset = info->offset;

2050 2051 2052
	if (!ctl->op->use_bitmap(ctl, info))
		return 0;

J
Josef Bacik 已提交
2053 2054
	if (ctl->op == &free_space_op)
		block_group = ctl->private;
2055
again:
J
Josef Bacik 已提交
2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072
	/*
	 * Since we link bitmaps right into the cluster we need to see if we
	 * have a cluster here, and if so and it has our bitmap we need to add
	 * the free space to that bitmap.
	 */
	if (block_group && !list_empty(&block_group->cluster_list)) {
		struct btrfs_free_cluster *cluster;
		struct rb_node *node;
		struct btrfs_free_space *entry;

		cluster = list_entry(block_group->cluster_list.next,
				     struct btrfs_free_cluster,
				     block_group_list);
		spin_lock(&cluster->lock);
		node = rb_first(&cluster->root);
		if (!node) {
			spin_unlock(&cluster->lock);
2073
			goto no_cluster_bitmap;
J
Josef Bacik 已提交
2074 2075 2076 2077 2078
		}

		entry = rb_entry(node, struct btrfs_free_space, offset_index);
		if (!entry->bitmap) {
			spin_unlock(&cluster->lock);
2079
			goto no_cluster_bitmap;
J
Josef Bacik 已提交
2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093
		}

		if (entry->offset == offset_to_bitmap(ctl, offset)) {
			bytes_added = add_bytes_to_bitmap(ctl, entry,
							  offset, bytes);
			bytes -= bytes_added;
			offset += bytes_added;
		}
		spin_unlock(&cluster->lock);
		if (!bytes) {
			ret = 1;
			goto out;
		}
	}
2094 2095

no_cluster_bitmap:
2096
	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2097 2098
					 1, 0);
	if (!bitmap_info) {
2099
		ASSERT(added == 0);
2100 2101 2102
		goto new_bitmap;
	}

J
Josef Bacik 已提交
2103 2104 2105 2106
	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
	bytes -= bytes_added;
	offset += bytes_added;
	added = 0;
2107 2108 2109 2110 2111 2112 2113 2114 2115

	if (!bytes) {
		ret = 1;
		goto out;
	} else
		goto again;

new_bitmap:
	if (info && info->bitmap) {
2116
		add_new_bitmap(ctl, info, offset);
2117 2118 2119 2120
		added = 1;
		info = NULL;
		goto again;
	} else {
2121
		spin_unlock(&ctl->tree_lock);
2122 2123 2124

		/* no pre-allocated info, allocate a new one */
		if (!info) {
2125 2126
			info = kmem_cache_zalloc(btrfs_free_space_cachep,
						 GFP_NOFS);
2127
			if (!info) {
2128
				spin_lock(&ctl->tree_lock);
2129 2130 2131 2132 2133 2134
				ret = -ENOMEM;
				goto out;
			}
		}

		/* allocate the bitmap */
2135
		info->bitmap = kzalloc(PAGE_SIZE, GFP_NOFS);
2136
		spin_lock(&ctl->tree_lock);
2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147
		if (!info->bitmap) {
			ret = -ENOMEM;
			goto out;
		}
		goto again;
	}

out:
	if (info) {
		if (info->bitmap)
			kfree(info->bitmap);
2148
		kmem_cache_free(btrfs_free_space_cachep, info);
2149
	}
J
Josef Bacik 已提交
2150 2151 2152 2153

	return ret;
}

2154
static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
2155
			  struct btrfs_free_space *info, bool update_stat)
J
Josef Bacik 已提交
2156
{
2157 2158 2159 2160 2161
	struct btrfs_free_space *left_info;
	struct btrfs_free_space *right_info;
	bool merged = false;
	u64 offset = info->offset;
	u64 bytes = info->bytes;
2162

J
Josef Bacik 已提交
2163 2164 2165 2166 2167
	/*
	 * first we want to see if there is free space adjacent to the range we
	 * are adding, if there is remove that struct and add a new one to
	 * cover the entire range
	 */
2168
	right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
2169 2170 2171 2172
	if (right_info && rb_prev(&right_info->offset_index))
		left_info = rb_entry(rb_prev(&right_info->offset_index),
				     struct btrfs_free_space, offset_index);
	else
2173
		left_info = tree_search_offset(ctl, offset - 1, 0, 0);
J
Josef Bacik 已提交
2174

2175
	if (right_info && !right_info->bitmap) {
2176
		if (update_stat)
2177
			unlink_free_space(ctl, right_info);
2178
		else
2179
			__unlink_free_space(ctl, right_info);
2180
		info->bytes += right_info->bytes;
2181
		kmem_cache_free(btrfs_free_space_cachep, right_info);
2182
		merged = true;
J
Josef Bacik 已提交
2183 2184
	}

2185 2186
	if (left_info && !left_info->bitmap &&
	    left_info->offset + left_info->bytes == offset) {
2187
		if (update_stat)
2188
			unlink_free_space(ctl, left_info);
2189
		else
2190
			__unlink_free_space(ctl, left_info);
2191 2192
		info->offset = left_info->offset;
		info->bytes += left_info->bytes;
2193
		kmem_cache_free(btrfs_free_space_cachep, left_info);
2194
		merged = true;
J
Josef Bacik 已提交
2195 2196
	}

2197 2198 2199
	return merged;
}

2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321
static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
				     struct btrfs_free_space *info,
				     bool update_stat)
{
	struct btrfs_free_space *bitmap;
	unsigned long i;
	unsigned long j;
	const u64 end = info->offset + info->bytes;
	const u64 bitmap_offset = offset_to_bitmap(ctl, end);
	u64 bytes;

	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
	if (!bitmap)
		return false;

	i = offset_to_bit(bitmap->offset, ctl->unit, end);
	j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
	if (j == i)
		return false;
	bytes = (j - i) * ctl->unit;
	info->bytes += bytes;

	if (update_stat)
		bitmap_clear_bits(ctl, bitmap, end, bytes);
	else
		__bitmap_clear_bits(ctl, bitmap, end, bytes);

	if (!bitmap->bytes)
		free_bitmap(ctl, bitmap);

	return true;
}

static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
				       struct btrfs_free_space *info,
				       bool update_stat)
{
	struct btrfs_free_space *bitmap;
	u64 bitmap_offset;
	unsigned long i;
	unsigned long j;
	unsigned long prev_j;
	u64 bytes;

	bitmap_offset = offset_to_bitmap(ctl, info->offset);
	/* If we're on a boundary, try the previous logical bitmap. */
	if (bitmap_offset == info->offset) {
		if (info->offset == 0)
			return false;
		bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
	}

