netvsc_drv.c 38.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 * Copyright (c) 2009, Microsoft Corporation.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
14
 * this program; if not, see <http://www.gnu.org/licenses/>.
15 16
 *
 * Authors:
17
 *   Haiyang Zhang <haiyangz@microsoft.com>
18 19
 *   Hank Janssen  <hjanssen@microsoft.com>
 */
20 21
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

22
#include <linux/init.h>
23
#include <linux/atomic.h>
24 25 26 27 28 29 30 31 32
#include <linux/module.h>
#include <linux/highmem.h>
#include <linux/device.h>
#include <linux/io.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/inetdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
33
#include <linux/if_vlan.h>
34
#include <linux/in.h>
35
#include <linux/slab.h>
36 37 38 39
#include <net/arp.h>
#include <net/route.h>
#include <net/sock.h>
#include <net/pkt_sched.h>
40

41
#include "hyperv_net.h"
42 43


44
#define RING_SIZE_MIN 64
45
#define LINKCHANGE_INT (2 * HZ)
46 47 48 49 50
#define NETVSC_HW_FEATURES	(NETIF_F_RXCSUM | \
				 NETIF_F_SG | \
				 NETIF_F_TSO | \
				 NETIF_F_TSO6 | \
				 NETIF_F_HW_CSUM)
51
static int ring_size = 128;
S
Stephen Hemminger 已提交
52 53
module_param(ring_size, int, S_IRUGO);
MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)");
54

55 56
static int max_num_vrss_chns = 8;

57 58 59 60 61 62 63 64 65
static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
				NETIF_MSG_LINK | NETIF_MSG_IFUP |
				NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
				NETIF_MSG_TX_ERR;

static int debug = -1;
module_param(debug, int, S_IRUGO);
MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");

66 67
static void do_set_multicast(struct work_struct *w)
{
68 69
	struct net_device_context *ndevctx =
		container_of(w, struct net_device_context, work);
70 71 72
	struct hv_device *device_obj = ndevctx->device_ctx;
	struct net_device *ndev = hv_get_drvdata(device_obj);
	struct netvsc_device *nvdev = ndevctx->nvdev;
73 74
	struct rndis_device *rdev;

75
	if (!nvdev)
76
		return;
77 78 79

	rdev = nvdev->extension;
	if (rdev == NULL)
80
		return;
81

82
	if (ndev->flags & IFF_PROMISC)
83 84 85 86 87 88 89 90 91
		rndis_filter_set_packet_filter(rdev,
			NDIS_PACKET_TYPE_PROMISCUOUS);
	else
		rndis_filter_set_packet_filter(rdev,
			NDIS_PACKET_TYPE_BROADCAST |
			NDIS_PACKET_TYPE_ALL_MULTICAST |
			NDIS_PACKET_TYPE_DIRECTED);
}

92
static void netvsc_set_multicast_list(struct net_device *net)
93
{
94
	struct net_device_context *net_device_ctx = netdev_priv(net);
95

96
	schedule_work(&net_device_ctx->work);
97 98 99 100
}

static int netvsc_open(struct net_device *net)
{
101
	struct netvsc_device *nvdev = net_device_to_netvsc_device(net);
102
	struct rndis_device *rdev;
103
	int ret = 0;
104

105 106
	netif_carrier_off(net);

107
	/* Open up the device */
108
	ret = rndis_filter_open(nvdev);
109 110 111
	if (ret != 0) {
		netdev_err(net, "unable to open device (ret %d).\n", ret);
		return ret;
112 113
	}

114
	netif_tx_wake_all_queues(net);
115

116 117 118 119
	rdev = nvdev->extension;
	if (!rdev->link_state)
		netif_carrier_on(net);

120 121 122 123 124 125
	return ret;
}

static int netvsc_close(struct net_device *net)
{
	struct net_device_context *net_device_ctx = netdev_priv(net);
126
	struct netvsc_device *nvdev = net_device_ctx->nvdev;
127
	int ret;
128 129
	u32 aread, awrite, i, msec = 10, retry = 0, retry_max = 20;
	struct vmbus_channel *chn;
130

131
	netif_tx_disable(net);
132

133 134
	/* Make sure netvsc_set_multicast_list doesn't re-enable filter! */
	cancel_work_sync(&net_device_ctx->work);
135
	ret = rndis_filter_close(nvdev);
136
	if (ret != 0) {
137
		netdev_err(net, "unable to close device (ret %d).\n", ret);
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
		return ret;
	}

	/* Ensure pending bytes in ring are read */
	while (true) {
		aread = 0;
		for (i = 0; i < nvdev->num_chn; i++) {
			chn = nvdev->chn_table[i];
			if (!chn)
				continue;

			hv_get_ringbuffer_availbytes(&chn->inbound, &aread,
						     &awrite);

			if (aread)
				break;

			hv_get_ringbuffer_availbytes(&chn->outbound, &aread,
						     &awrite);

			if (aread)
				break;
		}

		retry++;
		if (retry > retry_max || aread == 0)
			break;

		msleep(msec);

		if (msec < 1000)
			msec *= 2;
	}

	if (aread) {
		netdev_err(net, "Ring buffer not empty after closing rndis\n");
		ret = -ETIMEDOUT;
	}
176 177 178 179

	return ret;
}

180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
static void *init_ppi_data(struct rndis_message *msg, u32 ppi_size,
				int pkt_type)
{
	struct rndis_packet *rndis_pkt;
	struct rndis_per_packet_info *ppi;

	rndis_pkt = &msg->msg.pkt;
	rndis_pkt->data_offset += ppi_size;

	ppi = (struct rndis_per_packet_info *)((void *)rndis_pkt +
		rndis_pkt->per_pkt_info_offset + rndis_pkt->per_pkt_info_len);

	ppi->size = ppi_size;
	ppi->type = pkt_type;
	ppi->ppi_offset = sizeof(struct rndis_per_packet_info);

	rndis_pkt->per_pkt_info_len += ppi_size;

	return ppi;
}

201 202 203 204
static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
			void *accel_priv, select_queue_fallback_t fallback)
{
	struct net_device_context *net_device_ctx = netdev_priv(ndev);
205
	struct netvsc_device *nvsc_dev = net_device_ctx->nvdev;
206 207 208 209 210 211
	u32 hash;
	u16 q_idx = 0;

	if (nvsc_dev == NULL || ndev->real_num_tx_queues <= 1)
		return 0;

212 213 214
	hash = skb_get_hash(skb);
	q_idx = nvsc_dev->send_table[hash % VRSS_SEND_TAB_SIZE] %
		ndev->real_num_tx_queues;
215

216 217 218
	if (!nvsc_dev->chn_table[q_idx])
		q_idx = 0;

219 220 221
	return q_idx;
}

222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
static u32 fill_pg_buf(struct page *page, u32 offset, u32 len,
			struct hv_page_buffer *pb)
{
	int j = 0;

	/* Deal with compund pages by ignoring unused part
	 * of the page.
	 */
	page += (offset >> PAGE_SHIFT);
	offset &= ~PAGE_MASK;

	while (len > 0) {
		unsigned long bytes;

		bytes = PAGE_SIZE - offset;
		if (bytes > len)
			bytes = len;
		pb[j].pfn = page_to_pfn(page);
		pb[j].offset = offset;
		pb[j].len = bytes;

		offset += bytes;
		len -= bytes;

		if (offset == PAGE_SIZE && len) {
			page++;
			offset = 0;
			j++;
		}
	}

	return j + 1;
}

256
static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
257 258
			   struct hv_netvsc_packet *packet,
			   struct hv_page_buffer **page_buf)
259
{
260
	struct hv_page_buffer *pb = *page_buf;
261 262 263 264 265 266
	u32 slots_used = 0;
	char *data = skb->data;
	int frags = skb_shinfo(skb)->nr_frags;
	int i;

	/* The packet is laid out thus:
267
	 * 1. hdr: RNDIS header and PPI
268 269 270 271 272 273 274 275
	 * 2. skb linear data
	 * 3. skb fragment data
	 */
	if (hdr != NULL)
		slots_used += fill_pg_buf(virt_to_page(hdr),
					offset_in_page(hdr),
					len, &pb[slots_used]);

276 277 278
	packet->rmsg_size = len;
	packet->rmsg_pgcnt = slots_used;

279 280 281 282 283 284 285 286 287 288 289
	slots_used += fill_pg_buf(virt_to_page(data),
				offset_in_page(data),
				skb_headlen(skb), &pb[slots_used]);

	for (i = 0; i < frags; i++) {
		skb_frag_t *frag = skb_shinfo(skb)->frags + i;

		slots_used += fill_pg_buf(skb_frag_page(frag),
					frag->page_offset,
					skb_frag_size(frag), &pb[slots_used]);
	}
290
	return slots_used;
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
}

static int count_skb_frag_slots(struct sk_buff *skb)
{
	int i, frags = skb_shinfo(skb)->nr_frags;
	int pages = 0;

	for (i = 0; i < frags; i++) {
		skb_frag_t *frag = skb_shinfo(skb)->frags + i;
		unsigned long size = skb_frag_size(frag);
		unsigned long offset = frag->page_offset;

		/* Skip unused frames from start of page */
		offset &= ~PAGE_MASK;
		pages += PFN_UP(offset + size);
	}
	return pages;
}

static int netvsc_get_slots(struct sk_buff *skb)
{
	char *data = skb->data;
	unsigned int offset = offset_in_page(data);
	unsigned int len = skb_headlen(skb);
	int slots;
	int frag_slots;

	slots = DIV_ROUND_UP(offset + len, PAGE_SIZE);
	frag_slots = count_skb_frag_slots(skb);
	return slots + frag_slots;
}

323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
static u32 get_net_transport_info(struct sk_buff *skb, u32 *trans_off)
{
	u32 ret_val = TRANSPORT_INFO_NOT_IP;

	if ((eth_hdr(skb)->h_proto != htons(ETH_P_IP)) &&
		(eth_hdr(skb)->h_proto != htons(ETH_P_IPV6))) {
		goto not_ip;
	}

	*trans_off = skb_transport_offset(skb);

	if ((eth_hdr(skb)->h_proto == htons(ETH_P_IP))) {
		struct iphdr *iphdr = ip_hdr(skb);

		if (iphdr->protocol == IPPROTO_TCP)
			ret_val = TRANSPORT_INFO_IPV4_TCP;
		else if (iphdr->protocol == IPPROTO_UDP)
			ret_val = TRANSPORT_INFO_IPV4_UDP;
	} else {
		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
			ret_val = TRANSPORT_INFO_IPV6_TCP;
		else if (ipv6_hdr(skb)->nexthdr == IPPROTO_UDP)
			ret_val = TRANSPORT_INFO_IPV6_UDP;
	}

not_ip:
	return ret_val;
}

352
static int netvsc_start_xmit(struct sk_buff *skb, struct net_device *net)
353 354
{
	struct net_device_context *net_device_ctx = netdev_priv(net);
355
	struct hv_netvsc_packet *packet = NULL;
356
	int ret;
357 358 359 360 361
	unsigned int num_data_pgs;
	struct rndis_message *rndis_msg;
	struct rndis_packet *rndis_pkt;
	u32 rndis_msg_size;
	bool isvlan;
362
	bool linear = false;
363
	struct rndis_per_packet_info *ppi;
364
	struct ndis_tcp_ip_checksum_info *csum_info;
365
	struct ndis_tcp_lso_info *lso_info;
366 367
	int  hdr_offset;
	u32 net_trans_info;
368
	u32 hash;
369
	u32 skb_length;
370
	struct hv_page_buffer page_buf[MAX_PAGE_BUFFER_COUNT];
371
	struct hv_page_buffer *pb = page_buf;
372
	struct netvsc_stats *tx_stats = this_cpu_ptr(net_device_ctx->tx_stats);
373

374 375
	/* We will atmost need two pages to describe the rndis
	 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
376 377
	 * of pages in a single packet. If skb is scattered around
	 * more pages we try linearizing it.
378
	 */
379 380 381

check_size:
	skb_length = skb->len;
382
	num_data_pgs = netvsc_get_slots(skb) + 2;
383 384 385
	if (num_data_pgs > MAX_PAGE_BUFFER_COUNT && linear) {
		net_alert_ratelimited("packet too big: %u pages (%u bytes)\n",
				      num_data_pgs, skb->len);
386 387
		ret = -EFAULT;
		goto drop;
388 389 390 391 392 393 394 395
	} else if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
		if (skb_linearize(skb)) {
			net_alert_ratelimited("failed to linearize skb\n");
			ret = -ENOMEM;
			goto drop;
		}
		linear = true;
		goto check_size;
396
	}
397

398 399 400 401 402 403
	/*
	 * Place the rndis header in the skb head room and
	 * the skb->cb will be used for hv_netvsc_packet
	 * structure.
	 */
	ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
404 405 406 407
	if (ret) {
		netdev_err(net, "unable to alloc hv_netvsc_packet\n");
		ret = -ENOMEM;
		goto drop;
408
	}
409 410 411 412
	/* Use the skb control buffer for building up the packet */
	BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
			FIELD_SIZEOF(struct sk_buff, cb));
	packet = (struct hv_netvsc_packet *)skb->cb;
413

414

415 416
	packet->q_idx = skb_get_queue_mapping(skb);

417
	packet->total_data_buflen = skb->len;
418

419
	rndis_msg = (struct rndis_message *)skb->head;
420

421
	memset(rndis_msg, 0, RNDIS_AND_PPI_SIZE);
422

423
	isvlan = skb->vlan_tci & VLAN_TAG_PRESENT;
424 425 426 427 428 429 430 431 432 433 434

	/* Add the rndis header */
	rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
	rndis_msg->msg_len = packet->total_data_buflen;
	rndis_pkt = &rndis_msg->msg.pkt;
	rndis_pkt->data_offset = sizeof(struct rndis_packet);
	rndis_pkt->data_len = packet->total_data_buflen;
	rndis_pkt->per_pkt_info_offset = sizeof(struct rndis_packet);

	rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);

435 436 437 438 439 440 441 442
	hash = skb_get_hash_raw(skb);
	if (hash != 0 && net->real_num_tx_queues > 1) {
		rndis_msg_size += NDIS_HASH_PPI_SIZE;
		ppi = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
				    NBL_HASH_VALUE);
		*(u32 *)((void *)ppi + ppi->ppi_offset) = hash;
	}

443 444 445 446 447 448 449 450
	if (isvlan) {
		struct ndis_pkt_8021q_info *vlan;

		rndis_msg_size += NDIS_VLAN_PPI_SIZE;
		ppi = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
					IEEE_8021Q_INFO);
		vlan = (struct ndis_pkt_8021q_info *)((void *)ppi +
						ppi->ppi_offset);
451 452
		vlan->vlanid = skb->vlan_tci & VLAN_VID_MASK;
		vlan->pri = (skb->vlan_tci & VLAN_PRIO_MASK) >>
453 454 455
				VLAN_PRIO_SHIFT;
	}

456 457 458 459 460 461 462 463 464
	net_trans_info = get_net_transport_info(skb, &hdr_offset);
	if (net_trans_info == TRANSPORT_INFO_NOT_IP)
		goto do_send;

	/*
	 * Setup the sendside checksum offload only if this is not a
	 * GSO packet.
	 */
	if (skb_is_gso(skb))
465
		goto do_lso;
466

467 468 469 470
	if ((skb->ip_summed == CHECKSUM_NONE) ||
	    (skb->ip_summed == CHECKSUM_UNNECESSARY))
		goto do_send;

471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
	rndis_msg_size += NDIS_CSUM_PPI_SIZE;
	ppi = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
			    TCPIP_CHKSUM_PKTINFO);

	csum_info = (struct ndis_tcp_ip_checksum_info *)((void *)ppi +
			ppi->ppi_offset);

	if (net_trans_info & (INFO_IPV4 << 16))
		csum_info->transmit.is_ipv4 = 1;
	else
		csum_info->transmit.is_ipv6 = 1;

	if (net_trans_info & INFO_TCP) {
		csum_info->transmit.tcp_checksum = 1;
		csum_info->transmit.tcp_header_offset = hdr_offset;
	} else if (net_trans_info & INFO_UDP) {
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
		/* UDP checksum offload is not supported on ws2008r2.
		 * Furthermore, on ws2012 and ws2012r2, there are some
		 * issues with udp checksum offload from Linux guests.
		 * (these are host issues).
		 * For now compute the checksum here.
		 */
		struct udphdr *uh;
		u16 udp_len;

		ret = skb_cow_head(skb, 0);
		if (ret)
			goto drop;

		uh = udp_hdr(skb);
		udp_len = ntohs(uh->len);
		uh->check = 0;
		uh->check = csum_tcpudp_magic(ip_hdr(skb)->saddr,
					      ip_hdr(skb)->daddr,
					      udp_len, IPPROTO_UDP,
					      csum_partial(uh, udp_len, 0));
		if (uh->check == 0)
			uh->check = CSUM_MANGLED_0;

		csum_info->transmit.udp_checksum = 0;
511
	}
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
	goto do_send;

do_lso:
	rndis_msg_size += NDIS_LSO_PPI_SIZE;
	ppi = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
			    TCP_LARGESEND_PKTINFO);

	lso_info = (struct ndis_tcp_lso_info *)((void *)ppi +
			ppi->ppi_offset);

	lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
	if (net_trans_info & (INFO_IPV4 << 16)) {
		lso_info->lso_v2_transmit.ip_version =
			NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
		ip_hdr(skb)->tot_len = 0;
		ip_hdr(skb)->check = 0;
		tcp_hdr(skb)->check =
		~csum_tcpudp_magic(ip_hdr(skb)->saddr,
				   ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
	} else {
		lso_info->lso_v2_transmit.ip_version =
			NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
		ipv6_hdr(skb)->payload_len = 0;
		tcp_hdr(skb)->check =
		~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
				&ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
	}
	lso_info->lso_v2_transmit.tcp_header_offset = hdr_offset;
	lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
541 542

do_send:
543 544
	/* Start filling in the page buffers with the rndis hdr */
	rndis_msg->msg_len += rndis_msg_size;
545
	packet->total_data_buflen = rndis_msg->msg_len;
546
	packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
547
					       skb, packet, &pb);
548

549 550
	/* timestamp packet in software */
	skb_tx_timestamp(skb);
551 552
	ret = netvsc_send(net_device_ctx->device_ctx, packet,
			  rndis_msg, &pb, skb);
553

554
drop:
555
	if (ret == 0) {
556
		u64_stats_update_begin(&tx_stats->syncp);
557 558
		tx_stats->packets++;
		tx_stats->bytes += skb_length;
559
		u64_stats_update_end(&tx_stats->syncp);
560
	} else {
561 562 563 564
		if (ret != -EAGAIN) {
			dev_kfree_skb_any(skb);
			net->stats.tx_dropped++;
		}
565 566
	}

567
	return (ret == -EAGAIN) ? NETDEV_TX_BUSY : NETDEV_TX_OK;
568 569
}

570
/*
571 572
 * netvsc_linkstatus_callback - Link up/down notification
 */
573
void netvsc_linkstatus_callback(struct hv_device *device_obj,
574
				struct rndis_message *resp)
575
{
576
	struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
577
	struct net_device *net;
578
	struct net_device_context *ndev_ctx;
579 580
	struct netvsc_reconfig *event;
	unsigned long flags;
581

582 583 584 585
	/* Handle link change statuses only */
	if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
	    indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
	    indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
586
		return;
587

588
	net = hv_get_drvdata(device_obj);
589

590
	if (!net || net->reg_state != NETREG_REGISTERED)
591 592
		return;

593
	ndev_ctx = netdev_priv(net);
594 595 596 597 598 599 600 601 602 603 604

	event = kzalloc(sizeof(*event), GFP_ATOMIC);
	if (!event)
		return;
	event->event = indicate->status;

	spin_lock_irqsave(&ndev_ctx->lock, flags);
	list_add_tail(&event->list, &ndev_ctx->reconfig_events);
	spin_unlock_irqrestore(&ndev_ctx->lock, flags);

	schedule_delayed_work(&ndev_ctx->dwork, 0);
605 606
}

607 608

static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net,
609
				struct hv_netvsc_packet *packet,
610
				struct ndis_tcp_ip_checksum_info *csum_info,
611
				void *data, u16 vlan_tci)
612 613 614
{
	struct sk_buff *skb;

615
	skb = netdev_alloc_skb_ip_align(net, packet->total_data_buflen);
616 617
	if (!skb)
		return skb;
618

619 620 621 622
	/*
	 * Copy to skb. This copy is needed here since the memory pointed by
	 * hv_netvsc_packet cannot be deallocated
	 */
623 624
	memcpy(skb_put(skb, packet->total_data_buflen), data,
	       packet->total_data_buflen);
625 626

	skb->protocol = eth_type_trans(skb, net);
627 628 629 630 631 632 633 634 635 636 637
	if (csum_info) {
		/* We only look at the IP checksum here.
		 * Should we be dropping the packet if checksum
		 * failed? How do we deal with other checksums - TCP/UDP?
		 */
		if (csum_info->receive.ip_checksum_succeeded)
			skb->ip_summed = CHECKSUM_UNNECESSARY;
		else
			skb->ip_summed = CHECKSUM_NONE;
	}

638
	if (vlan_tci & VLAN_TAG_PRESENT)
639
		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
640
				       vlan_tci);
641

642 643 644 645 646 647 648 649 650 651 652 653 654 655
	return skb;
}

/*
 * netvsc_recv_callback -  Callback when we receive a packet from the
 * "wire" on the specified device.
 */
int netvsc_recv_callback(struct hv_device *device_obj,
				struct hv_netvsc_packet *packet,
				void **data,
				struct ndis_tcp_ip_checksum_info *csum_info,
				struct vmbus_channel *channel,
				u16 vlan_tci)
{
656 657
	struct net_device *net = hv_get_drvdata(device_obj);
	struct net_device_context *net_device_ctx = netdev_priv(net);
658 659 660
	struct sk_buff *skb;
	struct sk_buff *vf_skb;
	struct netvsc_stats *rx_stats;
661
	struct netvsc_device *netvsc_dev = net_device_ctx->nvdev;
662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
	u32 bytes_recvd = packet->total_data_buflen;
	int ret = 0;

	if (!net || net->reg_state != NETREG_REGISTERED)
		return NVSP_STAT_FAIL;

	if (READ_ONCE(netvsc_dev->vf_inject)) {
		atomic_inc(&netvsc_dev->vf_use_cnt);
		if (!READ_ONCE(netvsc_dev->vf_inject)) {
			/*
			 * We raced; just move on.
			 */
			atomic_dec(&netvsc_dev->vf_use_cnt);
			goto vf_injection_done;
		}

		/*
		 * Inject this packet into the VF inerface.
		 * On Hyper-V, multicast and brodcast packets
		 * are only delivered on the synthetic interface
		 * (after subjecting these to policy filters on
		 * the host). Deliver these via the VF interface
		 * in the guest.
		 */
		vf_skb = netvsc_alloc_recv_skb(netvsc_dev->vf_netdev, packet,
					       csum_info, *data, vlan_tci);
		if (vf_skb != NULL) {
			++netvsc_dev->vf_netdev->stats.rx_packets;
			netvsc_dev->vf_netdev->stats.rx_bytes += bytes_recvd;
			netif_receive_skb(vf_skb);
		} else {
			++net->stats.rx_dropped;
			ret = NVSP_STAT_FAIL;
		}
		atomic_dec(&netvsc_dev->vf_use_cnt);
		return ret;
	}

vf_injection_done:
	rx_stats = this_cpu_ptr(net_device_ctx->rx_stats);

	/* Allocate a skb - TODO direct I/O to pages? */
	skb = netvsc_alloc_recv_skb(net, packet, csum_info, *data, vlan_tci);
	if (unlikely(!skb)) {
		++net->stats.rx_dropped;
		return NVSP_STAT_FAIL;
	}
709
	skb_record_rx_queue(skb, channel->
710
			    offermsg.offer.sub_channel_index);
711

712
	u64_stats_update_begin(&rx_stats->syncp);
713 714
	rx_stats->packets++;
	rx_stats->bytes += packet->total_data_buflen;
715
	u64_stats_update_end(&rx_stats->syncp);
716

717 718
	/*
	 * Pass the skb back up. Network stack will deallocate the skb when it
719 720
	 * is done.
	 * TODO - use NAPI?
721
	 */
722
	netif_rx(skb);
723 724 725 726

	return 0;
}

727 728 729
static void netvsc_get_drvinfo(struct net_device *net,
			       struct ethtool_drvinfo *info)
{
730 731
	strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
	strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
732 733
}

734 735 736 737
static void netvsc_get_channels(struct net_device *net,
				struct ethtool_channels *channel)
{
	struct net_device_context *net_device_ctx = netdev_priv(net);
738
	struct netvsc_device *nvdev = net_device_ctx->nvdev;
739 740 741 742 743 744 745

	if (nvdev) {
		channel->max_combined	= nvdev->max_chn;
		channel->combined_count = nvdev->num_chn;
	}
}

746 747 748 749 750
static int netvsc_set_channels(struct net_device *net,
			       struct ethtool_channels *channels)
{
	struct net_device_context *net_device_ctx = netdev_priv(net);
	struct hv_device *dev = net_device_ctx->device_ctx;
751
	struct netvsc_device *nvdev = net_device_ctx->nvdev;
752
	struct netvsc_device_info device_info;
753 754
	u32 num_chn;
	u32 max_chn;
755 756 757
	int ret = 0;
	bool recovering = false;

758
	if (net_device_ctx->start_remove || !nvdev || nvdev->destroy)
759 760
		return -ENODEV;

761 762 763
	num_chn = nvdev->num_chn;
	max_chn = min_t(u32, nvdev->max_chn, num_online_cpus());

764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
	if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5) {
		pr_info("vRSS unsupported before NVSP Version 5\n");
		return -EINVAL;
	}

	/* We do not support rx, tx, or other */
	if (!channels ||
	    channels->rx_count ||
	    channels->tx_count ||
	    channels->other_count ||
	    (channels->combined_count < 1))
		return -EINVAL;

	if (channels->combined_count > max_chn) {
		pr_info("combined channels too high, using %d\n", max_chn);
		channels->combined_count = max_chn;
	}

	ret = netvsc_close(net);
	if (ret)
		goto out;

 do_set:
787
	net_device_ctx->start_remove = true;
788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
	rndis_filter_device_remove(dev);

	nvdev->num_chn = channels->combined_count;

	memset(&device_info, 0, sizeof(device_info));
	device_info.num_chn = nvdev->num_chn; /* passed to RNDIS */
	device_info.ring_size = ring_size;
	device_info.max_num_vrss_chns = max_num_vrss_chns;

	ret = rndis_filter_device_add(dev, &device_info);
	if (ret) {
		if (recovering) {
			netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
			return ret;
		}
		goto recover;
	}

806
	nvdev = net_device_ctx->nvdev;
807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827

	ret = netif_set_real_num_tx_queues(net, nvdev->num_chn);
	if (ret) {
		if (recovering) {
			netdev_err(net, "could not set tx queue count (ret %d)\n", ret);
			return ret;
		}
		goto recover;
	}

	ret = netif_set_real_num_rx_queues(net, nvdev->num_chn);
	if (ret) {
		if (recovering) {
			netdev_err(net, "could not set rx queue count (ret %d)\n", ret);
			return ret;
		}
		goto recover;
	}

 out:
	netvsc_open(net);
828
	net_device_ctx->start_remove = false;
829 830
	/* We may have missed link change notifications */
	schedule_delayed_work(&net_device_ctx->dwork, 0);
831 832 833 834 835 836 837 838 839 840 841 842 843

	return ret;

 recover:
	/* If the above failed, we attempt to recover through the same
	 * process but with the original number of channels.
	 */
	netdev_err(net, "could not set channels, recovering\n");
	recovering = true;
	channels->combined_count = num_chn;
	goto do_set;
}

844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
static bool netvsc_validate_ethtool_ss_cmd(const struct ethtool_cmd *cmd)
{
	struct ethtool_cmd diff1 = *cmd;
	struct ethtool_cmd diff2 = {};

	ethtool_cmd_speed_set(&diff1, 0);
	diff1.duplex = 0;
	/* advertising and cmd are usually set */
	diff1.advertising = 0;
	diff1.cmd = 0;
	/* We set port to PORT_OTHER */
	diff2.port = PORT_OTHER;

	return !memcmp(&diff1, &diff2, sizeof(diff1));
}

static void netvsc_init_settings(struct net_device *dev)
{
	struct net_device_context *ndc = netdev_priv(dev);

	ndc->speed = SPEED_UNKNOWN;
	ndc->duplex = DUPLEX_UNKNOWN;
}

static int netvsc_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
	struct net_device_context *ndc = netdev_priv(dev);

	ethtool_cmd_speed_set(cmd, ndc->speed);
	cmd->duplex = ndc->duplex;
	cmd->port = PORT_OTHER;

	return 0;
}

static int netvsc_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
	struct net_device_context *ndc = netdev_priv(dev);
	u32 speed;

	speed = ethtool_cmd_speed(cmd);
	if (!ethtool_validate_speed(speed) ||
	    !ethtool_validate_duplex(cmd->duplex) ||
	    !netvsc_validate_ethtool_ss_cmd(cmd))
		return -EINVAL;

	ndc->speed = speed;
	ndc->duplex = cmd->duplex;

	return 0;
}

896 897 898
static int netvsc_change_mtu(struct net_device *ndev, int mtu)
{
	struct net_device_context *ndevctx = netdev_priv(ndev);
899 900
	struct netvsc_device *nvdev = ndevctx->nvdev;
	struct hv_device *hdev = ndevctx->device_ctx;
901 902
	struct netvsc_device_info device_info;
	int limit = ETH_DATA_LEN;
903
	u32 num_chn;
904
	int ret = 0;
905

906
	if (ndevctx->start_remove || !nvdev || nvdev->destroy)
907 908
		return -ENODEV;

909
	if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
910
		limit = NETVSC_MTU - ETH_HLEN;
911

912
	if (mtu < NETVSC_MTU_MIN || mtu > limit)
913 914
		return -EINVAL;

915 916 917 918
	ret = netvsc_close(ndev);
	if (ret)
		goto out;

919 920
	num_chn = nvdev->num_chn;

921
	ndevctx->start_remove = true;
922 923 924 925
	rndis_filter_device_remove(hdev);

	ndev->mtu = mtu;

926
	memset(&device_info, 0, sizeof(device_info));
927
	device_info.ring_size = ring_size;
928
	device_info.num_chn = num_chn;
929
	device_info.max_num_vrss_chns = max_num_vrss_chns;
930 931
	rndis_filter_device_add(hdev, &device_info);

932 933
out:
	netvsc_open(ndev);
934
	ndevctx->start_remove = false;
935

936 937 938
	/* We may have missed link change notifications */
	schedule_delayed_work(&ndevctx->dwork, 0);

939
	return ret;
940 941
}

942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
static struct rtnl_link_stats64 *netvsc_get_stats64(struct net_device *net,
						    struct rtnl_link_stats64 *t)
{
	struct net_device_context *ndev_ctx = netdev_priv(net);
	int cpu;

	for_each_possible_cpu(cpu) {
		struct netvsc_stats *tx_stats = per_cpu_ptr(ndev_ctx->tx_stats,
							    cpu);
		struct netvsc_stats *rx_stats = per_cpu_ptr(ndev_ctx->rx_stats,
							    cpu);
		u64 tx_packets, tx_bytes, rx_packets, rx_bytes;
		unsigned int start;

		do {
957
			start = u64_stats_fetch_begin_irq(&tx_stats->syncp);
958 959
			tx_packets = tx_stats->packets;
			tx_bytes = tx_stats->bytes;
960
		} while (u64_stats_fetch_retry_irq(&tx_stats->syncp, start));
961 962

		do {
963
			start = u64_stats_fetch_begin_irq(&rx_stats->syncp);
964 965
			rx_packets = rx_stats->packets;
			rx_bytes = rx_stats->bytes;
966
		} while (u64_stats_fetch_retry_irq(&rx_stats->syncp, start));
967 968 969 970 971 972 973 974 975 976 977 978 979 980 981

		t->tx_bytes	+= tx_bytes;
		t->tx_packets	+= tx_packets;
		t->rx_bytes	+= rx_bytes;
		t->rx_packets	+= rx_packets;
	}

	t->tx_dropped	= net->stats.tx_dropped;
	t->tx_errors	= net->stats.tx_dropped;

	t->rx_dropped	= net->stats.rx_dropped;
	t->rx_errors	= net->stats.rx_errors;

	return t;
}
982 983 984 985 986 987

static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
{
	struct net_device_context *ndevctx = netdev_priv(ndev);
	struct hv_device *hdev =  ndevctx->device_ctx;
	struct sockaddr *addr = p;
988
	char save_adr[ETH_ALEN];
989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
	unsigned char save_aatype;
	int err;

	memcpy(save_adr, ndev->dev_addr, ETH_ALEN);
	save_aatype = ndev->addr_assign_type;

	err = eth_mac_addr(ndev, p);
	if (err != 0)
		return err;

	err = rndis_filter_set_device_mac(hdev, addr->sa_data);
	if (err != 0) {
		/* roll back to saved MAC */
		memcpy(ndev->dev_addr, save_adr, ETH_ALEN);
		ndev->addr_assign_type = save_aatype;
	}

	return err;
}

R
Richard Weinberger 已提交
1009 1010 1011 1012 1013 1014 1015 1016
#ifdef CONFIG_NET_POLL_CONTROLLER
static void netvsc_poll_controller(struct net_device *net)
{
	/* As netvsc_start_xmit() works synchronous we don't have to
	 * trigger anything here.
	 */
}
#endif
1017

1018 1019 1020
static const struct ethtool_ops ethtool_ops = {
	.get_drvinfo	= netvsc_get_drvinfo,
	.get_link	= ethtool_op_get_link,
1021
	.get_channels   = netvsc_get_channels,
1022
	.set_channels   = netvsc_set_channels,
1023
	.get_ts_info	= ethtool_op_get_ts_info,
1024 1025
	.get_settings	= netvsc_get_settings,
	.set_settings	= netvsc_set_settings,
1026 1027
};

1028 1029 1030 1031
static const struct net_device_ops device_ops = {
	.ndo_open =			netvsc_open,
	.ndo_stop =			netvsc_close,
	.ndo_start_xmit =		netvsc_start_xmit,
1032
	.ndo_set_rx_mode =		netvsc_set_multicast_list,
1033
	.ndo_change_mtu =		netvsc_change_mtu,
1034
	.ndo_validate_addr =		eth_validate_addr,
1035
	.ndo_set_mac_address =		netvsc_set_mac_addr,
1036
	.ndo_select_queue =		netvsc_select_queue,
1037
	.ndo_get_stats64 =		netvsc_get_stats64,
R
Richard Weinberger 已提交
1038 1039 1040
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller =		netvsc_poll_controller,
#endif
1041 1042
};

1043
/*
1044 1045 1046
 * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
 * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
 * present send GARP packet to network peers with netif_notify_peers().
1047
 */
1048
static void netvsc_link_change(struct work_struct *w)
1049
{
1050 1051 1052 1053
	struct net_device_context *ndev_ctx =
		container_of(w, struct net_device_context, dwork.work);
	struct hv_device *device_obj = ndev_ctx->device_ctx;
	struct net_device *net = hv_get_drvdata(device_obj);
1054
	struct netvsc_device *net_device;
1055
	struct rndis_device *rdev;
1056 1057 1058
	struct netvsc_reconfig *event = NULL;
	bool notify = false, reschedule = false;
	unsigned long flags, next_reconfig, delay;
1059

1060 1061 1062 1063
	rtnl_lock();
	if (ndev_ctx->start_remove)
		goto out_unlock;

1064
	net_device = ndev_ctx->nvdev;
1065 1066
	rdev = net_device->extension;

1067 1068 1069 1070 1071 1072 1073 1074 1075
	next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
	if (time_is_after_jiffies(next_reconfig)) {
		/* link_watch only sends one notification with current state
		 * per second, avoid doing reconfig more frequently. Handle
		 * wrap around.
		 */
		delay = next_reconfig - jiffies;
		delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
		schedule_delayed_work(&ndev_ctx->dwork, delay);
1076
		goto out_unlock;
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
	}
	ndev_ctx->last_reconfig = jiffies;

	spin_lock_irqsave(&ndev_ctx->lock, flags);
	if (!list_empty(&ndev_ctx->reconfig_events)) {
		event = list_first_entry(&ndev_ctx->reconfig_events,
					 struct netvsc_reconfig, list);
		list_del(&event->list);
		reschedule = !list_empty(&ndev_ctx->reconfig_events);
	}
	spin_unlock_irqrestore(&ndev_ctx->lock, flags);

	if (!event)
1090
		goto out_unlock;
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121

	switch (event->event) {
		/* Only the following events are possible due to the check in
		 * netvsc_linkstatus_callback()
		 */
	case RNDIS_STATUS_MEDIA_CONNECT:
		if (rdev->link_state) {
			rdev->link_state = false;
			netif_carrier_on(net);
			netif_tx_wake_all_queues(net);
		} else {
			notify = true;
		}
		kfree(event);
		break;
	case RNDIS_STATUS_MEDIA_DISCONNECT:
		if (!rdev->link_state) {
			rdev->link_state = true;
			netif_carrier_off(net);
			netif_tx_stop_all_queues(net);
		}
		kfree(event);
		break;
	case RNDIS_STATUS_NETWORK_CHANGE:
		/* Only makes sense if carrier is present */
		if (!rdev->link_state) {
			rdev->link_state = true;
			netif_carrier_off(net);
			netif_tx_stop_all_queues(net);
			event->event = RNDIS_STATUS_MEDIA_CONNECT;
			spin_lock_irqsave(&ndev_ctx->lock, flags);
1122
			list_add(&event->list, &ndev_ctx->reconfig_events);
1123 1124
			spin_unlock_irqrestore(&ndev_ctx->lock, flags);
			reschedule = true;
1125
		}
1126
		break;
1127 1128 1129 1130 1131 1132
	}

	rtnl_unlock();

	if (notify)
		netdev_notify_peers(net);
1133 1134 1135 1136 1137 1138

	/* link_watch only sends one notification with current state per
	 * second, handle next reconfig event in 2 seconds.
	 */
	if (reschedule)
		schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
1139 1140 1141 1142 1143

	return;

out_unlock:
	rtnl_unlock();
1144 1145
}

1146 1147 1148 1149 1150 1151 1152 1153
static void netvsc_free_netdev(struct net_device *netdev)
{
	struct net_device_context *net_device_ctx = netdev_priv(netdev);

	free_percpu(net_device_ctx->tx_stats);
	free_percpu(net_device_ctx->rx_stats);
	free_netdev(netdev);
}
1154

1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
static void netvsc_notify_peers(struct work_struct *wrk)
{
	struct garp_wrk *gwrk;

	gwrk = container_of(wrk, struct garp_wrk, dwrk);

	netdev_notify_peers(gwrk->netdev);

	atomic_dec(&gwrk->netvsc_dev->vf_use_cnt);
}

1166
static struct net_device *get_netvsc_net_device(char *mac)
1167
{
1168
	struct net_device *dev, *found = NULL;
1169 1170 1171 1172 1173 1174 1175 1176
	int rtnl_locked;

	rtnl_locked = rtnl_trylock();

	for_each_netdev(&init_net, dev) {
		if (memcmp(dev->dev_addr, mac, ETH_ALEN) == 0) {
			if (dev->netdev_ops != &device_ops)
				continue;
1177
			found = dev;
1178 1179 1180 1181 1182 1183
			break;
		}
	}
	if (rtnl_locked)
		rtnl_unlock();

1184
	return found;
1185 1186 1187 1188
}

static int netvsc_register_vf(struct net_device *vf_netdev)
{
1189 1190
	struct net_device *ndev;
	struct net_device_context *net_device_ctx;
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
	struct netvsc_device *netvsc_dev;
	const struct ethtool_ops *eth_ops = vf_netdev->ethtool_ops;

	if (eth_ops == NULL || eth_ops == &ethtool_ops)
		return NOTIFY_DONE;

	/*
	 * We will use the MAC address to locate the synthetic interface to
	 * associate with the VF interface. If we don't find a matching
	 * synthetic interface, move on.
	 */
1202 1203 1204 1205 1206 1207
	ndev = get_netvsc_net_device(vf_netdev->dev_addr);
	if (!ndev)
		return NOTIFY_DONE;

	net_device_ctx = netdev_priv(ndev);
	netvsc_dev = net_device_ctx->nvdev;
1208 1209 1210
	if (netvsc_dev == NULL)
		return NOTIFY_DONE;

1211
	netdev_info(ndev, "VF registering: %s\n", vf_netdev->name);
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
	/*
	 * Take a reference on the module.
	 */
	try_module_get(THIS_MODULE);
	netvsc_dev->vf_netdev = vf_netdev;
	return NOTIFY_OK;
}


static int netvsc_vf_up(struct net_device *vf_netdev)
{
1223
	struct net_device *ndev;
1224 1225 1226 1227 1228 1229 1230
	struct netvsc_device *netvsc_dev;
	const struct ethtool_ops *eth_ops = vf_netdev->ethtool_ops;
	struct net_device_context *net_device_ctx;

	if (eth_ops == &ethtool_ops)
		return NOTIFY_DONE;

1231 1232 1233 1234 1235 1236
	ndev = get_netvsc_net_device(vf_netdev->dev_addr);
	if (!ndev)
		return NOTIFY_DONE;

	net_device_ctx = netdev_priv(ndev);
	netvsc_dev = net_device_ctx->nvdev;
1237 1238 1239 1240

	if ((netvsc_dev == NULL) || (netvsc_dev->vf_netdev == NULL))
		return NOTIFY_DONE;

1241
	netdev_info(ndev, "VF up: %s\n", vf_netdev->name);
1242 1243 1244 1245 1246
	netvsc_dev->vf_inject = true;

	/*
	 * Open the device before switching data path.
	 */
1247
	rndis_filter_open(netvsc_dev);
1248 1249 1250 1251

	/*
	 * notify the host to switch the data path.
	 */
1252 1253
	netvsc_switch_datapath(ndev, true);
	netdev_info(ndev, "Data path switched to VF: %s\n", vf_netdev->name);
1254

1255
	netif_carrier_off(ndev);
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272

	/*
	 * Now notify peers. We are scheduling work to
	 * notify peers; take a reference to prevent
	 * the VF interface from vanishing.
	 */
	atomic_inc(&netvsc_dev->vf_use_cnt);
	net_device_ctx->gwrk.netdev = vf_netdev;
	net_device_ctx->gwrk.netvsc_dev = netvsc_dev;
	schedule_work(&net_device_ctx->gwrk.dwrk);

	return NOTIFY_OK;
}


static int netvsc_vf_down(struct net_device *vf_netdev)
{
1273
	struct net_device *ndev;
1274 1275 1276 1277 1278 1279 1280
	struct netvsc_device *netvsc_dev;
	struct net_device_context *net_device_ctx;
	const struct ethtool_ops *eth_ops = vf_netdev->ethtool_ops;

	if (eth_ops == &ethtool_ops)
		return NOTIFY_DONE;

1281 1282 1283 1284 1285 1286
	ndev = get_netvsc_net_device(vf_netdev->dev_addr);
	if (!ndev)
		return NOTIFY_DONE;

	net_device_ctx = netdev_priv(ndev);
	netvsc_dev = net_device_ctx->nvdev;
1287 1288 1289 1290

	if ((netvsc_dev == NULL) || (netvsc_dev->vf_netdev == NULL))
		return NOTIFY_DONE;

1291
	netdev_info(ndev, "VF down: %s\n", vf_netdev->name);
1292 1293 1294 1295 1296 1297 1298 1299
	netvsc_dev->vf_inject = false;
	/*
	 * Wait for currently active users to
	 * drain out.
	 */

	while (atomic_read(&netvsc_dev->vf_use_cnt) != 0)
		udelay(50);
1300 1301
	netvsc_switch_datapath(ndev, false);
	netdev_info(ndev, "Data path switched from VF: %s\n", vf_netdev->name);
1302
	rndis_filter_close(netvsc_dev);
1303
	netif_carrier_on(ndev);
1304 1305 1306 1307
	/*
	 * Notify peers.
	 */
	atomic_inc(&netvsc_dev->vf_use_cnt);
1308
	net_device_ctx->gwrk.netdev = ndev;
1309 1310 1311 1312 1313 1314 1315 1316 1317
	net_device_ctx->gwrk.netvsc_dev = netvsc_dev;
	schedule_work(&net_device_ctx->gwrk.dwrk);

	return NOTIFY_OK;
}


static int netvsc_unregister_vf(struct net_device *vf_netdev)
{
1318
	struct net_device *ndev;
1319 1320
	struct netvsc_device *netvsc_dev;
	const struct ethtool_ops *eth_ops = vf_netdev->ethtool_ops;
1321
	struct net_device_context *net_device_ctx;
1322 1323 1324 1325

	if (eth_ops == &ethtool_ops)
		return NOTIFY_DONE;

1326 1327 1328 1329 1330 1331
	ndev = get_netvsc_net_device(vf_netdev->dev_addr);
	if (!ndev)
		return NOTIFY_DONE;

	net_device_ctx = netdev_priv(ndev);
	netvsc_dev = net_device_ctx->nvdev;
1332 1333
	if (netvsc_dev == NULL)
		return NOTIFY_DONE;
1334
	netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name);
1335 1336 1337 1338 1339 1340

	netvsc_dev->vf_netdev = NULL;
	module_put(THIS_MODULE);
	return NOTIFY_OK;
}

1341 1342
static int netvsc_probe(struct hv_device *dev,
			const struct hv_vmbus_device_id *dev_id)
1343 1344 1345 1346
{
	struct net_device *net = NULL;
	struct net_device_context *net_device_ctx;
	struct netvsc_device_info device_info;
1347
	struct netvsc_device *nvdev;
1348 1349
	int ret;

1350 1351
	net = alloc_etherdev_mq(sizeof(struct net_device_context),
				num_online_cpus());
1352
	if (!net)
1353
		return -ENOMEM;
1354

1355 1356
	netif_carrier_off(net);

1357
	net_device_ctx = netdev_priv(net);
1358
	net_device_ctx->device_ctx = dev;
1359 1360 1361 1362 1363
	net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
	if (netif_msg_probe(net_device_ctx))
		netdev_dbg(net, "netvsc msg_enable: %d\n",
			   net_device_ctx->msg_enable);

1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
	net_device_ctx->tx_stats = netdev_alloc_pcpu_stats(struct netvsc_stats);
	if (!net_device_ctx->tx_stats) {
		free_netdev(net);
		return -ENOMEM;
	}
	net_device_ctx->rx_stats = netdev_alloc_pcpu_stats(struct netvsc_stats);
	if (!net_device_ctx->rx_stats) {
		free_percpu(net_device_ctx->tx_stats);
		free_netdev(net);
		return -ENOMEM;
	}

1376
	hv_set_drvdata(dev, net);
1377 1378 1379

	net_device_ctx->start_remove = false;

1380
	INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
1381
	INIT_WORK(&net_device_ctx->work, do_set_multicast);
1382
	INIT_WORK(&net_device_ctx->gwrk.dwrk, netvsc_notify_peers);
1383

1384 1385 1386
	spin_lock_init(&net_device_ctx->lock);
	INIT_LIST_HEAD(&net_device_ctx->reconfig_events);

1387 1388
	net->netdev_ops = &device_ops;

1389 1390
	net->hw_features = NETVSC_HW_FEATURES;
	net->features = NETVSC_HW_FEATURES | NETIF_F_HW_VLAN_CTAG_TX;
1391

1392
	net->ethtool_ops = &ethtool_ops;
1393
	SET_NETDEV_DEV(net, &dev->device);
1394

1395 1396 1397
	/* We always need headroom for rndis header */
	net->needed_headroom = RNDIS_AND_PPI_SIZE;

1398
	/* Notify the netvsc driver of the new device */
1399
	memset(&device_info, 0, sizeof(device_info));
1400
	device_info.ring_size = ring_size;
1401
	device_info.max_num_vrss_chns = max_num_vrss_chns;
1402 1403 1404
	ret = rndis_filter_device_add(dev, &device_info);
	if (ret != 0) {
		netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
1405
		netvsc_free_netdev(net);
1406
		hv_set_drvdata(dev, NULL);
1407
		return ret;
1408
	}
1409 1410
	memcpy(net->dev_addr, device_info.mac_adr, ETH_ALEN);

1411
	nvdev = net_device_ctx->nvdev;
1412 1413 1414
	netif_set_real_num_tx_queues(net, nvdev->num_chn);
	netif_set_real_num_rx_queues(net, nvdev->num_chn);

1415 1416
	netvsc_init_settings(net);

1417 1418 1419 1420
	ret = register_netdev(net);
	if (ret != 0) {
		pr_err("Unable to register netdev.\n");
		rndis_filter_device_remove(dev);
1421
		netvsc_free_netdev(net);
1422 1423
	}

1424 1425 1426
	return ret;
}

1427
static int netvsc_remove(struct hv_device *dev)
1428
{
1429
	struct net_device *net;
1430
	struct net_device_context *ndev_ctx;
1431 1432
	struct netvsc_device *net_device;

1433
	net = hv_get_drvdata(dev);
1434 1435

	if (net == NULL) {
1436
		dev_err(&dev->device, "No net device to remove\n");
1437 1438 1439
		return 0;
	}

1440

1441
	ndev_ctx = netdev_priv(net);
1442 1443
	net_device = ndev_ctx->nvdev;

1444 1445 1446 1447
	/* Avoid racing with netvsc_change_mtu()/netvsc_set_channels()
	 * removing the device.
	 */
	rtnl_lock();
1448
	ndev_ctx->start_remove = true;
1449
	rtnl_unlock();
1450

1451
	cancel_delayed_work_sync(&ndev_ctx->dwork);
1452
	cancel_work_sync(&ndev_ctx->work);
1453

1454
	/* Stop outbound asap */
1455
	netif_tx_disable(net);
1456 1457 1458 1459 1460 1461 1462

	unregister_netdev(net);

	/*
	 * Call to the vsc driver to let it know that the device is being
	 * removed
	 */
1463
	rndis_filter_device_remove(dev);
1464

1465 1466
	hv_set_drvdata(dev, NULL);

1467
	netvsc_free_netdev(net);
1468
	return 0;
1469 1470
}

1471
static const struct hv_vmbus_device_id id_table[] = {
1472
	/* Network guid */
1473
	{ HV_NIC_GUID, },
1474
	{ },
1475 1476 1477 1478
};

MODULE_DEVICE_TABLE(vmbus, id_table);

1479
/* The one and only one */
1480
static struct  hv_driver netvsc_drv = {
1481
	.name = KBUILD_MODNAME,
1482
	.id_table = id_table,
1483 1484
	.probe = netvsc_probe,
	.remove = netvsc_remove,
1485
};
1486

1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498

/*
 * On Hyper-V, every VF interface is matched with a corresponding
 * synthetic interface. The synthetic interface is presented first
 * to the guest. When the corresponding VF instance is registered,
 * we will take care of switching the data path.
 */
static int netvsc_netdev_event(struct notifier_block *this,
			       unsigned long event, void *ptr)
{
	struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);

1499 1500 1501 1502
	/* Avoid Vlan dev with same MAC registering as VF */
	if (event_dev->priv_flags & IFF_802_1Q_VLAN)
		return NOTIFY_DONE;

1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
	switch (event) {
	case NETDEV_REGISTER:
		return netvsc_register_vf(event_dev);
	case NETDEV_UNREGISTER:
		return netvsc_unregister_vf(event_dev);
	case NETDEV_UP:
		return netvsc_vf_up(event_dev);
	case NETDEV_DOWN:
		return netvsc_vf_down(event_dev);
	default:
		return NOTIFY_DONE;
	}
}

static struct notifier_block netvsc_netdev_notifier = {
	.notifier_call = netvsc_netdev_event,
};

1521
static void __exit netvsc_drv_exit(void)
1522
{
1523
	unregister_netdevice_notifier(&netvsc_netdev_notifier);
1524
	vmbus_driver_unregister(&netvsc_drv);
1525 1526
}

1527
static int __init netvsc_drv_init(void)
1528
{
1529 1530
	int ret;

1531 1532 1533 1534 1535
	if (ring_size < RING_SIZE_MIN) {
		ring_size = RING_SIZE_MIN;
		pr_info("Increased ring_size to %d (min allowed)\n",
			ring_size);
	}
1536 1537 1538 1539 1540 1541 1542
	ret = vmbus_driver_register(&netvsc_drv);

	if (ret)
		return ret;

	register_netdevice_notifier(&netvsc_netdev_notifier);
	return 0;
1543 1544
}

1545
MODULE_LICENSE("GPL");
1546
MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
1547

1548
module_init(netvsc_drv_init);
1549
module_exit(netvsc_drv_exit);