intel_ringbuffer.h 19.4 KB
Newer Older
1 2 3
#ifndef _INTEL_RINGBUFFER_H_
#define _INTEL_RINGBUFFER_H_

4
#include <linux/hashtable.h>
5
#include "i915_gem_batch_pool.h"
6
#include "i915_gem_request.h"
7 8 9

#define I915_CMD_HASH_ORDER 9

10 11 12 13 14 15
/* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill,
 * but keeps the logic simple. Indeed, the whole purpose of this macro is just
 * to give some inclination as to some of the magic values used in the various
 * workarounds!
 */
#define CACHELINE_BYTES 64
16
#define CACHELINE_DWORDS (CACHELINE_BYTES / sizeof(uint32_t))
17

18 19 20 21 22 23 24 25 26 27 28
/*
 * Gen2 BSpec "1. Programming Environment" / 1.4.4.6 "Ring Buffer Use"
 * Gen3 BSpec "vol1c Memory Interface Functions" / 2.3.4.5 "Ring Buffer Use"
 * Gen4+ BSpec "vol1c Memory Interface and Command Stream" / 5.3.4.5 "Ring Buffer Use"
 *
 * "If the Ring Buffer Head Pointer and the Tail Pointer are on the same
 * cacheline, the Head Pointer must not be greater than the Tail
 * Pointer."
 */
#define I915_RING_FREE_SPACE 64

29 30 31 32
struct intel_hw_status_page {
	struct i915_vma *vma;
	u32 *page_addr;
	u32 ggtt_offset;
33 34
};

35 36
#define I915_READ_TAIL(engine) I915_READ(RING_TAIL((engine)->mmio_base))
#define I915_WRITE_TAIL(engine, val) I915_WRITE(RING_TAIL((engine)->mmio_base), val)
37

38 39
#define I915_READ_START(engine) I915_READ(RING_START((engine)->mmio_base))
#define I915_WRITE_START(engine, val) I915_WRITE(RING_START((engine)->mmio_base), val)
40

41 42
#define I915_READ_HEAD(engine)  I915_READ(RING_HEAD((engine)->mmio_base))
#define I915_WRITE_HEAD(engine, val) I915_WRITE(RING_HEAD((engine)->mmio_base), val)
43

44 45
#define I915_READ_CTL(engine) I915_READ(RING_CTL((engine)->mmio_base))
#define I915_WRITE_CTL(engine, val) I915_WRITE(RING_CTL((engine)->mmio_base), val)
46

47 48
#define I915_READ_IMR(engine) I915_READ(RING_IMR((engine)->mmio_base))
#define I915_WRITE_IMR(engine, val) I915_WRITE(RING_IMR((engine)->mmio_base), val)
49

50 51
#define I915_READ_MODE(engine) I915_READ(RING_MI_MODE((engine)->mmio_base))
#define I915_WRITE_MODE(engine, val) I915_WRITE(RING_MI_MODE((engine)->mmio_base), val)
52

53 54 55
/* seqno size is actually only a uint32, but since we plan to use MI_FLUSH_DW to
 * do the writes, and that must have qw aligned offsets, simply pretend it's 8b.
 */
56 57 58
#define gen8_semaphore_seqno_size sizeof(uint64_t)
#define GEN8_SEMAPHORE_OFFSET(__from, __to)			     \
	(((__from) * I915_NUM_ENGINES  + (__to)) * gen8_semaphore_seqno_size)
59
#define GEN8_SIGNAL_OFFSET(__ring, to)			     \
60
	(dev_priv->semaphore->node.start + \
61
	 GEN8_SEMAPHORE_OFFSET((__ring)->id, (to)))
62
#define GEN8_WAIT_OFFSET(__ring, from)			     \
63
	(dev_priv->semaphore->node.start + \
64
	 GEN8_SEMAPHORE_OFFSET(from, (__ring)->id))
65

66
enum intel_engine_hangcheck_action {
67
	HANGCHECK_IDLE = 0,
68 69 70 71 72
	HANGCHECK_WAIT,
	HANGCHECK_ACTIVE,
	HANGCHECK_KICK,
	HANGCHECK_HUNG,
};
73

74 75
#define HANGCHECK_SCORE_RING_HUNG 31

76
struct intel_engine_hangcheck {
77
	u64 acthd;
78
	u32 seqno;
79
	int score;
80
	enum intel_engine_hangcheck_action action;
81
	int deadlock;
82
	u32 instdone[I915_NUM_INSTDONE_REG];
83 84
};

85
struct intel_ring {
86
	struct i915_vma *vma;
87
	void *vaddr;
88

89
	struct intel_engine_cs *engine;
90
	struct list_head link;
91

92 93
	struct list_head request_list;

94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
	u32 head;
	u32 tail;
	int space;
	int size;
	int effective_size;

	/** We track the position of the requests in the ring buffer, and
	 * when each is retired we increment last_retired_head as the GPU
	 * must have finished processing the request and so we know we
	 * can advance the ringbuffer up to that position.
	 *
	 * last_retired_head is set to -1 after the value is consumed so
	 * we can detect new retirements.
	 */
	u32 last_retired_head;
};

111
struct i915_gem_context;
112
struct drm_i915_reg_table;
113

114 115 116 117 118 119 120 121 122 123 124
/*
 * we use a single page to load ctx workarounds so all of these
 * values are referred in terms of dwords
 *
 * struct i915_wa_ctx_bb:
 *  offset: specifies batch starting position, also helpful in case
 *    if we want to have multiple batches at different offsets based on
 *    some criteria. It is not a requirement at the moment but provides
 *    an option for future use.
 *  size: size of the batch in DWORDS
 */
125
struct i915_ctx_workarounds {
126 127 128 129
	struct i915_wa_ctx_bb {
		u32 offset;
		u32 size;
	} indirect_ctx, per_ctx;
130
	struct i915_vma *vma;
131 132
};

133 134
struct drm_i915_gem_request;

135 136
struct intel_engine_cs {
	struct drm_i915_private *i915;
137
	const char	*name;
138
	enum intel_engine_id {
139
		RCS = 0,
140
		BCS,
141 142 143
		VCS,
		VCS2,	/* Keep instances of the same type engine together. */
		VECS
144
	} id;
145
#define I915_NUM_ENGINES 5
146
#define _VCS(n) (VCS + (n))
147
	unsigned int exec_id;
148 149 150 151 152 153 154 155
	enum intel_engine_hw_id {
		RCS_HW = 0,
		VCS_HW,
		BCS_HW,
		VECS_HW,
		VCS2_HW
	} hw_id;
	enum intel_engine_hw_id guc_id; /* XXX same as hw_id? */
156
	u64 fence_context;
157
	u32		mmio_base;
158
	unsigned int irq_shift;
159
	struct intel_ring *buffer;
160
	struct list_head buffers;
161

162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
	/* Rather than have every client wait upon all user interrupts,
	 * with the herd waking after every interrupt and each doing the
	 * heavyweight seqno dance, we delegate the task (of being the
	 * bottom-half of the user interrupt) to the first client. After
	 * every interrupt, we wake up one client, who does the heavyweight
	 * coherent seqno read and either goes back to sleep (if incomplete),
	 * or wakes up all the completed clients in parallel, before then
	 * transferring the bottom-half status to the next client in the queue.
	 *
	 * Compared to walking the entire list of waiters in a single dedicated
	 * bottom-half, we reduce the latency of the first waiter by avoiding
	 * a context switch, but incur additional coherent seqno reads when
	 * following the chain of request breadcrumbs. Since it is most likely
	 * that we have a single client waiting on each seqno, then reducing
	 * the overhead of waking that client is much preferred.
	 */
	struct intel_breadcrumbs {
179
		struct task_struct __rcu *irq_seqno_bh; /* bh for interrupts */
180 181
		bool irq_posted;

182 183
		spinlock_t lock; /* protects the lists of requests */
		struct rb_root waiters; /* sorted by retirement, priority */
184
		struct rb_root signals; /* sorted by retirement */
185
		struct intel_wait *first_wait; /* oldest waiter by retirement */
186
		struct task_struct *signaler; /* used for fence signalling */
187
		struct drm_i915_gem_request *first_signal;
188
		struct timer_list fake_irq; /* used after a missed interrupt */
189 190 191
		struct timer_list hangcheck; /* detect missed interrupts */

		unsigned long timeout;
192 193 194

		bool irq_enabled : 1;
		bool rpm_wakelock : 1;
195 196
	} breadcrumbs;

197 198 199 200 201 202 203
	/*
	 * A pool of objects to use as shadow copies of client batch buffers
	 * when the command parser is enabled. Prevents the client from
	 * modifying the batch contents after software parsing.
	 */
	struct i915_gem_batch_pool batch_pool;