	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
	if (!bitmap)
		return false;

	i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
	j = 0;
	prev_j = (unsigned long)-1;
	for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
		if (j > i)
			break;
		prev_j = j;
	}
	if (prev_j == i)
		return false;

	if (prev_j == (unsigned long)-1)
		bytes = (i + 1) * ctl->unit;
	else
		bytes = (i - prev_j) * ctl->unit;

	info->offset -= bytes;
	info->bytes += bytes;

	if (update_stat)
		bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
	else
		__bitmap_clear_bits(ctl, bitmap, info->offset, bytes);

	if (!bitmap->bytes)
		free_bitmap(ctl, bitmap);

	return true;
}

/*
 * We prefer always to allocate from extent entries, both for clustered and
 * non-clustered allocation requests. So when attempting to add a new extent
 * entry, try to see if there's adjacent free space in bitmap entries, and if
 * there is, migrate that space from the bitmaps to the extent.
 * Like this we get better chances of satisfying space allocation requests
 * because we attempt to satisfy them based on a single cache entry, and never
 * on 2 or more entries - even if the entries represent a contiguous free space
 * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
 * ends).
 */
static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
			      struct btrfs_free_space *info,
			      bool update_stat)
{
	/*
	 * Only work with disconnected entries, as we can change their offset,
	 * and must be extent entries.
	 */
	ASSERT(!info->bitmap);
	ASSERT(RB_EMPTY_NODE(&info->offset_index));

	if (ctl->total_bitmaps > 0) {
		bool stole_end;
		bool stole_front = false;

		stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
		if (ctl->total_bitmaps > 0)
			stole_front = steal_from_bitmap_to_front(ctl, info,
								 update_stat);

		if (stole_end || stole_front)
			try_merge_free_space(ctl, info, update_stat);
	}
}

2322 2323
int __btrfs_add_free_space(struct btrfs_fs_info *fs_info,
			   struct btrfs_free_space_ctl *ctl,
2324
			   u64 offset, u64 bytes)
2325 2326 2327 2328
{
	struct btrfs_free_space *info;
	int ret = 0;

2329
	info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
2330 2331 2332 2333 2334
	if (!info)
		return -ENOMEM;

	info->offset = offset;
	info->bytes = bytes;
2335
	RB_CLEAR_NODE(&info->offset_index);
2336

2337
	spin_lock(&ctl->tree_lock);
2338

2339
	if (try_merge_free_space(ctl, info, true))
2340 2341 2342 2343 2344 2345 2346
		goto link;

	/*
	 * There was no extent directly to the left or right of this new
	 * extent then we know we're going to have to allocate a new extent, so
	 * before we do that see if we need to drop this into a bitmap
	 */
2347
	ret = insert_into_bitmap(ctl, info);
2348 2349 2350 2351 2352 2353 2354
	if (ret < 0) {
		goto out;
	} else if (ret) {
		ret = 0;
		goto out;
	}
link:
2355 2356 2357 2358 2359 2360 2361 2362
	/*
	 * Only steal free space from adjacent bitmaps if we're sure we're not
	 * going to add the new free space to existing bitmap entries - because
	 * that would mean unnecessary work that would be reverted. Therefore
	 * attempt to steal space from bitmaps if we're adding an extent entry.
	 */
	steal_from_bitmap(ctl, info, true);

2363
	ret = link_free_space(ctl, info);
J
Josef Bacik 已提交
2364
	if (ret)
2365
		kmem_cache_free(btrfs_free_space_cachep, info);
2366
out:
2367
	spin_unlock(&ctl->tree_lock);
2368

J
Josef Bacik 已提交
2369
	if (ret) {
2370
		btrfs_crit(fs_info, "unable to add free space :%d", ret);
2371
		ASSERT(ret != -EEXIST);
J
Josef Bacik 已提交
2372 2373 2374 2375 2376
	}

	return ret;
}

2377 2378
int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
			    u64 offset, u64 bytes)
J
Josef Bacik 已提交
2379
{
2380
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
J
Josef Bacik 已提交
2381
	struct btrfs_free_space *info;
2382 2383
	int ret;
	bool re_search = false;
J
Josef Bacik 已提交
2384

2385
	spin_lock(&ctl->tree_lock);
2386

2387
again:
2388
	ret = 0;
2389 2390 2391
	if (!bytes)
		goto out_lock;

2392
	info = tree_search_offset(ctl, offset, 0, 0);
2393
	if (!info) {
2394 2395 2396 2397
		/*
		 * oops didn't find an extent that matched the space we wanted
		 * to remove, look for a bitmap instead
		 */
2398
		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2399 2400
					  1, 0);
		if (!info) {
2401 2402 2403 2404
			/*
			 * If we found a partial bit of our free space in a
			 * bitmap but then couldn't find the other part this may
			 * be a problem, so WARN about it.
2405
			 */
2406
			WARN_ON(re_search);
2407 2408
			goto out_lock;
		}
2409 2410
	}

2411
	re_search = false;
2412
	if (!info->bitmap) {
2413
		unlink_free_space(ctl, info);
2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424
		if (offset == info->offset) {
			u64 to_free = min(bytes, info->bytes);

			info->bytes -= to_free;
			info->offset += to_free;
			if (info->bytes) {
				ret = link_free_space(ctl, info);
				WARN_ON(ret);
			} else {
				kmem_cache_free(btrfs_free_space_cachep, info);
			}
J
Josef Bacik 已提交
2425

2426 2427 2428 2429 2430
			offset += to_free;
			bytes -= to_free;
			goto again;
		} else {
			u64 old_end = info->bytes + info->offset;
2431

2432
			info->bytes = offset - info->offset;
2433
			ret = link_free_space(ctl, info);
2434 2435 2436 2437
			WARN_ON(ret);
			if (ret)
				goto out_lock;

2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453
			/* Not enough bytes in this entry to satisfy us */
			if (old_end < offset + bytes) {
				bytes -= old_end - offset;
				offset = old_end;
				goto again;
			} else if (old_end == offset + bytes) {
				/* all done */
				goto out_lock;
			}
			spin_unlock(&ctl->tree_lock);

			ret = btrfs_add_free_space(block_group, offset + bytes,
						   old_end - (offset + bytes));
			WARN_ON(ret);
			goto out;
		}
J
Josef Bacik 已提交
2454
	}
2455

2456
	ret = remove_from_bitmap(ctl, info, &offset, &bytes);
2457 2458
	if (ret == -EAGAIN) {
		re_search = true;
2459
		goto again;
2460
	}
2461
out_lock:
2462
	spin_unlock(&ctl->tree_lock);
J
Josef Bacik 已提交
2463
out:
2464 2465 2466
	return ret;
}

J
Josef Bacik 已提交
2467 2468 2469
void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
			   u64 bytes)
{
2470
	struct btrfs_fs_info *fs_info = block_group->fs_info;
2471
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
J
Josef Bacik 已提交
2472 2473 2474 2475
	struct btrfs_free_space *info;
	struct rb_node *n;
	int count = 0;

2476
	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
J
Josef Bacik 已提交
2477
		info = rb_entry(n, struct btrfs_free_space, offset_index);
L
Liu Bo 已提交
2478
		if (info->bytes >= bytes && !block_group->ro)
J
Josef Bacik 已提交
2479
			count++;
2480
		btrfs_crit(fs_info, "entry offset %llu, bytes %llu, bitmap %s",
2481
			   info->offset, info->bytes,
2482
		       (info->bitmap) ? "yes" : "no");
J
Josef Bacik 已提交
2483
	}
2484
	btrfs_info(fs_info, "block group has cluster?: %s",
2485
	       list_empty(&block_group->cluster_list) ? "no" : "yes");
2486
	btrfs_info(fs_info,
2487
		   "%d blocks of free space at or bigger than bytes is", count);
J
Josef Bacik 已提交
2488 2489
}

