futex.c 67.8 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10
/*
 *  Fast Userspace Mutexes (which I call "Futexes!").
 *  (C) Rusty Russell, IBM 2002
 *
 *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
 *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
 *
 *  Removed page pinning, fix privately mapped COW pages and other cleanups
 *  (C) Copyright 2003, 2004 Jamie Lokier
 *
11 12 13 14
 *  Robust futex support started by Ingo Molnar
 *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
 *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
 *
15 16 17 18
 *  PI-futex support started by Ingo Molnar and Thomas Gleixner
 *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
 *
E
Eric Dumazet 已提交
19 20 21
 *  PRIVATE futexes by Eric Dumazet
 *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
 *
22 23 24 25
 *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
 *  Copyright (C) IBM Corporation, 2009
 *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
 *
L
Linus Torvalds 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
 *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
 *  enough at me, Linus for the original (flawed) idea, Matthew
 *  Kirkwood for proof-of-concept implementation.
 *
 *  "The futexes are also cursed."
 *  "But they come in a choice of three flavours!"
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */
#include <linux/slab.h>
#include <linux/poll.h>
#include <linux/fs.h>
#include <linux/file.h>
#include <linux/jhash.h>
#include <linux/init.h>
#include <linux/futex.h>
#include <linux/mount.h>
#include <linux/pagemap.h>
#include <linux/syscalls.h>
57
#include <linux/signal.h>
58
#include <linux/module.h>
59
#include <linux/magic.h>
60 61 62
#include <linux/pid.h>
#include <linux/nsproxy.h>

63
#include <asm/futex.h>
L
Linus Torvalds 已提交
64

65 66
#include "rtmutex_common.h"

67 68
int __read_mostly futex_cmpxchg_enabled;

L
Linus Torvalds 已提交
69 70
#define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)

71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
/*
 * Priority Inheritance state:
 */
struct futex_pi_state {
	/*
	 * list of 'owned' pi_state instances - these have to be
	 * cleaned up in do_exit() if the task exits prematurely:
	 */
	struct list_head list;

	/*
	 * The PI object:
	 */
	struct rt_mutex pi_mutex;

	struct task_struct *owner;
	atomic_t refcount;

	union futex_key key;
};

92 93 94 95 96 97 98 99 100 101 102
/**
 * struct futex_q - The hashed futex queue entry, one per waiting task
 * @task:		the task waiting on the futex
 * @lock_ptr:		the hash bucket lock
 * @key:		the key the futex is hashed on
 * @pi_state:		optional priority inheritance state
 * @rt_waiter:		rt_waiter storage for use with requeue_pi
 * @requeue_pi_key:	the requeue_pi target futex key
 * @bitset:		bitset for the optional bitmasked wakeup
 *
 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
L
Linus Torvalds 已提交
103 104 105
 * we can wake only the relevant ones (hashed queues may be shared).
 *
 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
P
Pierre Peiffer 已提交
106
 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
L
Linus Torvalds 已提交
107
 * The order of wakup is always to make the first condition true, then
108 109 110 111
 * the second.
 *
 * PI futexes are typically woken before they are removed from the hash list via
 * the rt_mutex code. See unqueue_me_pi().
L
Linus Torvalds 已提交
112 113
 */
struct futex_q {
P
Pierre Peiffer 已提交
114
	struct plist_node list;
L
Linus Torvalds 已提交
115

116
	struct task_struct *task;
L
Linus Torvalds 已提交
117 118
	spinlock_t *lock_ptr;
	union futex_key key;
119
	struct futex_pi_state *pi_state;
120
	struct rt_mutex_waiter *rt_waiter;
121
	union futex_key *requeue_pi_key;
122
	u32 bitset;
L
Linus Torvalds 已提交
123 124 125
};

/*
D
Darren Hart 已提交
126 127 128
 * Hash buckets are shared by all the futex_keys that hash to the same
 * location.  Each key may have multiple futex_q structures, one for each task
 * waiting on a futex.
L
Linus Torvalds 已提交
129 130
 */
struct futex_hash_bucket {
P
Pierre Peiffer 已提交
131 132
	spinlock_t lock;
	struct plist_head chain;
L
Linus Torvalds 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
};

static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];

/*
 * We hash on the keys returned from get_futex_key (see below).
 */
static struct futex_hash_bucket *hash_futex(union futex_key *key)
{
	u32 hash = jhash2((u32*)&key->both.word,
			  (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
			  key->both.offset);
	return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
}

/*
 * Return 1 if two futex_keys are equal, 0 otherwise.
 */
static inline int match_futex(union futex_key *key1, union futex_key *key2)
{
153 154
	return (key1 && key2
		&& key1->both.word == key2->both.word
L
Linus Torvalds 已提交
155 156 157 158
		&& key1->both.ptr == key2->both.ptr
		&& key1->both.offset == key2->both.offset);
}

159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
/*
 * Take a reference to the resource addressed by a key.
 * Can be called while holding spinlocks.
 *
 */
static void get_futex_key_refs(union futex_key *key)
{
	if (!key->both.ptr)
		return;

	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
	case FUT_OFF_INODE:
		atomic_inc(&key->shared.inode->i_count);
		break;
	case FUT_OFF_MMSHARED:
		atomic_inc(&key->private.mm->mm_count);
		break;
	}
}

/*
 * Drop a reference to the resource addressed by a key.
 * The hash bucket spinlock must not be held.
 */
static void drop_futex_key_refs(union futex_key *key)
{
185 186 187
	if (!key->both.ptr) {
		/* If we're here then we tried to put a key we failed to get */
		WARN_ON_ONCE(1);
188
		return;
189
	}
190 191 192 193 194 195 196 197 198 199 200

	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
	case FUT_OFF_INODE:
		iput(key->shared.inode);
		break;
	case FUT_OFF_MMSHARED:
		mmdrop(key->private.mm);
		break;
	}
}

E
Eric Dumazet 已提交
201
/**
202 203 204 205 206 207
 * get_futex_key() - Get parameters which are the keys for a futex
 * @uaddr:	virtual address of the futex
 * @fshared:	0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
 * @key:	address where result is stored.
 * @rw:		mapping needs to be read/write (values: VERIFY_READ,
 * 		VERIFY_WRITE)
E
Eric Dumazet 已提交
208 209 210
 *
 * Returns a negative error code or 0
 * The key words are stored in *key on success.
L
Linus Torvalds 已提交
211
 *
212
 * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
L
Linus Torvalds 已提交
213 214 215
 * offset_within_page).  For private mappings, it's (uaddr, current->mm).
 * We can usually work out the index without swapping in the page.
 *
D
Darren Hart 已提交
216
 * lock_page() might sleep, the caller should not hold a spinlock.
L
Linus Torvalds 已提交
217
 */
218 219
static int
get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
L
Linus Torvalds 已提交
220
{
221
	unsigned long address = (unsigned long)uaddr;
L
Linus Torvalds 已提交
222 223 224 225 226 227 228
	struct mm_struct *mm = current->mm;
	struct page *page;
	int err;

	/*
	 * The futex address must be "naturally" aligned.
	 */
229
	key->both.offset = address % PAGE_SIZE;
E
Eric Dumazet 已提交
230
	if (unlikely((address % sizeof(u32)) != 0))
L
Linus Torvalds 已提交
231
		return -EINVAL;
232
	address -= key->both.offset;
L
Linus Torvalds 已提交
233

E
Eric Dumazet 已提交
234 235 236 237 238 239 240 241
	/*
	 * PROCESS_PRIVATE futexes are fast.
	 * As the mm cannot disappear under us and the 'key' only needs
	 * virtual address, we dont even have to find the underlying vma.
	 * Note : We do have to check 'uaddr' is a valid user address,
	 *        but access_ok() should be faster than find_vma()
	 */
	if (!fshared) {
242
		if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
E
Eric Dumazet 已提交
243 244 245
			return -EFAULT;
		key->private.mm = mm;
		key->private.address = address;
246
		get_futex_key_refs(key);
E
Eric Dumazet 已提交
247 248
		return 0;
	}
L
Linus Torvalds 已提交
249

250
again:
251
	err = get_user_pages_fast(address, 1, rw == VERIFY_WRITE, &page);
252 253 254
	if (err < 0)
		return err;

255
	page = compound_head(page);
256 257 258 259 260 261
	lock_page(page);
	if (!page->mapping) {
		unlock_page(page);
		put_page(page);
		goto again;
	}
L
Linus Torvalds 已提交
262 263 264 265 266 267

	/*
	 * Private mappings are handled in a simple way.
	 *
	 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
	 * it's a read-only handle, it's expected that futexes attach to
268
	 * the object not the particular process.
L
Linus Torvalds 已提交
269
	 */
270 271
	if (PageAnon(page)) {
		key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
L
Linus Torvalds 已提交
272
		key->private.mm = mm;
273
		key->private.address = address;
274 275 276 277
	} else {
		key->both.offset |= FUT_OFF_INODE; /* inode-based key */
		key->shared.inode = page->mapping->host;
		key->shared.pgoff = page->index;
L
Linus Torvalds 已提交
278 279
	}

280
	get_futex_key_refs(key);
L
Linus Torvalds 已提交
281

282 283 284
	unlock_page(page);
	put_page(page);
	return 0;
L
Linus Torvalds 已提交
285 286
}

287
static inline
P
Peter Zijlstra 已提交
288
void put_futex_key(int fshared, union futex_key *key)
L
Linus Torvalds 已提交
289
{
290
	drop_futex_key_refs(key);
L
Linus Torvalds 已提交
291 292
}

293 294
/**
 * fault_in_user_writeable() - Fault in user address and verify RW access
295 296 297 298 299 300 301 302 303 304 305 306 307
 * @uaddr:	pointer to faulting user space address
 *
 * Slow path to fixup the fault we just took in the atomic write
 * access to @uaddr.
 *
 * We have no generic implementation of a non destructive write to the
 * user address. We know that we faulted in the atomic pagefault
 * disabled section so we can as well avoid the #PF overhead by
 * calling get_user_pages() right away.
 */
static int fault_in_user_writeable(u32 __user *uaddr)
{
	int ret = get_user_pages(current, current->mm, (unsigned long)uaddr,
308
				 1, 1, 0, NULL, NULL);
309 310 311
	return ret < 0 ? ret : 0;
}

312 313
/**
 * futex_top_waiter() - Return the highest priority waiter on a futex
314 315
 * @hb:		the hash bucket the futex_q's reside in
 * @key:	the futex key (to distinguish it from other futex futex_q's)
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
 *
 * Must be called with the hb lock held.
 */
static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
					union futex_key *key)
{
	struct futex_q *this;

	plist_for_each_entry(this, &hb->chain, list) {
		if (match_futex(&this->key, key))
			return this;
	}
	return NULL;
}

T
Thomas Gleixner 已提交
331 332 333 334 335 336 337 338 339 340 341 342
static u32 cmpxchg_futex_value_locked(u32 __user *uaddr, u32 uval, u32 newval)
{
	u32 curval;

	pagefault_disable();
	curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
	pagefault_enable();

	return curval;
}

static int get_futex_value_locked(u32 *dest, u32 __user *from)
L
Linus Torvalds 已提交
343 344 345
{
	int ret;

346
	pagefault_disable();
347
	ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
348
	pagefault_enable();
L
Linus Torvalds 已提交
349 350 351 352

	return ret ? -EFAULT : 0;
}

353 354 355 356 357 358 359 360 361 362 363

/*
 * PI code:
 */
static int refill_pi_state_cache(void)
{
	struct futex_pi_state *pi_state;

	if (likely(current->pi_state_cache))
		return 0;

364
	pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
365 366 367 368 369 370 371 372

	if (!pi_state)
		return -ENOMEM;

	INIT_LIST_HEAD(&pi_state->list);
	/* pi_mutex gets initialized later */
	pi_state->owner = NULL;
	atomic_set(&pi_state->refcount, 1);
373
	pi_state->key = FUTEX_KEY_INIT;
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427

	current->pi_state_cache = pi_state;

	return 0;
}

static struct futex_pi_state * alloc_pi_state(void)
{
	struct futex_pi_state *pi_state = current->pi_state_cache;

	WARN_ON(!pi_state);
	current->pi_state_cache = NULL;

	return pi_state;
}

static void free_pi_state(struct futex_pi_state *pi_state)
{
	if (!atomic_dec_and_test(&pi_state->refcount))
		return;

	/*
	 * If pi_state->owner is NULL, the owner is most probably dying
	 * and has cleaned up the pi_state already
	 */
	if (pi_state->owner) {
		spin_lock_irq(&pi_state->owner->pi_lock);
		list_del_init(&pi_state->list);
		spin_unlock_irq(&pi_state->owner->pi_lock);

		rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
	}

	if (current->pi_state_cache)
		kfree(pi_state);
	else {
		/*
		 * pi_state->list is already empty.
		 * clear pi_state->owner.
		 * refcount is at 0 - put it back to 1.
		 */
		pi_state->owner = NULL;
		atomic_set(&pi_state->refcount, 1);
		current->pi_state_cache = pi_state;
	}
}

/*
 * Look up the task based on what TID userspace gave us.
 * We dont trust it.
 */
static struct task_struct * futex_find_get_task(pid_t pid)
{
	struct task_struct *p;
428
	const struct cred *cred = current_cred(), *pcred;
429

430
	rcu_read_lock();
431
	p = find_task_by_vpid(pid);
432
	if (!p) {
433
		p = ERR_PTR(-ESRCH);
434 435 436 437 438 439 440 441
	} else {
		pcred = __task_cred(p);
		if (cred->euid != pcred->euid &&
		    cred->euid != pcred->uid)
			p = ERR_PTR(-ESRCH);
		else
			get_task_struct(p);
	}
442

443
	rcu_read_unlock();
444 445 446 447 448 449 450 451 452 453 454 455 456

	return p;
}

/*
 * This task is holding PI mutexes at exit time => bad.
 * Kernel cleans up PI-state, but userspace is likely hosed.
 * (Robust-futex cleanup is separate and might save the day for userspace.)
 */
void exit_pi_state_list(struct task_struct *curr)
{
	struct list_head *next, *head = &curr->pi_state_list;
	struct futex_pi_state *pi_state;
457
	struct futex_hash_bucket *hb;
458
	union futex_key key = FUTEX_KEY_INIT;
459

460 461
	if (!futex_cmpxchg_enabled)
		return;
462 463 464
	/*
	 * We are a ZOMBIE and nobody can enqueue itself on
	 * pi_state_list anymore, but we have to be careful
465
	 * versus waiters unqueueing themselves:
466 467 468 469 470 471 472
	 */
	spin_lock_irq(&curr->pi_lock);
	while (!list_empty(head)) {

		next = head->next;
		pi_state = list_entry(next, struct futex_pi_state, list);
		key = pi_state->key;
473
		hb = hash_futex(&key);
474 475 476 477 478
		spin_unlock_irq(&curr->pi_lock);

		spin_lock(&hb->lock);

		spin_lock_irq(&curr->pi_lock);
479 480 481 482
		/*
		 * We dropped the pi-lock, so re-check whether this
		 * task still owns the PI-state:
		 */
483 484 485 486 487 488
		if (head->next != next) {
			spin_unlock(&hb->lock);
			continue;
		}

		WARN_ON(pi_state->owner != curr);
489 490
		WARN_ON(list_empty(&pi_state->list));
		list_del_init(&pi_state->list);
491 492 493 494 495 496 497 498 499 500 501 502 503
		pi_state->owner = NULL;
		spin_unlock_irq(&curr->pi_lock);

		rt_mutex_unlock(&pi_state->pi_mutex);

		spin_unlock(&hb->lock);

		spin_lock_irq(&curr->pi_lock);
	}
	spin_unlock_irq(&curr->pi_lock);
}

static int
P
Pierre Peiffer 已提交
504 505
lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
		union futex_key *key, struct futex_pi_state **ps)
506 507 508
{
	struct futex_pi_state *pi_state = NULL;
	struct futex_q *this, *next;
P
Pierre Peiffer 已提交
509
	struct plist_head *head;
510
	struct task_struct *p;
511
	pid_t pid = uval & FUTEX_TID_MASK;
512 513 514

	head = &hb->chain;

P
Pierre Peiffer 已提交
515
	plist_for_each_entry_safe(this, next, head, list) {
P
Pierre Peiffer 已提交
516
		if (match_futex(&this->key, key)) {
517 518 519 520 521
			/*
			 * Another waiter already exists - bump up
			 * the refcount and return its pi_state:
			 */
			pi_state = this->pi_state;
522 523 524 525 526 527
			/*
			 * Userspace might have messed up non PI and PI futexes
			 */
			if (unlikely(!pi_state))
				return -EINVAL;

528
			WARN_ON(!atomic_read(&pi_state->refcount));
529 530
			WARN_ON(pid && pi_state->owner &&
				pi_state->owner->pid != pid);
531

532
			atomic_inc(&pi_state->refcount);
P
Pierre Peiffer 已提交
533
			*ps = pi_state;
534 535 536 537 538 539

			return 0;
		}
	}

	/*
540
	 * We are the first waiter - try to look up the real owner and attach
541
	 * the new pi_state to it, but bail out when TID = 0
542
	 */
543
	if (!pid)
544
		return -ESRCH;
545
	p = futex_find_get_task(pid);
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
	if (IS_ERR(p))
		return PTR_ERR(p);

	/*
	 * We need to look at the task state flags to figure out,
	 * whether the task is exiting. To protect against the do_exit
	 * change of the task flags, we do this protected by
	 * p->pi_lock:
	 */
	spin_lock_irq(&p->pi_lock);
	if (unlikely(p->flags & PF_EXITING)) {
		/*
		 * The task is on the way out. When PF_EXITPIDONE is
		 * set, we know that the task has finished the
		 * cleanup:
		 */
		int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;

		spin_unlock_irq(&p->pi_lock);
		put_task_struct(p);
		return ret;
	}
568 569 570 571 572 573 574 575 576 577

	pi_state = alloc_pi_state();

	/*
	 * Initialize the pi_mutex in locked state and make 'p'
	 * the owner of it:
	 */
	rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);

	/* Store the key for possible exit cleanups: */
P
Pierre Peiffer 已提交
578
	pi_state->key = *key;
579

580
	WARN_ON(!list_empty(&pi_state->list));
581 582 583 584 585 586
	list_add(&pi_state->list, &p->pi_state_list);
	pi_state->owner = p;
	spin_unlock_irq(&p->pi_lock);

	put_task_struct(p);

P
Pierre Peiffer 已提交
587
	*ps = pi_state;
588 589 590 591

	return 0;
}

592
/**
593
 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
594 595 596 597 598 599 600 601
 * @uaddr:		the pi futex user address
 * @hb:			the pi futex hash bucket
 * @key:		the futex key associated with uaddr and hb
 * @ps:			the pi_state pointer where we store the result of the
 *			lookup
 * @task:		the task to perform the atomic lock work for.  This will
 *			be "current" except in the case of requeue pi.
 * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
602 603 604 605 606 607 608 609 610 611 612
 *
 * Returns:
 *  0 - ready to wait
 *  1 - acquired the lock
 * <0 - error
 *
 * The hb->lock and futex_key refs shall be held by the caller.
 */
static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
				union futex_key *key,
				struct futex_pi_state **ps,
613
				struct task_struct *task, int set_waiters)
614 615 616 617 618 619 620 621 622 623 624 625 626
{
	int lock_taken, ret, ownerdied = 0;
	u32 uval, newval, curval;

retry:
	ret = lock_taken = 0;

	/*
	 * To avoid races, we attempt to take the lock here again
	 * (by doing a 0 -> TID atomic cmpxchg), while holding all
	 * the locks. It will most likely not succeed.
	 */
	newval = task_pid_vnr(task);
627 628
	if (set_waiters)
		newval |= FUTEX_WAITERS;
629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716

	curval = cmpxchg_futex_value_locked(uaddr, 0, newval);

	if (unlikely(curval == -EFAULT))
		return -EFAULT;

	/*
	 * Detect deadlocks.
	 */
	if ((unlikely((curval & FUTEX_TID_MASK) == task_pid_vnr(task))))
		return -EDEADLK;

	/*
	 * Surprise - we got the lock. Just return to userspace:
	 */
	if (unlikely(!curval))
		return 1;

	uval = curval;

	/*
	 * Set the FUTEX_WAITERS flag, so the owner will know it has someone
	 * to wake at the next unlock.
	 */
	newval = curval | FUTEX_WAITERS;

	/*
	 * There are two cases, where a futex might have no owner (the
	 * owner TID is 0): OWNER_DIED. We take over the futex in this
	 * case. We also do an unconditional take over, when the owner
	 * of the futex died.
	 *
	 * This is safe as we are protected by the hash bucket lock !
	 */
	if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
		/* Keep the OWNER_DIED bit */
		newval = (curval & ~FUTEX_TID_MASK) | task_pid_vnr(task);
		ownerdied = 0;
		lock_taken = 1;
	}

	curval = cmpxchg_futex_value_locked(uaddr, uval, newval);

	if (unlikely(curval == -EFAULT))
		return -EFAULT;
	if (unlikely(curval != uval))
		goto retry;

	/*
	 * We took the lock due to owner died take over.
	 */
	if (unlikely(lock_taken))
		return 1;

	/*
	 * We dont have the lock. Look up the PI state (or create it if
	 * we are the first waiter):
	 */
	ret = lookup_pi_state(uval, hb, key, ps);

	if (unlikely(ret)) {
		switch (ret) {
		case -ESRCH:
			/*
			 * No owner found for this futex. Check if the
			 * OWNER_DIED bit is set to figure out whether
			 * this is a robust futex or not.
			 */
			if (get_futex_value_locked(&curval, uaddr))
				return -EFAULT;

			/*
			 * We simply start over in case of a robust
			 * futex. The code above will take the futex
			 * and return happy.
			 */
			if (curval & FUTEX_OWNER_DIED) {
				ownerdied = 1;
				goto retry;
			}
		default:
			break;
		}
	}

	return ret;
}

L
Linus Torvalds 已提交
717 718 719 720 721 722
/*
 * The hash bucket lock must be held when this is called.
 * Afterwards, the futex_q must not be accessed.
 */
static void wake_futex(struct futex_q *q)
{
T
Thomas Gleixner 已提交
723 724
	struct task_struct *p = q->task;

L
Linus Torvalds 已提交
725
	/*
T
Thomas Gleixner 已提交
726 727 728 729 730
	 * We set q->lock_ptr = NULL _before_ we wake up the task. If
	 * a non futex wake up happens on another CPU then the task
	 * might exit and p would dereference a non existing task
	 * struct. Prevent this by holding a reference on p across the
	 * wake up.
L
Linus Torvalds 已提交
731
	 */
T
Thomas Gleixner 已提交
732 733 734
	get_task_struct(p);

	plist_del(&q->list, &q->list.plist);
L
Linus Torvalds 已提交
735
	/*
T
Thomas Gleixner 已提交
736 737 738 739
	 * The waiting task can free the futex_q as soon as
	 * q->lock_ptr = NULL is written, without taking any locks. A
	 * memory barrier is required here to prevent the following
	 * store to lock_ptr from getting ahead of the plist_del.
L
Linus Torvalds 已提交
740
	 */
741
	smp_wmb();
L
Linus Torvalds 已提交
742
	q->lock_ptr = NULL;
T
Thomas Gleixner 已提交
743 744 745

	wake_up_state(p, TASK_NORMAL);
	put_task_struct(p);
L
Linus Torvalds 已提交
746 747
}

748 749 750 751 752 753 754 755 756
static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
{
	struct task_struct *new_owner;
	struct futex_pi_state *pi_state = this->pi_state;
	u32 curval, newval;

	if (!pi_state)
		return -EINVAL;

757
	spin_lock(&pi_state->pi_mutex.wait_lock);
758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
	new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);

	/*
	 * This happens when we have stolen the lock and the original
	 * pending owner did not enqueue itself back on the rt_mutex.
	 * Thats not a tragedy. We know that way, that a lock waiter
	 * is on the fly. We make the futex_q waiter the pending owner.
	 */
	if (!new_owner)
		new_owner = this->task;

	/*
	 * We pass it to the next owner. (The WAITERS bit is always
	 * kept enabled while there is PI state around. We must also
	 * preserve the owner died bit.)
	 */
774
	if (!(uval & FUTEX_OWNER_DIED)) {
775 776
		int ret = 0;

777
		newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
778

T
Thomas Gleixner 已提交
779
		curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
780

781
		if (curval == -EFAULT)
782
			ret = -EFAULT;
783
		else if (curval != uval)
784 785 786 787 788
			ret = -EINVAL;
		if (ret) {
			spin_unlock(&pi_state->pi_mutex.wait_lock);
			return ret;
		}
789
	}
790

791 792 793 794 795 796 797
	spin_lock_irq(&pi_state->owner->pi_lock);
	WARN_ON(list_empty(&pi_state->list));
	list_del_init(&pi_state->list);
	spin_unlock_irq(&pi_state->owner->pi_lock);

	spin_lock_irq(&new_owner->pi_lock);
	WARN_ON(!list_empty(&pi_state->list));
798 799
	list_add(&pi_state->list, &new_owner->pi_state_list);
	pi_state->owner = new_owner;
800 801
	spin_unlock_irq(&new_owner->pi_lock);

802
	spin_unlock(&pi_state->pi_mutex.wait_lock);
803 804 805 806 807 808 809 810 811 812 813 814 815
	rt_mutex_unlock(&pi_state->pi_mutex);

	return 0;
}

static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
{
	u32 oldval;

	/*
	 * There is no waiter, so we unlock the futex. The owner died
	 * bit has not to be preserved here. We are the owner:
	 */
T
Thomas Gleixner 已提交
816
	oldval = cmpxchg_futex_value_locked(uaddr, uval, 0);
817 818 819 820 821 822 823 824 825

	if (oldval == -EFAULT)
		return oldval;
	if (oldval != uval)
		return -EAGAIN;

	return 0;
}

I
Ingo Molnar 已提交
826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
/*
 * Express the locking dependencies for lockdep:
 */
static inline void
double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
{
	if (hb1 <= hb2) {
		spin_lock(&hb1->lock);
		if (hb1 < hb2)
			spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
	} else { /* hb1 > hb2 */
		spin_lock(&hb2->lock);
		spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
	}
}

D
Darren Hart 已提交
842 843 844
static inline void
double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
{
845
	spin_unlock(&hb1->lock);
846 847
	if (hb1 != hb2)
		spin_unlock(&hb2->lock);
D
Darren Hart 已提交
848 849
}

L
Linus Torvalds 已提交
850
/*
D
Darren Hart 已提交
851
 * Wake up waiters matching bitset queued on this futex (uaddr).
L
Linus Torvalds 已提交
852
 */
P
Peter Zijlstra 已提交
853
static int futex_wake(u32 __user *uaddr, int fshared, int nr_wake, u32 bitset)
L
Linus Torvalds 已提交
854
{
855
	struct futex_hash_bucket *hb;
L
Linus Torvalds 已提交
856
	struct futex_q *this, *next;
P
Pierre Peiffer 已提交
857
	struct plist_head *head;
858
	union futex_key key = FUTEX_KEY_INIT;
L
Linus Torvalds 已提交
859 860
	int ret;

861 862 863
	if (!bitset)
		return -EINVAL;

864
	ret = get_futex_key(uaddr, fshared, &key, VERIFY_READ);
L
Linus Torvalds 已提交
865 866 867
	if (unlikely(ret != 0))
		goto out;

868 869 870
	hb = hash_futex(&key);
	spin_lock(&hb->lock);
	head = &hb->chain;
L
Linus Torvalds 已提交
871

P
Pierre Peiffer 已提交
872
	plist_for_each_entry_safe(this, next, head, list) {
L
Linus Torvalds 已提交
873
		if (match_futex (&this->key, &key)) {
874
			if (this->pi_state || this->rt_waiter) {
875 876 877
				ret = -EINVAL;
				break;
			}
878 879 880 881 882

			/* Check if one of the bits is set in both bitsets */
			if (!(this->bitset & bitset))
				continue;

L
Linus Torvalds 已提交
883 884 885 886 887 888
			wake_futex(this);
			if (++ret >= nr_wake)
				break;
		}
	}

889
	spin_unlock(&hb->lock);
890
	put_futex_key(fshared, &key);
891
out:
L
Linus Torvalds 已提交
892 893 894
	return ret;
}

895 896 897 898
/*
 * Wake up all waiters hashed on the physical page that is mapped
 * to this virtual address:
 */
899
static int
P
Peter Zijlstra 已提交
900
futex_wake_op(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
901
	      int nr_wake, int nr_wake2, int op)
902
{
903
	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
904
	struct futex_hash_bucket *hb1, *hb2;
P
Pierre Peiffer 已提交
905
	struct plist_head *head;
906
	struct futex_q *this, *next;
D
Darren Hart 已提交
907
	int ret, op_ret;
908

D
Darren Hart 已提交
909
retry:
910
	ret = get_futex_key(uaddr1, fshared, &key1, VERIFY_READ);
911 912
	if (unlikely(ret != 0))
		goto out;
913
	ret = get_futex_key(uaddr2, fshared, &key2, VERIFY_WRITE);
914
	if (unlikely(ret != 0))
915
		goto out_put_key1;
916

917 918
	hb1 = hash_futex(&key1);
	hb2 = hash_futex(&key2);
919

D
Darren Hart 已提交
920
retry_private:
T
Thomas Gleixner 已提交
921
	double_lock_hb(hb1, hb2);
922
	op_ret = futex_atomic_op_inuser(op, uaddr2);
923 924
	if (unlikely(op_ret < 0)) {

D
Darren Hart 已提交
925
		double_unlock_hb(hb1, hb2);
926

927
#ifndef CONFIG_MMU
928 929 930 931
		/*
		 * we don't get EFAULT from MMU faults if we don't have an MMU,
		 * but we might get them from range checking
		 */
932
		ret = op_ret;
933
		goto out_put_keys;
934 935
#endif

936 937
		if (unlikely(op_ret != -EFAULT)) {
			ret = op_ret;
938
			goto out_put_keys;
939 940
		}

941
		ret = fault_in_user_writeable(uaddr2);
942
		if (ret)
943
			goto out_put_keys;
944

D
Darren Hart 已提交
945 946 947
		if (!fshared)
			goto retry_private;

948 949
		put_futex_key(fshared, &key2);
		put_futex_key(fshared, &key1);
D
Darren Hart 已提交
950
		goto retry;
951 952
	}

953
	head = &hb1->chain;
954

P
Pierre Peiffer 已提交
955
	plist_for_each_entry_safe(this, next, head, list) {
956 957 958 959 960 961 962 963
		if (match_futex (&this->key, &key1)) {
			wake_futex(this);
			if (++ret >= nr_wake)
				break;
		}
	}

	if (op_ret > 0) {
964
		head = &hb2->chain;
965 966

		op_ret = 0;
P
Pierre Peiffer 已提交
967
		plist_for_each_entry_safe(this, next, head, list) {
968 969 970 971 972 973 974 975 976
			if (match_futex (&this->key, &key2)) {
				wake_futex(this);
				if (++op_ret >= nr_wake2)
					break;
			}
		}
		ret += op_ret;
	}

D
Darren Hart 已提交
977
	double_unlock_hb(hb1, hb2);
978
out_put_keys:
979
	put_futex_key(fshared, &key2);
980
out_put_key1:
981
	put_futex_key(fshared, &key1);
982
out:
983 984 985
	return ret;
}

D
Darren Hart 已提交
986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
/**
 * requeue_futex() - Requeue a futex_q from one hb to another
 * @q:		the futex_q to requeue
 * @hb1:	the source hash_bucket
 * @hb2:	the target hash_bucket
 * @key2:	the new key for the requeued futex_q
 */
static inline
void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
		   struct futex_hash_bucket *hb2, union futex_key *key2)
{

	/*
	 * If key1 and key2 hash to the same bucket, no need to
	 * requeue.
	 */
	if (likely(&hb1->chain != &hb2->chain)) {
		plist_del(&q->list, &hb1->chain);
		plist_add(&q->list, &hb2->chain);
		q->lock_ptr = &hb2->lock;
#ifdef CONFIG_DEBUG_PI_LIST
		q->list.plist.lock = &hb2->lock;
#endif
	}
	get_futex_key_refs(key2);
	q->key = *key2;
}

1014 1015
/**
 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1016 1017 1018
 * @q:		the futex_q
 * @key:	the key of the requeue target futex
 * @hb:		the hash_bucket of the requeue target futex
1019 1020 1021 1022 1023
 *
 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
 * target futex if it is uncontended or via a lock steal.  Set the futex_q key
 * to the requeue target futex so the waiter can detect the wakeup on the right
 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1024 1025 1026
 * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
 * to protect access to the pi_state to fixup the owner later.  Must be called
 * with both q->lock_ptr and hb->lock held.
1027 1028
 */
static inline
1029 1030
void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
			   struct futex_hash_bucket *hb)
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
{
	drop_futex_key_refs(&q->key);
	get_futex_key_refs(key);
	q->key = *key;

	WARN_ON(plist_node_empty(&q->list));
	plist_del(&q->list, &q->list.plist);

	WARN_ON(!q->rt_waiter);
	q->rt_waiter = NULL;

1042 1043 1044 1045 1046
	q->lock_ptr = &hb->lock;
#ifdef CONFIG_DEBUG_PI_LIST
	q->list.plist.lock = &hb->lock;
#endif

T
Thomas Gleixner 已提交
1047
	wake_up_state(q->task, TASK_NORMAL);
1048 1049 1050 1051
}

/**
 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1052 1053 1054 1055 1056 1057 1058
 * @pifutex:		the user address of the to futex
 * @hb1:		the from futex hash bucket, must be locked by the caller
 * @hb2:		the to futex hash bucket, must be locked by the caller
 * @key1:		the from futex key
 * @key2:		the to futex key
 * @ps:			address to store the pi_state pointer
 * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
1059 1060
 *
 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1061 1062 1063
 * Wake the top waiter if we succeed.  If the caller specified set_waiters,
 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
 * hb1 and hb2 must be held by the caller.
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
 *
 * Returns:
 *  0 - failed to acquire the lock atomicly
 *  1 - acquired the lock
 * <0 - error
 */
static int futex_proxy_trylock_atomic(u32 __user *pifutex,
				 struct futex_hash_bucket *hb1,
				 struct futex_hash_bucket *hb2,
				 union futex_key *key1, union futex_key *key2,
1074
				 struct futex_pi_state **ps, int set_waiters)
1075
{
1076
	struct futex_q *top_waiter = NULL;
1077 1078 1079 1080 1081 1082
	u32 curval;
	int ret;

	if (get_futex_value_locked(&curval, pifutex))
		return -EFAULT;

1083 1084 1085 1086 1087 1088 1089 1090
	/*
	 * Find the top_waiter and determine if there are additional waiters.
	 * If the caller intends to requeue more than 1 waiter to pifutex,
	 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
	 * as we have means to handle the possible fault.  If not, don't set
	 * the bit unecessarily as it will force the subsequent unlock to enter
	 * the kernel.
	 */
1091 1092 1093 1094 1095 1096
	top_waiter = futex_top_waiter(hb1, key1);

	/* There are no waiters, nothing for us to do. */
	if (!top_waiter)
		return 0;

1097 1098 1099 1100
	/* Ensure we requeue to the expected futex. */
	if (!match_futex(top_waiter->requeue_pi_key, key2))
		return -EINVAL;

1101
	/*
1102 1103 1104
	 * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
	 * the contended case or if set_waiters is 1.  The pi_state is returned
	 * in ps in contended cases.
1105
	 */
1106 1107
	ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
				   set_waiters);
1108
	if (ret == 1)
1109
		requeue_pi_wake_futex(top_waiter, key2, hb2);
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128

	return ret;
}

/**
 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
 * uaddr1:	source futex user address
 * uaddr2:	target futex user address
 * nr_wake:	number of waiters to wake (must be 1 for requeue_pi)
 * nr_requeue:	number of waiters to requeue (0-INT_MAX)
 * requeue_pi:	if we are attempting to requeue from a non-pi futex to a
 * 		pi futex (pi to pi requeue is not supported)
 *
 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
 * uaddr2 atomically on behalf of the top waiter.
 *
 * Returns:
 * >=0 - on success, the number of tasks requeued or woken
 *  <0 - on error
L
Linus Torvalds 已提交
1129
 */
P
Peter Zijlstra 已提交
1130
static int futex_requeue(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
1131 1132
			 int nr_wake, int nr_requeue, u32 *cmpval,
			 int requeue_pi)
L
Linus Torvalds 已提交
1133
{
1134
	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1135 1136
	int drop_count = 0, task_count = 0, ret;
	struct futex_pi_state *pi_state = NULL;
1137
	struct futex_hash_bucket *hb1, *hb2;
P
Pierre Peiffer 已提交
1138
	struct plist_head *head1;
L
Linus Torvalds 已提交
1139
	struct futex_q *this, *next;
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
	u32 curval2;

	if (requeue_pi) {
		/*
		 * requeue_pi requires a pi_state, try to allocate it now
		 * without any locks in case it fails.
		 */
		if (refill_pi_state_cache())
			return -ENOMEM;
		/*
		 * requeue_pi must wake as many tasks as it can, up to nr_wake
		 * + nr_requeue, since it acquires the rt_mutex prior to
		 * returning to userspace, so as to not leave the rt_mutex with
		 * waiters and no owner.  However, second and third wake-ups
		 * cannot be predicted as they involve race conditions with the
		 * first wake and a fault while looking up the pi_state.  Both
		 * pthread_cond_signal() and pthread_cond_broadcast() should
		 * use nr_wake=1.
		 */
		if (nr_wake != 1)
			return -EINVAL;
	}
L
Linus Torvalds 已提交
1162

1163
retry:
1164 1165 1166 1167 1168 1169 1170 1171 1172
	if (pi_state != NULL) {
		/*
		 * We will have to lookup the pi_state again, so free this one
		 * to keep the accounting correct.
		 */
		free_pi_state(pi_state);
		pi_state = NULL;
	}

1173
	ret = get_futex_key(uaddr1, fshared, &key1, VERIFY_READ);
L
Linus Torvalds 已提交
1174 1175
	if (unlikely(ret != 0))
		goto out;
1176 1177
	ret = get_futex_key(uaddr2, fshared, &key2,
			    requeue_pi ? VERIFY_WRITE : VERIFY_READ);
L
Linus Torvalds 已提交
1178
	if (unlikely(ret != 0))
1179
		goto out_put_key1;
L
Linus Torvalds 已提交
1180

1181 1182
	hb1 = hash_futex(&key1);
	hb2 = hash_futex(&key2);
L
Linus Torvalds 已提交
1183

D
Darren Hart 已提交
1184
retry_private:
I
Ingo Molnar 已提交
1185
	double_lock_hb(hb1, hb2);
L
Linus Torvalds 已提交
1186

1187 1188
	if (likely(cmpval != NULL)) {
		u32 curval;
L
Linus Torvalds 已提交
1189

1190
		ret = get_futex_value_locked(&curval, uaddr1);
L
Linus Torvalds 已提交
1191 1192

		if (unlikely(ret)) {
D
Darren Hart 已提交
1193
			double_unlock_hb(hb1, hb2);
L
Linus Torvalds 已提交
1194

1195
			ret = get_user(curval, uaddr1);
D
Darren Hart 已提交
1196 1197
			if (ret)
				goto out_put_keys;
L
Linus Torvalds 已提交
1198

D
Darren Hart 已提交
1199 1200
			if (!fshared)
				goto retry_private;
L
Linus Torvalds 已提交
1201

D
Darren Hart 已提交
1202 1203 1204
			put_futex_key(fshared, &key2);
			put_futex_key(fshared, &key1);
			goto retry;
L
Linus Torvalds 已提交
1205
		}
1206
		if (curval != *cmpval) {
L
Linus Torvalds 已提交
1207 1208 1209 1210 1211
			ret = -EAGAIN;
			goto out_unlock;
		}
	}

1212
	if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1213 1214 1215 1216 1217 1218
		/*
		 * Attempt to acquire uaddr2 and wake the top waiter. If we
		 * intend to requeue waiters, force setting the FUTEX_WAITERS
		 * bit.  We force this here where we are able to easily handle
		 * faults rather in the requeue loop below.
		 */
1219
		ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1220
						 &key2, &pi_state, nr_requeue);
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243

		/*
		 * At this point the top_waiter has either taken uaddr2 or is
		 * waiting on it.  If the former, then the pi_state will not
		 * exist yet, look it up one more time to ensure we have a
		 * reference to it.
		 */
		if (ret == 1) {
			WARN_ON(pi_state);
			task_count++;
			ret = get_futex_value_locked(&curval2, uaddr2);
			if (!ret)
				ret = lookup_pi_state(curval2, hb2, &key2,
						      &pi_state);
		}

		switch (ret) {
		case 0:
			break;
		case -EFAULT:
			double_unlock_hb(hb1, hb2);
			put_futex_key(fshared, &key2);
			put_futex_key(fshared, &key1);
1244
			ret = fault_in_user_writeable(uaddr2);
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
			if (!ret)
				goto retry;
			goto out;
		case -EAGAIN:
			/* The owner was exiting, try again. */
			double_unlock_hb(hb1, hb2);
			put_futex_key(fshared, &key2);
			put_futex_key(fshared, &key1);
			cond_resched();
			goto retry;
		default:
			goto out_unlock;
		}
	}

1260
	head1 = &hb1->chain;
P
Pierre Peiffer 已提交
1261
	plist_for_each_entry_safe(this, next, head1, list) {
1262 1263 1264 1265
		if (task_count - nr_wake >= nr_requeue)
			break;

		if (!match_futex(&this->key, &key1))
L
Linus Torvalds 已提交
1266
			continue;
1267

1268 1269 1270 1271 1272 1273 1274 1275 1276
		/*
		 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
		 * be paired with each other and no other futex ops.
		 */
		if ((requeue_pi && !this->rt_waiter) ||
		    (!requeue_pi && this->rt_waiter)) {
			ret = -EINVAL;
			break;
		}
1277 1278 1279 1280 1281 1282 1283

		/*
		 * Wake nr_wake waiters.  For requeue_pi, if we acquired the
		 * lock, we already woke the top_waiter.  If not, it will be
		 * woken by futex_unlock_pi().
		 */
		if (++task_count <= nr_wake && !requeue_pi) {
L
Linus Torvalds 已提交
1284
			wake_futex(this);
1285 1286
			continue;
		}
L
Linus Torvalds 已提交
1287

1288 1289 1290 1291 1292 1293
		/* Ensure we requeue to the expected futex for requeue_pi. */
		if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
			ret = -EINVAL;
			break;
		}

1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
		/*
		 * Requeue nr_requeue waiters and possibly one more in the case
		 * of requeue_pi if we couldn't acquire the lock atomically.
		 */
		if (requeue_pi) {
			/* Prepare the waiter to take the rt_mutex. */
			atomic_inc(&pi_state->refcount);
			this->pi_state = pi_state;
			ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
							this->rt_waiter,
							this->task, 1);
			if (ret == 1) {
				/* We got the lock. */
1307
				requeue_pi_wake_futex(this, &key2, hb2);
1308 1309 1310 1311 1312 1313 1314
				continue;
			} else if (ret) {
				/* -EDEADLK */
				this->pi_state = NULL;
				free_pi_state(pi_state);
				goto out_unlock;
			}
L
Linus Torvalds 已提交
1315
		}
1316 1317
		requeue_futex(this, hb1, hb2, &key2);
		drop_count++;
L
Linus Torvalds 已提交
1318 1319 1320
	}

out_unlock:
D
Darren Hart 已提交
1321
	double_unlock_hb(hb1, hb2);
L
Linus Torvalds 已提交
1322

1323 1324 1325 1326 1327 1328
	/*
	 * drop_futex_key_refs() must be called outside the spinlocks. During
	 * the requeue we moved futex_q's from the hash bucket at key1 to the
	 * one at key2 and updated their key pointer.  We no longer need to
	 * hold the references to key1.
	 */
L
Linus Torvalds 已提交
1329
	while (--drop_count >= 0)
1330
		drop_futex_key_refs(&key1);
L
Linus Torvalds 已提交
1331

1332
out_put_keys:
1333
	put_futex_key(fshared, &key2);
1334
out_put_key1:
1335
	put_futex_key(fshared, &key1);
1336
out:
1337 1338 1339
	if (pi_state != NULL)
		free_pi_state(pi_state);
	return ret ? ret : task_count;
L
Linus Torvalds 已提交
1340 1341 1342
}

/* The key must be already stored in q->key. */
E
Eric Sesterhenn 已提交
1343
static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
L
Linus Torvalds 已提交
1344
{
1345
	struct futex_hash_bucket *hb;
L
Linus Torvalds 已提交
1346

1347
	get_futex_key_refs(&q->key);
1348 1349
	hb = hash_futex(&q->key);
	q->lock_ptr = &hb->lock;
L
Linus Torvalds 已提交
1350

1351 1352
	spin_lock(&hb->lock);
	return hb;
L
Linus Torvalds 已提交
1353 1354
}

1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
static inline void
queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
{
	spin_unlock(&hb->lock);
	drop_futex_key_refs(&q->key);
}

/**
 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
 * @q:	The futex_q to enqueue
 * @hb:	The destination hash bucket
 *
 * The hb->lock must be held by the caller, and is released here. A call to
 * queue_me() is typically paired with exactly one call to unqueue_me().  The
 * exceptions involve the PI related operations, which may use unqueue_me_pi()
 * or nothing if the unqueue is done as part of the wake process and the unqueue
 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
 * an example).
 */
E
Eric Sesterhenn 已提交
1374
static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
L
Linus Torvalds 已提交
1375
{
P
Pierre Peiffer 已提交
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
	int prio;

	/*
	 * The priority used to register this element is
	 * - either the real thread-priority for the real-time threads
	 * (i.e. threads with a priority lower than MAX_RT_PRIO)
	 * - or MAX_RT_PRIO for non-RT threads.
	 * Thus, all RT-threads are woken first in priority order, and
	 * the others are woken last, in FIFO order.
	 */
	prio = min(current->normal_prio, MAX_RT_PRIO);

	plist_node_init(&q->list, prio);
#ifdef CONFIG_DEBUG_PI_LIST
	q->list.plist.lock = &hb->lock;
#endif
	plist_add(&q->list, &hb->chain);
1393
	q->task = current;
1394
	spin_unlock(&hb->lock);
L
Linus Torvalds 已提交
1395 1396
}

1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
/**
 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
 * @q:	The futex_q to unqueue
 *
 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
 * be paired with exactly one earlier call to queue_me().
 *
 * Returns:
 *   1 - if the futex_q was still queued (and we removed unqueued it)
 *   0 - if the futex_q was already removed by the waking thread
L
Linus Torvalds 已提交
1407 1408 1409 1410
 */
static int unqueue_me(struct futex_q *q)
{
	spinlock_t *lock_ptr;
1411
	int ret = 0;
L
Linus Torvalds 已提交
1412 1413

	/* In the common case we don't take the spinlock, which is nice. */
1414
retry:
L
Linus Torvalds 已提交
1415
	lock_ptr = q->lock_ptr;
1416
	barrier();
1417
	if (lock_ptr != NULL) {
L
Linus Torvalds 已提交
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
		spin_lock(lock_ptr);
		/*
		 * q->lock_ptr can change between reading it and
		 * spin_lock(), causing us to take the wrong lock.  This
		 * corrects the race condition.
		 *
		 * Reasoning goes like this: if we have the wrong lock,
		 * q->lock_ptr must have changed (maybe several times)
		 * between reading it and the spin_lock().  It can
		 * change again after the spin_lock() but only if it was
		 * already changed before the spin_lock().  It cannot,
		 * however, change back to the original value.  Therefore
		 * we can detect whether we acquired the correct lock.
		 */
		if (unlikely(lock_ptr != q->lock_ptr)) {
			spin_unlock(lock_ptr);
			goto retry;
		}
P
Pierre Peiffer 已提交
1436 1437
		WARN_ON(plist_node_empty(&q->list));
		plist_del(&q->list, &q->list.plist);
1438 1439 1440

		BUG_ON(q->pi_state);

L
Linus Torvalds 已提交
1441 1442 1443 1444
		spin_unlock(lock_ptr);
		ret = 1;
	}

1445
	drop_futex_key_refs(&q->key);
L
Linus Torvalds 已提交
1446 1447 1448
	return ret;
}

1449 1450
/*
 * PI futexes can not be requeued and must remove themself from the
P
Pierre Peiffer 已提交
1451 1452
 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
 * and dropped here.
1453
 */
P
Pierre Peiffer 已提交
1454
static void unqueue_me_pi(struct futex_q *q)
1455
{
P
Pierre Peiffer 已提交
1456 1457
	WARN_ON(plist_node_empty(&q->list));
	plist_del(&q->list, &q->list.plist);
1458 1459 1460 1461 1462

	BUG_ON(!q->pi_state);
	free_pi_state(q->pi_state);
	q->pi_state = NULL;

P
Pierre Peiffer 已提交
1463
	spin_unlock(q->lock_ptr);
1464

1465
	drop_futex_key_refs(&q->key);
1466 1467
}

P
Pierre Peiffer 已提交
1468
/*
1469
 * Fixup the pi_state owner with the new owner.
P
Pierre Peiffer 已提交
1470
 *
1471 1472
 * Must be called with hash bucket lock held and mm->sem held for non
 * private futexes.
P
Pierre Peiffer 已提交
1473
 */
1474
static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
P
Peter Zijlstra 已提交
1475
				struct task_struct *newowner, int fshared)
P
Pierre Peiffer 已提交
1476
{
1477
	u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
P
Pierre Peiffer 已提交
1478
	struct futex_pi_state *pi_state = q->pi_state;
1479
	struct task_struct *oldowner = pi_state->owner;
P
Pierre Peiffer 已提交
1480
	u32 uval, curval, newval;
D
Darren Hart 已提交
1481
	int ret;
P
Pierre Peiffer 已提交
1482 1483

	/* Owner died? */
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
	if (!pi_state->owner)
		newtid |= FUTEX_OWNER_DIED;

	/*
	 * We are here either because we stole the rtmutex from the
	 * pending owner or we are the pending owner which failed to
	 * get the rtmutex. We have to replace the pending owner TID
	 * in the user space variable. This must be atomic as we have
	 * to preserve the owner died bit here.
	 *
D
Darren Hart 已提交
1494 1495 1496
	 * Note: We write the user space value _before_ changing the pi_state
	 * because we can fault here. Imagine swapped out pages or a fork
	 * that marked all the anonymous memory readonly for cow.
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
	 *
	 * Modifying pi_state _before_ the user space value would
	 * leave the pi_state in an inconsistent state when we fault
	 * here, because we need to drop the hash bucket lock to
	 * handle the fault. This might be observed in the PID check
	 * in lookup_pi_state.
	 */
retry:
	if (get_futex_value_locked(&uval, uaddr))
		goto handle_fault;

	while (1) {
		newval = (uval & FUTEX_OWNER_DIED) | newtid;

		curval = cmpxchg_futex_value_locked(uaddr, uval, newval);

		if (curval == -EFAULT)
			goto handle_fault;
		if (curval == uval)
			break;
		uval = curval;
	}

	/*
	 * We fixed up user space. Now we need to fix the pi_state
	 * itself.
	 */
P
Pierre Peiffer 已提交
1524 1525 1526 1527 1528
	if (pi_state->owner != NULL) {
		spin_lock_irq(&pi_state->owner->pi_lock);
		WARN_ON(list_empty(&pi_state->list));
		list_del_init(&pi_state->list);
		spin_unlock_irq(&pi_state->owner->pi_lock);
1529
	}
P
Pierre Peiffer 已提交
1530

1531
	pi_state->owner = newowner;
P
Pierre Peiffer 已提交
1532

1533
	spin_lock_irq(&newowner->pi_lock);
P
Pierre Peiffer 已提交
1534
	WARN_ON(!list_empty(&pi_state->list));
1535 1536
	list_add(&pi_state->list, &newowner->pi_state_list);
	spin_unlock_irq(&newowner->pi_lock);
1537
	return 0;
P
Pierre Peiffer 已提交
1538 1539

	/*
1540 1541 1542 1543 1544 1545 1546 1547
	 * To handle the page fault we need to drop the hash bucket
	 * lock here. That gives the other task (either the pending
	 * owner itself or the task which stole the rtmutex) the
	 * chance to try the fixup of the pi_state. So once we are
	 * back from handling the fault we need to check the pi_state
	 * after reacquiring the hash bucket lock and before trying to
	 * do another fixup. When the fixup has been done already we
	 * simply return.
P
Pierre Peiffer 已提交
1548
	 */
1549 1550
handle_fault:
	spin_unlock(q->lock_ptr);
1551

1552
	ret = fault_in_user_writeable(uaddr);
1553

1554
	spin_lock(q->lock_ptr);
1555

1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
	/*
	 * Check if someone else fixed it for us:
	 */
	if (pi_state->owner != oldowner)
		return 0;

	if (ret)
		return ret;

	goto retry;
P
Pierre Peiffer 已提交
1566 1567
}

E
Eric Dumazet 已提交
1568 1569
/*
 * In case we must use restart_block to restart a futex_wait,
1570
 * we encode in the 'flags' shared capability
E
Eric Dumazet 已提交
1571
 */
1572 1573
#define FLAGS_SHARED		0x01
#define FLAGS_CLOCKRT		0x02
1574
#define FLAGS_HAS_TIMEOUT	0x04
E
Eric Dumazet 已提交
1575

N
Nick Piggin 已提交
1576
static long futex_wait_restart(struct restart_block *restart);
T
Thomas Gleixner 已提交
1577

1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
/**
 * fixup_owner() - Post lock pi_state and corner case management
 * @uaddr:	user address of the futex
 * @fshared:	whether the futex is shared (1) or not (0)
 * @q:		futex_q (contains pi_state and access to the rt_mutex)
 * @locked:	if the attempt to take the rt_mutex succeeded (1) or not (0)
 *
 * After attempting to lock an rt_mutex, this function is called to cleanup
 * the pi_state owner as well as handle race conditions that may allow us to
 * acquire the lock. Must be called with the hb lock held.
 *
 * Returns:
 *  1 - success, lock taken
 *  0 - success, lock not taken
 * <0 - on error (-EFAULT)
 */
static int fixup_owner(u32 __user *uaddr, int fshared, struct futex_q *q,
		       int locked)
{
	struct task_struct *owner;
	int ret = 0;

	if (locked) {
		/*
		 * Got the lock. We might not be the anticipated owner if we
		 * did a lock-steal - fix up the PI-state in that case:
		 */
		if (q->pi_state->owner != current)
			ret = fixup_pi_state_owner(uaddr, q, current, fshared);
		goto out;
	}

	/*
	 * Catch the rare case, where the lock was released when we were on the
	 * way back before we locked the hash bucket.
	 */
	if (q->pi_state->owner == current) {
		/*
		 * Try to get the rt_mutex now. This might fail as some other
		 * task acquired the rt_mutex after we removed ourself from the
		 * rt_mutex waiters list.
		 */
		if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
			locked = 1;
			goto out;
		}

		/*
		 * pi_state is incorrect, some other task did a lock steal and
		 * we returned due to timeout or signal without taking the
		 * rt_mutex. Too late. We can access the rt_mutex_owner without
		 * locking, as the other task is now blocked on the hash bucket
		 * lock. Fix the state up.
		 */
		owner = rt_mutex_owner(&q->pi_state->pi_mutex);
		ret = fixup_pi_state_owner(uaddr, q, owner, fshared);
		goto out;
	}

	/*
	 * Paranoia check. If we did not take the lock, then we should not be
	 * the owner, nor the pending owner, of the rt_mutex.
	 */
	if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
		printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
				"pi-state %p\n", ret,
				q->pi_state->pi_mutex.owner,
				q->pi_state->owner);

out:
	return ret ? ret : locked;
}

1651 1652 1653 1654 1655 1656 1657
/**
 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
 * @hb:		the futex hash bucket, must be locked by the caller
 * @q:		the futex_q to queue up on
 * @timeout:	the prepared hrtimer_sleeper, or null for no timeout
 */
static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
T
Thomas Gleixner 已提交
1658
				struct hrtimer_sleeper *timeout)
1659
{
1660 1661 1662 1663 1664 1665
	/*
	 * The task state is guaranteed to be set before another task can
	 * wake it. set_current_state() is implemented using set_mb() and
	 * queue_me() calls spin_unlock() upon completion, both serializing
	 * access to the hash list and forcing another memory barrier.
	 */
T
Thomas Gleixner 已提交
1666
	set_current_state(TASK_INTERRUPTIBLE);
1667
	queue_me(q, hb);
1668 1669 1670 1671 1672 1673 1674 1675 1676

	/* Arm the timer */
	if (timeout) {
		hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
		if (!hrtimer_active(&timeout->timer))
			timeout->task = NULL;
	}

	/*
1677 1678
	 * If we have been removed from the hash list, then another task
	 * has tried to wake us, and we can skip the call to schedule().
1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
	 */
	if (likely(!plist_node_empty(&q->list))) {
		/*
		 * If the timer has already expired, current will already be
		 * flagged for rescheduling. Only call schedule if there
		 * is no timeout, or if it has yet to expire.
		 */
		if (!timeout || timeout->task)
			schedule();
	}
	__set_current_state(TASK_RUNNING);
}

1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710
/**
 * futex_wait_setup() - Prepare to wait on a futex
 * @uaddr:	the futex userspace address
 * @val:	the expected value
 * @fshared:	whether the futex is shared (1) or not (0)
 * @q:		the associated futex_q
 * @hb:		storage for hash_bucket pointer to be returned to caller
 *
 * Setup the futex_q and locate the hash_bucket.  Get the futex value and
 * compare it with the expected value.  Handle atomic faults internally.
 * Return with the hb lock held and a q.key reference on success, and unlocked
 * with no q.key reference on failure.
 *
 * Returns:
 *  0 - uaddr contains val and hb has been locked
 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlcoked
 */
static int futex_wait_setup(u32 __user *uaddr, u32 val, int fshared,
			   struct futex_q *q, struct futex_hash_bucket **hb)
L
Linus Torvalds 已提交
1711
{
1712 1713
	u32 uval;
	int ret;
L
Linus Torvalds 已提交
1714 1715

	/*
D
Darren Hart 已提交
1716
	 * Access the page AFTER the hash-bucket is locked.
L
Linus Torvalds 已提交
1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
	 * Order is important:
	 *
	 *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
	 *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
	 *
	 * The basic logical guarantee of a futex is that it blocks ONLY
	 * if cond(var) is known to be true at the time of blocking, for
	 * any cond.  If we queued after testing *uaddr, that would open
	 * a race condition where we could block indefinitely with
	 * cond(var) false, which would violate the guarantee.
	 *
	 * A consequence is that futex_wait() can return zero and absorb
	 * a wakeup when *uaddr != val on entry to the syscall.  This is
	 * rare, but normal.
	 */
1732 1733
retry:
	q->key = FUTEX_KEY_INIT;
1734
	ret = get_futex_key(uaddr, fshared, &q->key, VERIFY_READ);
1735
	if (unlikely(ret != 0))
1736
		return ret;
1737 1738 1739 1740

retry_private:
	*hb = queue_lock(q);

1741
	ret = get_futex_value_locked(&uval, uaddr);
L
Linus Torvalds 已提交
1742

1743 1744
	if (ret) {
		queue_unlock(q, *hb);
L
Linus Torvalds 已提交
1745

1746
		ret = get_user(uval, uaddr);
D
Darren Hart 已提交
1747
		if (ret)
1748
			goto out;
L
Linus Torvalds 已提交
1749

D
Darren Hart 已提交
1750 1751 1752
		if (!fshared)
			goto retry_private;

1753
		put_futex_key(fshared, &q->key);
D
Darren Hart 已提交
1754
		goto retry;
L
Linus Torvalds 已提交
1755
	}
1756

1757 1758 1759
	if (uval != val) {
		queue_unlock(q, *hb);
		ret = -EWOULDBLOCK;
P
Peter Zijlstra 已提交
1760
	}
L
Linus Torvalds 已提交
1761

1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
out:
	if (ret)
		put_futex_key(fshared, &q->key);
	return ret;
}

static int futex_wait(u32 __user *uaddr, int fshared,
		      u32 val, ktime_t *abs_time, u32 bitset, int clockrt)
{
	struct hrtimer_sleeper timeout, *to = NULL;
	struct restart_block *restart;
	struct futex_hash_bucket *hb;
	struct futex_q q;
	int ret;

	if (!bitset)
		return -EINVAL;

	q.pi_state = NULL;
	q.bitset = bitset;
1782
	q.rt_waiter = NULL;
1783
	q.requeue_pi_key = NULL;
1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794

	if (abs_time) {
		to = &timeout;

		hrtimer_init_on_stack(&to->timer, clockrt ? CLOCK_REALTIME :
				      CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
		hrtimer_init_sleeper(to, current);
		hrtimer_set_expires_range_ns(&to->timer, *abs_time,
					     current->timer_slack_ns);
	}

T
Thomas Gleixner 已提交
1795
retry:
1796 1797 1798 1799 1800
	/* Prepare to wait on uaddr. */
	ret = futex_wait_setup(uaddr, val, fshared, &q, &hb);
	if (ret)
		goto out;

1801
	/* queue_me and wait for wakeup, timeout, or a signal. */
T
Thomas Gleixner 已提交
1802
	futex_wait_queue_me(hb, &q, to);
L
Linus Torvalds 已提交
1803 1804

	/* If we were woken (and unqueued), we succeeded, whatever. */
P
Peter Zijlstra 已提交
1805
	ret = 0;
L
Linus Torvalds 已提交
1806
	if (!unqueue_me(&q))
P
Peter Zijlstra 已提交
1807 1808
		goto out_put_key;
	ret = -ETIMEDOUT;
1809
	if (to && !to->task)
P
Peter Zijlstra 已提交
1810
		goto out_put_key;
N
Nick Piggin 已提交
1811

1812
	/*
T
Thomas Gleixner 已提交
1813 1814
	 * We expect signal_pending(current), but we might be the
	 * victim of a spurious wakeup as well.
1815
	 */
T
Thomas Gleixner 已提交
1816 1817 1818 1819 1820
	if (!signal_pending(current)) {
		put_futex_key(fshared, &q.key);
		goto retry;
	}

P
Peter Zijlstra 已提交
1821
	ret = -ERESTARTSYS;
1822
	if (!abs_time)
P
Peter Zijlstra 已提交
1823
		goto out_put_key;
L
Linus Torvalds 已提交
1824

P
Peter Zijlstra 已提交
1825 1826 1827 1828 1829 1830
	restart = &current_thread_info()->restart_block;
	restart->fn = futex_wait_restart;
	restart->futex.uaddr = (u32 *)uaddr;
	restart->futex.val = val;
	restart->futex.time = abs_time->tv64;
	restart->futex.bitset = bitset;
1831
	restart->futex.flags = FLAGS_HAS_TIMEOUT;
P
Peter Zijlstra 已提交
1832 1833 1834 1835 1836

	if (fshared)
		restart->futex.flags |= FLAGS_SHARED;
	if (clockrt)
		restart->futex.flags |= FLAGS_CLOCKRT;
1837

P
Peter Zijlstra 已提交
1838 1839 1840 1841
	ret = -ERESTART_RESTARTBLOCK;

out_put_key:
	put_futex_key(fshared, &q.key);
1842
out:
1843 1844 1845 1846
	if (to) {
		hrtimer_cancel(&to->timer);
		destroy_hrtimer_on_stack(&to->timer);
	}
1847 1848 1849
	return ret;
}

N
Nick Piggin 已提交
1850 1851 1852

static long futex_wait_restart(struct restart_block *restart)
{
1853
	u32 __user *uaddr = (u32 __user *)restart->futex.uaddr;
P
Peter Zijlstra 已提交
1854
	int fshared = 0;
1855
	ktime_t t, *tp = NULL;
N
Nick Piggin 已提交
1856

1857 1858 1859 1860
	if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
		t.tv64 = restart->futex.time;
		tp = &t;
	}
N
Nick Piggin 已提交
1861
	restart->fn = do_no_restart_syscall;
1862
	if (restart->futex.flags & FLAGS_SHARED)
P
Peter Zijlstra 已提交
1863
		fshared = 1;
1864
	return (long)futex_wait(uaddr, fshared, restart->futex.val, tp,
1865 1866
				restart->futex.bitset,
				restart->futex.flags & FLAGS_CLOCKRT);
N
Nick Piggin 已提交
1867 1868 1869
}


1870 1871 1872 1873 1874 1875
/*
 * Userspace tried a 0 -> TID atomic transition of the futex value
 * and failed. The kernel side here does the whole locking operation:
 * if there are waiters then it will block, it does PI, etc. (Due to
 * races the kernel might see a 0 value of the futex too.)
 */
P
Peter Zijlstra 已提交
1876
static int futex_lock_pi(u32 __user *uaddr, int fshared,
E
Eric Dumazet 已提交
1877
			 int detect, ktime_t *time, int trylock)
1878
{
1879
	struct hrtimer_sleeper timeout, *to = NULL;
1880 1881
	struct futex_hash_bucket *hb;
	struct futex_q q;
1882
	int res, ret;
1883 1884 1885 1886

	if (refill_pi_state_cache())
		return -ENOMEM;

1887
	if (time) {
1888
		to = &timeout;
1889 1890
		hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
				      HRTIMER_MODE_ABS);
1891
		hrtimer_init_sleeper(to, current);
1892
		hrtimer_set_expires(&to->timer, *time);
1893 1894
	}

1895
	q.pi_state = NULL;
1896
	q.rt_waiter = NULL;
1897
	q.requeue_pi_key = NULL;
1898
retry:
1899
	q.key = FUTEX_KEY_INIT;
1900
	ret = get_futex_key(uaddr, fshared, &q.key, VERIFY_WRITE);
1901
	if (unlikely(ret != 0))
1902
		goto out;
1903

D
Darren Hart 已提交
1904
retry_private:
E
Eric Sesterhenn 已提交
1905
	hb = queue_lock(&q);
1906

1907
	ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
1908
	if (unlikely(ret)) {
1909
		switch (ret) {
1910 1911 1912 1913 1914 1915
		case 1:
			/* We got the lock. */
			ret = 0;
			goto out_unlock_put_key;
		case -EFAULT:
			goto uaddr_faulted;
1916 1917 1918 1919 1920 1921
		case -EAGAIN:
			/*
			 * Task is exiting and we just wait for the
			 * exit to complete.
			 */
			queue_unlock(&q, hb);
1922
			put_futex_key(fshared, &q.key);
1923 1924 1925
			cond_resched();
			goto retry;
		default:
1926
			goto out_unlock_put_key;
1927 1928 1929 1930 1931 1932
		}
	}

	/*
	 * Only actually queue now that the atomic ops are done:
	 */
E
Eric Sesterhenn 已提交
1933
	queue_me(&q, hb);
1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946

	WARN_ON(!q.pi_state);
	/*
	 * Block on the PI mutex:
	 */
	if (!trylock)
		ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
	else {
		ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
		/* Fixup the trylock return value: */
		ret = ret ? 0 : -EWOULDBLOCK;
	}

1947
	spin_lock(q.lock_ptr);
1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958
	/*
	 * Fixup the pi_state owner and possibly acquire the lock if we
	 * haven't already.
	 */
	res = fixup_owner(uaddr, fshared, &q, !ret);
	/*
	 * If fixup_owner() returned an error, proprogate that.  If it acquired
	 * the lock, clear our -ETIMEDOUT or -EINTR.
	 */
	if (res)
		ret = (res < 0) ? res : 0;
1959

1960
	/*
1961 1962
	 * If fixup_owner() faulted and was unable to handle the fault, unlock
	 * it and return the fault to userspace.
1963 1964 1965 1966
	 */
	if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
		rt_mutex_unlock(&q.pi_state->pi_mutex);

1967 1968
	/* Unqueue and drop the lock */
	unqueue_me_pi(&q);
1969

1970
	goto out;
1971

1972
out_unlock_put_key:
1973 1974
	queue_unlock(&q, hb);

1975
out_put_key:
1976
	put_futex_key(fshared, &q.key);
1977
out:
1978 1979
	if (to)
		destroy_hrtimer_on_stack(&to->timer);
1980
	return ret != -EINTR ? ret : -ERESTARTNOINTR;
1981

1982
uaddr_faulted:
1983 1984
	queue_unlock(&q, hb);

1985
	ret = fault_in_user_writeable(uaddr);
D
Darren Hart 已提交
1986 1987
	if (ret)
		goto out_put_key;
1988

D
Darren Hart 已提交
1989 1990 1991 1992 1993
	if (!fshared)
		goto retry_private;

	put_futex_key(fshared, &q.key);
	goto retry;
1994 1995 1996 1997 1998 1999 2000
}

/*
 * Userspace attempted a TID -> 0 atomic transition, and failed.
 * This is the in-kernel slowpath: we look up the PI state (if any),
 * and do the rt-mutex unlock.
 */
P
Peter Zijlstra 已提交
2001
static int futex_unlock_pi(u32 __user *uaddr, int fshared)
2002 2003 2004 2005
{
	struct futex_hash_bucket *hb;
	struct futex_q *this, *next;
	u32 uval;
P
Pierre Peiffer 已提交
2006
	struct plist_head *head;
2007
	union futex_key key = FUTEX_KEY_INIT;
D
Darren Hart 已提交
2008
	int ret;
2009 2010 2011 2012 2013 2014 2015

retry:
	if (get_user(uval, uaddr))
		return -EFAULT;
	/*
	 * We release only a lock we actually own:
	 */
2016
	if ((uval & FUTEX_TID_MASK) != task_pid_vnr(current))
2017 2018
		return -EPERM;

2019
	ret = get_futex_key(uaddr, fshared, &key, VERIFY_WRITE);
2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
	if (unlikely(ret != 0))
		goto out;

	hb = hash_futex(&key);
	spin_lock(&hb->lock);

	/*
	 * To avoid races, try to do the TID -> 0 atomic transition
	 * again. If it succeeds then we can return without waking
	 * anyone else up:
	 */
T
Thomas Gleixner 已提交
2031
	if (!(uval & FUTEX_OWNER_DIED))
2032
		uval = cmpxchg_futex_value_locked(uaddr, task_pid_vnr(current), 0);
T
Thomas Gleixner 已提交
2033

2034 2035 2036 2037 2038 2039 2040

	if (unlikely(uval == -EFAULT))
		goto pi_faulted;
	/*
	 * Rare case: we managed to release the lock atomically,
	 * no need to wake anyone else up:
	 */
2041
	if (unlikely(uval == task_pid_vnr(current)))
2042 2043 2044 2045 2046 2047 2048 2049
		goto out_unlock;

	/*
	 * Ok, other tasks may need to be woken up - check waiters
	 * and do the wakeup if necessary:
	 */
	head = &hb->chain;

P
Pierre Peiffer 已提交
2050
	plist_for_each_entry_safe(this, next, head, list) {
2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
		if (!match_futex (&this->key, &key))
			continue;
		ret = wake_futex_pi(uaddr, uval, this);
		/*
		 * The atomic access to the futex value
		 * generated a pagefault, so retry the
		 * user-access and the wakeup:
		 */
		if (ret == -EFAULT)
			goto pi_faulted;
		goto out_unlock;
	}
	/*
	 * No waiters - kernel unlocks the futex:
	 */
2066 2067 2068 2069 2070
	if (!(uval & FUTEX_OWNER_DIED)) {
		ret = unlock_futex_pi(uaddr, uval);
		if (ret == -EFAULT)
			goto pi_faulted;
	}
2071 2072 2073

out_unlock:
	spin_unlock(&hb->lock);
2074
	put_futex_key(fshared, &key);
2075

2076
out:
2077 2078 2079
	return ret;

pi_faulted:
2080
	spin_unlock(&hb->lock);
D
Darren Hart 已提交
2081
	put_futex_key(fshared, &key);
2082

2083
	ret = fault_in_user_writeable(uaddr);
2084
	if (!ret)
2085 2086
		goto retry;

L
Linus Torvalds 已提交
2087 2088 2089
	return ret;
}

2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103
/**
 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
 * @hb:		the hash_bucket futex_q was original enqueued on
 * @q:		the futex_q woken while waiting to be requeued
 * @key2:	the futex_key of the requeue target futex
 * @timeout:	the timeout associated with the wait (NULL if none)
 *
 * Detect if the task was woken on the initial futex as opposed to the requeue
 * target futex.  If so, determine if it was a timeout or a signal that caused
 * the wakeup and return the appropriate error code to the caller.  Must be
 * called with the hb lock held.
 *
 * Returns
 *  0 - no early wakeup detected
2104
 * <0 - -ETIMEDOUT or -ERESTARTNOINTR
2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
 */
static inline
int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
				   struct futex_q *q, union futex_key *key2,
				   struct hrtimer_sleeper *timeout)
{
	int ret = 0;

	/*
	 * With the hb lock held, we avoid races while we process the wakeup.
	 * We only need to hold hb (and not hb2) to ensure atomicity as the
	 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
	 * It can't be requeued from uaddr2 to something else since we don't
	 * support a PI aware source futex for requeue.
	 */
	if (!match_futex(&q->key, key2)) {
		WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
		/*
		 * We were woken prior to requeue by a timeout or a signal.
		 * Unqueue the futex_q and determine which it was.
		 */
		plist_del(&q->list, &q->list.plist);

T
Thomas Gleixner 已提交
2128 2129
		/* Handle spurious wakeups gracefully */
		ret = -EAGAIN;
2130 2131
		if (timeout && !timeout->task)
			ret = -ETIMEDOUT;
T
Thomas Gleixner 已提交
2132
		else if (signal_pending(current))
2133
			ret = -ERESTARTNOINTR;
2134 2135 2136 2137 2138 2139
	}
	return ret;
}

/**
 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2140
 * @uaddr:	the futex we initially wait on (non-pi)
2141 2142 2143 2144
 * @fshared:	whether the futexes are shared (1) or not (0).  They must be
 * 		the same type, no requeueing from private to shared, etc.
 * @val:	the expected value of uaddr
 * @abs_time:	absolute timeout
2145
 * @bitset:	32 bit wakeup bitset set by userspace, defaults to all
2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158
 * @clockrt:	whether to use CLOCK_REALTIME (1) or CLOCK_MONOTONIC (0)
 * @uaddr2:	the pi futex we will take prior to returning to user-space
 *
 * The caller will wait on uaddr and will be requeued by futex_requeue() to
 * uaddr2 which must be PI aware.  Normal wakeup will wake on uaddr2 and
 * complete the acquisition of the rt_mutex prior to returning to userspace.
 * This ensures the rt_mutex maintains an owner when it has waiters; without
 * one, the pi logic wouldn't know which task to boost/deboost, if there was a
 * need to.
 *
 * We call schedule in futex_wait_queue_me() when we enqueue and return there
 * via the following:
 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2159 2160 2161
 * 2) wakeup on uaddr2 after a requeue
 * 3) signal
 * 4) timeout
2162
 *
2163
 * If 3, cleanup and return -ERESTARTNOINTR.
2164 2165 2166 2167 2168 2169 2170
 *
 * If 2, we may then block on trying to take the rt_mutex and return via:
 * 5) successful lock
 * 6) signal
 * 7) timeout
 * 8) other lock acquisition failure
 *
2171
 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209
 *
 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
 *
 * Returns:
 *  0 - On success
 * <0 - On error
 */
static int futex_wait_requeue_pi(u32 __user *uaddr, int fshared,
				 u32 val, ktime_t *abs_time, u32 bitset,
				 int clockrt, u32 __user *uaddr2)
{
	struct hrtimer_sleeper timeout, *to = NULL;
	struct rt_mutex_waiter rt_waiter;
	struct rt_mutex *pi_mutex = NULL;
	struct futex_hash_bucket *hb;
	union futex_key key2;
	struct futex_q q;
	int res, ret;

	if (!bitset)
		return -EINVAL;

	if (abs_time) {
		to = &timeout;
		hrtimer_init_on_stack(&to->timer, clockrt ? CLOCK_REALTIME :
				      CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
		hrtimer_init_sleeper(to, current);
		hrtimer_set_expires_range_ns(&to->timer, *abs_time,
					     current->timer_slack_ns);
	}

	/*
	 * The waiter is allocated on our stack, manipulated by the requeue
	 * code while we sleep on uaddr.
	 */
	debug_rt_mutex_init_waiter(&rt_waiter);
	rt_waiter.task = NULL;

T
Thomas Gleixner 已提交
2210
retry:
2211
	key2 = FUTEX_KEY_INIT;
2212
	ret = get_futex_key(uaddr2, fshared, &key2, VERIFY_WRITE);
2213 2214 2215
	if (unlikely(ret != 0))
		goto out;

2216 2217 2218 2219 2220
	q.pi_state = NULL;
	q.bitset = bitset;
	q.rt_waiter = &rt_waiter;
	q.requeue_pi_key = &key2;

2221 2222
	/* Prepare to wait on uaddr. */
	ret = futex_wait_setup(uaddr, val, fshared, &q, &hb);
T
Thomas Gleixner 已提交
2223 2224
	if (ret)
		goto out_key2;
2225 2226

	/* Queue the futex_q, drop the hb lock, wait for wakeup. */
T
Thomas Gleixner 已提交
2227
	futex_wait_queue_me(hb, &q, to);
2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272

	spin_lock(&hb->lock);
	ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
	spin_unlock(&hb->lock);
	if (ret)
		goto out_put_keys;

	/*
	 * In order for us to be here, we know our q.key == key2, and since
	 * we took the hb->lock above, we also know that futex_requeue() has
	 * completed and we no longer have to concern ourselves with a wakeup
	 * race with the atomic proxy lock acquition by the requeue code.
	 */

	/* Check if the requeue code acquired the second futex for us. */
	if (!q.rt_waiter) {
		/*
		 * Got the lock. We might not be the anticipated owner if we
		 * did a lock-steal - fix up the PI-state in that case.
		 */
		if (q.pi_state && (q.pi_state->owner != current)) {
			spin_lock(q.lock_ptr);
			ret = fixup_pi_state_owner(uaddr2, &q, current,
						   fshared);
			spin_unlock(q.lock_ptr);
		}
	} else {
		/*
		 * We have been woken up by futex_unlock_pi(), a timeout, or a
		 * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
		 * the pi_state.
		 */
		WARN_ON(!&q.pi_state);
		pi_mutex = &q.pi_state->pi_mutex;
		ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
		debug_rt_mutex_free_waiter(&rt_waiter);

		spin_lock(q.lock_ptr);
		/*
		 * Fixup the pi_state owner and possibly acquire the lock if we
		 * haven't already.
		 */
		res = fixup_owner(uaddr2, fshared, &q, !ret);
		/*
		 * If fixup_owner() returned an error, proprogate that.  If it
2273
		 * acquired the lock, clear -ETIMEDOUT or -EINTR.
2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290
		 */
		if (res)
			ret = (res < 0) ? res : 0;

		/* Unqueue and drop the lock. */
		unqueue_me_pi(&q);
	}

	/*
	 * If fixup_pi_state_owner() faulted and was unable to handle the
	 * fault, unlock the rt_mutex and return the fault to userspace.
	 */
	if (ret == -EFAULT) {
		if (rt_mutex_owner(pi_mutex) == current)
			rt_mutex_unlock(pi_mutex);
	} else if (ret == -EINTR) {
		/*
2291 2292 2293 2294 2295
		 * We've already been requeued, but cannot restart by calling
		 * futex_lock_pi() directly. We could restart this syscall, but
		 * it would detect that the user space "val" changed and return
		 * -EWOULDBLOCK.  Save the overhead of the restart and return
		 * -EWOULDBLOCK directly.
2296
		 */
2297
		ret = -EWOULDBLOCK;
2298 2299 2300 2301
	}

out_put_keys:
	put_futex_key(fshared, &q.key);
T
Thomas Gleixner 已提交
2302
out_key2:
2303 2304
	put_futex_key(fshared, &key2);

T
Thomas Gleixner 已提交
2305 2306 2307
	/* Spurious wakeup ? */
	if (ret == -EAGAIN)
		goto retry;
2308 2309 2310 2311 2312 2313 2314 2315
out:
	if (to) {
		hrtimer_cancel(&to->timer);
		destroy_hrtimer_on_stack(&to->timer);
	}
	return ret;
}

2316 2317 2318 2319 2320 2321 2322
/*
 * Support for robust futexes: the kernel cleans up held futexes at
 * thread exit time.
 *
 * Implementation: user-space maintains a per-thread list of locks it
 * is holding. Upon do_exit(), the kernel carefully walks this list,
 * and marks all locks that are owned by this thread with the
2323
 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2324 2325 2326 2327 2328 2329 2330 2331
 * always manipulated with the lock held, so the list is private and
 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
 * field, to allow the kernel to clean up if the thread dies after
 * acquiring the lock, but just before it could have added itself to
 * the list. There can only be one such pending lock.
 */

/**
2332 2333 2334
 * sys_set_robust_list() - Set the robust-futex list head of a task
 * @head:	pointer to the list-head
 * @len:	length of the list-head, as userspace expects
2335
 */
2336 2337
SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
		size_t, len)
2338
{
2339 2340
	if (!futex_cmpxchg_enabled)
		return -ENOSYS;
2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352
	/*
	 * The kernel knows only one size for now:
	 */
	if (unlikely(len != sizeof(*head)))
		return -EINVAL;

	current->robust_list = head;

	return 0;
}

/**
2353 2354 2355 2356
 * sys_get_robust_list() - Get the robust-futex list head of a task
 * @pid:	pid of the process [zero for current task]
 * @head_ptr:	pointer to a list-head pointer, the kernel fills it in
 * @len_ptr:	pointer to a length field, the kernel fills in the header size
2357
 */
2358 2359 2360
SYSCALL_DEFINE3(get_robust_list, int, pid,
		struct robust_list_head __user * __user *, head_ptr,
		size_t __user *, len_ptr)
2361
{
A
Al Viro 已提交
2362
	struct robust_list_head __user *head;
2363
	unsigned long ret;
2364
	const struct cred *cred = current_cred(), *pcred;
2365

2366 2367 2368
	if (!futex_cmpxchg_enabled)
		return -ENOSYS;

2369 2370 2371 2372 2373 2374
	if (!pid)
		head = current->robust_list;
	else {
		struct task_struct *p;

		ret = -ESRCH;
2375
		rcu_read_lock();
2376
		p = find_task_by_vpid(pid);
2377 2378 2379
		if (!p)
			goto err_unlock;
		ret = -EPERM;
2380 2381 2382
		pcred = __task_cred(p);
		if (cred->euid != pcred->euid &&
		    cred->euid != pcred->uid &&
2383
		    !capable(CAP_SYS_PTRACE))
2384 2385
			goto err_unlock;
		head = p->robust_list;
2386
		rcu_read_unlock();
2387 2388 2389 2390 2391 2392 2393
	}

	if (put_user(sizeof(*head), len_ptr))
		return -EFAULT;
	return put_user(head, head_ptr);

err_unlock:
2394
	rcu_read_unlock();
2395 2396 2397 2398 2399 2400 2401 2402

	return ret;
}

/*
 * Process a futex-list entry, check whether it's owned by the
 * dying task, and do notification if so:
 */
2403
int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2404
{
2405
	u32 uval, nval, mval;
2406

2407 2408
retry:
	if (get_user(uval, uaddr))
2409 2410
		return -1;

2411
	if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2412 2413 2414 2415 2416 2417 2418 2419 2420 2421
		/*
		 * Ok, this dying thread is truly holding a futex
		 * of interest. Set the OWNER_DIED bit atomically
		 * via cmpxchg, and if the value had FUTEX_WAITERS
		 * set, wake up a waiter (if any). (We have to do a
		 * futex_wake() even if OWNER_DIED is already set -
		 * to handle the rare but possible case of recursive
		 * thread-death.) The rest of the cleanup is done in
		 * userspace.
		 */
2422 2423 2424
		mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
		nval = futex_atomic_cmpxchg_inatomic(uaddr, uval, mval);

2425 2426 2427 2428
		if (nval == -EFAULT)
			return -1;

		if (nval != uval)
2429
			goto retry;
2430

2431 2432 2433 2434
		/*
		 * Wake robust non-PI futexes here. The wakeup of
		 * PI futexes happens in exit_pi_state():
		 */
T
Thomas Gleixner 已提交
2435
		if (!pi && (uval & FUTEX_WAITERS))
P
Peter Zijlstra 已提交
2436
			futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2437 2438 2439 2440
	}
	return 0;
}

2441 2442 2443 2444
/*
 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
 */
static inline int fetch_robust_entry(struct robust_list __user **entry,
A
Al Viro 已提交
2445 2446
				     struct robust_list __user * __user *head,
				     int *pi)
2447 2448 2449
{
	unsigned long uentry;

A
Al Viro 已提交
2450
	if (get_user(uentry, (unsigned long __user *)head))
2451 2452
		return -EFAULT;

A
Al Viro 已提交
2453
	*entry = (void __user *)(uentry & ~1UL);
2454 2455 2456 2457 2458
	*pi = uentry & 1;

	return 0;
}

2459 2460 2461 2462 2463 2464 2465 2466 2467
/*
 * Walk curr->robust_list (very carefully, it's a userspace list!)
 * and mark any locks found there dead, and notify any waiters.
 *
 * We silently return on any sign of list-walking problem.
 */
void exit_robust_list(struct task_struct *curr)
{
	struct robust_list_head __user *head = curr->robust_list;
M
Martin Schwidefsky 已提交
2468 2469
	struct robust_list __user *entry, *next_entry, *pending;
	unsigned int limit = ROBUST_LIST_LIMIT, pi, next_pi, pip;
2470
	unsigned long futex_offset;
M
Martin Schwidefsky 已提交
2471
	int rc;
2472

2473 2474 2475
	if (!futex_cmpxchg_enabled)
		return;

2476 2477 2478 2479
	/*
	 * Fetch the list head (which was registered earlier, via
	 * sys_set_robust_list()):
	 */
2480
	if (fetch_robust_entry(&entry, &head->list.next, &pi))
2481 2482 2483 2484 2485 2486 2487 2488 2489 2490
		return;
	/*
	 * Fetch the relative futex offset:
	 */
	if (get_user(futex_offset, &head->futex_offset))
		return;
	/*
	 * Fetch any possibly pending lock-add first, and handle it
	 * if it exists:
	 */
2491
	if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2492
		return;
2493

M
Martin Schwidefsky 已提交
2494
	next_entry = NULL;	/* avoid warning with gcc */
2495
	while (entry != &head->list) {
M
Martin Schwidefsky 已提交
2496 2497 2498 2499 2500
		/*
		 * Fetch the next entry in the list before calling
		 * handle_futex_death:
		 */
		rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2501 2502
		/*
		 * A pending lock might already be on the list, so
2503
		 * don't process it twice:
2504 2505
		 */
		if (entry != pending)
A
Al Viro 已提交
2506
			if (handle_futex_death((void __user *)entry + futex_offset,
2507
						curr, pi))
2508
				return;
M
Martin Schwidefsky 已提交
2509
		if (rc)
2510
			return;
M
Martin Schwidefsky 已提交
2511 2512
		entry = next_entry;
		pi = next_pi;
2513 2514 2515 2516 2517 2518 2519 2520
		/*
		 * Avoid excessively long or circular lists:
		 */
		if (!--limit)
			break;

		cond_resched();
	}
M
Martin Schwidefsky 已提交
2521 2522 2523 2524

	if (pending)
		handle_futex_death((void __user *)pending + futex_offset,
				   curr, pip);
2525 2526
}

2527
long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2528
		u32 __user *uaddr2, u32 val2, u32 val3)
L
Linus Torvalds 已提交
2529
{
2530
	int clockrt, ret = -ENOSYS;
E
Eric Dumazet 已提交
2531
	int cmd = op & FUTEX_CMD_MASK;
P
Peter Zijlstra 已提交
2532
	int fshared = 0;
E
Eric Dumazet 已提交
2533 2534

	if (!(op & FUTEX_PRIVATE_FLAG))
P
Peter Zijlstra 已提交
2535
		fshared = 1;
L
Linus Torvalds 已提交
2536

2537
	clockrt = op & FUTEX_CLOCK_REALTIME;
2538
	if (clockrt && cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2539
		return -ENOSYS;
L
Linus Torvalds 已提交
2540

E
Eric Dumazet 已提交
2541
	switch (cmd) {
L
Linus Torvalds 已提交
2542
	case FUTEX_WAIT:
2543 2544
		val3 = FUTEX_BITSET_MATCH_ANY;
	case FUTEX_WAIT_BITSET:
2545
		ret = futex_wait(uaddr, fshared, val, timeout, val3, clockrt);
L
Linus Torvalds 已提交
2546 2547
		break;
	case FUTEX_WAKE:
2548 2549 2550
		val3 = FUTEX_BITSET_MATCH_ANY;
	case FUTEX_WAKE_BITSET:
		ret = futex_wake(uaddr, fshared, val, val3);
L
Linus Torvalds 已提交
2551 2552
		break;
	case FUTEX_REQUEUE:
2553
		ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, NULL, 0);
L
Linus Torvalds 已提交
2554 2555
		break;
	case FUTEX_CMP_REQUEUE:
2556 2557
		ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3,
				    0);
L
Linus Torvalds 已提交
2558
		break;
2559
	case FUTEX_WAKE_OP:
E
Eric Dumazet 已提交
2560
		ret = futex_wake_op(uaddr, fshared, uaddr2, val, val2, val3);
2561
		break;
2562
	case FUTEX_LOCK_PI:
2563 2564
		if (futex_cmpxchg_enabled)
			ret = futex_lock_pi(uaddr, fshared, val, timeout, 0);
2565 2566
		break;
	case FUTEX_UNLOCK_PI:
2567 2568
		if (futex_cmpxchg_enabled)
			ret = futex_unlock_pi(uaddr, fshared);
2569 2570
		break;
	case FUTEX_TRYLOCK_PI:
2571 2572
		if (futex_cmpxchg_enabled)
			ret = futex_lock_pi(uaddr, fshared, 0, timeout, 1);
2573
		break;
2574 2575 2576 2577 2578 2579 2580 2581 2582
	case FUTEX_WAIT_REQUEUE_PI:
		val3 = FUTEX_BITSET_MATCH_ANY;
		ret = futex_wait_requeue_pi(uaddr, fshared, val, timeout, val3,
					    clockrt, uaddr2);
		break;
	case FUTEX_CMP_REQUEUE_PI:
		ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3,
				    1);
		break;
L
Linus Torvalds 已提交
2583 2584 2585 2586 2587 2588 2589
	default:
		ret = -ENOSYS;
	}
	return ret;
}


2590 2591 2592
SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
		struct timespec __user *, utime, u32 __user *, uaddr2,
		u32, val3)
L
Linus Torvalds 已提交
2593
{
2594 2595
	struct timespec ts;
	ktime_t t, *tp = NULL;
2596
	u32 val2 = 0;
E
Eric Dumazet 已提交
2597
	int cmd = op & FUTEX_CMD_MASK;
L
Linus Torvalds 已提交
2598

2599
	if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2600 2601
		      cmd == FUTEX_WAIT_BITSET ||
		      cmd == FUTEX_WAIT_REQUEUE_PI)) {
2602
		if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
L
Linus Torvalds 已提交
2603
			return -EFAULT;
2604
		if (!timespec_valid(&ts))
2605
			return -EINVAL;
2606 2607

		t = timespec_to_ktime(ts);
E
Eric Dumazet 已提交
2608
		if (cmd == FUTEX_WAIT)
2609
			t = ktime_add_safe(ktime_get(), t);
2610
		tp = &t;
L
Linus Torvalds 已提交
2611 2612
	}
	/*
2613
	 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
2614
	 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
L
Linus Torvalds 已提交
2615
	 */
2616
	if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2617
	    cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
2618
		val2 = (u32) (unsigned long) utime;
L
Linus Torvalds 已提交
2619

2620
	return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
L
Linus Torvalds 已提交
2621 2622
}

2623
static int __init futex_init(void)
L
Linus Torvalds 已提交
2624
{
2625
	u32 curval;
T
Thomas Gleixner 已提交
2626
	int i;
A
Akinobu Mita 已提交
2627

2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641
	/*
	 * This will fail and we want it. Some arch implementations do
	 * runtime detection of the futex_atomic_cmpxchg_inatomic()
	 * functionality. We want to know that before we call in any
	 * of the complex code paths. Also we want to prevent
	 * registration of robust lists in that case. NULL is
	 * guaranteed to fault and we get -EFAULT on functional
	 * implementation, the non functional ones will return
	 * -ENOSYS.
	 */
	curval = cmpxchg_futex_value_locked(NULL, 0, 0);
	if (curval == -EFAULT)
		futex_cmpxchg_enabled = 1;

T
Thomas Gleixner 已提交
2642 2643 2644 2645 2646
	for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
		plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
		spin_lock_init(&futex_queues[i].lock);
	}

L
Linus Torvalds 已提交
2647 2648
	return 0;
}
2649
__initcall(futex_init);