cpufreq_conservative.c 10.8 KB
Newer Older
1 2 3 4 5 6
/*
 *  drivers/cpufreq/cpufreq_conservative.c
 *
 *  Copyright (C)  2001 Russell King
 *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
 *                      Jun Nakajima <jun.nakajima@intel.com>
7
 *            (C)  2009 Alexander Clouter <alex@digriz.org.uk>
8 9 10 11 12 13
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

14
#include <linux/slab.h>
15
#include "cpufreq_governor.h"
16

17
/* Conservative governor macros */
18 19
#define DEF_FREQUENCY_UP_THRESHOLD		(80)
#define DEF_FREQUENCY_DOWN_THRESHOLD		(20)
20
#define DEF_FREQUENCY_STEP			(5)
21 22
#define DEF_SAMPLING_DOWN_FACTOR		(1)
#define MAX_SAMPLING_DOWN_FACTOR		(10)
23

24
static DEFINE_PER_CPU(struct cs_cpu_dbs_info_s, cs_cpu_dbs_info);
25

26 27 28
static int cs_cpufreq_governor_dbs(struct cpufreq_policy *policy,
				   unsigned int event);

29
static struct cpufreq_governor cpufreq_gov_conservative = {
30 31 32 33 34 35
	.name			= "conservative",
	.governor		= cs_cpufreq_governor_dbs,
	.max_transition_latency	= TRANSITION_LATENCY_LIMIT,
	.owner			= THIS_MODULE,
};

36 37 38 39 40 41 42 43 44 45 46 47
static inline unsigned int get_freq_target(struct cs_dbs_tuners *cs_tuners,
					   struct cpufreq_policy *policy)
{
	unsigned int freq_target = (cs_tuners->freq_step * policy->max) / 100;

	/* max freq cannot be less than 100. But who knows... */
	if (unlikely(freq_target == 0))
		freq_target = DEF_FREQUENCY_STEP;

	return freq_target;
}

48 49
/*
 * Every sampling_rate, we check, if current idle time is less than 20%
50 51 52
 * (default), then we try to increase frequency. Every sampling_rate *
 * sampling_down_factor, we check, if current idle time is more than 80%
 * (default), then we try to decrease frequency
53 54 55 56 57
 *
 * Any frequency increase takes it to the maximum frequency. Frequency reduction
 * happens at minimum steps of 5% (default) of maximum frequency
 */
static void cs_check_cpu(int cpu, unsigned int load)
58
{
59
	struct cs_cpu_dbs_info_s *dbs_info = &per_cpu(cs_cpu_dbs_info, cpu);
60
	struct cpufreq_policy *policy = dbs_info->cdbs.shared->policy;
61 62
	struct dbs_data *dbs_data = policy->governor_data;
	struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
63 64 65 66 67

	/*
	 * break out if we 'cannot' reduce the speed as the user might
	 * want freq_step to be zero
	 */
68
	if (cs_tuners->freq_step == 0)
69 70 71
		return;

	/* Check for frequency increase */
72
	if (load > cs_tuners->up_threshold) {
73 74 75 76 77 78
		dbs_info->down_skip = 0;

		/* if we are already at full speed then break out early */
		if (dbs_info->requested_freq == policy->max)
			return;

79
		dbs_info->requested_freq += get_freq_target(cs_tuners, policy);
80

81 82 83
		if (dbs_info->requested_freq > policy->max)
			dbs_info->requested_freq = policy->max;

84 85 86 87 88
		__cpufreq_driver_target(policy, dbs_info->requested_freq,
			CPUFREQ_RELATION_H);
		return;
	}

89 90 91 92 93
	/* if sampling_down_factor is active break out early */
	if (++dbs_info->down_skip < cs_tuners->sampling_down_factor)
		return;
	dbs_info->down_skip = 0;

94 95
	/* Check for frequency decrease */
	if (load < cs_tuners->down_threshold) {
96
		unsigned int freq_target;
97 98 99 100 101 102
		/*
		 * if we cannot reduce the frequency anymore, break out early
		 */
		if (policy->cur == policy->min)
			return;

103 104 105 106 107
		freq_target = get_freq_target(cs_tuners, policy);
		if (dbs_info->requested_freq > freq_target)
			dbs_info->requested_freq -= freq_target;
		else
			dbs_info->requested_freq = policy->min;
108

109
		__cpufreq_driver_target(policy, dbs_info->requested_freq,
110
				CPUFREQ_RELATION_L);
111 112 113 114
		return;
	}
}

115
static unsigned int cs_dbs_timer(struct cpufreq_policy *policy)
116
{
117
	struct dbs_data *dbs_data = policy->governor_data;
118
	struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
119

120
	dbs_check_cpu(dbs_data, policy->cpu);
121
	return delay_for_sampling_rate(cs_tuners->sampling_rate);
122 123
}

124 125 126 127 128 129
static int dbs_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
		void *data)
{
	struct cpufreq_freqs *freq = data;
	struct cs_cpu_dbs_info_s *dbs_info =
					&per_cpu(cs_cpu_dbs_info, freq->cpu);
130
	struct cpufreq_policy *policy = cpufreq_cpu_get_raw(freq->cpu);
131

132
	if (!policy)
133 134
		return 0;

135 136 137
	/* policy isn't governed by conservative governor */
	if (policy->governor != &cpufreq_gov_conservative)
		return 0;
138 139

	/*
140
	 * we only care if our internally tracked freq moves outside the 'valid'
141
	 * ranges of frequency available to us otherwise we do not change it
142
	*/
143 144 145
	if (dbs_info->requested_freq > policy->max
			|| dbs_info->requested_freq < policy->min)
		dbs_info->requested_freq = freq->new;
146 147 148 149

	return 0;
}

150 151 152 153
static struct notifier_block cs_cpufreq_notifier_block = {
	.notifier_call = dbs_cpufreq_notifier,
};

154
/************************** sysfs interface ************************/
155
static struct common_dbs_data cs_dbs_cdata;
156

157 158
static ssize_t store_sampling_down_factor(struct dbs_data *dbs_data,
		const char *buf, size_t count)
159
{
160
	struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
161 162
	unsigned int input;
	int ret;
163
	ret = sscanf(buf, "%u", &input);
164

165
	if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
166 167
		return -EINVAL;

168
	cs_tuners->sampling_down_factor = input;
169 170 171
	return count;
}

172 173
static ssize_t store_sampling_rate(struct dbs_data *dbs_data, const char *buf,
		size_t count)
174
{
175
	struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
176 177
	unsigned int input;
	int ret;
178
	ret = sscanf(buf, "%u", &input);
179

180
	if (ret != 1)
181
		return -EINVAL;
182

183
	cs_tuners->sampling_rate = max(input, dbs_data->min_sampling_rate);
184 185 186
	return count;
}

187 188
static ssize_t store_up_threshold(struct dbs_data *dbs_data, const char *buf,
		size_t count)
189
{
190
	struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
191 192
	unsigned int input;
	int ret;
193
	ret = sscanf(buf, "%u", &input);
194

195
	if (ret != 1 || input > 100 || input <= cs_tuners->down_threshold)
196 197
		return -EINVAL;

198
	cs_tuners->up_threshold = input;
199 200 201
	return count;
}

202 203
static ssize_t store_down_threshold(struct dbs_data *dbs_data, const char *buf,
		size_t count)
204
{
205
	struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
206 207
	unsigned int input;
	int ret;
208
	ret = sscanf(buf, "%u", &input);
209

210 211
	/* cannot be lower than 11 otherwise freq will not fall */
	if (ret != 1 || input < 11 || input > 100 ||
212
			input >= cs_tuners->up_threshold)
213 214
		return -EINVAL;

215
	cs_tuners->down_threshold = input;
216 217 218
	return count;
}

219 220
static ssize_t store_ignore_nice_load(struct dbs_data *dbs_data,
		const char *buf, size_t count)
221
{
222
	struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
223
	unsigned int input, j;
224 225
	int ret;

226 227
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
228 229
		return -EINVAL;

230
	if (input > 1)
231
		input = 1;
232

233
	if (input == cs_tuners->ignore_nice_load) /* nothing to do */
234
		return count;
235

236
	cs_tuners->ignore_nice_load = input;
237

238
	/* we need to re-evaluate prev_cpu_idle */
239
	for_each_online_cpu(j) {
240
		struct cs_cpu_dbs_info_s *dbs_info;
241
		dbs_info = &per_cpu(cs_cpu_dbs_info, j);
242
		dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j,
243
					&dbs_info->cdbs.prev_cpu_wall, 0);
244
		if (cs_tuners->ignore_nice_load)
245 246
			dbs_info->cdbs.prev_cpu_nice =
				kcpustat_cpu(j).cpustat[CPUTIME_NICE];
247 248 249 250
	}
	return count;
}

251 252
static ssize_t store_freq_step(struct dbs_data *dbs_data, const char *buf,
		size_t count)
253
{
254
	struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
255 256
	unsigned int input;
	int ret;
257
	ret = sscanf(buf, "%u", &input);
258

259
	if (ret != 1)
260 261
		return -EINVAL;

262
	if (input > 100)
263
		input = 100;
264

265 266 267 268
	/*
	 * no need to test here if freq_step is zero as the user might actually
	 * want this, they would be crazy though :)
	 */
269
	cs_tuners->freq_step = input;
270 271 272
	return count;
}

273 274 275 276
show_store_one(cs, sampling_rate);
show_store_one(cs, sampling_down_factor);
show_store_one(cs, up_threshold);
show_store_one(cs, down_threshold);
277
show_store_one(cs, ignore_nice_load);
278 279 280 281 282 283 284
show_store_one(cs, freq_step);
declare_show_sampling_rate_min(cs);

gov_sys_pol_attr_rw(sampling_rate);
gov_sys_pol_attr_rw(sampling_down_factor);
gov_sys_pol_attr_rw(up_threshold);
gov_sys_pol_attr_rw(down_threshold);
285
gov_sys_pol_attr_rw(ignore_nice_load);
286 287 288 289 290 291 292 293 294
gov_sys_pol_attr_rw(freq_step);
gov_sys_pol_attr_ro(sampling_rate_min);

static struct attribute *dbs_attributes_gov_sys[] = {
	&sampling_rate_min_gov_sys.attr,
	&sampling_rate_gov_sys.attr,
	&sampling_down_factor_gov_sys.attr,
	&up_threshold_gov_sys.attr,
	&down_threshold_gov_sys.attr,
295
	&ignore_nice_load_gov_sys.attr,
296
	&freq_step_gov_sys.attr,
297 298 299
	NULL
};

300 301 302 303 304 305 306 307 308 309 310
static struct attribute_group cs_attr_group_gov_sys = {
	.attrs = dbs_attributes_gov_sys,
	.name = "conservative",
};

static struct attribute *dbs_attributes_gov_pol[] = {
	&sampling_rate_min_gov_pol.attr,
	&sampling_rate_gov_pol.attr,
	&sampling_down_factor_gov_pol.attr,
	&up_threshold_gov_pol.attr,
	&down_threshold_gov_pol.attr,
311
	&ignore_nice_load_gov_pol.attr,
312 313 314 315 316 317
	&freq_step_gov_pol.attr,
	NULL
};

static struct attribute_group cs_attr_group_gov_pol = {
	.attrs = dbs_attributes_gov_pol,
318 319 320 321 322
	.name = "conservative",
};

/************************** sysfs end ************************/

323
static int cs_init(struct dbs_data *dbs_data, bool notify)
324 325 326
{
	struct cs_dbs_tuners *tuners;

327
	tuners = kzalloc(sizeof(*tuners), GFP_KERNEL);
328 329 330 331 332 333 334 335
	if (!tuners) {
		pr_err("%s: kzalloc failed\n", __func__);
		return -ENOMEM;
	}

	tuners->up_threshold = DEF_FREQUENCY_UP_THRESHOLD;
	tuners->down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD;
	tuners->sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR;
336
	tuners->ignore_nice_load = 0;
337
	tuners->freq_step = DEF_FREQUENCY_STEP;
338 339 340 341

	dbs_data->tuners = tuners;
	dbs_data->min_sampling_rate = MIN_SAMPLING_RATE_RATIO *
		jiffies_to_usecs(10);
342 343 344 345 346

	if (notify)
		cpufreq_register_notifier(&cs_cpufreq_notifier_block,
					  CPUFREQ_TRANSITION_NOTIFIER);

347 348 349
	return 0;
}

350
static void cs_exit(struct dbs_data *dbs_data, bool notify)
351
{
352 353 354 355
	if (notify)
		cpufreq_unregister_notifier(&cs_cpufreq_notifier_block,
					    CPUFREQ_TRANSITION_NOTIFIER);

356 357 358
	kfree(dbs_data->tuners);
}

359
define_get_cpu_dbs_routines(cs_cpu_dbs_info);
360

361
static struct common_dbs_data cs_dbs_cdata = {
362
	.governor = GOV_CONSERVATIVE,
363 364
	.attr_group_gov_sys = &cs_attr_group_gov_sys,
	.attr_group_gov_pol = &cs_attr_group_gov_pol,
365 366 367 368
	.get_cpu_cdbs = get_cpu_cdbs,
	.get_cpu_dbs_info_s = get_cpu_dbs_info_s,
	.gov_dbs_timer = cs_dbs_timer,
	.gov_check_cpu = cs_check_cpu,
369 370
	.init = cs_init,
	.exit = cs_exit,
371
};
372

373
static int cs_cpufreq_governor_dbs(struct cpufreq_policy *policy,
374 375
				   unsigned int event)
{
376
	return cpufreq_governor_dbs(policy, &cs_dbs_cdata, event);
377 378 379 380
}

static int __init cpufreq_gov_dbs_init(void)
{
381
	return cpufreq_register_governor(&cpufreq_gov_conservative);
382 383 384 385
}

static void __exit cpufreq_gov_dbs_exit(void)
{
386
	cpufreq_unregister_governor(&cpufreq_gov_conservative);
387 388
}

389
MODULE_AUTHOR("Alexander Clouter <alex@digriz.org.uk>");
390
MODULE_DESCRIPTION("'cpufreq_conservative' - A dynamic cpufreq governor for "
391 392
		"Low Latency Frequency Transition capable processors "
		"optimised for use in a battery environment");
393
MODULE_LICENSE("GPL");
394

395
#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
396 397 398 399 400
struct cpufreq_governor *cpufreq_default_governor(void)
{
	return &cpufreq_gov_conservative;
}

401 402
fs_initcall(cpufreq_gov_dbs_init);
#else
403
module_init(cpufreq_gov_dbs_init);
404
#endif
405
module_exit(cpufreq_gov_dbs_exit);