2490
void btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group)
J
Josef Bacik 已提交
2491
{
2492
	struct btrfs_fs_info *fs_info = block_group->fs_info;
2493
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
J
Josef Bacik 已提交
2494

2495
	spin_lock_init(&ctl->tree_lock);
2496
	ctl->unit = fs_info->sectorsize;
2497 2498 2499
	ctl->start = block_group->key.objectid;
	ctl->private = block_group;
	ctl->op = &free_space_op;
2500 2501
	INIT_LIST_HEAD(&ctl->trimming_ranges);
	mutex_init(&ctl->cache_writeout_mutex);
J
Josef Bacik 已提交
2502

2503 2504 2505 2506 2507
	/*
	 * we only want to have 32k of ram per block group for keeping
	 * track of free space, and if we pass 1/2 of that we want to
	 * start converting things over to using bitmaps
	 */
2508
	ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space);
J
Josef Bacik 已提交
2509 2510
}

2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521
/*
 * for a given cluster, put all of its extents back into the free
 * space cache.  If the block group passed doesn't match the block group
 * pointed to by the cluster, someone else raced in and freed the
 * cluster already.  In that case, we just return without changing anything
 */
static int
__btrfs_return_cluster_to_free_space(
			     struct btrfs_block_group_cache *block_group,
			     struct btrfs_free_cluster *cluster)
{
2522
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2523 2524 2525 2526 2527 2528 2529
	struct btrfs_free_space *entry;
	struct rb_node *node;

	spin_lock(&cluster->lock);
	if (cluster->block_group != block_group)
		goto out;

2530
	cluster->block_group = NULL;
2531
	cluster->window_start = 0;
2532 2533
	list_del_init(&cluster->block_group_list);

2534
	node = rb_first(&cluster->root);
2535
	while (node) {
2536 2537
		bool bitmap;

2538 2539 2540
		entry = rb_entry(node, struct btrfs_free_space, offset_index);
		node = rb_next(&entry->offset_index);
		rb_erase(&entry->offset_index, &cluster->root);
2541
		RB_CLEAR_NODE(&entry->offset_index);
2542 2543

		bitmap = (entry->bitmap != NULL);
2544
		if (!bitmap) {
2545
			try_merge_free_space(ctl, entry, false);
2546 2547
			steal_from_bitmap(ctl, entry, false);
		}
2548
		tree_insert_offset(&ctl->free_space_offset,
2549
				   entry->offset, &entry->offset_index, bitmap);
2550
	}
2551
	cluster->root = RB_ROOT;
2552

2553 2554
out:
	spin_unlock(&cluster->lock);
2555
	btrfs_put_block_group(block_group);
2556 2557 2558
	return 0;
}

2559 2560
static void __btrfs_remove_free_space_cache_locked(
				struct btrfs_free_space_ctl *ctl)
J
Josef Bacik 已提交
2561 2562 2563
{
	struct btrfs_free_space *info;
	struct rb_node *node;
2564 2565 2566

	while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
		info = rb_entry(node, struct btrfs_free_space, offset_index);
2567 2568 2569 2570 2571 2572
		if (!info->bitmap) {
			unlink_free_space(ctl, info);
			kmem_cache_free(btrfs_free_space_cachep, info);
		} else {
			free_bitmap(ctl, info);
		}
2573 2574

		cond_resched_lock(&ctl->tree_lock);
2575
	}
2576 2577 2578 2579 2580 2581
}

void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
{
	spin_lock(&ctl->tree_lock);
	__btrfs_remove_free_space_cache_locked(ctl);
2582 2583 2584 2585 2586 2587
	spin_unlock(&ctl->tree_lock);
}

void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
{
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2588
	struct btrfs_free_cluster *cluster;
2589
	struct list_head *head;
J
Josef Bacik 已提交
2590

2591
	spin_lock(&ctl->tree_lock);
2592 2593 2594 2595
	while ((head = block_group->cluster_list.next) !=
	       &block_group->cluster_list) {
		cluster = list_entry(head, struct btrfs_free_cluster,
				     block_group_list);
2596 2597 2598

		WARN_ON(cluster->block_group != block_group);
		__btrfs_return_cluster_to_free_space(block_group, cluster);
2599 2600

		cond_resched_lock(&ctl->tree_lock);
2601
	}
2602
	__btrfs_remove_free_space_cache_locked(ctl);
2603
	spin_unlock(&ctl->tree_lock);
2604

J
Josef Bacik 已提交
2605 2606
}

2607
u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
2608 2609
			       u64 offset, u64 bytes, u64 empty_size,
			       u64 *max_extent_size)
J
Josef Bacik 已提交
2610
{
2611
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2612
	struct btrfs_free_space *entry = NULL;
2613
	u64 bytes_search = bytes + empty_size;
2614
	u64 ret = 0;
D
David Woodhouse 已提交
2615 2616
	u64 align_gap = 0;
	u64 align_gap_len = 0;
J
Josef Bacik 已提交
2617

2618
	spin_lock(&ctl->tree_lock);
D
David Woodhouse 已提交
2619
	entry = find_free_space(ctl, &offset, &bytes_search,
2620
				block_group->full_stripe_len, max_extent_size);
2621
	if (!entry)
2622 2623 2624 2625
		goto out;

	ret = offset;
	if (entry->bitmap) {
2626
		bitmap_clear_bits(ctl, entry, offset, bytes);
2627
		if (!entry->bytes)
2628
			free_bitmap(ctl, entry);
2629
	} else {
2630
		unlink_free_space(ctl, entry);
D
David Woodhouse 已提交
2631 2632 2633 2634 2635 2636 2637
		align_gap_len = offset - entry->offset;
		align_gap = entry->offset;

		entry->offset = offset + bytes;
		WARN_ON(entry->bytes < bytes + align_gap_len);

		entry->bytes -= bytes + align_gap_len;
2638
		if (!entry->bytes)
2639
			kmem_cache_free(btrfs_free_space_cachep, entry);
2640
		else
2641
			link_free_space(ctl, entry);
2642
	}
2643
out:
2644
	spin_unlock(&ctl->tree_lock);
J
Josef Bacik 已提交
2645

D
David Woodhouse 已提交
2646
	if (align_gap_len)
2647 2648
		__btrfs_add_free_space(block_group->fs_info, ctl,
				       align_gap, align_gap_len);
J
Josef Bacik 已提交
2649 2650
	return ret;
}
2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663

/*
 * given a cluster, put all of its extents back into the free space
 * cache.  If a block group is passed, this function will only free
 * a cluster that belongs to the passed block group.
 *
 * Otherwise, it'll get a reference on the block group pointed to by the
 * cluster and remove the cluster from it.
 */
int btrfs_return_cluster_to_free_space(
			       struct btrfs_block_group_cache *block_group,
			       struct btrfs_free_cluster *cluster)
{
2664
	struct btrfs_free_space_ctl *ctl;
2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682
	int ret;

	/* first, get a safe pointer to the block group */
	spin_lock(&cluster->lock);
	if (!block_group) {
		block_group = cluster->block_group;
		if (!block_group) {
			spin_unlock(&cluster->lock);
			return 0;
		}
	} else if (cluster->block_group != block_group) {
		/* someone else has already freed it don't redo their work */
		spin_unlock(&cluster->lock);
		return 0;
	}
	atomic_inc(&block_group->count);
	spin_unlock(&cluster->lock);

2683 2684
	ctl = block_group->free_space_ctl;

2685
	/* now return any extents the cluster had on it */
2686
	spin_lock(&ctl->tree_lock);
2687
	ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
2688
	spin_unlock(&ctl->tree_lock);
2689 2690 2691 2692 2693 2694

	/* finally drop our ref */
	btrfs_put_block_group(block_group);
	return ret;
}

2695 2696
static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group,
				   struct btrfs_free_cluster *cluster,
2697
				   struct btrfs_free_space *entry,
2698 2699
				   u64 bytes, u64 min_start,
				   u64 *max_extent_size)
2700
{
2701
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2702 2703 2704 2705 2706 2707 2708 2709
	int err;
	u64 search_start = cluster->window_start;
	u64 search_bytes = bytes;
	u64 ret = 0;

	search_start = min_start;
	search_bytes = bytes;

2710
	err = search_bitmap(ctl, entry, &search_start, &search_bytes, true);
2711 2712 2713
	if (err) {
		if (search_bytes > *max_extent_size)
			*max_extent_size = search_bytes;
2714
		return 0;
2715
	}
2716 2717

	ret = search_start;
2718
	__bitmap_clear_bits(ctl, entry, ret, bytes);
2719 2720 2721 2722

	return ret;
}

2723 2724 2725 2726 2727 2728 2729
/*
 * given a cluster, try to allocate 'bytes' from it, returns 0
 * if it couldn't find anything suitably large, or a logical disk offset
 * if things worked out
 */
u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
			     struct btrfs_free_cluster *cluster, u64 bytes,
2730
			     u64 min_start, u64 *max_extent_size)
2731
{
2732
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748
	struct btrfs_free_space *entry = NULL;
	struct rb_node *node;
	u64 ret = 0;

	spin_lock(&cluster->lock);
	if (bytes > cluster->max_size)
		goto out;

	if (cluster->block_group != block_group)
		goto out;

	node = rb_first(&cluster->root);
	if (!node)
		goto out;

	entry = rb_entry(node, struct btrfs_free_space, offset_index);
2749
	while (1) {
2750 2751 2752
		if (entry->bytes < bytes && entry->bytes > *max_extent_size)
			*max_extent_size = entry->bytes;

2753 2754
		if (entry->bytes < bytes ||
		    (!entry->bitmap && entry->offset < min_start)) {
2755 2756 2757 2758 2759 2760 2761 2762
			node = rb_next(&entry->offset_index);
			if (!node)
				break;
			entry = rb_entry(node, struct btrfs_free_space,
					 offset_index);
			continue;
		}

2763 2764 2765
		if (entry->bitmap) {
			ret = btrfs_alloc_from_bitmap(block_group,
						      cluster, entry, bytes,
2766 2767
						      cluster->window_start,
						      max_extent_size);
2768 2769 2770 2771 2772 2773 2774 2775
			if (ret == 0) {
				node = rb_next(&entry->offset_index);
				if (!node)
					break;
				entry = rb_entry(node, struct btrfs_free_space,
						 offset_index);
				continue;
			}
2776
			cluster->window_start += bytes;
2777 2778 2779 2780 2781 2782
		} else {
			ret = entry->offset;

			entry->offset += bytes;
			entry->bytes -= bytes;
		}
2783

2784
		if (entry->bytes == 0)
2785 2786 2787 2788 2789
			rb_erase(&entry->offset_index, &cluster->root);
		break;
	}
out:
	spin_unlock(&cluster->lock);
2790

2791 2792 2793
	if (!ret)
		return 0;

2794
	spin_lock(&ctl->tree_lock);
2795

2796
	ctl->free_space -= bytes;
2797
	if (entry->bytes == 0) {
2798
		ctl->free_extents--;
2799 2800
		if (entry->bitmap) {
			kfree(entry->bitmap);
2801 2802
			ctl->total_bitmaps--;
			ctl->op->recalc_thresholds(ctl);
2803
		}
2804
		kmem_cache_free(btrfs_free_space_cachep, entry);
2805 2806
	}

2807
	spin_unlock(&ctl->tree_lock);
2808

2809 2810 2811
	return ret;
}

2812 2813 2814
static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group,
				struct btrfs_free_space *entry,
				struct btrfs_free_cluster *cluster,
2815 2816
				u64 offset, u64 bytes,
				u64 cont1_bytes, u64 min_bytes)
2817
{
2818
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2819 2820
	unsigned long next_zero;
	unsigned long i;
2821 2822
	unsigned long want_bits;
	unsigned long min_bits;
2823
	unsigned long found_bits;
2824
	unsigned long max_bits = 0;
2825 2826
	unsigned long start = 0;
	unsigned long total_found = 0;
2827
	int ret;
2828

2829
	i = offset_to_bit(entry->offset, ctl->unit,
2830
			  max_t(u64, offset, entry->offset));
2831 2832
	want_bits = bytes_to_bits(bytes, ctl->unit);
	min_bits = bytes_to_bits(min_bytes, ctl->unit);
2833

2834 2835 2836 2837 2838 2839 2840
	/*
	 * Don't bother looking for a cluster in this bitmap if it's heavily
	 * fragmented.
	 */
	if (entry->max_extent_size &&
	    entry->max_extent_size < cont1_bytes)
		return -ENOSPC;
2841 2842
again:
	found_bits = 0;
2843
	for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
2844 2845
		next_zero = find_next_zero_bit(entry->bitmap,
					       BITS_PER_BITMAP, i);
2846
		if (next_zero - i >= min_bits) {
2847
			found_bits = next_zero - i;
2848 2849
			if (found_bits > max_bits)
				max_bits = found_bits;
2850 2851
			break;
		}
2852 2853
		if (next_zero - i > max_bits)
			max_bits = next_zero - i;
2854 2855 2856
		i = next_zero;
	}

2857 2858
	if (!found_bits) {
		entry->max_extent_size = (u64)max_bits * ctl->unit;
2859
		return -ENOSPC;
2860
	}
2861

2862
	if (!total_found) {
2863
		start = i;
2864
		cluster->max_size = 0;
2865 2866 2867 2868
	}

	total_found += found_bits;

2869 2870
	if (cluster->max_size < found_bits * ctl->unit)
		cluster->max_size = found_bits * ctl->unit;
2871

2872 2873
	if (total_found < want_bits || cluster->max_size < cont1_bytes) {
		i = next_zero + 1;
2874 2875 2876
		goto again;
	}

2877
	cluster->window_start = start * ctl->unit + entry->offset;
2878
	rb_erase(&entry->offset_index, &ctl->free_space_offset);
2879 2880
	ret = tree_insert_offset(&cluster->root, entry->offset,
				 &entry->offset_index, 1);
2881
	ASSERT(!ret); /* -EEXIST; Logic error */
2882

J
Josef Bacik 已提交
2883
	trace_btrfs_setup_cluster(block_group, cluster,
2884
				  total_found * ctl->unit, 1);
2885 2886 2887
	return 0;
}

2888 2889
/*
 * This searches the block group for just extents to fill the cluster with.
2890 2891
 * Try to find a cluster with at least bytes total bytes, at least one
 * extent of cont1_bytes, and other clusters of at least min_bytes.
2892
 */
2893 2894 2895 2896
static noinline int
setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group,
			struct btrfs_free_cluster *cluster,
			struct list_head *bitmaps, u64 offset, u64 bytes,
2897
			u64 cont1_bytes, u64 min_bytes)
2898
{
2899
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2900 2901 2902 2903 2904 2905
	struct btrfs_free_space *first = NULL;
	struct btrfs_free_space *entry = NULL;
	struct btrfs_free_space *last;
	struct rb_node *node;
	u64 window_free;
	u64 max_extent;
J
Josef Bacik 已提交
2906
	u64 total_size = 0;
2907

2908
	entry = tree_search_offset(ctl, offset, 0, 1);
2909 2910 2911 2912 2913 2914 2915
	if (!entry)
		return -ENOSPC;

	/*
	 * We don't want bitmaps, so just move along until we find a normal
	 * extent entry.
	 */
2916 2917
	while (entry->bitmap || entry->bytes < min_bytes) {
		if (entry->bitmap && list_empty(&entry->list))
2918
			list_add_tail(&entry->list, bitmaps);
2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929
		node = rb_next(&entry->offset_index);
		if (!node)
			return -ENOSPC;
		entry = rb_entry(node, struct btrfs_free_space, offset_index);
	}

	window_free = entry->bytes;
	max_extent = entry->bytes;
	first = entry;
	last = entry;

2930 2931
	for (node = rb_next(&entry->offset_index); node;
	     node = rb_next(&entry->offset_index)) {
2932 2933
		entry = rb_entry(node, struct btrfs_free_space, offset_index);

2934 2935 2936
		if (entry->bitmap) {
			if (list_empty(&entry->list))
				list_add_tail(&entry->list, bitmaps);
2937
			continue;
2938 2939
		}

2940 2941 2942 2943 2944 2945
		if (entry->bytes < min_bytes)
			continue;

		last = entry;
		window_free += entry->bytes;
		if (entry->bytes > max_extent)
2946 2947 2948
			max_extent = entry->bytes;
	}

2949 2950 2951
	if (window_free < bytes || max_extent < cont1_bytes)
		return -ENOSPC;

2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964
	cluster->window_start = first->offset;

	node = &first->offset_index;

	/*
	 * now we've found our entries, pull them out of the free space
	 * cache and put them into the cluster rbtree
	 */
	do {
		int ret;

		entry = rb_entry(node, struct btrfs_free_space, offset_index);
		node = rb_next(&entry->offset_index);
2965
		if (entry->bitmap || entry->bytes < min_bytes)
2966 2967
			continue;

2968
		rb_erase(&entry->offset_index, &ctl->free_space_offset);
2969 2970
		ret = tree_insert_offset(&cluster->root, entry->offset,
					 &entry->offset_index, 0);
J
Josef Bacik 已提交
2971
		total_size += entry->bytes;
2972
		ASSERT(!ret); /* -EEXIST; Logic error */
2973 2974 2975
	} while (node && entry != last);

	cluster->max_size = max_extent;
J
Josef Bacik 已提交
2976
	trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
2977 2978 2979 2980 2981 2982 2983
	return 0;
}

/*
 * This specifically looks for bitmaps that may work in the cluster, we assume
 * that we have already failed to find extents that will work.
 */
2984 2985 2986 2987
static noinline int
setup_cluster_bitmap(struct btrfs_block_group_cache *block_group,
		     struct btrfs_free_cluster *cluster,
		     struct list_head *bitmaps, u64 offset, u64 bytes,
2988
		     u64 cont1_bytes, u64 min_bytes)
2989
{
2990
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2991
	struct btrfs_free_space *entry = NULL;
2992
	int ret = -ENOSPC;
2993
	u64 bitmap_offset = offset_to_bitmap(ctl, offset);
2994

2995
	if (ctl->total_bitmaps == 0)
2996 2997
		return -ENOSPC;

2998 2999 3000 3001
	/*
	 * The bitmap that covers offset won't be in the list unless offset
	 * is just its start offset.
	 */
3002 3003 3004 3005
	if (!list_empty(bitmaps))
		entry = list_first_entry(bitmaps, struct btrfs_free_space, list);

	if (!entry || entry->offset != bitmap_offset) {
3006 3007 3008 3009 3010
		entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
		if (entry && list_empty(&entry->list))
			list_add(&entry->list, bitmaps);
	}

3011
	list_for_each_entry(entry, bitmaps, list) {
3012
		if (entry->bytes < bytes)
3013 3014
			continue;
		ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
3015
					   bytes, cont1_bytes, min_bytes);
3016 3017 3018 3019 3020
		if (!ret)
			return 0;
	}

	/*
3021 3022
	 * The bitmaps list has all the bitmaps that record free space
	 * starting after offset, so no more search is required.
3023
	 */
3024
	return -ENOSPC;
3025 3026
}

3027 3028
/*
 * here we try to find a cluster of blocks in a block group.  The goal
3029
 * is to find at least bytes+empty_size.
3030 3031 3032 3033 3034
 * We might not find them all in one contiguous area.
 *
 * returns zero and sets up cluster if things worked out, otherwise
 * it returns -enospc
 */
3035
int btrfs_find_space_cluster(struct btrfs_fs_info *fs_info,
3036 3037 3038 3039
			     struct btrfs_block_group_cache *block_group,
			     struct btrfs_free_cluster *cluster,
			     u64 offset, u64 bytes, u64 empty_size)
{
3040
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3041
	struct btrfs_free_space *entry, *tmp;
3042
	LIST_HEAD(bitmaps);
3043
	u64 min_bytes;
3044
	u64 cont1_bytes;
3045 3046
	int ret;

3047 3048 3049 3050 3051 3052
	/*
	 * Choose the minimum extent size we'll require for this
	 * cluster.  For SSD_SPREAD, don't allow any fragmentation.
	 * For metadata, allow allocates with smaller extents.  For
	 * data, keep it dense.
	 */
3053
	if (btrfs_test_opt(fs_info, SSD_SPREAD)) {
3054
		cont1_bytes = min_bytes = bytes + empty_size;
3055
	} else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
3056
		cont1_bytes = bytes;
3057
		min_bytes = fs_info->sectorsize;
3058 3059
	} else {
		cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
3060
		min_bytes = fs_info->sectorsize;
3061
	}
3062

3063
	spin_lock(&ctl->tree_lock);
3064 3065 3066 3067 3068

	/*
	 * If we know we don't have enough space to make a cluster don't even
	 * bother doing all the work to try and find one.
	 */
3069
	if (ctl->free_space < bytes) {
3070
		spin_unlock(&ctl->tree_lock);
3071 3072 3073
		return -ENOSPC;
	}

3074 3075 3076 3077 3078 3079 3080 3081
	spin_lock(&cluster->lock);

	/* someone already found a cluster, hooray */
	if (cluster->block_group) {
		ret = 0;
		goto out;
	}

J
Josef Bacik 已提交
3082 3083 3084
	trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
				 min_bytes);

3085
	ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
3086 3087
				      bytes + empty_size,
				      cont1_bytes, min_bytes);
3088
	if (ret)
3089
		ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
3090 3091
					   offset, bytes + empty_size,
					   cont1_bytes, min_bytes);
3092 3093 3094 3095

	/* Clear our temporary list */
	list_for_each_entry_safe(entry, tmp, &bitmaps, list)
		list_del_init(&entry->list);
3096

3097 3098 3099 3100 3101
	if (!ret) {
		atomic_inc(&block_group->count);
		list_add_tail(&cluster->block_group_list,
			      &block_group->cluster_list);
		cluster->block_group = block_group;
J
Josef Bacik 已提交
3102 3103
	} else {
		trace_btrfs_failed_cluster_setup(block_group);
3104 3105 3106
	}
out:
	spin_unlock(&cluster->lock);
3107
	spin_unlock(&ctl->tree_lock);
3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118

	return ret;
}

/*
 * simple code to zero out a cluster
 */
void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
{
	spin_lock_init(&cluster->lock);
	spin_lock_init(&cluster->refill_lock);
3119
	cluster->root = RB_ROOT;
3120
	cluster->max_size = 0;
3121
	cluster->fragmented = false;
3122 3123 3124 3125
	INIT_LIST_HEAD(&cluster->block_group_list);
	cluster->block_group = NULL;
}

3126 3127
static int do_trimming(struct btrfs_block_group_cache *block_group,
		       u64 *total_trimmed, u64 start, u64 bytes,
3128 3129
		       u64 reserved_start, u64 reserved_bytes,
		       struct btrfs_trim_range *trim_entry)
3130
{
3131
	struct btrfs_space_info *space_info = block_group->space_info;
3132
	struct btrfs_fs_info *fs_info = block_group->fs_info;
3133
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3134 3135 3136
	int ret;
	int update = 0;
	u64 trimmed = 0;
3137

3138 3139 3140 3141 3142 3143 3144 3145 3146 3147
	spin_lock(&space_info->lock);
	spin_lock(&block_group->lock);
	if (!block_group->ro) {
		block_group->reserved += reserved_bytes;
		space_info->bytes_reserved += reserved_bytes;
		update = 1;
	}
	spin_unlock(&block_group->lock);
	spin_unlock(&space_info->lock);

3148
	ret = btrfs_discard_extent(fs_info, start, bytes, &trimmed);
3149 3150 3151
	if (!ret)
		*total_trimmed += trimmed;

3152
	mutex_lock(&ctl->cache_writeout_mutex);
3153
	btrfs_add_free_space(block_group, reserved_start, reserved_bytes);
3154 3155
	list_del(&trim_entry->list);
	mutex_unlock(&ctl->cache_writeout_mutex);
3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180

	if (update) {
		spin_lock(&space_info->lock);
		spin_lock(&block_group->lock);
		if (block_group->ro)
			space_info->bytes_readonly += reserved_bytes;
		block_group->reserved -= reserved_bytes;
		space_info->bytes_reserved -= reserved_bytes;
		spin_unlock(&space_info->lock);
		spin_unlock(&block_group->lock);
	}

	return ret;
}

static int trim_no_bitmap(struct btrfs_block_group_cache *block_group,
			  u64 *total_trimmed, u64 start, u64 end, u64 minlen)
{
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
	struct btrfs_free_space *entry;
	struct rb_node *node;
	int ret = 0;
	u64 extent_start;
	u64 extent_bytes;
	u64 bytes;
3181 3182

	while (start < end) {
3183 3184 3185
		struct btrfs_trim_range trim_entry;

		mutex_lock(&ctl->cache_writeout_mutex);
3186
		spin_lock(&ctl->tree_lock);
3187

3188 3189
		if (ctl->free_space < minlen) {
			spin_unlock(&ctl->tree_lock);
3190
			mutex_unlock(&ctl->cache_writeout_mutex);
3191 3192 3193
			break;
		}

3194
		entry = tree_search_offset(ctl, start, 0, 1);
3195
		if (!entry) {
3196
			spin_unlock(&ctl->tree_lock);
3197
			mutex_unlock(&ctl->cache_writeout_mutex);
3198 3199 3200
			break;
		}

3201 3202 3203 3204
		/* skip bitmaps */
		while (entry->bitmap) {
			node = rb_next(&entry->offset_index);
			if (!node) {
3205
				spin_unlock(&ctl->tree_lock);
3206
				mutex_unlock(&ctl->cache_writeout_mutex);
3207
				goto out;
3208
			}
3209 3210
			entry = rb_entry(node, struct btrfs_free_space,
					 offset_index);
3211 3212
		}

3213 3214
		if (entry->offset >= end) {
			spin_unlock(&ctl->tree_lock);
3215
			mutex_unlock(&ctl->cache_writeout_mutex);
3216
			break;
3217 3218
		}

3219 3220 3221 3222 3223 3224
		extent_start = entry->offset;
		extent_bytes = entry->bytes;
		start = max(start, extent_start);
		bytes = min(extent_start + extent_bytes, end) - start;
		if (bytes < minlen) {
			spin_unlock(&ctl->tree_lock);
3225
			mutex_unlock(&ctl->cache_writeout_mutex);
3226
			goto next;
3227 3228
		}

3229 3230 3231
		unlink_free_space(ctl, entry);
		kmem_cache_free(btrfs_free_space_cachep, entry);

3232
		spin_unlock(&ctl->tree_lock);
3233 3234 3235 3236
		trim_entry.start = extent_start;
		trim_entry.bytes = extent_bytes;
		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
		mutex_unlock(&ctl->cache_writeout_mutex);
3237

3238
		ret = do_trimming(block_group, total_trimmed, start, bytes,
3239
				  extent_start, extent_bytes, &trim_entry);
3240 3241 3242 3243
		if (ret)
			break;
next:
		start += bytes;
3244

3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267
		if (fatal_signal_pending(current)) {
			ret = -ERESTARTSYS;
			break;
		}

		cond_resched();
	}
out:
	return ret;
}

static int trim_bitmaps(struct btrfs_block_group_cache *block_group,
			u64 *total_trimmed, u64 start, u64 end, u64 minlen)
{
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
	struct btrfs_free_space *entry;
	int ret = 0;
	int ret2;
	u64 bytes;
	u64 offset = offset_to_bitmap(ctl, start);

	while (offset < end) {
		bool next_bitmap = false;
3268
		struct btrfs_trim_range trim_entry;
3269

3270
		mutex_lock(&ctl->cache_writeout_mutex);
3271 3272 3273 3274
		spin_lock(&ctl->tree_lock);

		if (ctl->free_space < minlen) {
			spin_unlock(&ctl->tree_lock);
3275
			mutex_unlock(&ctl->cache_writeout_mutex);
3276 3277 3278 3279 3280 3281
			break;
		}

		entry = tree_search_offset(ctl, offset, 1, 0);
		if (!entry) {
			spin_unlock(&ctl->tree_lock);
3282
			mutex_unlock(&ctl->cache_writeout_mutex);
3283 3284 3285 3286 3287
			next_bitmap = true;
			goto next;
		}

		bytes = minlen;
3288
		ret2 = search_bitmap(ctl, entry, &start, &bytes, false);
3289 3290
		if (ret2 || start >= end) {
			spin_unlock(&ctl->tree_lock);
3291
			mutex_unlock(&ctl->cache_writeout_mutex);
3292 3293 3294 3295 3296 3297 3298
			next_bitmap = true;
			goto next;
		}

		bytes = min(bytes, end - start);
		if (bytes < minlen) {
			spin_unlock(&ctl->tree_lock);
3299
			mutex_unlock(&ctl->cache_writeout_mutex);
3300 3301 3302 3303 3304 3305 3306 3307
			goto next;
		}

		bitmap_clear_bits(ctl, entry, start, bytes);
		if (entry->bytes == 0)
			free_bitmap(ctl, entry);

		spin_unlock(&ctl->tree_lock);
3308 3309 3310 3311
		trim_entry.start = start;
		trim_entry.bytes = bytes;
		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
		mutex_unlock(&ctl->cache_writeout_mutex);
3312 3313

		ret = do_trimming(block_group, total_trimmed, start, bytes,
3314
				  start, bytes, &trim_entry);
3315 3316 3317 3318 3319 3320 3321 3322 3323
		if (ret)
			break;
next:
		if (next_bitmap) {
			offset += BITS_PER_BITMAP * ctl->unit;
		} else {
			start += bytes;
			if (start >= offset + BITS_PER_BITMAP * ctl->unit)
				offset += BITS_PER_BITMAP * ctl->unit;
3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335
		}

		if (fatal_signal_pending(current)) {
			ret = -ERESTARTSYS;
			break;
		}

		cond_resched();
	}

	return ret;
}
3336

3337
void btrfs_get_block_group_trimming(struct btrfs_block_group_cache *cache)
3338
{
3339 3340
	atomic_inc(&cache->trimming);
}
3341

3342 3343
void btrfs_put_block_group_trimming(struct btrfs_block_group_cache *block_group)
{
3344
	struct btrfs_fs_info *fs_info = block_group->fs_info;
3345 3346 3347
	struct extent_map_tree *em_tree;
	struct extent_map *em;
	bool cleanup;
3348

3349
	spin_lock(&block_group->lock);
3350 3351
	cleanup = (atomic_dec_and_test(&block_group->trimming) &&
		   block_group->removed);
3352 3353
	spin_unlock(&block_group->lock);

3354
	if (cleanup) {
3355 3356
		lock_chunks(fs_info);
		em_tree = &fs_info->mapping_tree.map_tree;
3357 3358 3359 3360
		write_lock(&em_tree->lock);
		em = lookup_extent_mapping(em_tree, block_group->key.objectid,
					   1);
		BUG_ON(!em); /* logic error, can't happen */
3361 3362 3363 3364
		/*
		 * remove_extent_mapping() will delete us from the pinned_chunks
		 * list, which is protected by the chunk mutex.
		 */
3365 3366
		remove_extent_mapping(em_tree, em);
		write_unlock(&em_tree->lock);
3367
		unlock_chunks(fs_info);
3368 3369 3370 3371

		/* once for us and once for the tree */
		free_extent_map(em);
		free_extent_map(em);
3372 3373 3374 3375 3376 3377

		/*
		 * We've left one free space entry and other tasks trimming
		 * this block group have left 1 entry each one. Free them.
		 */
		__btrfs_remove_free_space_cache(block_group->free_space_ctl);
3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389
	}
}

int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group,
			   u64 *trimmed, u64 start, u64 end, u64 minlen)
{
	int ret;

	*trimmed = 0;

	spin_lock(&block_group->lock);
	if (block_group->removed) {
3390
		spin_unlock(&block_group->lock);
3391
		return 0;
3392
	}
3393 3394 3395 3396 3397 3398
	btrfs_get_block_group_trimming(block_group);
	spin_unlock(&block_group->lock);

	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen);
	if (ret)
		goto out;
3399

3400 3401 3402
	ret = trim_bitmaps(block_group, trimmed, start, end, minlen);
out:
	btrfs_put_block_group_trimming(block_group);
3403 3404 3405
	return ret;
}

3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441
/*
 * Find the left-most item in the cache tree, and then return the
 * smallest inode number in the item.
 *
 * Note: the returned inode number may not be the smallest one in
 * the tree, if the left-most item is a bitmap.
 */
u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root)
{
	struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl;
	struct btrfs_free_space *entry = NULL;
	u64 ino = 0;

	spin_lock(&ctl->tree_lock);

	if (RB_EMPTY_ROOT(&ctl->free_space_offset))
		goto out;

	entry = rb_entry(rb_first(&ctl->free_space_offset),
			 struct btrfs_free_space, offset_index);

	if (!entry->bitmap) {
		ino = entry->offset;

		unlink_free_space(ctl, entry);
		entry->offset++;
		entry->bytes--;
		if (!entry->bytes)
			kmem_cache_free(btrfs_free_space_cachep, entry);
		else
			link_free_space(ctl, entry);
	} else {
		u64 offset = 0;
		u64 count = 1;
		int ret;

3442
		ret = search_bitmap(ctl, entry, &offset, &count, true);
3443
		/* Logic error; Should be empty if it can't find anything */
3444
		ASSERT(!ret);
3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455

		ino = offset;
		bitmap_clear_bits(ctl, entry, offset, 1);
		if (entry->bytes == 0)
			free_bitmap(ctl, entry);
	}
out:
	spin_unlock(&ctl->tree_lock);

	return ino;
}
3456 3457 3458 3459 3460 3461

struct inode *lookup_free_ino_inode(struct btrfs_root *root,
				    struct btrfs_path *path)
{
	struct inode *inode = NULL;

3462 3463 3464 3465
	spin_lock(&root->ino_cache_lock);
	if (root->ino_cache_inode)
		inode = igrab(root->ino_cache_inode);
	spin_unlock(&root->ino_cache_lock);
3466 3467 3468 3469 3470 3471 3472
	if (inode)
		return inode;

	inode = __lookup_free_space_inode(root, path, 0);
	if (IS_ERR(inode))
		return inode;

3473
	spin_lock(&root->ino_cache_lock);
3474
	if (!btrfs_fs_closing(root->fs_info))
3475 3476
		root->ino_cache_inode = igrab(inode);
	spin_unlock(&root->ino_cache_lock);
3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496

	return inode;
}

int create_free_ino_inode(struct btrfs_root *root,
			  struct btrfs_trans_handle *trans,
			  struct btrfs_path *path)
{
	return __create_free_space_inode(root, trans, path,
					 BTRFS_FREE_INO_OBJECTID, 0);
}

int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
{
	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
	struct btrfs_path *path;
	struct inode *inode;
	int ret = 0;
	u64 root_gen = btrfs_root_generation(&root->root_item);

3497
	if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
C
Chris Mason 已提交
3498 3499
		return 0;

3500 3501 3502 3503
	/*
	 * If we're unmounting then just return, since this does a search on the
	 * normal root and not the commit root and we could deadlock.
	 */
3504
	if (btrfs_fs_closing(fs_info))
3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520
		return 0;

	path = btrfs_alloc_path();
	if (!path)
		return 0;

	inode = lookup_free_ino_inode(root, path);
	if (IS_ERR(inode))
		goto out;

	if (root_gen != BTRFS_I(inode)->generation)
		goto out_put;

	ret = __load_free_space_cache(root, inode, ctl, path, 0);

	if (ret < 0)
3521 3522 3523
		btrfs_err(fs_info,
			"failed to load free ino cache for root %llu",
			root->root_key.objectid);
3524 3525 3526 3527 3528 3529 3530 3531 3532
out_put:
	iput(inode);
out:
	btrfs_free_path(path);
	return ret;
}

int btrfs_write_out_ino_cache(struct btrfs_root *root,
			      struct btrfs_trans_handle *trans,
3533 3534
			      struct btrfs_path *path,
			      struct inode *inode)
3535
{
3536
	struct btrfs_fs_info *fs_info = root->fs_info;
3537 3538
	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
	int ret;
3539
	struct btrfs_io_ctl io_ctl;
3540
	bool release_metadata = true;
3541

3542
	if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
C
Chris Mason 已提交
3543 3544
		return 0;

C
Chris Mason 已提交
3545
	memset(&io_ctl, 0, sizeof(io_ctl));
3546
	ret = __btrfs_write_out_cache(root, inode, ctl, NULL, &io_ctl,
C
Chris Mason 已提交
3547
				      trans, path, 0);
3548 3549 3550 3551 3552 3553 3554 3555
	if (!ret) {
		/*
		 * At this point writepages() didn't error out, so our metadata
		 * reservation is released when the writeback finishes, at
		 * inode.c:btrfs_finish_ordered_io(), regardless of it finishing
		 * with or without an error.
		 */
		release_metadata = false;
3556
		ret = btrfs_wait_cache_io_root(root, trans, &io_ctl, path);
3557
	}
C
Chris Mason 已提交
3558

3559
	if (ret) {
3560 3561
		if (release_metadata)
			btrfs_delalloc_release_metadata(inode, inode->i_size);
3562
#ifdef DEBUG
3563 3564 3565
		btrfs_err(fs_info,
			  "failed to write free ino cache for root %llu",
			  root->root_key.objectid);
3566 3567
#endif
	}
3568 3569 3570

	return ret;
}
3571 3572

#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3573 3574 3575 3576 3577 3578 3579 3580
/*
 * Use this if you need to make a bitmap or extent entry specifically, it
 * doesn't do any of the merging that add_free_space does, this acts a lot like
 * how the free space cache loading stuff works, so you can get really weird
 * configurations.
 */
int test_add_free_space_entry(struct btrfs_block_group_cache *cache,
			      u64 offset, u64 bytes, bool bitmap)
3581
{
3582 3583 3584 3585 3586
	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
	struct btrfs_free_space *info = NULL, *bitmap_info;
	void *map = NULL;
	u64 bytes_added;
	int ret;
3587

3588 3589 3590 3591 3592
again:
	if (!info) {
		info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
		if (!info)
			return -ENOMEM;
3593 3594
	}

3595 3596 3597 3598
	if (!bitmap) {
		spin_lock(&ctl->tree_lock);
		info->offset = offset;
		info->bytes = bytes;
3599
		info->max_extent_size = 0;
3600 3601 3602 3603 3604 3605 3606 3607
		ret = link_free_space(ctl, info);
		spin_unlock(&ctl->tree_lock);
		if (ret)
			kmem_cache_free(btrfs_free_space_cachep, info);
		return ret;
	}

	if (!map) {
3608
		map = kzalloc(PAGE_SIZE, GFP_NOFS);
3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622
		if (!map) {
			kmem_cache_free(btrfs_free_space_cachep, info);
			return -ENOMEM;
		}
	}

	spin_lock(&ctl->tree_lock);
	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
					 1, 0);
	if (!bitmap_info) {
		info->bitmap = map;
		map = NULL;
		add_new_bitmap(ctl, info, offset);
		bitmap_info = info;
3623
		info = NULL;
3624
	}
3625

3626
	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
3627

3628 3629 3630
	bytes -= bytes_added;
	offset += bytes_added;
	spin_unlock(&ctl->tree_lock);
3631

3632 3633
	if (bytes)
		goto again;
3634

3635 3636
	if (info)
		kmem_cache_free(btrfs_free_space_cachep, info);
3637 3638 3639
	if (map)
		kfree(map);
	return 0;
3640 3641 3642 3643 3644 3645 3646
}

/*
 * Checks to see if the given range is in the free space cache.  This is really
 * just used to check the absence of space, so if there is free space in the
 * range at all we will return 1.
 */
3647 3648
int test_check_exists(struct btrfs_block_group_cache *cache,
		      u64 offset, u64 bytes)
3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670
{
	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
	struct btrfs_free_space *info;
	int ret = 0;

	spin_lock(&ctl->tree_lock);
	info = tree_search_offset(ctl, offset, 0, 0);
	if (!info) {
		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
					  1, 0);
		if (!info)
			goto out;
	}

have_info:
	if (info->bitmap) {
		u64 bit_off, bit_bytes;
		struct rb_node *n;
		struct btrfs_free_space *tmp;

		bit_off = offset;
		bit_bytes = ctl->unit;
3671
		ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false);
3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689
		if (!ret) {
			if (bit_off == offset) {
				ret = 1;
				goto out;
			} else if (bit_off > offset &&
				   offset + bytes > bit_off) {
				ret = 1;
				goto out;
			}
		}

		n = rb_prev(&info->offset_index);
		while (n) {
			tmp = rb_entry(n, struct btrfs_free_space,
				       offset_index);
			if (tmp->offset + tmp->bytes < offset)
				break;
			if (offset + bytes < tmp->offset) {
3690
				n = rb_prev(&tmp->offset_index);
3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703
				continue;
			}
			info = tmp;
			goto have_info;
		}

		n = rb_next(&info->offset_index);
		while (n) {
			tmp = rb_entry(n, struct btrfs_free_space,
				       offset_index);
			if (offset + bytes < tmp->offset)
				break;
			if (tmp->offset + tmp->bytes < offset) {
3704
				n = rb_next(&tmp->offset_index);
3705 3706 3707 3708 3709 3710
				continue;
			}
			info = tmp;
			goto have_info;
		}

3711
		ret = 0;
3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725
		goto out;
	}

	if (info->offset == offset) {
		ret = 1;
		goto out;
	}

	if (offset > info->offset && offset < info->offset + info->bytes)
		ret = 1;
out:
	spin_unlock(&ctl->tree_lock);
	return ret;
}
3726
#endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */