free-space-cache.c 90.1 KB
Newer Older
J
Josef Bacik 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * Copyright (C) 2008 Red Hat.  All rights reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

19
#include <linux/pagemap.h>
J
Josef Bacik 已提交
20
#include <linux/sched.h>
21
#include <linux/slab.h>
22
#include <linux/math64.h>
23
#include <linux/ratelimit.h>
J
Josef Bacik 已提交
24
#include "ctree.h"
25 26
#include "free-space-cache.h"
#include "transaction.h"
27
#include "disk-io.h"
28
#include "extent_io.h"
29
#include "inode-map.h"
30
#include "volumes.h"
31

32 33
#define BITS_PER_BITMAP		(PAGE_CACHE_SIZE * 8)
#define MAX_CACHE_BYTES_PER_GIG	(32 * 1024)
J
Josef Bacik 已提交
34

35 36 37 38 39 40
struct btrfs_trim_range {
	u64 start;
	u64 bytes;
	struct list_head list;
};

41
static int link_free_space(struct btrfs_free_space_ctl *ctl,
J
Josef Bacik 已提交
42
			   struct btrfs_free_space *info);
43 44
static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
			      struct btrfs_free_space *info);
J
Josef Bacik 已提交
45

46 47 48
static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
					       struct btrfs_path *path,
					       u64 offset)
49 50 51 52 53 54 55 56 57 58
{
	struct btrfs_key key;
	struct btrfs_key location;
	struct btrfs_disk_key disk_key;
	struct btrfs_free_space_header *header;
	struct extent_buffer *leaf;
	struct inode *inode = NULL;
	int ret;

	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
59
	key.offset = offset;
60 61 62 63 64 65
	key.type = 0;

	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		return ERR_PTR(ret);
	if (ret > 0) {
66
		btrfs_release_path(path);
67 68 69 70 71 72 73 74
		return ERR_PTR(-ENOENT);
	}

	leaf = path->nodes[0];
	header = btrfs_item_ptr(leaf, path->slots[0],
				struct btrfs_free_space_header);
	btrfs_free_space_key(leaf, header, &disk_key);
	btrfs_disk_key_to_cpu(&location, &disk_key);
75
	btrfs_release_path(path);
76 77 78 79 80 81 82 83 84 85 86

	inode = btrfs_iget(root->fs_info->sb, &location, root, NULL);
	if (!inode)
		return ERR_PTR(-ENOENT);
	if (IS_ERR(inode))
		return inode;
	if (is_bad_inode(inode)) {
		iput(inode);
		return ERR_PTR(-ENOENT);
	}

A
Al Viro 已提交
87
	mapping_set_gfp_mask(inode->i_mapping,
88 89
			mapping_gfp_mask(inode->i_mapping) &
			~(GFP_NOFS & ~__GFP_HIGHMEM));
90

91 92 93 94 95 96 97 98
	return inode;
}

struct inode *lookup_free_space_inode(struct btrfs_root *root,
				      struct btrfs_block_group_cache
				      *block_group, struct btrfs_path *path)
{
	struct inode *inode = NULL;
99
	u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
100 101 102 103 104 105 106 107 108 109 110 111 112

	spin_lock(&block_group->lock);
	if (block_group->inode)
		inode = igrab(block_group->inode);
	spin_unlock(&block_group->lock);
	if (inode)
		return inode;

	inode = __lookup_free_space_inode(root, path,
					  block_group->key.objectid);
	if (IS_ERR(inode))
		return inode;

113
	spin_lock(&block_group->lock);
114
	if (!((BTRFS_I(inode)->flags & flags) == flags)) {
115 116
		btrfs_info(root->fs_info,
			"Old style space inode found, converting.");
117 118
		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
			BTRFS_INODE_NODATACOW;
119 120 121
		block_group->disk_cache_state = BTRFS_DC_CLEAR;
	}

122
	if (!block_group->iref) {
123 124 125 126 127 128 129 130
		block_group->inode = igrab(inode);
		block_group->iref = 1;
	}
	spin_unlock(&block_group->lock);

	return inode;
}

131 132 133 134
static int __create_free_space_inode(struct btrfs_root *root,
				     struct btrfs_trans_handle *trans,
				     struct btrfs_path *path,
				     u64 ino, u64 offset)
135 136 137 138 139 140
{
	struct btrfs_key key;
	struct btrfs_disk_key disk_key;
	struct btrfs_free_space_header *header;
	struct btrfs_inode_item *inode_item;
	struct extent_buffer *leaf;
141
	u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
142 143
	int ret;

144
	ret = btrfs_insert_empty_inode(trans, root, path, ino);
145 146 147
	if (ret)
		return ret;

148 149 150 151
	/* We inline crc's for the free disk space cache */
	if (ino != BTRFS_FREE_INO_OBJECTID)
		flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;

152 153 154 155 156 157 158 159 160 161 162 163
	leaf = path->nodes[0];
	inode_item = btrfs_item_ptr(leaf, path->slots[0],
				    struct btrfs_inode_item);
	btrfs_item_key(leaf, &disk_key, path->slots[0]);
	memset_extent_buffer(leaf, 0, (unsigned long)inode_item,
			     sizeof(*inode_item));
	btrfs_set_inode_generation(leaf, inode_item, trans->transid);
	btrfs_set_inode_size(leaf, inode_item, 0);
	btrfs_set_inode_nbytes(leaf, inode_item, 0);
	btrfs_set_inode_uid(leaf, inode_item, 0);
	btrfs_set_inode_gid(leaf, inode_item, 0);
	btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
164
	btrfs_set_inode_flags(leaf, inode_item, flags);
165 166
	btrfs_set_inode_nlink(leaf, inode_item, 1);
	btrfs_set_inode_transid(leaf, inode_item, trans->transid);
167
	btrfs_set_inode_block_group(leaf, inode_item, offset);
168
	btrfs_mark_buffer_dirty(leaf);
169
	btrfs_release_path(path);
170 171

	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
172
	key.offset = offset;
173 174 175 176
	key.type = 0;
	ret = btrfs_insert_empty_item(trans, root, path, &key,
				      sizeof(struct btrfs_free_space_header));
	if (ret < 0) {
177
		btrfs_release_path(path);
178 179
		return ret;
	}
180

181 182 183 184 185 186
	leaf = path->nodes[0];
	header = btrfs_item_ptr(leaf, path->slots[0],
				struct btrfs_free_space_header);
	memset_extent_buffer(leaf, 0, (unsigned long)header, sizeof(*header));
	btrfs_set_free_space_key(leaf, header, &disk_key);
	btrfs_mark_buffer_dirty(leaf);
187
	btrfs_release_path(path);
188 189 190 191

	return 0;
}

192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
int create_free_space_inode(struct btrfs_root *root,
			    struct btrfs_trans_handle *trans,
			    struct btrfs_block_group_cache *block_group,
			    struct btrfs_path *path)
{
	int ret;
	u64 ino;

	ret = btrfs_find_free_objectid(root, &ino);
	if (ret < 0)
		return ret;

	return __create_free_space_inode(root, trans, path, ino,
					 block_group->key.objectid);
}

208 209
int btrfs_check_trunc_cache_free_space(struct btrfs_root *root,
				       struct btrfs_block_rsv *rsv)
210
{
211
	u64 needed_bytes;
212
	int ret;
213 214 215 216 217

	/* 1 for slack space, 1 for updating the inode */
	needed_bytes = btrfs_calc_trunc_metadata_size(root, 1) +
		btrfs_calc_trans_metadata_size(root, 1);

218 219 220 221 222 223
	spin_lock(&rsv->lock);
	if (rsv->reserved < needed_bytes)
		ret = -ENOSPC;
	else
		ret = 0;
	spin_unlock(&rsv->lock);
224
	return ret;
225 226 227 228
}

int btrfs_truncate_free_space_cache(struct btrfs_root *root,
				    struct btrfs_trans_handle *trans,
229
				    struct btrfs_block_group_cache *block_group,
230 231 232
				    struct inode *inode)
{
	int ret = 0;
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
	struct btrfs_path *path = btrfs_alloc_path();

	if (!path) {
		ret = -ENOMEM;
		goto fail;
	}

	if (block_group) {
		mutex_lock(&trans->transaction->cache_write_mutex);
		if (!list_empty(&block_group->io_list)) {
			list_del_init(&block_group->io_list);

			btrfs_wait_cache_io(root, trans, block_group,
					    &block_group->io_ctl, path,
					    block_group->key.objectid);
			btrfs_put_block_group(block_group);
		}

		/*
		 * now that we've truncated the cache away, its no longer
		 * setup or written
		 */
		spin_lock(&block_group->lock);
		block_group->disk_cache_state = BTRFS_DC_CLEAR;
		spin_unlock(&block_group->lock);
	}
	btrfs_free_path(path);
260 261

	btrfs_i_size_write(inode, 0);
262
	truncate_pagecache(inode, 0);
263 264 265 266

	/*
	 * We don't need an orphan item because truncating the free space cache
	 * will never be split across transactions.
267 268
	 * We don't need to check for -EAGAIN because we're a free space
	 * cache inode
269 270 271 272
	 */
	ret = btrfs_truncate_inode_items(trans, root, inode,
					 0, BTRFS_EXTENT_DATA_KEY);
	if (ret) {
273
		mutex_unlock(&trans->transaction->cache_write_mutex);
274
		btrfs_abort_transaction(trans, root, ret);
275 276 277
		return ret;
	}

278
	ret = btrfs_update_inode(trans, root, inode);
279 280 281 282 283

	if (block_group)
		mutex_unlock(&trans->transaction->cache_write_mutex);

fail:
284 285
	if (ret)
		btrfs_abort_transaction(trans, root, ret);
286

287
	return ret;
288 289
}

290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
static int readahead_cache(struct inode *inode)
{
	struct file_ra_state *ra;
	unsigned long last_index;

	ra = kzalloc(sizeof(*ra), GFP_NOFS);
	if (!ra)
		return -ENOMEM;

	file_ra_state_init(ra, inode->i_mapping);
	last_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;

	page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);

	kfree(ra);

	return 0;
}

309
static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode,
310
		       struct btrfs_root *root, int write)
311
{
312 313 314
	int num_pages;
	int check_crcs = 0;

315
	num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_CACHE_SIZE);
316 317 318 319 320 321 322 323 324

	if (btrfs_ino(inode) != BTRFS_FREE_INO_OBJECTID)
		check_crcs = 1;

	/* Make sure we can fit our crcs into the first page */
	if (write && check_crcs &&
	    (num_pages * sizeof(u32)) >= PAGE_CACHE_SIZE)
		return -ENOSPC;

325
	memset(io_ctl, 0, sizeof(struct btrfs_io_ctl));
326

327
	io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS);
328 329
	if (!io_ctl->pages)
		return -ENOMEM;
330 331

	io_ctl->num_pages = num_pages;
332
	io_ctl->root = root;
333
	io_ctl->check_crcs = check_crcs;
334
	io_ctl->inode = inode;
335

336 337 338
	return 0;
}

339
static void io_ctl_free(struct btrfs_io_ctl *io_ctl)
340 341
{
	kfree(io_ctl->pages);
342
	io_ctl->pages = NULL;
343 344
}

345
static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl)
346 347 348 349 350 351 352
{
	if (io_ctl->cur) {
		io_ctl->cur = NULL;
		io_ctl->orig = NULL;
	}
}

353
static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear)
354
{
355
	ASSERT(io_ctl->index < io_ctl->num_pages);
356
	io_ctl->page = io_ctl->pages[io_ctl->index++];
357
	io_ctl->cur = page_address(io_ctl->page);
358 359 360 361 362 363
	io_ctl->orig = io_ctl->cur;
	io_ctl->size = PAGE_CACHE_SIZE;
	if (clear)
		memset(io_ctl->cur, 0, PAGE_CACHE_SIZE);
}

364
static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl)
365 366 367 368 369 370
{
	int i;

	io_ctl_unmap_page(io_ctl);

	for (i = 0; i < io_ctl->num_pages; i++) {
371 372 373 374 375
		if (io_ctl->pages[i]) {
			ClearPageChecked(io_ctl->pages[i]);
			unlock_page(io_ctl->pages[i]);
			page_cache_release(io_ctl->pages[i]);
		}
376 377 378
	}
}

379
static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, struct inode *inode,
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
				int uptodate)
{
	struct page *page;
	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
	int i;

	for (i = 0; i < io_ctl->num_pages; i++) {
		page = find_or_create_page(inode->i_mapping, i, mask);
		if (!page) {
			io_ctl_drop_pages(io_ctl);
			return -ENOMEM;
		}
		io_ctl->pages[i] = page;
		if (uptodate && !PageUptodate(page)) {
			btrfs_readpage(NULL, page);
			lock_page(page);
			if (!PageUptodate(page)) {
397 398
				btrfs_err(BTRFS_I(inode)->root->fs_info,
					   "error reading free space cache");
399 400 401 402 403 404
				io_ctl_drop_pages(io_ctl);
				return -EIO;
			}
		}
	}

405 406 407 408 409
	for (i = 0; i < io_ctl->num_pages; i++) {
		clear_page_dirty_for_io(io_ctl->pages[i]);
		set_page_extent_mapped(io_ctl->pages[i]);
	}

410 411 412
	return 0;
}

413
static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
414
{
A
Al Viro 已提交
415
	__le64 *val;
416 417 418 419

	io_ctl_map_page(io_ctl, 1);

	/*
420 421
	 * Skip the csum areas.  If we don't check crcs then we just have a
	 * 64bit chunk at the front of the first page.
422
	 */
423 424 425 426 427 428 429
	if (io_ctl->check_crcs) {
		io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
		io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
	} else {
		io_ctl->cur += sizeof(u64);
		io_ctl->size -= sizeof(u64) * 2;
	}
430 431 432 433 434 435

	val = io_ctl->cur;
	*val = cpu_to_le64(generation);
	io_ctl->cur += sizeof(u64);
}

436
static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
437
{
A
Al Viro 已提交
438
	__le64 *gen;
439

440 441 442 443 444 445 446 447 448 449 450 451
	/*
	 * Skip the crc area.  If we don't check crcs then we just have a 64bit
	 * chunk at the front of the first page.
	 */
	if (io_ctl->check_crcs) {
		io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
		io_ctl->size -= sizeof(u64) +
			(sizeof(u32) * io_ctl->num_pages);
	} else {
		io_ctl->cur += sizeof(u64);
		io_ctl->size -= sizeof(u64) * 2;
	}
452 453 454

	gen = io_ctl->cur;
	if (le64_to_cpu(*gen) != generation) {
455
		printk_ratelimited(KERN_ERR "BTRFS: space cache generation "
456 457 458 459 460 461
				   "(%Lu) does not match inode (%Lu)\n", *gen,
				   generation);
		io_ctl_unmap_page(io_ctl);
		return -EIO;
	}
	io_ctl->cur += sizeof(u64);
462 463 464
	return 0;
}

465
static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index)
466 467 468 469 470 471 472 473 474 475 476
{
	u32 *tmp;
	u32 crc = ~(u32)0;
	unsigned offset = 0;

	if (!io_ctl->check_crcs) {
		io_ctl_unmap_page(io_ctl);
		return;
	}

	if (index == 0)
477
		offset = sizeof(u32) * io_ctl->num_pages;
478

479
	crc = btrfs_csum_data(io_ctl->orig + offset, crc,
480 481 482
			      PAGE_CACHE_SIZE - offset);
	btrfs_csum_final(crc, (char *)&crc);
	io_ctl_unmap_page(io_ctl);
483
	tmp = page_address(io_ctl->pages[0]);
484 485 486 487
	tmp += index;
	*tmp = crc;
}

488
static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index)
489 490 491 492 493 494 495 496 497 498 499 500 501
{
	u32 *tmp, val;
	u32 crc = ~(u32)0;
	unsigned offset = 0;

	if (!io_ctl->check_crcs) {
		io_ctl_map_page(io_ctl, 0);
		return 0;
	}

	if (index == 0)
		offset = sizeof(u32) * io_ctl->num_pages;

502
	tmp = page_address(io_ctl->pages[0]);
503 504 505 506
	tmp += index;
	val = *tmp;

	io_ctl_map_page(io_ctl, 0);
507
	crc = btrfs_csum_data(io_ctl->orig + offset, crc,
508 509 510
			      PAGE_CACHE_SIZE - offset);
	btrfs_csum_final(crc, (char *)&crc);
	if (val != crc) {
511
		printk_ratelimited(KERN_ERR "BTRFS: csum mismatch on free "
512 513 514 515 516
				   "space cache\n");
		io_ctl_unmap_page(io_ctl);
		return -EIO;
	}

517 518 519
	return 0;
}

520
static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes,
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
			    void *bitmap)
{
	struct btrfs_free_space_entry *entry;

	if (!io_ctl->cur)
		return -ENOSPC;

	entry = io_ctl->cur;
	entry->offset = cpu_to_le64(offset);
	entry->bytes = cpu_to_le64(bytes);
	entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
		BTRFS_FREE_SPACE_EXTENT;
	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
	io_ctl->size -= sizeof(struct btrfs_free_space_entry);

	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
		return 0;

539
	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
540 541 542 543 544 545 546 547 548 549

	/* No more pages to map */
	if (io_ctl->index >= io_ctl->num_pages)
		return 0;

	/* map the next page */
	io_ctl_map_page(io_ctl, 1);
	return 0;
}

550
static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap)
551 552 553 554 555 556 557 558 559
{
	if (!io_ctl->cur)
		return -ENOSPC;

	/*
	 * If we aren't at the start of the current page, unmap this one and
	 * map the next one if there is any left.
	 */
	if (io_ctl->cur != io_ctl->orig) {
560
		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
561 562 563 564 565 566
		if (io_ctl->index >= io_ctl->num_pages)
			return -ENOSPC;
		io_ctl_map_page(io_ctl, 0);
	}

	memcpy(io_ctl->cur, bitmap, PAGE_CACHE_SIZE);
567
	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
568 569 570 571 572
	if (io_ctl->index < io_ctl->num_pages)
		io_ctl_map_page(io_ctl, 0);
	return 0;
}

573
static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl)
574
{
575 576 577 578 579 580 581 582
	/*
	 * If we're not on the boundary we know we've modified the page and we
	 * need to crc the page.
	 */
	if (io_ctl->cur != io_ctl->orig)
		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
	else
		io_ctl_unmap_page(io_ctl);
583 584 585

	while (io_ctl->index < io_ctl->num_pages) {
		io_ctl_map_page(io_ctl, 1);
586
		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
587 588 589
	}
}

590
static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl,
591
			    struct btrfs_free_space *entry, u8 *type)
592 593
{
	struct btrfs_free_space_entry *e;
594 595 596 597 598 599 600
	int ret;

	if (!io_ctl->cur) {
		ret = io_ctl_check_crc(io_ctl, io_ctl->index);
		if (ret)
			return ret;
	}
601 602 603 604

	e = io_ctl->cur;
	entry->offset = le64_to_cpu(e->offset);
	entry->bytes = le64_to_cpu(e->bytes);
605
	*type = e->type;
606 607 608 609
	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
	io_ctl->size -= sizeof(struct btrfs_free_space_entry);

	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
610
		return 0;
611 612 613

	io_ctl_unmap_page(io_ctl);

614
	return 0;
615 616
}

617
static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl,
618
			      struct btrfs_free_space *entry)
619
{
620 621 622 623 624 625
	int ret;

	ret = io_ctl_check_crc(io_ctl, io_ctl->index);
	if (ret)
		return ret;

626 627
	memcpy(entry->bitmap, io_ctl->cur, PAGE_CACHE_SIZE);
	io_ctl_unmap_page(io_ctl);
628 629

	return 0;
630 631
}

632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
/*
 * Since we attach pinned extents after the fact we can have contiguous sections
 * of free space that are split up in entries.  This poses a problem with the
 * tree logging stuff since it could have allocated across what appears to be 2
 * entries since we would have merged the entries when adding the pinned extents
 * back to the free space cache.  So run through the space cache that we just
 * loaded and merge contiguous entries.  This will make the log replay stuff not
 * blow up and it will make for nicer allocator behavior.
 */
static void merge_space_tree(struct btrfs_free_space_ctl *ctl)
{
	struct btrfs_free_space *e, *prev = NULL;
	struct rb_node *n;

again:
	spin_lock(&ctl->tree_lock);
	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
		e = rb_entry(n, struct btrfs_free_space, offset_index);
		if (!prev)
			goto next;
		if (e->bitmap || prev->bitmap)
			goto next;
		if (prev->offset + prev->bytes == e->offset) {
			unlink_free_space(ctl, prev);
			unlink_free_space(ctl, e);
			prev->bytes += e->bytes;
			kmem_cache_free(btrfs_free_space_cachep, e);
			link_free_space(ctl, prev);
			prev = NULL;
			spin_unlock(&ctl->tree_lock);
			goto again;
		}
next:
		prev = e;
	}
	spin_unlock(&ctl->tree_lock);
}

670 671 672
static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
				   struct btrfs_free_space_ctl *ctl,
				   struct btrfs_path *path, u64 offset)
673 674 675
{
	struct btrfs_free_space_header *header;
	struct extent_buffer *leaf;
676
	struct btrfs_io_ctl io_ctl;
677
	struct btrfs_key key;
678
	struct btrfs_free_space *e, *n;
679
	LIST_HEAD(bitmaps);
680 681 682
	u64 num_entries;
	u64 num_bitmaps;
	u64 generation;
683
	u8 type;
684
	int ret = 0;
685 686

	/* Nothing in the space cache, goodbye */
687
	if (!i_size_read(inode))
688
		return 0;
689 690

	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
691
	key.offset = offset;
692 693 694
	key.type = 0;

	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
695
	if (ret < 0)
696
		return 0;
697
	else if (ret > 0) {
698
		btrfs_release_path(path);
699
		return 0;
700 701
	}

702 703
	ret = -1;

704 705 706 707 708 709
	leaf = path->nodes[0];
	header = btrfs_item_ptr(leaf, path->slots[0],
				struct btrfs_free_space_header);
	num_entries = btrfs_free_space_entries(leaf, header);
	num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
	generation = btrfs_free_space_generation(leaf, header);
710
	btrfs_release_path(path);
711

712 713 714 715 716 717 718
	if (!BTRFS_I(inode)->generation) {
		btrfs_info(root->fs_info,
			   "The free space cache file (%llu) is invalid. skip it\n",
			   offset);
		return 0;
	}

719
	if (BTRFS_I(inode)->generation != generation) {
720 721 722
		btrfs_err(root->fs_info,
			"free space inode generation (%llu) "
			"did not match free space cache generation (%llu)",
723
			BTRFS_I(inode)->generation, generation);
724
		return 0;
725 726 727
	}

	if (!num_entries)
728
		return 0;
729

730
	ret = io_ctl_init(&io_ctl, inode, root, 0);
731 732 733
	if (ret)
		return ret;

734
	ret = readahead_cache(inode);
735
	if (ret)
736 737
		goto out;

738 739 740
	ret = io_ctl_prepare_pages(&io_ctl, inode, 1);
	if (ret)
		goto out;
741

742 743 744 745
	ret = io_ctl_check_crc(&io_ctl, 0);
	if (ret)
		goto free_cache;

746 747 748
	ret = io_ctl_check_generation(&io_ctl, generation);
	if (ret)
		goto free_cache;
749

750 751 752 753
	while (num_entries) {
		e = kmem_cache_zalloc(btrfs_free_space_cachep,
				      GFP_NOFS);
		if (!e)
754 755
			goto free_cache;

756 757 758 759 760 761
		ret = io_ctl_read_entry(&io_ctl, e, &type);
		if (ret) {
			kmem_cache_free(btrfs_free_space_cachep, e);
			goto free_cache;
		}

762 763 764
		if (!e->bytes) {
			kmem_cache_free(btrfs_free_space_cachep, e);
			goto free_cache;
765
		}
766 767 768 769 770 771

		if (type == BTRFS_FREE_SPACE_EXTENT) {
			spin_lock(&ctl->tree_lock);
			ret = link_free_space(ctl, e);
			spin_unlock(&ctl->tree_lock);
			if (ret) {
772 773
				btrfs_err(root->fs_info,
					"Duplicate entries in free space cache, dumping");
774
				kmem_cache_free(btrfs_free_space_cachep, e);
775 776
				goto free_cache;
			}
777
		} else {
778
			ASSERT(num_bitmaps);
779 780 781 782 783
			num_bitmaps--;
			e->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
			if (!e->bitmap) {
				kmem_cache_free(
					btrfs_free_space_cachep, e);
784 785
				goto free_cache;
			}
786 787 788 789 790 791
			spin_lock(&ctl->tree_lock);
			ret = link_free_space(ctl, e);
			ctl->total_bitmaps++;
			ctl->op->recalc_thresholds(ctl);
			spin_unlock(&ctl->tree_lock);
			if (ret) {
792 793
				btrfs_err(root->fs_info,
					"Duplicate entries in free space cache, dumping");
794
				kmem_cache_free(btrfs_free_space_cachep, e);
795 796
				goto free_cache;
			}
797
			list_add_tail(&e->list, &bitmaps);
798 799
		}

800 801
		num_entries--;
	}
802

803 804
	io_ctl_unmap_page(&io_ctl);

805 806 807 808 809
	/*
	 * We add the bitmaps at the end of the entries in order that
	 * the bitmap entries are added to the cache.
	 */
	list_for_each_entry_safe(e, n, &bitmaps, list) {
810
		list_del_init(&e->list);
811 812 813
		ret = io_ctl_read_bitmap(&io_ctl, e);
		if (ret)
			goto free_cache;
814 815
	}

816
	io_ctl_drop_pages(&io_ctl);
817
	merge_space_tree(ctl);
818 819
	ret = 1;
out:
820
	io_ctl_free(&io_ctl);
821 822
	return ret;
free_cache:
823
	io_ctl_drop_pages(&io_ctl);
824
	__btrfs_remove_free_space_cache(ctl);
825 826 827
	goto out;
}

828 829
int load_free_space_cache(struct btrfs_fs_info *fs_info,
			  struct btrfs_block_group_cache *block_group)
J
Josef Bacik 已提交
830
{
831
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
832 833 834
	struct btrfs_root *root = fs_info->tree_root;
	struct inode *inode;
	struct btrfs_path *path;
835
	int ret = 0;
836 837 838 839 840 841 842
	bool matched;
	u64 used = btrfs_block_group_used(&block_group->item);

	/*
	 * If this block group has been marked to be cleared for one reason or
	 * another then we can't trust the on disk cache, so just return.
	 */
843
	spin_lock(&block_group->lock);
844 845 846 847
	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
		spin_unlock(&block_group->lock);
		return 0;
	}
848
	spin_unlock(&block_group->lock);
849 850 851 852

	path = btrfs_alloc_path();
	if (!path)
		return 0;
853 854
	path->search_commit_root = 1;
	path->skip_locking = 1;
855 856 857 858 859 860 861

	inode = lookup_free_space_inode(root, block_group, path);
	if (IS_ERR(inode)) {
		btrfs_free_path(path);
		return 0;
	}

862 863 864 865
	/* We may have converted the inode and made the cache invalid. */
	spin_lock(&block_group->lock);
	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
		spin_unlock(&block_group->lock);
866
		btrfs_free_path(path);
867 868 869 870
		goto out;
	}
	spin_unlock(&block_group->lock);

871 872 873 874 875 876 877 878 879 880 881 882 883
	ret = __load_free_space_cache(fs_info->tree_root, inode, ctl,
				      path, block_group->key.objectid);
	btrfs_free_path(path);
	if (ret <= 0)
		goto out;

	spin_lock(&ctl->tree_lock);
	matched = (ctl->free_space == (block_group->key.offset - used -
				       block_group->bytes_super));
	spin_unlock(&ctl->tree_lock);

	if (!matched) {
		__btrfs_remove_free_space_cache(ctl);
884
		btrfs_warn(fs_info, "block group %llu has wrong amount of free space",
885
			block_group->key.objectid);
886 887 888 889 890 891 892 893
		ret = -1;
	}
out:
	if (ret < 0) {
		/* This cache is bogus, make sure it gets cleared */
		spin_lock(&block_group->lock);
		block_group->disk_cache_state = BTRFS_DC_CLEAR;
		spin_unlock(&block_group->lock);
894
		ret = 0;
895

896
		btrfs_warn(fs_info, "failed to load free space cache for block group %llu, rebuild it now",
897
			block_group->key.objectid);
898 899 900 901
	}

	iput(inode);
	return ret;
902 903
}

904
static noinline_for_stack
905
int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl,
906 907 908 909
			      struct btrfs_free_space_ctl *ctl,
			      struct btrfs_block_group_cache *block_group,
			      int *entries, int *bitmaps,
			      struct list_head *bitmap_list)
J
Josef Bacik 已提交
910
{
911
	int ret;
912
	struct btrfs_free_cluster *cluster = NULL;
913
	struct btrfs_free_cluster *cluster_locked = NULL;
914
	struct rb_node *node = rb_first(&ctl->free_space_offset);
915
	struct btrfs_trim_range *trim_entry;
916

917
	/* Get the cluster for this block_group if it exists */
918
	if (block_group && !list_empty(&block_group->cluster_list)) {
919 920 921
		cluster = list_entry(block_group->cluster_list.next,
				     struct btrfs_free_cluster,
				     block_group_list);
922
	}
923

924
	if (!node && cluster) {
925 926
		cluster_locked = cluster;
		spin_lock(&cluster_locked->lock);
927 928 929 930
		node = rb_first(&cluster->root);
		cluster = NULL;
	}

931 932 933
	/* Write out the extent entries */
	while (node) {
		struct btrfs_free_space *e;
J
Josef Bacik 已提交
934

935
		e = rb_entry(node, struct btrfs_free_space, offset_index);
936
		*entries += 1;
J
Josef Bacik 已提交
937

938
		ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
939 940
				       e->bitmap);
		if (ret)
941
			goto fail;
942

943
		if (e->bitmap) {
944 945
			list_add_tail(&e->list, bitmap_list);
			*bitmaps += 1;
946
		}
947 948 949
		node = rb_next(node);
		if (!node && cluster) {
			node = rb_first(&cluster->root);
950 951
			cluster_locked = cluster;
			spin_lock(&cluster_locked->lock);
952
			cluster = NULL;
953
		}
954
	}
955 956 957 958
	if (cluster_locked) {
		spin_unlock(&cluster_locked->lock);
		cluster_locked = NULL;
	}
959 960 961 962 963 964 965 966 967 968 969 970 971 972 973

	/*
	 * Make sure we don't miss any range that was removed from our rbtree
	 * because trimming is running. Otherwise after a umount+mount (or crash
	 * after committing the transaction) we would leak free space and get
	 * an inconsistent free space cache report from fsck.
	 */
	list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) {
		ret = io_ctl_add_entry(io_ctl, trim_entry->start,
				       trim_entry->bytes, NULL);
		if (ret)
			goto fail;
		*entries += 1;
	}

974 975
	return 0;
fail:
976 977
	if (cluster_locked)
		spin_unlock(&cluster_locked->lock);
978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
	return -ENOSPC;
}

static noinline_for_stack int
update_cache_item(struct btrfs_trans_handle *trans,
		  struct btrfs_root *root,
		  struct inode *inode,
		  struct btrfs_path *path, u64 offset,
		  int entries, int bitmaps)
{
	struct btrfs_key key;
	struct btrfs_free_space_header *header;
	struct extent_buffer *leaf;
	int ret;

	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
	key.offset = offset;
	key.type = 0;

	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
	if (ret < 0) {
		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
				 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL,
				 GFP_NOFS);
		goto fail;
	}
	leaf = path->nodes[0];
	if (ret > 0) {
		struct btrfs_key found_key;
		ASSERT(path->slots[0]);
		path->slots[0]--;
		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
		if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
		    found_key.offset != offset) {
			clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
					 inode->i_size - 1,
					 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0,
					 NULL, GFP_NOFS);
			btrfs_release_path(path);
			goto fail;
		}
	}

	BTRFS_I(inode)->generation = trans->transid;
	header = btrfs_item_ptr(leaf, path->slots[0],
				struct btrfs_free_space_header);
	btrfs_set_free_space_entries(leaf, header, entries);
	btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
	btrfs_set_free_space_generation(leaf, header, trans->transid);
	btrfs_mark_buffer_dirty(leaf);
	btrfs_release_path(path);

	return 0;

fail:
	return -1;
}

static noinline_for_stack int
1037 1038
write_pinned_extent_entries(struct btrfs_root *root,
			    struct btrfs_block_group_cache *block_group,
1039
			    struct btrfs_io_ctl *io_ctl,
1040
			    int *entries)
1041 1042 1043 1044
{
	u64 start, extent_start, extent_end, len;
	struct extent_io_tree *unpin = NULL;
	int ret;
1045

1046 1047 1048
	if (!block_group)
		return 0;

1049 1050 1051
	/*
	 * We want to add any pinned extents to our free space cache
	 * so we don't leak the space
1052
	 *
1053 1054 1055 1056 1057
	 * We shouldn't have switched the pinned extents yet so this is the
	 * right one
	 */
	unpin = root->fs_info->pinned_extents;

1058
	start = block_group->key.objectid;
1059

1060
	while (start < block_group->key.objectid + block_group->key.offset) {
1061 1062
		ret = find_first_extent_bit(unpin, start,
					    &extent_start, &extent_end,
1063
					    EXTENT_DIRTY, NULL);
1064 1065
		if (ret)
			return 0;
J
Josef Bacik 已提交
1066

1067
		/* This pinned extent is out of our range */
1068
		if (extent_start >= block_group->key.objectid +
1069
		    block_group->key.offset)
1070
			return 0;
1071

1072 1073 1074 1075
		extent_start = max(extent_start, start);
		extent_end = min(block_group->key.objectid +
				 block_group->key.offset, extent_end + 1);
		len = extent_end - extent_start;
J
Josef Bacik 已提交
1076

1077 1078
		*entries += 1;
		ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
1079
		if (ret)
1080
			return -ENOSPC;
J
Josef Bacik 已提交
1081

1082
		start = extent_end;
1083
	}
J
Josef Bacik 已提交
1084

1085 1086 1087 1088
	return 0;
}

static noinline_for_stack int
1089
write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list)
1090 1091 1092 1093
{
	struct list_head *pos, *n;
	int ret;

J
Josef Bacik 已提交
1094
	/* Write out the bitmaps */
1095
	list_for_each_safe(pos, n, bitmap_list) {
J
Josef Bacik 已提交
1096 1097 1098
		struct btrfs_free_space *entry =
			list_entry(pos, struct btrfs_free_space, list);

1099
		ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
1100
		if (ret)
1101
			return -ENOSPC;
J
Josef Bacik 已提交
1102
		list_del_init(&entry->list);
1103 1104
	}

1105 1106
	return 0;
}
J
Josef Bacik 已提交
1107

1108 1109 1110
static int flush_dirty_cache(struct inode *inode)
{
	int ret;
1111

1112
	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
1113
	if (ret)
1114 1115 1116
		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
				 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL,
				 GFP_NOFS);
J
Josef Bacik 已提交
1117

1118
	return ret;
1119 1120 1121 1122
}

static void noinline_for_stack
cleanup_write_cache_enospc(struct inode *inode,
1123
			   struct btrfs_io_ctl *io_ctl,
1124 1125 1126 1127
			   struct extent_state **cached_state,
			   struct list_head *bitmap_list)
{
	struct list_head *pos, *n;
1128

1129 1130 1131 1132
	list_for_each_safe(pos, n, bitmap_list) {
		struct btrfs_free_space *entry =
			list_entry(pos, struct btrfs_free_space, list);
		list_del_init(&entry->list);
J
Josef Bacik 已提交
1133
	}
1134 1135 1136 1137 1138
	io_ctl_drop_pages(io_ctl);
	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
			     i_size_read(inode) - 1, cached_state,
			     GFP_NOFS);
}
1139

1140 1141 1142 1143 1144 1145 1146 1147 1148
int btrfs_wait_cache_io(struct btrfs_root *root,
			struct btrfs_trans_handle *trans,
			struct btrfs_block_group_cache *block_group,
			struct btrfs_io_ctl *io_ctl,
			struct btrfs_path *path, u64 offset)
{
	int ret;
	struct inode *inode = io_ctl->inode;

1149 1150 1151
	if (!inode)
		return 0;

1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
	root = root->fs_info->tree_root;

	/* Flush the dirty pages in the cache file. */
	ret = flush_dirty_cache(inode);
	if (ret)
		goto out;

	/* Update the cache item to tell everyone this cache file is valid. */
	ret = update_cache_item(trans, root, inode, path, offset,
				io_ctl->entries, io_ctl->bitmaps);
out:
	io_ctl_free(io_ctl);
	if (ret) {
		invalidate_inode_pages2(inode->i_mapping);
		BTRFS_I(inode)->generation = 0;
		if (block_group) {
#ifdef DEBUG
			btrfs_err(root->fs_info,
				"failed to write free space cache for block group %llu",
				block_group->key.objectid);
#endif
		}
	}
	btrfs_update_inode(trans, root, inode);

	if (block_group) {
1178 1179 1180 1181
		/* the dirty list is protected by the dirty_bgs_lock */
		spin_lock(&trans->transaction->dirty_bgs_lock);

		/* the disk_cache_state is protected by the block group lock */
1182 1183 1184 1185
		spin_lock(&block_group->lock);

		/*
		 * only mark this as written if we didn't get put back on
1186 1187
		 * the dirty list while waiting for IO.   Otherwise our
		 * cache state won't be right, and we won't get written again
1188 1189 1190 1191 1192 1193 1194
		 */
		if (!ret && list_empty(&block_group->dirty_list))
			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
		else if (ret)
			block_group->disk_cache_state = BTRFS_DC_ERROR;

		spin_unlock(&block_group->lock);
1195
		spin_unlock(&trans->transaction->dirty_bgs_lock);
1196 1197 1198 1199 1200 1201 1202 1203
		io_ctl->inode = NULL;
		iput(inode);
	}

	return ret;

}

1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
/**
 * __btrfs_write_out_cache - write out cached info to an inode
 * @root - the root the inode belongs to
 * @ctl - the free space cache we are going to write out
 * @block_group - the block_group for this cache if it belongs to a block_group
 * @trans - the trans handle
 * @path - the path to use
 * @offset - the offset for the key we'll insert
 *
 * This function writes out a free space cache struct to disk for quick recovery
 * on mount.  This will return 0 if it was successfull in writing the cache out,
 * and -1 if it was not.
 */
static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
				   struct btrfs_free_space_ctl *ctl,
				   struct btrfs_block_group_cache *block_group,
1220
				   struct btrfs_io_ctl *io_ctl,
1221 1222 1223 1224
				   struct btrfs_trans_handle *trans,
				   struct btrfs_path *path, u64 offset)
{
	struct extent_state *cached_state = NULL;
1225
	LIST_HEAD(bitmap_list);
1226 1227 1228
	int entries = 0;
	int bitmaps = 0;
	int ret;
1229
	int must_iput = 0;
1230 1231 1232 1233

	if (!i_size_read(inode))
		return -1;

1234 1235
	WARN_ON(io_ctl->pages);
	ret = io_ctl_init(io_ctl, inode, root, 1);
1236 1237 1238
	if (ret)
		return -1;

1239 1240 1241 1242 1243 1244 1245 1246 1247
	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
		down_write(&block_group->data_rwsem);
		spin_lock(&block_group->lock);
		if (block_group->delalloc_bytes) {
			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
			spin_unlock(&block_group->lock);
			up_write(&block_group->data_rwsem);
			BTRFS_I(inode)->generation = 0;
			ret = 0;
1248
			must_iput = 1;
1249 1250 1251 1252 1253
			goto out;
		}
		spin_unlock(&block_group->lock);
	}

1254
	/* Lock all pages first so we can lock the extent safely. */
1255
	io_ctl_prepare_pages(io_ctl, inode, 0);
1256 1257 1258 1259

	lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
			 0, &cached_state);

1260
	io_ctl_set_generation(io_ctl, trans->transid);
1261

1262
	mutex_lock(&ctl->cache_writeout_mutex);
1263
	/* Write out the extent entries in the free space cache */
1264
	spin_lock(&ctl->tree_lock);
1265
	ret = write_cache_extent_entries(io_ctl, ctl,
1266 1267
					 block_group, &entries, &bitmaps,
					 &bitmap_list);
1268
	spin_unlock(&ctl->tree_lock);
1269 1270
	if (ret) {
		mutex_unlock(&ctl->cache_writeout_mutex);
1271
		goto out_nospc;
1272
	}
1273

1274 1275 1276 1277
	/*
	 * Some spaces that are freed in the current transaction are pinned,
	 * they will be added into free space cache after the transaction is
	 * committed, we shouldn't lose them.
1278 1279 1280
	 *
	 * If this changes while we are working we'll get added back to
	 * the dirty list and redo it.  No locking needed
1281
	 */
1282
	ret = write_pinned_extent_entries(root, block_group, io_ctl, &entries);
1283 1284
	if (ret) {
		mutex_unlock(&ctl->cache_writeout_mutex);
1285
		goto out_nospc;
1286
	}
1287

1288 1289 1290 1291 1292
	/*
	 * At last, we write out all the bitmaps and keep cache_writeout_mutex
	 * locked while doing it because a concurrent trim can be manipulating
	 * or freeing the bitmap.
	 */
1293
	spin_lock(&ctl->tree_lock);
1294
	ret = write_bitmap_entries(io_ctl, &bitmap_list);
1295
	spin_unlock(&ctl->tree_lock);
1296
	mutex_unlock(&ctl->cache_writeout_mutex);
1297 1298 1299 1300
	if (ret)
		goto out_nospc;

	/* Zero out the rest of the pages just to make sure */
1301
	io_ctl_zero_remaining_pages(io_ctl);
1302

1303
	/* Everything is written out, now we dirty the pages in the file. */
1304
	ret = btrfs_dirty_pages(root, inode, io_ctl->pages, io_ctl->num_pages,
1305 1306
				0, i_size_read(inode), &cached_state);
	if (ret)
1307
		goto out_nospc;
1308

1309 1310
	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
		up_write(&block_group->data_rwsem);
1311 1312 1313 1314
	/*
	 * Release the pages and unlock the extent, we will flush
	 * them out later
	 */
1315
	io_ctl_drop_pages(io_ctl);
1316 1317 1318 1319

	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
			     i_size_read(inode) - 1, &cached_state, GFP_NOFS);

1320 1321 1322 1323 1324 1325 1326 1327 1328
	/*
	 * at this point the pages are under IO and we're happy,
	 * The caller is responsible for waiting on them and updating the
	 * the cache and the inode
	 */
	io_ctl->entries = entries;
	io_ctl->bitmaps = bitmaps;

	ret = btrfs_fdatawrite_range(inode, 0, (u64)-1);
1329
	if (ret)
1330 1331
		goto out;

1332 1333
	return 0;

1334
out:
1335 1336
	io_ctl->inode = NULL;
	io_ctl_free(io_ctl);
1337
	if (ret) {
1338
		invalidate_inode_pages2(inode->i_mapping);
J
Josef Bacik 已提交
1339 1340 1341
		BTRFS_I(inode)->generation = 0;
	}
	btrfs_update_inode(trans, root, inode);
1342 1343
	if (must_iput)
		iput(inode);
1344
	return ret;
1345 1346

out_nospc:
1347
	cleanup_write_cache_enospc(inode, io_ctl, &cached_state, &bitmap_list);
1348 1349 1350 1351

	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
		up_write(&block_group->data_rwsem);

1352
	goto out;
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
}

int btrfs_write_out_cache(struct btrfs_root *root,
			  struct btrfs_trans_handle *trans,
			  struct btrfs_block_group_cache *block_group,
			  struct btrfs_path *path)
{
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
	struct inode *inode;
	int ret = 0;

	root = root->fs_info->tree_root;

	spin_lock(&block_group->lock);
	if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
		spin_unlock(&block_group->lock);
1369 1370
		return 0;
	}
1371 1372 1373 1374 1375 1376
	spin_unlock(&block_group->lock);

	inode = lookup_free_space_inode(root, block_group, path);
	if (IS_ERR(inode))
		return 0;

1377 1378
	ret = __btrfs_write_out_cache(root, inode, ctl, block_group,
				      &block_group->io_ctl, trans,
1379
				      path, block_group->key.objectid);
1380 1381
	if (ret) {
#ifdef DEBUG
1382 1383 1384
		btrfs_err(root->fs_info,
			"failed to write free space cache for block group %llu",
			block_group->key.objectid);
1385
#endif
1386 1387 1388 1389 1390 1391
		spin_lock(&block_group->lock);
		block_group->disk_cache_state = BTRFS_DC_ERROR;
		spin_unlock(&block_group->lock);

		block_group->io_ctl.inode = NULL;
		iput(inode);
1392 1393
	}

1394 1395 1396 1397 1398
	/*
	 * if ret == 0 the caller is expected to call btrfs_wait_cache_io
	 * to wait for IO and put the inode
	 */

J
Josef Bacik 已提交
1399 1400 1401
	return ret;
}

1402
static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1403
					  u64 offset)
J
Josef Bacik 已提交
1404
{
1405
	ASSERT(offset >= bitmap_start);
1406
	offset -= bitmap_start;
1407
	return (unsigned long)(div_u64(offset, unit));
1408
}
J
Josef Bacik 已提交
1409

1410
static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1411
{
1412
	return (unsigned long)(div_u64(bytes, unit));
1413
}
J
Josef Bacik 已提交
1414

1415
static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1416 1417 1418
				   u64 offset)
{
	u64 bitmap_start;
1419
	u32 bytes_per_bitmap;
J
Josef Bacik 已提交
1420

1421 1422
	bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
	bitmap_start = offset - ctl->start;
1423
	bitmap_start = div_u64(bitmap_start, bytes_per_bitmap);
1424
	bitmap_start *= bytes_per_bitmap;
1425
	bitmap_start += ctl->start;
J
Josef Bacik 已提交
1426

1427
	return bitmap_start;
J
Josef Bacik 已提交
1428 1429
}

1430 1431
static int tree_insert_offset(struct rb_root *root, u64 offset,
			      struct rb_node *node, int bitmap)
J
Josef Bacik 已提交
1432 1433 1434 1435 1436 1437 1438
{
	struct rb_node **p = &root->rb_node;
	struct rb_node *parent = NULL;
	struct btrfs_free_space *info;

	while (*p) {
		parent = *p;
1439
		info = rb_entry(parent, struct btrfs_free_space, offset_index);
J
Josef Bacik 已提交
1440

1441
		if (offset < info->offset) {
J
Josef Bacik 已提交
1442
			p = &(*p)->rb_left;
1443
		} else if (offset > info->offset) {
J
Josef Bacik 已提交
1444
			p = &(*p)->rb_right;
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
		} else {
			/*
			 * we could have a bitmap entry and an extent entry
			 * share the same offset.  If this is the case, we want
			 * the extent entry to always be found first if we do a
			 * linear search through the tree, since we want to have
			 * the quickest allocation time, and allocating from an
			 * extent is faster than allocating from a bitmap.  So
			 * if we're inserting a bitmap and we find an entry at
			 * this offset, we want to go right, or after this entry
			 * logically.  If we are inserting an extent and we've
			 * found a bitmap, we want to go left, or before
			 * logically.
			 */
			if (bitmap) {
1460 1461 1462 1463
				if (info->bitmap) {
					WARN_ON_ONCE(1);
					return -EEXIST;
				}
1464 1465
				p = &(*p)->rb_right;
			} else {
1466 1467 1468 1469
				if (!info->bitmap) {
					WARN_ON_ONCE(1);
					return -EEXIST;
				}
1470 1471 1472
				p = &(*p)->rb_left;
			}
		}
J
Josef Bacik 已提交
1473 1474 1475 1476 1477 1478 1479 1480 1481
	}

	rb_link_node(node, parent, p);
	rb_insert_color(node, root);

	return 0;
}

/*
J
Josef Bacik 已提交
1482 1483
 * searches the tree for the given offset.
 *
1484 1485 1486
 * fuzzy - If this is set, then we are trying to make an allocation, and we just
 * want a section that has at least bytes size and comes at or after the given
 * offset.
J
Josef Bacik 已提交
1487
 */
1488
static struct btrfs_free_space *
1489
tree_search_offset(struct btrfs_free_space_ctl *ctl,
1490
		   u64 offset, int bitmap_only, int fuzzy)
J
Josef Bacik 已提交
1491
{
1492
	struct rb_node *n = ctl->free_space_offset.rb_node;
1493 1494 1495 1496 1497 1498 1499 1500
	struct btrfs_free_space *entry, *prev = NULL;

	/* find entry that is closest to the 'offset' */
	while (1) {
		if (!n) {
			entry = NULL;
			break;
		}
J
Josef Bacik 已提交
1501 1502

		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1503
		prev = entry;
J
Josef Bacik 已提交
1504

1505
		if (offset < entry->offset)
J
Josef Bacik 已提交
1506
			n = n->rb_left;
1507
		else if (offset > entry->offset)
J
Josef Bacik 已提交
1508
			n = n->rb_right;
1509
		else
J
Josef Bacik 已提交
1510 1511 1512
			break;
	}

1513 1514 1515 1516 1517
	if (bitmap_only) {
		if (!entry)
			return NULL;
		if (entry->bitmap)
			return entry;
J
Josef Bacik 已提交
1518

1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
		/*
		 * bitmap entry and extent entry may share same offset,
		 * in that case, bitmap entry comes after extent entry.
		 */
		n = rb_next(n);
		if (!n)
			return NULL;
		entry = rb_entry(n, struct btrfs_free_space, offset_index);
		if (entry->offset != offset)
			return NULL;
J
Josef Bacik 已提交
1529

1530 1531 1532 1533
		WARN_ON(!entry->bitmap);
		return entry;
	} else if (entry) {
		if (entry->bitmap) {
J
Josef Bacik 已提交
1534
			/*
1535 1536
			 * if previous extent entry covers the offset,
			 * we should return it instead of the bitmap entry
J
Josef Bacik 已提交
1537
			 */
1538 1539
			n = rb_prev(&entry->offset_index);
			if (n) {
1540 1541
				prev = rb_entry(n, struct btrfs_free_space,
						offset_index);
1542 1543 1544
				if (!prev->bitmap &&
				    prev->offset + prev->bytes > offset)
					entry = prev;
J
Josef Bacik 已提交
1545
			}
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
		}
		return entry;
	}

	if (!prev)
		return NULL;

	/* find last entry before the 'offset' */
	entry = prev;
	if (entry->offset > offset) {
		n = rb_prev(&entry->offset_index);
		if (n) {
			entry = rb_entry(n, struct btrfs_free_space,
					offset_index);
1560
			ASSERT(entry->offset <= offset);
J
Josef Bacik 已提交
1561
		} else {
1562 1563 1564 1565
			if (fuzzy)
				return entry;
			else
				return NULL;
J
Josef Bacik 已提交
1566 1567 1568
		}
	}

1569
	if (entry->bitmap) {
1570 1571
		n = rb_prev(&entry->offset_index);
		if (n) {
1572 1573
			prev = rb_entry(n, struct btrfs_free_space,
					offset_index);
1574 1575 1576
			if (!prev->bitmap &&
			    prev->offset + prev->bytes > offset)
				return prev;
1577
		}
1578
		if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1579 1580 1581 1582 1583 1584 1585 1586 1587 1588
			return entry;
	} else if (entry->offset + entry->bytes > offset)
		return entry;

	if (!fuzzy)
		return NULL;

	while (1) {
		if (entry->bitmap) {
			if (entry->offset + BITS_PER_BITMAP *
1589
			    ctl->unit > offset)
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
				break;
		} else {
			if (entry->offset + entry->bytes > offset)
				break;
		}

		n = rb_next(&entry->offset_index);
		if (!n)
			return NULL;
		entry = rb_entry(n, struct btrfs_free_space, offset_index);
	}
	return entry;
J
Josef Bacik 已提交
1602 1603
}

1604
static inline void
1605
__unlink_free_space(struct btrfs_free_space_ctl *ctl,
1606
		    struct btrfs_free_space *info)
J
Josef Bacik 已提交
1607
{
1608 1609
	rb_erase(&info->offset_index, &ctl->free_space_offset);
	ctl->free_extents--;
1610 1611
}

1612
static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1613 1614
			      struct btrfs_free_space *info)
{
1615 1616
	__unlink_free_space(ctl, info);
	ctl->free_space -= info->bytes;
J
Josef Bacik 已提交
1617 1618
}

1619
static int link_free_space(struct btrfs_free_space_ctl *ctl,
J
Josef Bacik 已提交
1620 1621 1622 1623
			   struct btrfs_free_space *info)
{
	int ret = 0;

1624
	ASSERT(info->bytes || info->bitmap);
1625
	ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
1626
				 &info->offset_index, (info->bitmap != NULL));
J
Josef Bacik 已提交
1627 1628 1629
	if (ret)
		return ret;

1630 1631
	ctl->free_space += info->bytes;
	ctl->free_extents++;
1632 1633 1634
	return ret;
}

1635
static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
1636
{
1637
	struct btrfs_block_group_cache *block_group = ctl->private;
1638 1639 1640
	u64 max_bytes;
	u64 bitmap_bytes;
	u64 extent_bytes;
1641
	u64 size = block_group->key.offset;
1642 1643
	u32 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
	u32 max_bitmaps = div_u64(size + bytes_per_bg - 1, bytes_per_bg);
1644

1645
	max_bitmaps = max_t(u32, max_bitmaps, 1);
1646

1647
	ASSERT(ctl->total_bitmaps <= max_bitmaps);
1648 1649 1650 1651 1652 1653

	/*
	 * The goal is to keep the total amount of memory used per 1gb of space
	 * at or below 32k, so we need to adjust how much memory we allow to be
	 * used by extent based free space tracking
	 */
1654 1655 1656 1657
	if (size < 1024 * 1024 * 1024)
		max_bytes = MAX_CACHE_BYTES_PER_GIG;
	else
		max_bytes = MAX_CACHE_BYTES_PER_GIG *
1658
			div_u64(size, 1024 * 1024 * 1024);
1659

1660 1661 1662 1663 1664
	/*
	 * we want to account for 1 more bitmap than what we have so we can make
	 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
	 * we add more bitmaps.
	 */
1665
	bitmap_bytes = (ctl->total_bitmaps + 1) * PAGE_CACHE_SIZE;
1666

1667
	if (bitmap_bytes >= max_bytes) {
1668
		ctl->extents_thresh = 0;
1669 1670
		return;
	}
1671

1672
	/*
1673
	 * we want the extent entry threshold to always be at most 1/2 the max
1674 1675 1676
	 * bytes we can have, or whatever is less than that.
	 */
	extent_bytes = max_bytes - bitmap_bytes;
1677
	extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1);
1678

1679
	ctl->extents_thresh =
1680
		div_u64(extent_bytes, sizeof(struct btrfs_free_space));
1681 1682
}

1683 1684 1685
static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
				       struct btrfs_free_space *info,
				       u64 offset, u64 bytes)
1686
{
L
Li Zefan 已提交
1687
	unsigned long start, count;
1688

1689 1690
	start = offset_to_bit(info->offset, ctl->unit, offset);
	count = bytes_to_bits(bytes, ctl->unit);
1691
	ASSERT(start + count <= BITS_PER_BITMAP);
1692

L
Li Zefan 已提交
1693
	bitmap_clear(info->bitmap, start, count);
1694 1695

	info->bytes -= bytes;
1696 1697 1698 1699 1700 1701 1702
}

static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
			      struct btrfs_free_space *info, u64 offset,
			      u64 bytes)
{
	__bitmap_clear_bits(ctl, info, offset, bytes);
1703
	ctl->free_space -= bytes;
1704 1705
}

1706
static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
J
Josef Bacik 已提交
1707 1708
			    struct btrfs_free_space *info, u64 offset,
			    u64 bytes)
1709
{
L
Li Zefan 已提交
1710
	unsigned long start, count;
1711

1712 1713
	start = offset_to_bit(info->offset, ctl->unit, offset);
	count = bytes_to_bits(bytes, ctl->unit);
1714
	ASSERT(start + count <= BITS_PER_BITMAP);
1715

L
Li Zefan 已提交
1716
	bitmap_set(info->bitmap, start, count);
1717 1718

	info->bytes += bytes;
1719
	ctl->free_space += bytes;
1720 1721
}

1722 1723 1724 1725
/*
 * If we can not find suitable extent, we will use bytes to record
 * the size of the max extent.
 */
1726
static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1727 1728 1729 1730
			 struct btrfs_free_space *bitmap_info, u64 *offset,
			 u64 *bytes)
{
	unsigned long found_bits = 0;
1731
	unsigned long max_bits = 0;
1732 1733
	unsigned long bits, i;
	unsigned long next_zero;
1734
	unsigned long extent_bits;
1735

1736
	i = offset_to_bit(bitmap_info->offset, ctl->unit,
1737
			  max_t(u64, *offset, bitmap_info->offset));
1738
	bits = bytes_to_bits(*bytes, ctl->unit);
1739

1740
	for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1741 1742
		next_zero = find_next_zero_bit(bitmap_info->bitmap,
					       BITS_PER_BITMAP, i);
1743 1744 1745
		extent_bits = next_zero - i;
		if (extent_bits >= bits) {
			found_bits = extent_bits;
1746
			break;
1747 1748
		} else if (extent_bits > max_bits) {
			max_bits = extent_bits;
1749 1750 1751 1752 1753
		}
		i = next_zero;
	}

	if (found_bits) {
1754 1755
		*offset = (u64)(i * ctl->unit) + bitmap_info->offset;
		*bytes = (u64)(found_bits) * ctl->unit;
1756 1757 1758
		return 0;
	}

1759
	*bytes = (u64)(max_bits) * ctl->unit;
1760 1761 1762
	return -1;
}

1763
/* Cache the size of the max extent in bytes */
1764
static struct btrfs_free_space *
D
David Woodhouse 已提交
1765
find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
1766
		unsigned long align, u64 *max_extent_size)
1767 1768 1769
{
	struct btrfs_free_space *entry;
	struct rb_node *node;
D
David Woodhouse 已提交
1770 1771
	u64 tmp;
	u64 align_off;
1772 1773
	int ret;

1774
	if (!ctl->free_space_offset.rb_node)
1775
		goto out;
1776

1777
	entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
1778
	if (!entry)
1779
		goto out;
1780 1781 1782

	for (node = &entry->offset_index; node; node = rb_next(node)) {
		entry = rb_entry(node, struct btrfs_free_space, offset_index);
1783 1784 1785
		if (entry->bytes < *bytes) {
			if (entry->bytes > *max_extent_size)
				*max_extent_size = entry->bytes;
1786
			continue;
1787
		}
1788

D
David Woodhouse 已提交
1789 1790 1791 1792
		/* make sure the space returned is big enough
		 * to match our requested alignment
		 */
		if (*bytes >= align) {
1793
			tmp = entry->offset - ctl->start + align - 1;
1794
			tmp = div64_u64(tmp, align);
D
David Woodhouse 已提交
1795 1796 1797 1798 1799 1800 1801
			tmp = tmp * align + ctl->start;
			align_off = tmp - entry->offset;
		} else {
			align_off = 0;
			tmp = entry->offset;
		}

1802 1803 1804
		if (entry->bytes < *bytes + align_off) {
			if (entry->bytes > *max_extent_size)
				*max_extent_size = entry->bytes;
D
David Woodhouse 已提交
1805
			continue;
1806
		}
D
David Woodhouse 已提交
1807

1808
		if (entry->bitmap) {
1809 1810 1811
			u64 size = *bytes;

			ret = search_bitmap(ctl, entry, &tmp, &size);
D
David Woodhouse 已提交
1812 1813
			if (!ret) {
				*offset = tmp;
1814
				*bytes = size;
1815
				return entry;
1816 1817
			} else if (size > *max_extent_size) {
				*max_extent_size = size;
D
David Woodhouse 已提交
1818
			}
1819 1820 1821
			continue;
		}

D
David Woodhouse 已提交
1822 1823
		*offset = tmp;
		*bytes = entry->bytes - align_off;
1824 1825
		return entry;
	}
1826
out:
1827 1828 1829
	return NULL;
}

1830
static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
1831 1832
			   struct btrfs_free_space *info, u64 offset)
{
1833
	info->offset = offset_to_bitmap(ctl, offset);
J
Josef Bacik 已提交
1834
	info->bytes = 0;
1835
	INIT_LIST_HEAD(&info->list);
1836 1837
	link_free_space(ctl, info);
	ctl->total_bitmaps++;
1838

1839
	ctl->op->recalc_thresholds(ctl);
1840 1841
}

1842
static void free_bitmap(struct btrfs_free_space_ctl *ctl,
1843 1844
			struct btrfs_free_space *bitmap_info)
{
1845
	unlink_free_space(ctl, bitmap_info);
1846
	kfree(bitmap_info->bitmap);
1847
	kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
1848 1849
	ctl->total_bitmaps--;
	ctl->op->recalc_thresholds(ctl);
1850 1851
}

1852
static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
1853 1854 1855 1856
			      struct btrfs_free_space *bitmap_info,
			      u64 *offset, u64 *bytes)
{
	u64 end;
1857 1858
	u64 search_start, search_bytes;
	int ret;
1859 1860

again:
1861
	end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
1862

1863
	/*
1864 1865 1866 1867
	 * We need to search for bits in this bitmap.  We could only cover some
	 * of the extent in this bitmap thanks to how we add space, so we need
	 * to search for as much as it as we can and clear that amount, and then
	 * go searching for the next bit.
1868 1869
	 */
	search_start = *offset;
1870
	search_bytes = ctl->unit;
1871
	search_bytes = min(search_bytes, end - search_start + 1);
1872
	ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes);
1873 1874
	if (ret < 0 || search_start != *offset)
		return -EINVAL;
1875

1876 1877 1878 1879 1880 1881 1882 1883 1884
	/* We may have found more bits than what we need */
	search_bytes = min(search_bytes, *bytes);

	/* Cannot clear past the end of the bitmap */
	search_bytes = min(search_bytes, end - search_start + 1);

	bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes);
	*offset += search_bytes;
	*bytes -= search_bytes;
1885 1886

	if (*bytes) {
1887
		struct rb_node *next = rb_next(&bitmap_info->offset_index);
1888
		if (!bitmap_info->bytes)
1889
			free_bitmap(ctl, bitmap_info);
1890

1891 1892 1893 1894 1895
		/*
		 * no entry after this bitmap, but we still have bytes to
		 * remove, so something has gone wrong.
		 */
		if (!next)
1896 1897
			return -EINVAL;

1898 1899 1900 1901 1902 1903 1904
		bitmap_info = rb_entry(next, struct btrfs_free_space,
				       offset_index);

		/*
		 * if the next entry isn't a bitmap we need to return to let the
		 * extent stuff do its work.
		 */
1905 1906 1907
		if (!bitmap_info->bitmap)
			return -EAGAIN;

1908 1909 1910 1911 1912 1913 1914
		/*
		 * Ok the next item is a bitmap, but it may not actually hold
		 * the information for the rest of this free space stuff, so
		 * look for it, and if we don't find it return so we can try
		 * everything over again.
		 */
		search_start = *offset;
1915
		search_bytes = ctl->unit;
1916
		ret = search_bitmap(ctl, bitmap_info, &search_start,
1917 1918 1919 1920
				    &search_bytes);
		if (ret < 0 || search_start != *offset)
			return -EAGAIN;

1921
		goto again;
1922
	} else if (!bitmap_info->bytes)
1923
		free_bitmap(ctl, bitmap_info);
1924 1925 1926 1927

	return 0;
}

J
Josef Bacik 已提交
1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
			       struct btrfs_free_space *info, u64 offset,
			       u64 bytes)
{
	u64 bytes_to_set = 0;
	u64 end;

	end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);

	bytes_to_set = min(end - offset, bytes);

	bitmap_set_bits(ctl, info, offset, bytes_to_set);

	return bytes_to_set;

}

1945 1946
static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
		      struct btrfs_free_space *info)
1947
{
1948
	struct btrfs_block_group_cache *block_group = ctl->private;
1949 1950 1951 1952 1953

	/*
	 * If we are below the extents threshold then we can add this as an
	 * extent, and don't have to deal with the bitmap
	 */
1954
	if (ctl->free_extents < ctl->extents_thresh) {
1955 1956 1957 1958 1959 1960 1961 1962
		/*
		 * If this block group has some small extents we don't want to
		 * use up all of our free slots in the cache with them, we want
		 * to reserve them to larger extents, however if we have plent
		 * of cache left then go ahead an dadd them, no sense in adding
		 * the overhead of a bitmap if we don't have to.
		 */
		if (info->bytes <= block_group->sectorsize * 4) {
1963 1964
			if (ctl->free_extents * 2 <= ctl->extents_thresh)
				return false;
1965
		} else {
1966
			return false;
1967 1968
		}
	}
1969 1970

	/*
1971 1972 1973 1974 1975 1976
	 * The original block groups from mkfs can be really small, like 8
	 * megabytes, so don't bother with a bitmap for those entries.  However
	 * some block groups can be smaller than what a bitmap would cover but
	 * are still large enough that they could overflow the 32k memory limit,
	 * so allow those block groups to still be allowed to have a bitmap
	 * entry.
1977
	 */
1978
	if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->key.offset)
1979 1980 1981 1982 1983
		return false;

	return true;
}

J
Josef Bacik 已提交
1984 1985 1986 1987 1988
static struct btrfs_free_space_op free_space_op = {
	.recalc_thresholds	= recalculate_thresholds,
	.use_bitmap		= use_bitmap,
};

1989 1990 1991 1992
static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
			      struct btrfs_free_space *info)
{
	struct btrfs_free_space *bitmap_info;
J
Josef Bacik 已提交
1993
	struct btrfs_block_group_cache *block_group = NULL;
1994
	int added = 0;
J
Josef Bacik 已提交
1995
	u64 bytes, offset, bytes_added;
1996
	int ret;
1997 1998 1999 2000

	bytes = info->bytes;
	offset = info->offset;

2001 2002 2003
	if (!ctl->op->use_bitmap(ctl, info))
		return 0;

J
Josef Bacik 已提交
2004 2005
	if (ctl->op == &free_space_op)
		block_group = ctl->private;
2006
again:
J
Josef Bacik 已提交
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
	/*
	 * Since we link bitmaps right into the cluster we need to see if we
	 * have a cluster here, and if so and it has our bitmap we need to add
	 * the free space to that bitmap.
	 */
	if (block_group && !list_empty(&block_group->cluster_list)) {
		struct btrfs_free_cluster *cluster;
		struct rb_node *node;
		struct btrfs_free_space *entry;

		cluster = list_entry(block_group->cluster_list.next,
				     struct btrfs_free_cluster,
				     block_group_list);
		spin_lock(&cluster->lock);
		node = rb_first(&cluster->root);
		if (!node) {
			spin_unlock(&cluster->lock);
2024
			goto no_cluster_bitmap;
J
Josef Bacik 已提交
2025 2026 2027 2028 2029
		}

		entry = rb_entry(node, struct btrfs_free_space, offset_index);
		if (!entry->bitmap) {
			spin_unlock(&cluster->lock);
2030
			goto no_cluster_bitmap;
J
Josef Bacik 已提交
2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044
		}

		if (entry->offset == offset_to_bitmap(ctl, offset)) {
			bytes_added = add_bytes_to_bitmap(ctl, entry,
							  offset, bytes);
			bytes -= bytes_added;
			offset += bytes_added;
		}
		spin_unlock(&cluster->lock);
		if (!bytes) {
			ret = 1;
			goto out;
		}
	}
2045 2046

no_cluster_bitmap:
2047
	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2048 2049
					 1, 0);
	if (!bitmap_info) {
2050
		ASSERT(added == 0);
2051 2052 2053
		goto new_bitmap;
	}

J
Josef Bacik 已提交
2054 2055 2056 2057
	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
	bytes -= bytes_added;
	offset += bytes_added;
	added = 0;
2058 2059 2060 2061 2062 2063 2064 2065 2066

	if (!bytes) {
		ret = 1;
		goto out;
	} else
		goto again;

new_bitmap:
	if (info && info->bitmap) {
2067
		add_new_bitmap(ctl, info, offset);
2068 2069 2070 2071
		added = 1;
		info = NULL;
		goto again;
	} else {
2072
		spin_unlock(&ctl->tree_lock);
2073 2074 2075

		/* no pre-allocated info, allocate a new one */
		if (!info) {
2076 2077
			info = kmem_cache_zalloc(btrfs_free_space_cachep,
						 GFP_NOFS);
2078
			if (!info) {
2079
				spin_lock(&ctl->tree_lock);
2080 2081 2082 2083 2084 2085 2086
				ret = -ENOMEM;
				goto out;
			}
		}

		/* allocate the bitmap */
		info->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
2087
		spin_lock(&ctl->tree_lock);
2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098
		if (!info->bitmap) {
			ret = -ENOMEM;
			goto out;
		}
		goto again;
	}

out:
	if (info) {
		if (info->bitmap)
			kfree(info->bitmap);
2099
		kmem_cache_free(btrfs_free_space_cachep, info);
2100
	}
J
Josef Bacik 已提交
2101 2102 2103 2104

	return ret;
}

2105
static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
2106
			  struct btrfs_free_space *info, bool update_stat)
J
Josef Bacik 已提交
2107
{
2108 2109 2110 2111 2112
	struct btrfs_free_space *left_info;
	struct btrfs_free_space *right_info;
	bool merged = false;
	u64 offset = info->offset;
	u64 bytes = info->bytes;
2113

J
Josef Bacik 已提交
2114 2115 2116 2117 2118
	/*
	 * first we want to see if there is free space adjacent to the range we
	 * are adding, if there is remove that struct and add a new one to
	 * cover the entire range
	 */
2119
	right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
2120 2121 2122 2123
	if (right_info && rb_prev(&right_info->offset_index))
		left_info = rb_entry(rb_prev(&right_info->offset_index),
				     struct btrfs_free_space, offset_index);
	else
2124
		left_info = tree_search_offset(ctl, offset - 1, 0, 0);
J
Josef Bacik 已提交
2125

2126
	if (right_info && !right_info->bitmap) {
2127
		if (update_stat)
2128
			unlink_free_space(ctl, right_info);
2129
		else
2130
			__unlink_free_space(ctl, right_info);
2131
		info->bytes += right_info->bytes;
2132
		kmem_cache_free(btrfs_free_space_cachep, right_info);
2133
		merged = true;
J
Josef Bacik 已提交
2134 2135
	}

2136 2137
	if (left_info && !left_info->bitmap &&
	    left_info->offset + left_info->bytes == offset) {
2138
		if (update_stat)
2139
			unlink_free_space(ctl, left_info);
2140
		else
2141
			__unlink_free_space(ctl, left_info);
2142 2143
		info->offset = left_info->offset;
		info->bytes += left_info->bytes;
2144
		kmem_cache_free(btrfs_free_space_cachep, left_info);
2145
		merged = true;
J
Josef Bacik 已提交
2146 2147
	}

2148 2149 2150
	return merged;
}

2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272
static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
				     struct btrfs_free_space *info,
				     bool update_stat)
{
	struct btrfs_free_space *bitmap;
	unsigned long i;
	unsigned long j;
	const u64 end = info->offset + info->bytes;
	const u64 bitmap_offset = offset_to_bitmap(ctl, end);
	u64 bytes;

	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
	if (!bitmap)
		return false;

	i = offset_to_bit(bitmap->offset, ctl->unit, end);
	j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
	if (j == i)
		return false;
	bytes = (j - i) * ctl->unit;
	info->bytes += bytes;

	if (update_stat)
		bitmap_clear_bits(ctl, bitmap, end, bytes);
	else
		__bitmap_clear_bits(ctl, bitmap, end, bytes);

	if (!bitmap->bytes)
		free_bitmap(ctl, bitmap);

	return true;
}

static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
				       struct btrfs_free_space *info,
				       bool update_stat)
{
	struct btrfs_free_space *bitmap;
	u64 bitmap_offset;
	unsigned long i;
	unsigned long j;
	unsigned long prev_j;
	u64 bytes;

	bitmap_offset = offset_to_bitmap(ctl, info->offset);
	/* If we're on a boundary, try the previous logical bitmap. */
	if (bitmap_offset == info->offset) {
		if (info->offset == 0)
			return false;
		bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
	}

	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
	if (!bitmap)
		return false;

	i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
	j = 0;
	prev_j = (unsigned long)-1;
	for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
		if (j > i)
			break;
		prev_j = j;
	}
	if (prev_j == i)
		return false;

	if (prev_j == (unsigned long)-1)
		bytes = (i + 1) * ctl->unit;
	else
		bytes = (i - prev_j) * ctl->unit;

	info->offset -= bytes;
	info->bytes += bytes;

	if (update_stat)
		bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
	else
		__bitmap_clear_bits(ctl, bitmap, info->offset, bytes);

	if (!bitmap->bytes)
		free_bitmap(ctl, bitmap);

	return true;
}

/*
 * We prefer always to allocate from extent entries, both for clustered and
 * non-clustered allocation requests. So when attempting to add a new extent
 * entry, try to see if there's adjacent free space in bitmap entries, and if
 * there is, migrate that space from the bitmaps to the extent.
 * Like this we get better chances of satisfying space allocation requests
 * because we attempt to satisfy them based on a single cache entry, and never
 * on 2 or more entries - even if the entries represent a contiguous free space
 * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
 * ends).
 */
static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
			      struct btrfs_free_space *info,
			      bool update_stat)
{
	/*
	 * Only work with disconnected entries, as we can change their offset,
	 * and must be extent entries.
	 */
	ASSERT(!info->bitmap);
	ASSERT(RB_EMPTY_NODE(&info->offset_index));

	if (ctl->total_bitmaps > 0) {
		bool stole_end;
		bool stole_front = false;

		stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
		if (ctl->total_bitmaps > 0)
			stole_front = steal_from_bitmap_to_front(ctl, info,
								 update_stat);

		if (stole_end || stole_front)
			try_merge_free_space(ctl, info, update_stat);
	}
}

2273 2274
int __btrfs_add_free_space(struct btrfs_free_space_ctl *ctl,
			   u64 offset, u64 bytes)
2275 2276 2277 2278
{
	struct btrfs_free_space *info;
	int ret = 0;

2279
	info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
2280 2281 2282 2283 2284
	if (!info)
		return -ENOMEM;

	info->offset = offset;
	info->bytes = bytes;
2285
	RB_CLEAR_NODE(&info->offset_index);
2286

2287
	spin_lock(&ctl->tree_lock);
2288

2289
	if (try_merge_free_space(ctl, info, true))
2290 2291 2292 2293 2294 2295 2296
		goto link;

	/*
	 * There was no extent directly to the left or right of this new
	 * extent then we know we're going to have to allocate a new extent, so
	 * before we do that see if we need to drop this into a bitmap
	 */
2297
	ret = insert_into_bitmap(ctl, info);
2298 2299 2300 2301 2302 2303 2304
	if (ret < 0) {
		goto out;
	} else if (ret) {
		ret = 0;
		goto out;
	}
link:
2305 2306 2307 2308 2309 2310 2311 2312
	/*
	 * Only steal free space from adjacent bitmaps if we're sure we're not
	 * going to add the new free space to existing bitmap entries - because
	 * that would mean unnecessary work that would be reverted. Therefore
	 * attempt to steal space from bitmaps if we're adding an extent entry.
	 */
	steal_from_bitmap(ctl, info, true);

2313
	ret = link_free_space(ctl, info);
J
Josef Bacik 已提交
2314
	if (ret)
2315
		kmem_cache_free(btrfs_free_space_cachep, info);
2316
out:
2317
	spin_unlock(&ctl->tree_lock);
2318

J
Josef Bacik 已提交
2319
	if (ret) {
2320
		printk(KERN_CRIT "BTRFS: unable to add free space :%d\n", ret);
2321
		ASSERT(ret != -EEXIST);
J
Josef Bacik 已提交
2322 2323 2324 2325 2326
	}

	return ret;
}

2327 2328
int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
			    u64 offset, u64 bytes)
J
Josef Bacik 已提交
2329
{
2330
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
J
Josef Bacik 已提交
2331
	struct btrfs_free_space *info;
2332 2333
	int ret;
	bool re_search = false;
J
Josef Bacik 已提交
2334

2335
	spin_lock(&ctl->tree_lock);
2336

2337
again:
2338
	ret = 0;
2339 2340 2341
	if (!bytes)
		goto out_lock;

2342
	info = tree_search_offset(ctl, offset, 0, 0);
2343
	if (!info) {
2344 2345 2346 2347
		/*
		 * oops didn't find an extent that matched the space we wanted
		 * to remove, look for a bitmap instead
		 */
2348
		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2349 2350
					  1, 0);
		if (!info) {
2351 2352 2353 2354
			/*
			 * If we found a partial bit of our free space in a
			 * bitmap but then couldn't find the other part this may
			 * be a problem, so WARN about it.
2355
			 */
2356
			WARN_ON(re_search);
2357 2358
			goto out_lock;
		}
2359 2360
	}

2361
	re_search = false;
2362
	if (!info->bitmap) {
2363
		unlink_free_space(ctl, info);
2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374
		if (offset == info->offset) {
			u64 to_free = min(bytes, info->bytes);

			info->bytes -= to_free;
			info->offset += to_free;
			if (info->bytes) {
				ret = link_free_space(ctl, info);
				WARN_ON(ret);
			} else {
				kmem_cache_free(btrfs_free_space_cachep, info);
			}
J
Josef Bacik 已提交
2375

2376 2377 2378 2379 2380
			offset += to_free;
			bytes -= to_free;
			goto again;
		} else {
			u64 old_end = info->bytes + info->offset;
2381

2382
			info->bytes = offset - info->offset;
2383
			ret = link_free_space(ctl, info);
2384 2385 2386 2387
			WARN_ON(ret);
			if (ret)
				goto out_lock;

2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403
			/* Not enough bytes in this entry to satisfy us */
			if (old_end < offset + bytes) {
				bytes -= old_end - offset;
				offset = old_end;
				goto again;
			} else if (old_end == offset + bytes) {
				/* all done */
				goto out_lock;
			}
			spin_unlock(&ctl->tree_lock);

			ret = btrfs_add_free_space(block_group, offset + bytes,
						   old_end - (offset + bytes));
			WARN_ON(ret);
			goto out;
		}
J
Josef Bacik 已提交
2404
	}
2405

2406
	ret = remove_from_bitmap(ctl, info, &offset, &bytes);
2407 2408
	if (ret == -EAGAIN) {
		re_search = true;
2409
		goto again;
2410
	}
2411
out_lock:
2412
	spin_unlock(&ctl->tree_lock);
J
Josef Bacik 已提交
2413
out:
2414 2415 2416
	return ret;
}

J
Josef Bacik 已提交
2417 2418 2419
void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
			   u64 bytes)
{
2420
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
J
Josef Bacik 已提交
2421 2422 2423 2424
	struct btrfs_free_space *info;
	struct rb_node *n;
	int count = 0;

2425
	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
J
Josef Bacik 已提交
2426
		info = rb_entry(n, struct btrfs_free_space, offset_index);
L
Liu Bo 已提交
2427
		if (info->bytes >= bytes && !block_group->ro)
J
Josef Bacik 已提交
2428
			count++;
2429 2430 2431
		btrfs_crit(block_group->fs_info,
			   "entry offset %llu, bytes %llu, bitmap %s",
			   info->offset, info->bytes,
2432
		       (info->bitmap) ? "yes" : "no");
J
Josef Bacik 已提交
2433
	}
2434
	btrfs_info(block_group->fs_info, "block group has cluster?: %s",
2435
	       list_empty(&block_group->cluster_list) ? "no" : "yes");
2436 2437
	btrfs_info(block_group->fs_info,
		   "%d blocks of free space at or bigger than bytes is", count);
J
Josef Bacik 已提交
2438 2439
}

2440
void btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group)
J
Josef Bacik 已提交
2441
{
2442
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
J
Josef Bacik 已提交
2443

2444 2445 2446 2447 2448
	spin_lock_init(&ctl->tree_lock);
	ctl->unit = block_group->sectorsize;
	ctl->start = block_group->key.objectid;
	ctl->private = block_group;
	ctl->op = &free_space_op;
2449 2450
	INIT_LIST_HEAD(&ctl->trimming_ranges);
	mutex_init(&ctl->cache_writeout_mutex);
J
Josef Bacik 已提交
2451

2452 2453 2454 2455 2456 2457 2458
	/*
	 * we only want to have 32k of ram per block group for keeping
	 * track of free space, and if we pass 1/2 of that we want to
	 * start converting things over to using bitmaps
	 */
	ctl->extents_thresh = ((1024 * 32) / 2) /
				sizeof(struct btrfs_free_space);
J
Josef Bacik 已提交
2459 2460
}

2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471
/*
 * for a given cluster, put all of its extents back into the free
 * space cache.  If the block group passed doesn't match the block group
 * pointed to by the cluster, someone else raced in and freed the
 * cluster already.  In that case, we just return without changing anything
 */
static int
__btrfs_return_cluster_to_free_space(
			     struct btrfs_block_group_cache *block_group,
			     struct btrfs_free_cluster *cluster)
{
2472
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2473 2474 2475 2476 2477 2478 2479
	struct btrfs_free_space *entry;
	struct rb_node *node;

	spin_lock(&cluster->lock);
	if (cluster->block_group != block_group)
		goto out;

2480
	cluster->block_group = NULL;
2481
	cluster->window_start = 0;
2482 2483
	list_del_init(&cluster->block_group_list);

2484
	node = rb_first(&cluster->root);
2485
	while (node) {
2486 2487
		bool bitmap;

2488 2489 2490
		entry = rb_entry(node, struct btrfs_free_space, offset_index);
		node = rb_next(&entry->offset_index);
		rb_erase(&entry->offset_index, &cluster->root);
2491
		RB_CLEAR_NODE(&entry->offset_index);
2492 2493

		bitmap = (entry->bitmap != NULL);
2494
		if (!bitmap) {
2495
			try_merge_free_space(ctl, entry, false);
2496 2497
			steal_from_bitmap(ctl, entry, false);
		}
2498
		tree_insert_offset(&ctl->free_space_offset,
2499
				   entry->offset, &entry->offset_index, bitmap);
2500
	}
2501
	cluster->root = RB_ROOT;
2502

2503 2504
out:
	spin_unlock(&cluster->lock);
2505
	btrfs_put_block_group(block_group);
2506 2507 2508
	return 0;
}

2509 2510
static void __btrfs_remove_free_space_cache_locked(
				struct btrfs_free_space_ctl *ctl)
J
Josef Bacik 已提交
2511 2512 2513
{
	struct btrfs_free_space *info;
	struct rb_node *node;
2514 2515 2516

	while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
		info = rb_entry(node, struct btrfs_free_space, offset_index);
2517 2518 2519 2520 2521 2522
		if (!info->bitmap) {
			unlink_free_space(ctl, info);
			kmem_cache_free(btrfs_free_space_cachep, info);
		} else {
			free_bitmap(ctl, info);
		}
2523 2524

		cond_resched_lock(&ctl->tree_lock);
2525
	}
2526 2527 2528 2529 2530 2531
}

void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
{
	spin_lock(&ctl->tree_lock);
	__btrfs_remove_free_space_cache_locked(ctl);
2532 2533 2534 2535 2536 2537
	spin_unlock(&ctl->tree_lock);
}

void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
{
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2538
	struct btrfs_free_cluster *cluster;
2539
	struct list_head *head;
J
Josef Bacik 已提交
2540

2541
	spin_lock(&ctl->tree_lock);
2542 2543 2544 2545
	while ((head = block_group->cluster_list.next) !=
	       &block_group->cluster_list) {
		cluster = list_entry(head, struct btrfs_free_cluster,
				     block_group_list);
2546 2547 2548

		WARN_ON(cluster->block_group != block_group);
		__btrfs_return_cluster_to_free_space(block_group, cluster);
2549 2550

		cond_resched_lock(&ctl->tree_lock);
2551
	}
2552
	__btrfs_remove_free_space_cache_locked(ctl);
2553
	spin_unlock(&ctl->tree_lock);
2554

J
Josef Bacik 已提交
2555 2556
}

2557
u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
2558 2559
			       u64 offset, u64 bytes, u64 empty_size,
			       u64 *max_extent_size)
J
Josef Bacik 已提交
2560
{
2561
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2562
	struct btrfs_free_space *entry = NULL;
2563
	u64 bytes_search = bytes + empty_size;
2564
	u64 ret = 0;
D
David Woodhouse 已提交
2565 2566
	u64 align_gap = 0;
	u64 align_gap_len = 0;
J
Josef Bacik 已提交
2567

2568
	spin_lock(&ctl->tree_lock);
D
David Woodhouse 已提交
2569
	entry = find_free_space(ctl, &offset, &bytes_search,
2570
				block_group->full_stripe_len, max_extent_size);
2571
	if (!entry)
2572 2573 2574 2575
		goto out;

	ret = offset;
	if (entry->bitmap) {
2576
		bitmap_clear_bits(ctl, entry, offset, bytes);
2577
		if (!entry->bytes)
2578
			free_bitmap(ctl, entry);
2579
	} else {
2580
		unlink_free_space(ctl, entry);
D
David Woodhouse 已提交
2581 2582 2583 2584 2585 2586 2587
		align_gap_len = offset - entry->offset;
		align_gap = entry->offset;

		entry->offset = offset + bytes;
		WARN_ON(entry->bytes < bytes + align_gap_len);

		entry->bytes -= bytes + align_gap_len;
2588
		if (!entry->bytes)
2589
			kmem_cache_free(btrfs_free_space_cachep, entry);
2590
		else
2591
			link_free_space(ctl, entry);
2592
	}
2593
out:
2594
	spin_unlock(&ctl->tree_lock);
J
Josef Bacik 已提交
2595

D
David Woodhouse 已提交
2596 2597
	if (align_gap_len)
		__btrfs_add_free_space(ctl, align_gap, align_gap_len);
J
Josef Bacik 已提交
2598 2599
	return ret;
}
2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612

/*
 * given a cluster, put all of its extents back into the free space
 * cache.  If a block group is passed, this function will only free
 * a cluster that belongs to the passed block group.
 *
 * Otherwise, it'll get a reference on the block group pointed to by the
 * cluster and remove the cluster from it.
 */
int btrfs_return_cluster_to_free_space(
			       struct btrfs_block_group_cache *block_group,
			       struct btrfs_free_cluster *cluster)
{
2613
	struct btrfs_free_space_ctl *ctl;
2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631
	int ret;

	/* first, get a safe pointer to the block group */
	spin_lock(&cluster->lock);
	if (!block_group) {
		block_group = cluster->block_group;
		if (!block_group) {
			spin_unlock(&cluster->lock);
			return 0;
		}
	} else if (cluster->block_group != block_group) {
		/* someone else has already freed it don't redo their work */
		spin_unlock(&cluster->lock);
		return 0;
	}
	atomic_inc(&block_group->count);
	spin_unlock(&cluster->lock);

2632 2633
	ctl = block_group->free_space_ctl;

2634
	/* now return any extents the cluster had on it */
2635
	spin_lock(&ctl->tree_lock);
2636
	ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
2637
	spin_unlock(&ctl->tree_lock);
2638 2639 2640 2641 2642 2643

	/* finally drop our ref */
	btrfs_put_block_group(block_group);
	return ret;
}

2644 2645
static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group,
				   struct btrfs_free_cluster *cluster,
2646
				   struct btrfs_free_space *entry,
2647 2648
				   u64 bytes, u64 min_start,
				   u64 *max_extent_size)
2649
{
2650
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2651 2652 2653 2654 2655 2656 2657 2658
	int err;
	u64 search_start = cluster->window_start;
	u64 search_bytes = bytes;
	u64 ret = 0;

	search_start = min_start;
	search_bytes = bytes;

2659
	err = search_bitmap(ctl, entry, &search_start, &search_bytes);
2660 2661 2662
	if (err) {
		if (search_bytes > *max_extent_size)
			*max_extent_size = search_bytes;
2663
		return 0;
2664
	}
2665 2666

	ret = search_start;
2667
	__bitmap_clear_bits(ctl, entry, ret, bytes);
2668 2669 2670 2671

	return ret;
}

2672 2673 2674 2675 2676 2677 2678
/*
 * given a cluster, try to allocate 'bytes' from it, returns 0
 * if it couldn't find anything suitably large, or a logical disk offset
 * if things worked out
 */
u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
			     struct btrfs_free_cluster *cluster, u64 bytes,
2679
			     u64 min_start, u64 *max_extent_size)
2680
{
2681
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697
	struct btrfs_free_space *entry = NULL;
	struct rb_node *node;
	u64 ret = 0;

	spin_lock(&cluster->lock);
	if (bytes > cluster->max_size)
		goto out;

	if (cluster->block_group != block_group)
		goto out;

	node = rb_first(&cluster->root);
	if (!node)
		goto out;

	entry = rb_entry(node, struct btrfs_free_space, offset_index);
2698
	while (1) {
2699 2700 2701
		if (entry->bytes < bytes && entry->bytes > *max_extent_size)
			*max_extent_size = entry->bytes;

2702 2703
		if (entry->bytes < bytes ||
		    (!entry->bitmap && entry->offset < min_start)) {
2704 2705 2706 2707 2708 2709 2710 2711
			node = rb_next(&entry->offset_index);
			if (!node)
				break;
			entry = rb_entry(node, struct btrfs_free_space,
					 offset_index);
			continue;
		}

2712 2713 2714
		if (entry->bitmap) {
			ret = btrfs_alloc_from_bitmap(block_group,
						      cluster, entry, bytes,
2715 2716
						      cluster->window_start,
						      max_extent_size);
2717 2718 2719 2720 2721 2722 2723 2724
			if (ret == 0) {
				node = rb_next(&entry->offset_index);
				if (!node)
					break;
				entry = rb_entry(node, struct btrfs_free_space,
						 offset_index);
				continue;
			}
2725
			cluster->window_start += bytes;
2726 2727 2728 2729 2730 2731
		} else {
			ret = entry->offset;

			entry->offset += bytes;
			entry->bytes -= bytes;
		}
2732

2733
		if (entry->bytes == 0)
2734 2735 2736 2737 2738
			rb_erase(&entry->offset_index, &cluster->root);
		break;
	}
out:
	spin_unlock(&cluster->lock);
2739

2740 2741 2742
	if (!ret)
		return 0;

2743
	spin_lock(&ctl->tree_lock);
2744

2745
	ctl->free_space -= bytes;
2746
	if (entry->bytes == 0) {
2747
		ctl->free_extents--;
2748 2749
		if (entry->bitmap) {
			kfree(entry->bitmap);
2750 2751
			ctl->total_bitmaps--;
			ctl->op->recalc_thresholds(ctl);
2752
		}
2753
		kmem_cache_free(btrfs_free_space_cachep, entry);
2754 2755
	}

2756
	spin_unlock(&ctl->tree_lock);
2757

2758 2759 2760
	return ret;
}

2761 2762 2763
static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group,
				struct btrfs_free_space *entry,
				struct btrfs_free_cluster *cluster,
2764 2765
				u64 offset, u64 bytes,
				u64 cont1_bytes, u64 min_bytes)
2766
{
2767
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2768 2769
	unsigned long next_zero;
	unsigned long i;
2770 2771
	unsigned long want_bits;
	unsigned long min_bits;
2772 2773 2774
	unsigned long found_bits;
	unsigned long start = 0;
	unsigned long total_found = 0;
2775
	int ret;
2776

2777
	i = offset_to_bit(entry->offset, ctl->unit,
2778
			  max_t(u64, offset, entry->offset));
2779 2780
	want_bits = bytes_to_bits(bytes, ctl->unit);
	min_bits = bytes_to_bits(min_bytes, ctl->unit);
2781 2782 2783

again:
	found_bits = 0;
2784
	for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
2785 2786
		next_zero = find_next_zero_bit(entry->bitmap,
					       BITS_PER_BITMAP, i);
2787
		if (next_zero - i >= min_bits) {
2788 2789 2790 2791 2792 2793 2794
			found_bits = next_zero - i;
			break;
		}
		i = next_zero;
	}

	if (!found_bits)
2795
		return -ENOSPC;
2796

2797
	if (!total_found) {
2798
		start = i;
2799
		cluster->max_size = 0;
2800 2801 2802 2803
	}

	total_found += found_bits;

2804 2805
	if (cluster->max_size < found_bits * ctl->unit)
		cluster->max_size = found_bits * ctl->unit;
2806

2807 2808
	if (total_found < want_bits || cluster->max_size < cont1_bytes) {
		i = next_zero + 1;
2809 2810 2811
		goto again;
	}

2812
	cluster->window_start = start * ctl->unit + entry->offset;
2813
	rb_erase(&entry->offset_index, &ctl->free_space_offset);
2814 2815
	ret = tree_insert_offset(&cluster->root, entry->offset,
				 &entry->offset_index, 1);
2816
	ASSERT(!ret); /* -EEXIST; Logic error */
2817

J
Josef Bacik 已提交
2818
	trace_btrfs_setup_cluster(block_group, cluster,
2819
				  total_found * ctl->unit, 1);
2820 2821 2822
	return 0;
}

2823 2824
/*
 * This searches the block group for just extents to fill the cluster with.
2825 2826
 * Try to find a cluster with at least bytes total bytes, at least one
 * extent of cont1_bytes, and other clusters of at least min_bytes.
2827
 */
2828 2829 2830 2831
static noinline int
setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group,
			struct btrfs_free_cluster *cluster,
			struct list_head *bitmaps, u64 offset, u64 bytes,
2832
			u64 cont1_bytes, u64 min_bytes)
2833
{
2834
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2835 2836 2837 2838 2839 2840
	struct btrfs_free_space *first = NULL;
	struct btrfs_free_space *entry = NULL;
	struct btrfs_free_space *last;
	struct rb_node *node;
	u64 window_free;
	u64 max_extent;
J
Josef Bacik 已提交
2841
	u64 total_size = 0;
2842

2843
	entry = tree_search_offset(ctl, offset, 0, 1);
2844 2845 2846 2847 2848 2849 2850
	if (!entry)
		return -ENOSPC;

	/*
	 * We don't want bitmaps, so just move along until we find a normal
	 * extent entry.
	 */
2851 2852
	while (entry->bitmap || entry->bytes < min_bytes) {
		if (entry->bitmap && list_empty(&entry->list))
2853
			list_add_tail(&entry->list, bitmaps);
2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864
		node = rb_next(&entry->offset_index);
		if (!node)
			return -ENOSPC;
		entry = rb_entry(node, struct btrfs_free_space, offset_index);
	}

	window_free = entry->bytes;
	max_extent = entry->bytes;
	first = entry;
	last = entry;

2865 2866
	for (node = rb_next(&entry->offset_index); node;
	     node = rb_next(&entry->offset_index)) {
2867 2868
		entry = rb_entry(node, struct btrfs_free_space, offset_index);

2869 2870 2871
		if (entry->bitmap) {
			if (list_empty(&entry->list))
				list_add_tail(&entry->list, bitmaps);
2872
			continue;
2873 2874
		}

2875 2876 2877 2878 2879 2880
		if (entry->bytes < min_bytes)
			continue;

		last = entry;
		window_free += entry->bytes;
		if (entry->bytes > max_extent)
2881 2882 2883
			max_extent = entry->bytes;
	}

2884 2885 2886
	if (window_free < bytes || max_extent < cont1_bytes)
		return -ENOSPC;

2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899
	cluster->window_start = first->offset;

	node = &first->offset_index;

	/*
	 * now we've found our entries, pull them out of the free space
	 * cache and put them into the cluster rbtree
	 */
	do {
		int ret;

		entry = rb_entry(node, struct btrfs_free_space, offset_index);
		node = rb_next(&entry->offset_index);
2900
		if (entry->bitmap || entry->bytes < min_bytes)
2901 2902
			continue;

2903
		rb_erase(&entry->offset_index, &ctl->free_space_offset);
2904 2905
		ret = tree_insert_offset(&cluster->root, entry->offset,
					 &entry->offset_index, 0);
J
Josef Bacik 已提交
2906
		total_size += entry->bytes;
2907
		ASSERT(!ret); /* -EEXIST; Logic error */
2908 2909 2910
	} while (node && entry != last);

	cluster->max_size = max_extent;
J
Josef Bacik 已提交
2911
	trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
2912 2913 2914 2915 2916 2917 2918
	return 0;
}

/*
 * This specifically looks for bitmaps that may work in the cluster, we assume
 * that we have already failed to find extents that will work.
 */
2919 2920 2921 2922
static noinline int
setup_cluster_bitmap(struct btrfs_block_group_cache *block_group,
		     struct btrfs_free_cluster *cluster,
		     struct list_head *bitmaps, u64 offset, u64 bytes,
2923
		     u64 cont1_bytes, u64 min_bytes)
2924
{
2925
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2926 2927
	struct btrfs_free_space *entry;
	int ret = -ENOSPC;
2928
	u64 bitmap_offset = offset_to_bitmap(ctl, offset);
2929

2930
	if (ctl->total_bitmaps == 0)
2931 2932
		return -ENOSPC;

2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943
	/*
	 * The bitmap that covers offset won't be in the list unless offset
	 * is just its start offset.
	 */
	entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
	if (entry->offset != bitmap_offset) {
		entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
		if (entry && list_empty(&entry->list))
			list_add(&entry->list, bitmaps);
	}

2944
	list_for_each_entry(entry, bitmaps, list) {
2945
		if (entry->bytes < bytes)
2946 2947
			continue;
		ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
2948
					   bytes, cont1_bytes, min_bytes);
2949 2950 2951 2952 2953
		if (!ret)
			return 0;
	}

	/*
2954 2955
	 * The bitmaps list has all the bitmaps that record free space
	 * starting after offset, so no more search is required.
2956
	 */
2957
	return -ENOSPC;
2958 2959
}

2960 2961
/*
 * here we try to find a cluster of blocks in a block group.  The goal
2962
 * is to find at least bytes+empty_size.
2963 2964 2965 2966 2967
 * We might not find them all in one contiguous area.
 *
 * returns zero and sets up cluster if things worked out, otherwise
 * it returns -enospc
 */
2968
int btrfs_find_space_cluster(struct btrfs_root *root,
2969 2970 2971 2972
			     struct btrfs_block_group_cache *block_group,
			     struct btrfs_free_cluster *cluster,
			     u64 offset, u64 bytes, u64 empty_size)
{
2973
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2974
	struct btrfs_free_space *entry, *tmp;
2975
	LIST_HEAD(bitmaps);
2976
	u64 min_bytes;
2977
	u64 cont1_bytes;
2978 2979
	int ret;

2980 2981 2982 2983 2984 2985
	/*
	 * Choose the minimum extent size we'll require for this
	 * cluster.  For SSD_SPREAD, don't allow any fragmentation.
	 * For metadata, allow allocates with smaller extents.  For
	 * data, keep it dense.
	 */
2986
	if (btrfs_test_opt(root, SSD_SPREAD)) {
2987
		cont1_bytes = min_bytes = bytes + empty_size;
2988
	} else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
2989 2990 2991 2992 2993 2994
		cont1_bytes = bytes;
		min_bytes = block_group->sectorsize;
	} else {
		cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
		min_bytes = block_group->sectorsize;
	}
2995

2996
	spin_lock(&ctl->tree_lock);
2997 2998 2999 3000 3001

	/*
	 * If we know we don't have enough space to make a cluster don't even
	 * bother doing all the work to try and find one.
	 */
3002
	if (ctl->free_space < bytes) {
3003
		spin_unlock(&ctl->tree_lock);
3004 3005 3006
		return -ENOSPC;
	}

3007 3008 3009 3010 3011 3012 3013 3014
	spin_lock(&cluster->lock);

	/* someone already found a cluster, hooray */
	if (cluster->block_group) {
		ret = 0;
		goto out;
	}

J
Josef Bacik 已提交
3015 3016 3017
	trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
				 min_bytes);

3018
	ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
3019 3020
				      bytes + empty_size,
				      cont1_bytes, min_bytes);
3021
	if (ret)
3022
		ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
3023 3024
					   offset, bytes + empty_size,
					   cont1_bytes, min_bytes);
3025 3026 3027 3028

	/* Clear our temporary list */
	list_for_each_entry_safe(entry, tmp, &bitmaps, list)
		list_del_init(&entry->list);
3029

3030 3031 3032 3033 3034
	if (!ret) {
		atomic_inc(&block_group->count);
		list_add_tail(&cluster->block_group_list,
			      &block_group->cluster_list);
		cluster->block_group = block_group;
J
Josef Bacik 已提交
3035 3036
	} else {
		trace_btrfs_failed_cluster_setup(block_group);
3037 3038 3039
	}
out:
	spin_unlock(&cluster->lock);
3040
	spin_unlock(&ctl->tree_lock);
3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051

	return ret;
}

/*
 * simple code to zero out a cluster
 */
void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
{
	spin_lock_init(&cluster->lock);
	spin_lock_init(&cluster->refill_lock);
3052
	cluster->root = RB_ROOT;
3053 3054 3055 3056 3057
	cluster->max_size = 0;
	INIT_LIST_HEAD(&cluster->block_group_list);
	cluster->block_group = NULL;
}

3058 3059
static int do_trimming(struct btrfs_block_group_cache *block_group,
		       u64 *total_trimmed, u64 start, u64 bytes,
3060 3061
		       u64 reserved_start, u64 reserved_bytes,
		       struct btrfs_trim_range *trim_entry)
3062
{
3063
	struct btrfs_space_info *space_info = block_group->space_info;
3064
	struct btrfs_fs_info *fs_info = block_group->fs_info;
3065
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3066 3067 3068
	int ret;
	int update = 0;
	u64 trimmed = 0;
3069

3070 3071 3072 3073 3074 3075 3076 3077 3078 3079
	spin_lock(&space_info->lock);
	spin_lock(&block_group->lock);
	if (!block_group->ro) {
		block_group->reserved += reserved_bytes;
		space_info->bytes_reserved += reserved_bytes;
		update = 1;
	}
	spin_unlock(&block_group->lock);
	spin_unlock(&space_info->lock);

3080 3081
	ret = btrfs_discard_extent(fs_info->extent_root,
				   start, bytes, &trimmed);
3082 3083 3084
	if (!ret)
		*total_trimmed += trimmed;

3085
	mutex_lock(&ctl->cache_writeout_mutex);
3086
	btrfs_add_free_space(block_group, reserved_start, reserved_bytes);
3087 3088
	list_del(&trim_entry->list);
	mutex_unlock(&ctl->cache_writeout_mutex);
3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113

	if (update) {
		spin_lock(&space_info->lock);
		spin_lock(&block_group->lock);
		if (block_group->ro)
			space_info->bytes_readonly += reserved_bytes;
		block_group->reserved -= reserved_bytes;
		space_info->bytes_reserved -= reserved_bytes;
		spin_unlock(&space_info->lock);
		spin_unlock(&block_group->lock);
	}

	return ret;
}

static int trim_no_bitmap(struct btrfs_block_group_cache *block_group,
			  u64 *total_trimmed, u64 start, u64 end, u64 minlen)
{
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
	struct btrfs_free_space *entry;
	struct rb_node *node;
	int ret = 0;
	u64 extent_start;
	u64 extent_bytes;
	u64 bytes;
3114 3115

	while (start < end) {
3116 3117 3118
		struct btrfs_trim_range trim_entry;

		mutex_lock(&ctl->cache_writeout_mutex);
3119
		spin_lock(&ctl->tree_lock);
3120

3121 3122
		if (ctl->free_space < minlen) {
			spin_unlock(&ctl->tree_lock);
3123
			mutex_unlock(&ctl->cache_writeout_mutex);
3124 3125 3126
			break;
		}

3127
		entry = tree_search_offset(ctl, start, 0, 1);
3128
		if (!entry) {
3129
			spin_unlock(&ctl->tree_lock);
3130
			mutex_unlock(&ctl->cache_writeout_mutex);
3131 3132 3133
			break;
		}

3134 3135 3136 3137
		/* skip bitmaps */
		while (entry->bitmap) {
			node = rb_next(&entry->offset_index);
			if (!node) {
3138
				spin_unlock(&ctl->tree_lock);
3139
				mutex_unlock(&ctl->cache_writeout_mutex);
3140
				goto out;
3141
			}
3142 3143
			entry = rb_entry(node, struct btrfs_free_space,
					 offset_index);
3144 3145
		}

3146 3147
		if (entry->offset >= end) {
			spin_unlock(&ctl->tree_lock);
3148
			mutex_unlock(&ctl->cache_writeout_mutex);
3149
			break;
3150 3151
		}

3152 3153 3154 3155 3156 3157
		extent_start = entry->offset;
		extent_bytes = entry->bytes;
		start = max(start, extent_start);
		bytes = min(extent_start + extent_bytes, end) - start;
		if (bytes < minlen) {
			spin_unlock(&ctl->tree_lock);
3158
			mutex_unlock(&ctl->cache_writeout_mutex);
3159
			goto next;
3160 3161
		}

3162 3163 3164
		unlink_free_space(ctl, entry);
		kmem_cache_free(btrfs_free_space_cachep, entry);

3165
		spin_unlock(&ctl->tree_lock);
3166 3167 3168 3169
		trim_entry.start = extent_start;
		trim_entry.bytes = extent_bytes;
		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
		mutex_unlock(&ctl->cache_writeout_mutex);
3170

3171
		ret = do_trimming(block_group, total_trimmed, start, bytes,
3172
				  extent_start, extent_bytes, &trim_entry);
3173 3174 3175 3176
		if (ret)
			break;
next:
		start += bytes;
3177

3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200
		if (fatal_signal_pending(current)) {
			ret = -ERESTARTSYS;
			break;
		}

		cond_resched();
	}
out:
	return ret;
}

static int trim_bitmaps(struct btrfs_block_group_cache *block_group,
			u64 *total_trimmed, u64 start, u64 end, u64 minlen)
{
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
	struct btrfs_free_space *entry;
	int ret = 0;
	int ret2;
	u64 bytes;
	u64 offset = offset_to_bitmap(ctl, start);

	while (offset < end) {
		bool next_bitmap = false;
3201
		struct btrfs_trim_range trim_entry;
3202

3203
		mutex_lock(&ctl->cache_writeout_mutex);
3204 3205 3206 3207
		spin_lock(&ctl->tree_lock);

		if (ctl->free_space < minlen) {
			spin_unlock(&ctl->tree_lock);
3208
			mutex_unlock(&ctl->cache_writeout_mutex);
3209 3210 3211 3212 3213 3214
			break;
		}

		entry = tree_search_offset(ctl, offset, 1, 0);
		if (!entry) {
			spin_unlock(&ctl->tree_lock);
3215
			mutex_unlock(&ctl->cache_writeout_mutex);
3216 3217 3218 3219 3220 3221 3222 3223
			next_bitmap = true;
			goto next;
		}

		bytes = minlen;
		ret2 = search_bitmap(ctl, entry, &start, &bytes);
		if (ret2 || start >= end) {
			spin_unlock(&ctl->tree_lock);
3224
			mutex_unlock(&ctl->cache_writeout_mutex);
3225 3226 3227 3228 3229 3230 3231
			next_bitmap = true;
			goto next;
		}

		bytes = min(bytes, end - start);
		if (bytes < minlen) {
			spin_unlock(&ctl->tree_lock);
3232
			mutex_unlock(&ctl->cache_writeout_mutex);
3233 3234 3235 3236 3237 3238 3239 3240
			goto next;
		}

		bitmap_clear_bits(ctl, entry, start, bytes);
		if (entry->bytes == 0)
			free_bitmap(ctl, entry);

		spin_unlock(&ctl->tree_lock);
3241 3242 3243 3244
		trim_entry.start = start;
		trim_entry.bytes = bytes;
		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
		mutex_unlock(&ctl->cache_writeout_mutex);
3245 3246

		ret = do_trimming(block_group, total_trimmed, start, bytes,
3247
				  start, bytes, &trim_entry);
3248 3249 3250 3251 3252 3253 3254 3255 3256
		if (ret)
			break;
next:
		if (next_bitmap) {
			offset += BITS_PER_BITMAP * ctl->unit;
		} else {
			start += bytes;
			if (start >= offset + BITS_PER_BITMAP * ctl->unit)
				offset += BITS_PER_BITMAP * ctl->unit;
3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268
		}

		if (fatal_signal_pending(current)) {
			ret = -ERESTARTSYS;
			break;
		}

		cond_resched();
	}

	return ret;
}
3269

3270 3271 3272 3273 3274 3275 3276
int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group,
			   u64 *trimmed, u64 start, u64 end, u64 minlen)
{
	int ret;

	*trimmed = 0;

3277 3278 3279 3280 3281 3282 3283 3284
	spin_lock(&block_group->lock);
	if (block_group->removed) {
		spin_unlock(&block_group->lock);
		return 0;
	}
	atomic_inc(&block_group->trimming);
	spin_unlock(&block_group->lock);

3285 3286
	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen);
	if (ret)
3287
		goto out;
3288 3289

	ret = trim_bitmaps(block_group, trimmed, start, end, minlen);
3290 3291 3292 3293 3294 3295 3296 3297 3298
out:
	spin_lock(&block_group->lock);
	if (atomic_dec_and_test(&block_group->trimming) &&
	    block_group->removed) {
		struct extent_map_tree *em_tree;
		struct extent_map *em;

		spin_unlock(&block_group->lock);

3299
		lock_chunks(block_group->fs_info->chunk_root);
3300 3301 3302 3303 3304
		em_tree = &block_group->fs_info->mapping_tree.map_tree;
		write_lock(&em_tree->lock);
		em = lookup_extent_mapping(em_tree, block_group->key.objectid,
					   1);
		BUG_ON(!em); /* logic error, can't happen */
3305 3306 3307 3308
		/*
		 * remove_extent_mapping() will delete us from the pinned_chunks
		 * list, which is protected by the chunk mutex.
		 */
3309 3310 3311 3312 3313 3314 3315
		remove_extent_mapping(em_tree, em);
		write_unlock(&em_tree->lock);
		unlock_chunks(block_group->fs_info->chunk_root);

		/* once for us and once for the tree */
		free_extent_map(em);
		free_extent_map(em);
3316 3317 3318 3319 3320 3321

		/*
		 * We've left one free space entry and other tasks trimming
		 * this block group have left 1 entry each one. Free them.
		 */
		__btrfs_remove_free_space_cache(block_group->free_space_ctl);
3322 3323 3324
	} else {
		spin_unlock(&block_group->lock);
	}
3325 3326 3327 3328

	return ret;
}

3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365
/*
 * Find the left-most item in the cache tree, and then return the
 * smallest inode number in the item.
 *
 * Note: the returned inode number may not be the smallest one in
 * the tree, if the left-most item is a bitmap.
 */
u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root)
{
	struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl;
	struct btrfs_free_space *entry = NULL;
	u64 ino = 0;

	spin_lock(&ctl->tree_lock);

	if (RB_EMPTY_ROOT(&ctl->free_space_offset))
		goto out;

	entry = rb_entry(rb_first(&ctl->free_space_offset),
			 struct btrfs_free_space, offset_index);

	if (!entry->bitmap) {
		ino = entry->offset;

		unlink_free_space(ctl, entry);
		entry->offset++;
		entry->bytes--;
		if (!entry->bytes)
			kmem_cache_free(btrfs_free_space_cachep, entry);
		else
			link_free_space(ctl, entry);
	} else {
		u64 offset = 0;
		u64 count = 1;
		int ret;

		ret = search_bitmap(ctl, entry, &offset, &count);
3366
		/* Logic error; Should be empty if it can't find anything */
3367
		ASSERT(!ret);
3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378

		ino = offset;
		bitmap_clear_bits(ctl, entry, offset, 1);
		if (entry->bytes == 0)
			free_bitmap(ctl, entry);
	}
out:
	spin_unlock(&ctl->tree_lock);

	return ino;
}
3379 3380 3381 3382 3383 3384

struct inode *lookup_free_ino_inode(struct btrfs_root *root,
				    struct btrfs_path *path)
{
	struct inode *inode = NULL;

3385 3386 3387 3388
	spin_lock(&root->ino_cache_lock);
	if (root->ino_cache_inode)
		inode = igrab(root->ino_cache_inode);
	spin_unlock(&root->ino_cache_lock);
3389 3390 3391 3392 3393 3394 3395
	if (inode)
		return inode;

	inode = __lookup_free_space_inode(root, path, 0);
	if (IS_ERR(inode))
		return inode;

3396
	spin_lock(&root->ino_cache_lock);
3397
	if (!btrfs_fs_closing(root->fs_info))
3398 3399
		root->ino_cache_inode = igrab(inode);
	spin_unlock(&root->ino_cache_lock);
3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419

	return inode;
}

int create_free_ino_inode(struct btrfs_root *root,
			  struct btrfs_trans_handle *trans,
			  struct btrfs_path *path)
{
	return __create_free_space_inode(root, trans, path,
					 BTRFS_FREE_INO_OBJECTID, 0);
}

int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
{
	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
	struct btrfs_path *path;
	struct inode *inode;
	int ret = 0;
	u64 root_gen = btrfs_root_generation(&root->root_item);

C
Chris Mason 已提交
3420 3421 3422
	if (!btrfs_test_opt(root, INODE_MAP_CACHE))
		return 0;

3423 3424 3425 3426
	/*
	 * If we're unmounting then just return, since this does a search on the
	 * normal root and not the commit root and we could deadlock.
	 */
3427
	if (btrfs_fs_closing(fs_info))
3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443
		return 0;

	path = btrfs_alloc_path();
	if (!path)
		return 0;

	inode = lookup_free_ino_inode(root, path);
	if (IS_ERR(inode))
		goto out;

	if (root_gen != BTRFS_I(inode)->generation)
		goto out_put;

	ret = __load_free_space_cache(root, inode, ctl, path, 0);

	if (ret < 0)
3444 3445 3446
		btrfs_err(fs_info,
			"failed to load free ino cache for root %llu",
			root->root_key.objectid);
3447 3448 3449 3450 3451 3452 3453 3454 3455
out_put:
	iput(inode);
out:
	btrfs_free_path(path);
	return ret;
}

int btrfs_write_out_ino_cache(struct btrfs_root *root,
			      struct btrfs_trans_handle *trans,
3456 3457
			      struct btrfs_path *path,
			      struct inode *inode)
3458 3459 3460
{
	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
	int ret;
3461
	struct btrfs_io_ctl io_ctl;
3462

C
Chris Mason 已提交
3463 3464 3465
	if (!btrfs_test_opt(root, INODE_MAP_CACHE))
		return 0;

3466 3467 3468
	ret = __btrfs_write_out_cache(root, inode, ctl, NULL, &io_ctl,
				      trans, path, 0) ||
		btrfs_wait_cache_io(root, trans, NULL, &io_ctl, path, 0);
3469 3470 3471
	if (ret) {
		btrfs_delalloc_release_metadata(inode, inode->i_size);
#ifdef DEBUG
3472 3473 3474
		btrfs_err(root->fs_info,
			"failed to write free ino cache for root %llu",
			root->root_key.objectid);
3475 3476
#endif
	}
3477 3478 3479

	return ret;
}
3480 3481

#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3482 3483 3484 3485 3486 3487 3488 3489
/*
 * Use this if you need to make a bitmap or extent entry specifically, it
 * doesn't do any of the merging that add_free_space does, this acts a lot like
 * how the free space cache loading stuff works, so you can get really weird
 * configurations.
 */
int test_add_free_space_entry(struct btrfs_block_group_cache *cache,
			      u64 offset, u64 bytes, bool bitmap)
3490
{
3491 3492 3493 3494 3495
	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
	struct btrfs_free_space *info = NULL, *bitmap_info;
	void *map = NULL;
	u64 bytes_added;
	int ret;
3496

3497 3498 3499 3500 3501
again:
	if (!info) {
		info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
		if (!info)
			return -ENOMEM;
3502 3503
	}

3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530
	if (!bitmap) {
		spin_lock(&ctl->tree_lock);
		info->offset = offset;
		info->bytes = bytes;
		ret = link_free_space(ctl, info);
		spin_unlock(&ctl->tree_lock);
		if (ret)
			kmem_cache_free(btrfs_free_space_cachep, info);
		return ret;
	}

	if (!map) {
		map = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
		if (!map) {
			kmem_cache_free(btrfs_free_space_cachep, info);
			return -ENOMEM;
		}
	}

	spin_lock(&ctl->tree_lock);
	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
					 1, 0);
	if (!bitmap_info) {
		info->bitmap = map;
		map = NULL;
		add_new_bitmap(ctl, info, offset);
		bitmap_info = info;
3531
		info = NULL;
3532
	}
3533

3534 3535 3536 3537
	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
	bytes -= bytes_added;
	offset += bytes_added;
	spin_unlock(&ctl->tree_lock);
3538

3539 3540
	if (bytes)
		goto again;
3541

3542 3543
	if (info)
		kmem_cache_free(btrfs_free_space_cachep, info);
3544 3545 3546
	if (map)
		kfree(map);
	return 0;
3547 3548 3549 3550 3551 3552 3553
}

/*
 * Checks to see if the given range is in the free space cache.  This is really
 * just used to check the absence of space, so if there is free space in the
 * range at all we will return 1.
 */
3554 3555
int test_check_exists(struct btrfs_block_group_cache *cache,
		      u64 offset, u64 bytes)
3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617
{
	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
	struct btrfs_free_space *info;
	int ret = 0;

	spin_lock(&ctl->tree_lock);
	info = tree_search_offset(ctl, offset, 0, 0);
	if (!info) {
		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
					  1, 0);
		if (!info)
			goto out;
	}

have_info:
	if (info->bitmap) {
		u64 bit_off, bit_bytes;
		struct rb_node *n;
		struct btrfs_free_space *tmp;

		bit_off = offset;
		bit_bytes = ctl->unit;
		ret = search_bitmap(ctl, info, &bit_off, &bit_bytes);
		if (!ret) {
			if (bit_off == offset) {
				ret = 1;
				goto out;
			} else if (bit_off > offset &&
				   offset + bytes > bit_off) {
				ret = 1;
				goto out;
			}
		}

		n = rb_prev(&info->offset_index);
		while (n) {
			tmp = rb_entry(n, struct btrfs_free_space,
				       offset_index);
			if (tmp->offset + tmp->bytes < offset)
				break;
			if (offset + bytes < tmp->offset) {
				n = rb_prev(&info->offset_index);
				continue;
			}
			info = tmp;
			goto have_info;
		}

		n = rb_next(&info->offset_index);
		while (n) {
			tmp = rb_entry(n, struct btrfs_free_space,
				       offset_index);
			if (offset + bytes < tmp->offset)
				break;
			if (tmp->offset + tmp->bytes < offset) {
				n = rb_next(&info->offset_index);
				continue;
			}
			info = tmp;
			goto have_info;
		}

3618
		ret = 0;
3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632
		goto out;
	}

	if (info->offset == offset) {
		ret = 1;
		goto out;
	}

	if (offset > info->offset && offset < info->offset + info->bytes)
		ret = 1;
out:
	spin_unlock(&ctl->tree_lock);
	return ret;
}
3633
#endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */