cpufreq_conservative.c 11.1 KB
Newer Older
1 2 3 4 5 6
/*
 *  drivers/cpufreq/cpufreq_conservative.c
 *
 *  Copyright (C)  2001 Russell King
 *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
 *                      Jun Nakajima <jun.nakajima@intel.com>
7
 *            (C)  2009 Alexander Clouter <alex@digriz.org.uk>
8 9 10 11 12 13 14
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/cpufreq.h>
15 16
#include <linux/init.h>
#include <linux/kernel.h>
17
#include <linux/kernel_stat.h>
18 19
#include <linux/kobject.h>
#include <linux/module.h>
20
#include <linux/mutex.h>
21 22
#include <linux/notifier.h>
#include <linux/percpu-defs.h>
23
#include <linux/slab.h>
24 25
#include <linux/sysfs.h>
#include <linux/types.h>
26

27
#include "cpufreq_governor.h"
28

29
/* Conservative governor macros */
30 31
#define DEF_FREQUENCY_UP_THRESHOLD		(80)
#define DEF_FREQUENCY_DOWN_THRESHOLD		(20)
32
#define DEF_FREQUENCY_STEP			(5)
33 34
#define DEF_SAMPLING_DOWN_FACTOR		(1)
#define MAX_SAMPLING_DOWN_FACTOR		(10)
35

36
static DEFINE_PER_CPU(struct cs_cpu_dbs_info_s, cs_cpu_dbs_info);
37

38 39 40 41 42 43 44 45 46 47 48 49
static inline unsigned int get_freq_target(struct cs_dbs_tuners *cs_tuners,
					   struct cpufreq_policy *policy)
{
	unsigned int freq_target = (cs_tuners->freq_step * policy->max) / 100;

	/* max freq cannot be less than 100. But who knows... */
	if (unlikely(freq_target == 0))
		freq_target = DEF_FREQUENCY_STEP;

	return freq_target;
}

50 51
/*
 * Every sampling_rate, we check, if current idle time is less than 20%
52 53 54
 * (default), then we try to increase frequency. Every sampling_rate *
 * sampling_down_factor, we check, if current idle time is more than 80%
 * (default), then we try to decrease frequency
55 56 57 58 59
 *
 * Any frequency increase takes it to the maximum frequency. Frequency reduction
 * happens at minimum steps of 5% (default) of maximum frequency
 */
static void cs_check_cpu(int cpu, unsigned int load)
60
{
61 62
	struct cs_cpu_dbs_info_s *dbs_info = &per_cpu(cs_cpu_dbs_info, cpu);
	struct cpufreq_policy *policy = dbs_info->cdbs.cur_policy;
63 64
	struct dbs_data *dbs_data = policy->governor_data;
	struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
65 66 67 68 69

	/*
	 * break out if we 'cannot' reduce the speed as the user might
	 * want freq_step to be zero
	 */
70
	if (cs_tuners->freq_step == 0)
71 72 73
		return;

	/* Check for frequency increase */
74
	if (load > cs_tuners->up_threshold) {
75 76 77 78 79 80
		dbs_info->down_skip = 0;

		/* if we are already at full speed then break out early */
		if (dbs_info->requested_freq == policy->max)
			return;

81
		dbs_info->requested_freq += get_freq_target(cs_tuners, policy);
82 83
		if (dbs_info->requested_freq > policy->max)
			dbs_info->requested_freq = policy->max;
84

85 86 87 88 89
		__cpufreq_driver_target(policy, dbs_info->requested_freq,
			CPUFREQ_RELATION_H);
		return;
	}

90 91 92 93 94
	/* if sampling_down_factor is active break out early */
	if (++dbs_info->down_skip < cs_tuners->sampling_down_factor)
		return;
	dbs_info->down_skip = 0;

95 96
	/* Check for frequency decrease */
	if (load < cs_tuners->down_threshold) {
97 98 99 100 101 102
		/*
		 * if we cannot reduce the frequency anymore, break out early
		 */
		if (policy->cur == policy->min)
			return;

103
		dbs_info->requested_freq -= get_freq_target(cs_tuners, policy);
104 105 106
		if (dbs_info->requested_freq < policy->min)
			dbs_info->requested_freq = policy->min;

107
		__cpufreq_driver_target(policy, dbs_info->requested_freq,
108
				CPUFREQ_RELATION_L);
109 110 111 112
		return;
	}
}

113
static void cs_dbs_timer(struct work_struct *work)
114
{
115 116
	struct cs_cpu_dbs_info_s *dbs_info = container_of(work,
			struct cs_cpu_dbs_info_s, cdbs.work.work);
117
	unsigned int cpu = dbs_info->cdbs.cur_policy->cpu;
118 119
	struct cs_cpu_dbs_info_s *core_dbs_info = &per_cpu(cs_cpu_dbs_info,
			cpu);
120 121 122
	struct dbs_data *dbs_data = dbs_info->cdbs.cur_policy->governor_data;
	struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
	int delay = delay_for_sampling_rate(cs_tuners->sampling_rate);
123
	bool modify_all = true;
124

125
	mutex_lock(&core_dbs_info->cdbs.timer_mutex);
126 127 128
	if (!need_load_eval(&core_dbs_info->cdbs, cs_tuners->sampling_rate))
		modify_all = false;
	else
129
		dbs_check_cpu(dbs_data, cpu);
130

131
	gov_queue_work(dbs_data, dbs_info->cdbs.cur_policy, delay, modify_all);
132
	mutex_unlock(&core_dbs_info->cdbs.timer_mutex);
133 134
}

135 136 137 138 139 140
static int dbs_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
		void *data)
{
	struct cpufreq_freqs *freq = data;
	struct cs_cpu_dbs_info_s *dbs_info =
					&per_cpu(cs_cpu_dbs_info, freq->cpu);
141 142
	struct cpufreq_policy *policy;

143
	if (!dbs_info->enable)
144 145
		return 0;

146
	policy = dbs_info->cdbs.cur_policy;
147 148

	/*
149
	 * we only care if our internally tracked freq moves outside the 'valid'
150
	 * ranges of frequency available to us otherwise we do not change it
151
	*/
152 153 154
	if (dbs_info->requested_freq > policy->max
			|| dbs_info->requested_freq < policy->min)
		dbs_info->requested_freq = freq->new;
155 156 157 158

	return 0;
}

159
/************************** sysfs interface ************************/
160
static struct common_dbs_data cs_dbs_cdata;
161

162 163
static ssize_t store_sampling_down_factor(struct dbs_data *dbs_data,
		const char *buf, size_t count)
164
{
165
	struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
166 167
	unsigned int input;
	int ret;
168
	ret = sscanf(buf, "%u", &input);
169

170
	if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
171 172
		return -EINVAL;

173
	cs_tuners->sampling_down_factor = input;
174 175 176
	return count;
}

177 178
static ssize_t store_sampling_rate(struct dbs_data *dbs_data, const char *buf,
		size_t count)
179
{
180
	struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
181 182
	unsigned int input;
	int ret;
183
	ret = sscanf(buf, "%u", &input);
184

185
	if (ret != 1)
186
		return -EINVAL;
187

188
	cs_tuners->sampling_rate = max(input, dbs_data->min_sampling_rate);
189 190 191
	return count;
}

192 193
static ssize_t store_up_threshold(struct dbs_data *dbs_data, const char *buf,
		size_t count)
194
{
195
	struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
196 197
	unsigned int input;
	int ret;
198
	ret = sscanf(buf, "%u", &input);
199

200
	if (ret != 1 || input > 100 || input <= cs_tuners->down_threshold)
201 202
		return -EINVAL;

203
	cs_tuners->up_threshold = input;
204 205 206
	return count;
}

207 208
static ssize_t store_down_threshold(struct dbs_data *dbs_data, const char *buf,
		size_t count)
209
{
210
	struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
211 212
	unsigned int input;
	int ret;
213
	ret = sscanf(buf, "%u", &input);
214

215 216
	/* cannot be lower than 11 otherwise freq will not fall */
	if (ret != 1 || input < 11 || input > 100 ||
217
			input >= cs_tuners->up_threshold)
218 219
		return -EINVAL;

220
	cs_tuners->down_threshold = input;
221 222 223
	return count;
}

224 225
static ssize_t store_ignore_nice(struct dbs_data *dbs_data, const char *buf,
		size_t count)
226
{
227
	struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
228
	unsigned int input, j;
229 230
	int ret;

231 232
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
233 234
		return -EINVAL;

235
	if (input > 1)
236
		input = 1;
237

238
	if (input == cs_tuners->ignore_nice) /* nothing to do */
239
		return count;
240

241
	cs_tuners->ignore_nice = input;
242

243
	/* we need to re-evaluate prev_cpu_idle */
244
	for_each_online_cpu(j) {
245
		struct cs_cpu_dbs_info_s *dbs_info;
246
		dbs_info = &per_cpu(cs_cpu_dbs_info, j);
247
		dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j,
248
					&dbs_info->cdbs.prev_cpu_wall, 0);
249
		if (cs_tuners->ignore_nice)
250 251
			dbs_info->cdbs.prev_cpu_nice =
				kcpustat_cpu(j).cpustat[CPUTIME_NICE];
252 253 254 255
	}
	return count;
}

256 257
static ssize_t store_freq_step(struct dbs_data *dbs_data, const char *buf,
		size_t count)
258
{
259
	struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
260 261
	unsigned int input;
	int ret;
262
	ret = sscanf(buf, "%u", &input);
263

264
	if (ret != 1)
265 266
		return -EINVAL;

267
	if (input > 100)
268
		input = 100;
269

270 271 272 273
	/*
	 * no need to test here if freq_step is zero as the user might actually
	 * want this, they would be crazy though :)
	 */
274
	cs_tuners->freq_step = input;
275 276 277
	return count;
}

278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
show_store_one(cs, sampling_rate);
show_store_one(cs, sampling_down_factor);
show_store_one(cs, up_threshold);
show_store_one(cs, down_threshold);
show_store_one(cs, ignore_nice);
show_store_one(cs, freq_step);
declare_show_sampling_rate_min(cs);

gov_sys_pol_attr_rw(sampling_rate);
gov_sys_pol_attr_rw(sampling_down_factor);
gov_sys_pol_attr_rw(up_threshold);
gov_sys_pol_attr_rw(down_threshold);
gov_sys_pol_attr_rw(ignore_nice);
gov_sys_pol_attr_rw(freq_step);
gov_sys_pol_attr_ro(sampling_rate_min);

static struct attribute *dbs_attributes_gov_sys[] = {
	&sampling_rate_min_gov_sys.attr,
	&sampling_rate_gov_sys.attr,
	&sampling_down_factor_gov_sys.attr,
	&up_threshold_gov_sys.attr,
	&down_threshold_gov_sys.attr,
	&ignore_nice_gov_sys.attr,
	&freq_step_gov_sys.attr,
302 303 304
	NULL
};

305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
static struct attribute_group cs_attr_group_gov_sys = {
	.attrs = dbs_attributes_gov_sys,
	.name = "conservative",
};

static struct attribute *dbs_attributes_gov_pol[] = {
	&sampling_rate_min_gov_pol.attr,
	&sampling_rate_gov_pol.attr,
	&sampling_down_factor_gov_pol.attr,
	&up_threshold_gov_pol.attr,
	&down_threshold_gov_pol.attr,
	&ignore_nice_gov_pol.attr,
	&freq_step_gov_pol.attr,
	NULL
};

static struct attribute_group cs_attr_group_gov_pol = {
	.attrs = dbs_attributes_gov_pol,
323 324 325 326 327
	.name = "conservative",
};

/************************** sysfs end ************************/

328 329 330 331 332 333 334 335 336 337 338 339 340 341
static int cs_init(struct dbs_data *dbs_data)
{
	struct cs_dbs_tuners *tuners;

	tuners = kzalloc(sizeof(struct cs_dbs_tuners), GFP_KERNEL);
	if (!tuners) {
		pr_err("%s: kzalloc failed\n", __func__);
		return -ENOMEM;
	}

	tuners->up_threshold = DEF_FREQUENCY_UP_THRESHOLD;
	tuners->down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD;
	tuners->sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR;
	tuners->ignore_nice = 0;
342
	tuners->freq_step = DEF_FREQUENCY_STEP;
343 344 345 346 347 348 349 350 351 352 353 354 355

	dbs_data->tuners = tuners;
	dbs_data->min_sampling_rate = MIN_SAMPLING_RATE_RATIO *
		jiffies_to_usecs(10);
	mutex_init(&dbs_data->mutex);
	return 0;
}

static void cs_exit(struct dbs_data *dbs_data)
{
	kfree(dbs_data->tuners);
}

356
define_get_cpu_dbs_routines(cs_cpu_dbs_info);
357

358 359 360
static struct notifier_block cs_cpufreq_notifier_block = {
	.notifier_call = dbs_cpufreq_notifier,
};
361

362 363 364
static struct cs_ops cs_ops = {
	.notifier_block = &cs_cpufreq_notifier_block,
};
365

366
static struct common_dbs_data cs_dbs_cdata = {
367
	.governor = GOV_CONSERVATIVE,
368 369
	.attr_group_gov_sys = &cs_attr_group_gov_sys,
	.attr_group_gov_pol = &cs_attr_group_gov_pol,
370 371 372 373 374
	.get_cpu_cdbs = get_cpu_cdbs,
	.get_cpu_dbs_info_s = get_cpu_dbs_info_s,
	.gov_dbs_timer = cs_dbs_timer,
	.gov_check_cpu = cs_check_cpu,
	.gov_ops = &cs_ops,
375 376
	.init = cs_init,
	.exit = cs_exit,
377
};
378

379
static int cs_cpufreq_governor_dbs(struct cpufreq_policy *policy,
380 381
				   unsigned int event)
{
382
	return cpufreq_governor_dbs(policy, &cs_dbs_cdata, event);
383 384
}

385 386 387
#ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
static
#endif
388 389
struct cpufreq_governor cpufreq_gov_conservative = {
	.name			= "conservative",
390
	.governor		= cs_cpufreq_governor_dbs,
391 392
	.max_transition_latency	= TRANSITION_LATENCY_LIMIT,
	.owner			= THIS_MODULE,
393 394 395 396
};

static int __init cpufreq_gov_dbs_init(void)
{
397
	return cpufreq_register_governor(&cpufreq_gov_conservative);
398 399 400 401
}

static void __exit cpufreq_gov_dbs_exit(void)
{
402
	cpufreq_unregister_governor(&cpufreq_gov_conservative);
403 404
}

405
MODULE_AUTHOR("Alexander Clouter <alex@digriz.org.uk>");
406
MODULE_DESCRIPTION("'cpufreq_conservative' - A dynamic cpufreq governor for "
407 408
		"Low Latency Frequency Transition capable processors "
		"optimised for use in a battery environment");
409
MODULE_LICENSE("GPL");
410

411 412 413
#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
fs_initcall(cpufreq_gov_dbs_init);
#else
414
module_init(cpufreq_gov_dbs_init);
415
#endif
416
module_exit(cpufreq_gov_dbs_exit);