204
	struct intel_hw_status_page status_page;
205
	struct i915_ctx_workarounds wa_ctx;
206
	struct i915_vma *scratch;
207

208 209
	u32             irq_keep_mask; /* always keep these interrupts */
	u32		irq_enable_mask; /* bitmask to enable ring interrupt */
210 211
	void		(*irq_enable)(struct intel_engine_cs *engine);
	void		(*irq_disable)(struct intel_engine_cs *engine);
212

213
	int		(*init_hw)(struct intel_engine_cs *engine);
214

215
	int		(*init_context)(struct drm_i915_gem_request *req);
216

217 218 219 220 221 222 223 224 225 226 227 228 229
	int		(*emit_flush)(struct drm_i915_gem_request *request,
				      u32 mode);
#define EMIT_INVALIDATE	BIT(0)
#define EMIT_FLUSH	BIT(1)
#define EMIT_BARRIER	(EMIT_INVALIDATE | EMIT_FLUSH)
	int		(*emit_bb_start)(struct drm_i915_gem_request *req,
					 u64 offset, u32 length,
					 unsigned int dispatch_flags);
#define I915_DISPATCH_SECURE BIT(0)
#define I915_DISPATCH_PINNED BIT(1)
#define I915_DISPATCH_RS     BIT(2)
	int		(*emit_request)(struct drm_i915_gem_request *req);
	void		(*submit_request)(struct drm_i915_gem_request *req);
230 231 232 233 234 235
	/* Some chipsets are not quite as coherent as advertised and need
	 * an expensive kick to force a true read of the up-to-date seqno.
	 * However, the up-to-date seqno is not always required and the last
	 * seen value is good enough. Note that the seqno will always be
	 * monotonic, even if not coherent.
	 */
236 237
	void		(*irq_seqno_barrier)(struct intel_engine_cs *engine);
	void		(*cleanup)(struct intel_engine_cs *engine);
238

239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
	/* GEN8 signal/wait table - never trust comments!
	 *	  signal to	signal to    signal to   signal to      signal to
	 *	    RCS		   VCS          BCS        VECS		 VCS2
	 *      --------------------------------------------------------------------
	 *  RCS | NOP (0x00) | VCS (0x08) | BCS (0x10) | VECS (0x18) | VCS2 (0x20) |
	 *	|-------------------------------------------------------------------
	 *  VCS | RCS (0x28) | NOP (0x30) | BCS (0x38) | VECS (0x40) | VCS2 (0x48) |
	 *	|-------------------------------------------------------------------
	 *  BCS | RCS (0x50) | VCS (0x58) | NOP (0x60) | VECS (0x68) | VCS2 (0x70) |
	 *	|-------------------------------------------------------------------
	 * VECS | RCS (0x78) | VCS (0x80) | BCS (0x88) |  NOP (0x90) | VCS2 (0x98) |
	 *	|-------------------------------------------------------------------
	 * VCS2 | RCS (0xa0) | VCS (0xa8) | BCS (0xb0) | VECS (0xb8) | NOP  (0xc0) |
	 *	|-------------------------------------------------------------------
	 *
	 * Generalization:
	 *  f(x, y) := (x->id * NUM_RINGS * seqno_size) + (seqno_size * y->id)
	 *  ie. transpose of g(x, y)
	 *
	 *	 sync from	sync from    sync from    sync from	sync from
	 *	    RCS		   VCS          BCS        VECS		 VCS2
	 *      --------------------------------------------------------------------
	 *  RCS | NOP (0x00) | VCS (0x28) | BCS (0x50) | VECS (0x78) | VCS2 (0xa0) |
	 *	|-------------------------------------------------------------------
	 *  VCS | RCS (0x08) | NOP (0x30) | BCS (0x58) | VECS (0x80) | VCS2 (0xa8) |
	 *	|-------------------------------------------------------------------
	 *  BCS | RCS (0x10) | VCS (0x38) | NOP (0x60) | VECS (0x88) | VCS2 (0xb0) |
	 *	|-------------------------------------------------------------------
	 * VECS | RCS (0x18) | VCS (0x40) | BCS (0x68) |  NOP (0x90) | VCS2 (0xb8) |
	 *	|-------------------------------------------------------------------
	 * VCS2 | RCS (0x20) | VCS (0x48) | BCS (0x70) | VECS (0x98) |  NOP (0xc0) |
	 *	|-------------------------------------------------------------------
	 *
	 * Generalization:
	 *  g(x, y) := (y->id * NUM_RINGS * seqno_size) + (seqno_size * x->id)
	 *  ie. transpose of f(x, y)
	 */
276
	struct {
277
		u32	sync_seqno[I915_NUM_ENGINES-1];
278

279
		union {
280 281 282
#define GEN6_SEMAPHORE_LAST	VECS_HW
#define GEN6_NUM_SEMAPHORES	(GEN6_SEMAPHORE_LAST + 1)
#define GEN6_SEMAPHORES_MASK	GENMASK(GEN6_SEMAPHORE_LAST, 0)
283 284
			struct {
				/* our mbox written by others */
285
				u32		wait[GEN6_NUM_SEMAPHORES];
286
				/* mboxes this ring signals to */
287
				i915_reg_t	signal[GEN6_NUM_SEMAPHORES];
288
			} mbox;
289
			u64		signal_ggtt[I915_NUM_ENGINES];
290
		};
291 292

		/* AKA wait() */
293 294 295
		int	(*sync_to)(struct drm_i915_gem_request *req,
				   struct drm_i915_gem_request *signal);
		int	(*signal)(struct drm_i915_gem_request *req);
296
	} semaphore;
297

298
	/* Execlists */
299 300
	struct tasklet_struct irq_tasklet;
	spinlock_t execlist_lock; /* used inside tasklet, use spin_lock_bh */
301 302 303 304
	struct execlist_port {
		struct drm_i915_gem_request *request;
		unsigned int count;
	} execlist_port[2];
305
	struct list_head execlist_queue;
306
	unsigned int fw_domains;
307
	bool disable_lite_restore_wa;
308
	bool preempt_wa;
309
	u32 ctx_desc_template;
310

311 312 313 314 315 316
	/**
	 * List of breadcrumbs associated with GPU requests currently
	 * outstanding.
	 */
	struct list_head request_list;

317 318 319 320 321 322 323
	/**
	 * Seqno of request most recently submitted to request_list.
	 * Used exclusively by hang checker to avoid grabbing lock while
	 * inspecting request list.
	 */
	u32 last_submitted_seqno;

324 325
	/* An RCU guarded pointer to the last request. No reference is
	 * held to the request, users must carefully acquire a reference to
326
	 * the request using i915_gem_active_get_rcu(), or hold the
327 328 329 330
	 * struct_mutex.
	 */
	struct i915_gem_active last_request;

331
	struct i915_gem_context *last_context;
332

333
	struct intel_engine_hangcheck hangcheck;
334

335 336
	bool needs_cmd_parser;

337
	/*
338
	 * Table of commands the command parser needs to know about
339
	 * for this engine.
340
	 */
341
	DECLARE_HASHTABLE(cmd_hash, I915_CMD_HASH_ORDER);
342 343 344 345

	/*
	 * Table of registers allowed in commands that read/write registers.
	 */
346 347
	const struct drm_i915_reg_table *reg_tables;
	int reg_table_count;
348 349 350 351 352

	/*
	 * Returns the bitmask for the length field of the specified command.
	 * Return 0 for an unrecognized/invalid command.
	 *
353
	 * If the command parser finds an entry for a command in the engine's
354
	 * cmd_tables, it gets the command's length based on the table entry.
355 356 357
	 * If not, it calls this function to determine the per-engine length
	 * field encoding for the command (i.e. different opcode ranges use
	 * certain bits to encode the command length in the header).
358 359
	 */
	u32 (*get_cmd_length_mask)(u32 cmd_header);
360 361
};

362
static inline bool
363
intel_engine_initialized(const struct intel_engine_cs *engine)
364
{
365
	return engine->i915 != NULL;
366
}
367

368
static inline unsigned
369
intel_engine_flag(const struct intel_engine_cs *engine)
370
{
371
	return 1 << engine->id;
372 373
}

374
static inline u32
375 376
intel_engine_sync_index(struct intel_engine_cs *engine,
			struct intel_engine_cs *other)
377 378 379 380
{
	int idx;

	/*
R
Rodrigo Vivi 已提交
381 382 383 384 385
	 * rcs -> 0 = vcs, 1 = bcs, 2 = vecs, 3 = vcs2;
	 * vcs -> 0 = bcs, 1 = vecs, 2 = vcs2, 3 = rcs;
	 * bcs -> 0 = vecs, 1 = vcs2. 2 = rcs, 3 = vcs;
	 * vecs -> 0 = vcs2, 1 = rcs, 2 = vcs, 3 = bcs;
	 * vcs2 -> 0 = rcs, 1 = vcs, 2 = bcs, 3 = vecs;
386 387
	 */

388
	idx = (other - engine) - 1;
389
	if (idx < 0)
390
		idx += I915_NUM_ENGINES;
391 392 393 394

	return idx;
}

395
static inline void
396
intel_flush_status_page(struct intel_engine_cs *engine, int reg)
397
{
398 399 400
	mb();
	clflush(&engine->status_page.page_addr[reg]);
	mb();
401 402
}

403
static inline u32
404
intel_read_status_page(struct intel_engine_cs *engine, int reg)
405
{
406
	/* Ensure that the compiler doesn't optimize away the load. */
407
	return READ_ONCE(engine->status_page.page_addr[reg]);
408 409
}

M
Mika Kuoppala 已提交
410
static inline void
411
intel_write_status_page(struct intel_engine_cs *engine,
M
Mika Kuoppala 已提交
412 413
			int reg, u32 value)
{
414
	engine->status_page.page_addr[reg] = value;
M
Mika Kuoppala 已提交
415 416
}

417
/*
C
Chris Wilson 已提交
418 419 420 421 422 423 424 425 426 427 428
 * Reads a dword out of the status page, which is written to from the command
 * queue by automatic updates, MI_REPORT_HEAD, MI_STORE_DATA_INDEX, or
 * MI_STORE_DATA_IMM.
 *
 * The following dwords have a reserved meaning:
 * 0x00: ISR copy, updated when an ISR bit not set in the HWSTAM changes.
 * 0x04: ring 0 head pointer
 * 0x05: ring 1 head pointer (915-class)
 * 0x06: ring 2 head pointer (915-class)
 * 0x10-0x1b: Context status DWords (GM45)
 * 0x1f: Last written status offset. (GM45)
429
 * 0x20-0x2f: Reserved (Gen6+)
C
Chris Wilson 已提交
430
 *
431
 * The area from dword 0x30 to 0x3ff is available for driver usage.
C
Chris Wilson 已提交
432
 */
433
#define I915_GEM_HWS_INDEX		0x30
434
#define I915_GEM_HWS_INDEX_ADDR (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
435
#define I915_GEM_HWS_SCRATCH_INDEX	0x40
436
#define I915_GEM_HWS_SCRATCH_ADDR (I915_GEM_HWS_SCRATCH_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
C
Chris Wilson 已提交
437

438 439
struct intel_ring *
intel_engine_create_ring(struct intel_engine_cs *engine, int size);
440 441
int intel_ring_pin(struct intel_ring *ring);
void intel_ring_unpin(struct intel_ring *ring);
442
void intel_ring_free(struct intel_ring *ring);
443

444 445
void intel_engine_stop(struct intel_engine_cs *engine);
void intel_engine_cleanup(struct intel_engine_cs *engine);
446

447 448
int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request);

449
int __must_check intel_ring_begin(struct drm_i915_gem_request *req, int n);
450
int __must_check intel_ring_cacheline_align(struct drm_i915_gem_request *req);
451

452
static inline void intel_ring_emit(struct intel_ring *ring, u32 data)
453
{
454 455
	*(uint32_t *)(ring->vaddr + ring->tail) = data;
	ring->tail += 4;
456 457
}

458
static inline void intel_ring_emit_reg(struct intel_ring *ring, i915_reg_t reg)
459
{
460
	intel_ring_emit(ring, i915_mmio_reg_offset(reg));
461
}
462

463
static inline void intel_ring_advance(struct intel_ring *ring)
464
{
465 466 467 468 469 470 471
	/* Dummy function.
	 *
	 * This serves as a placeholder in the code so that the reader
	 * can compare against the preceding intel_ring_begin() and
	 * check that the number of dwords emitted matches the space
	 * reserved for the command packet (i.e. the value passed to
	 * intel_ring_begin()).
472
	 */
473 474 475 476 477 478
}

static inline u32 intel_ring_offset(struct intel_ring *ring, u32 value)
{
	/* Don't write ring->size (equivalent to 0) as that hangs some GPUs. */
	return value & (ring->size - 1);
479
}
480

481
int __intel_ring_space(int head, int tail, int size);
482
void intel_ring_update_space(struct intel_ring *ring);
483

484
void intel_engine_init_seqno(struct intel_engine_cs *engine, u32 seqno);
485

486 487
void intel_engine_setup_common(struct intel_engine_cs *engine);
int intel_engine_init_common(struct intel_engine_cs *engine);
488
int intel_engine_create_scratch(struct intel_engine_cs *engine, int size);
489
void intel_engine_cleanup_common(struct intel_engine_cs *engine);
490

491 492 493 494 495 496 497 498
static inline int intel_engine_idle(struct intel_engine_cs *engine,
				    bool interruptible)
{
	/* Wait upon the last request to be completed */
	return i915_gem_active_wait_unlocked(&engine->last_request,
					     interruptible, NULL, NULL);
}

499 500 501 502 503
int intel_init_render_ring_buffer(struct intel_engine_cs *engine);
int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine);
int intel_init_bsd2_ring_buffer(struct intel_engine_cs *engine);
int intel_init_blt_ring_buffer(struct intel_engine_cs *engine);
int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine);
504

505
u64 intel_engine_get_active_head(struct intel_engine_cs *engine);
506 507 508 509
static inline u32 intel_engine_get_seqno(struct intel_engine_cs *engine)
{
	return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
}
510

511
int init_workarounds_ring(struct intel_engine_cs *engine);
512

513 514 515
/*
 * Arbitrary size for largest possible 'add request' sequence. The code paths
 * are complex and variable. Empirical measurement shows that the worst case
516 517 518
 * is BDW at 192 bytes (6 + 6 + 36 dwords), then ILK at 136 bytes. However,
 * we need to allocate double the largest single packet within that emission
 * to account for tail wraparound (so 6 + 6 + 72 dwords for BDW).
519
 */
520
#define MIN_SPACE_FOR_ADD_REQUEST 336
521

522 523
static inline u32 intel_hws_seqno_address(struct intel_engine_cs *engine)
{
524
	return engine->status_page.ggtt_offset + I915_GEM_HWS_INDEX_ADDR;
525 526
}

527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
/* intel_breadcrumbs.c -- user interrupt bottom-half for waiters */
int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine);

static inline void intel_wait_init(struct intel_wait *wait, u32 seqno)
{
	wait->tsk = current;
	wait->seqno = seqno;
}

static inline bool intel_wait_complete(const struct intel_wait *wait)
{
	return RB_EMPTY_NODE(&wait->node);
}

bool intel_engine_add_wait(struct intel_engine_cs *engine,
			   struct intel_wait *wait);
void intel_engine_remove_wait(struct intel_engine_cs *engine,
			      struct intel_wait *wait);
545
void intel_engine_enable_signaling(struct drm_i915_gem_request *request);
546

547
static inline bool intel_engine_has_waiter(const struct intel_engine_cs *engine)
548
{
549
	return rcu_access_pointer(engine->breadcrumbs.irq_seqno_bh);
550 551
}

552
static inline bool intel_engine_wakeup(const struct intel_engine_cs *engine)
553 554
{
	bool wakeup = false;
555

556
	/* Note that for this not to dangerously chase a dangling pointer,
557
	 * we must hold the rcu_read_lock here.
558 559 560 561 562
	 *
	 * Also note that tsk is likely to be in !TASK_RUNNING state so an
	 * early test for tsk->state != TASK_RUNNING before wake_up_process()
	 * is unlikely to be beneficial.
	 */
563 564 565 566 567 568 569 570 571 572
	if (intel_engine_has_waiter(engine)) {
		struct task_struct *tsk;

		rcu_read_lock();
		tsk = rcu_dereference(engine->breadcrumbs.irq_seqno_bh);
		if (tsk)
			wakeup = wake_up_process(tsk);
		rcu_read_unlock();
	}

573 574 575 576 577
	return wakeup;
}

void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine);
unsigned int intel_kick_waiters(struct drm_i915_private *i915);
578
unsigned int intel_kick_signalers(struct drm_i915_private *i915);
579

580 581 582 583 584
static inline bool intel_engine_is_active(struct intel_engine_cs *engine)
{
	return i915_gem_active_isset(&engine->last_request);
}

585
#endif /* _INTEL_RINGBUFFER_H_ */