cpufreq_conservative.c 17.6 KB
Newer Older
1 2 3 4 5 6
/*
 *  drivers/cpufreq/cpufreq_conservative.c
 *
 *  Copyright (C)  2001 Russell King
 *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
 *                      Jun Nakajima <jun.nakajima@intel.com>
7
 *            (C)  2009 Alexander Clouter <alex@digriz.org.uk>
8 9 10 11 12 13 14 15 16 17
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/cpufreq.h>
A
Andrew Morton 已提交
18
#include <linux/cpu.h>
19 20
#include <linux/jiffies.h>
#include <linux/kernel_stat.h>
21
#include <linux/mutex.h>
22 23 24 25 26
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/ktime.h>
#include <linux/sched.h>

27 28 29 30 31 32 33 34
/*
 * dbs is used in this file as a shortform for demandbased switching
 * It helps to keep variable names smaller, simpler
 */

#define DEF_FREQUENCY_UP_THRESHOLD		(80)
#define DEF_FREQUENCY_DOWN_THRESHOLD		(20)

35 36
/*
 * The polling frequency of this governor depends on the capability of
37
 * the processor. Default polling frequency is 1000 times the transition
38 39
 * latency of the processor. The governor will work on any processor with
 * transition latency <= 10mS, using appropriate sampling
40
 * rate.
41 42
 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
 * this governor will not work.
43 44
 * All times here are in uS.
 */
45
#define MIN_SAMPLING_RATE_RATIO			(2)
46

47 48
static unsigned int min_sampling_rate;

49
#define LATENCY_MULTIPLIER			(1000)
50
#define MIN_LATENCY_MULTIPLIER			(100)
51 52
#define DEF_SAMPLING_DOWN_FACTOR		(1)
#define MAX_SAMPLING_DOWN_FACTOR		(10)
53
#define TRANSITION_LATENCY_LIMIT		(10 * 1000 * 1000)
54

D
David Howells 已提交
55
static void do_dbs_timer(struct work_struct *work);
56 57

struct cpu_dbs_info_s {
58 59 60
	cputime64_t prev_cpu_idle;
	cputime64_t prev_cpu_wall;
	cputime64_t prev_cpu_nice;
61
	struct cpufreq_policy *cur_policy;
62
	struct delayed_work work;
63 64
	unsigned int down_skip;
	unsigned int requested_freq;
65 66
	int cpu;
	unsigned int enable:1;
67 68 69 70 71
};
static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);

static unsigned int dbs_enable;	/* number of CPUs using this policy */

72 73 74 75 76 77 78
/*
 * DEADLOCK ALERT! There is a ordering requirement between cpu_hotplug
 * lock and dbs_mutex. cpu_hotplug lock should always be held before
 * dbs_mutex. If any function that can potentially take cpu_hotplug lock
 * (like __cpufreq_driver_target()) is being called with dbs_mutex taken, then
 * cpu_hotplug lock should be taken before that. Note that cpu_hotplug lock
 * is recursive for the same process. -Venki
79 80 81
 * DEADLOCK ALERT! (2) : do_dbs_timer() must not take the dbs_mutex, because it
 * would deadlock with cancel_delayed_work_sync(), which is needed for proper
 * raceless workqueue teardown.
82
 */
83
static DEFINE_MUTEX(dbs_mutex);
84

85 86 87
static struct workqueue_struct	*kconservative_wq;

static struct dbs_tuners {
88 89 90 91 92 93
	unsigned int sampling_rate;
	unsigned int sampling_down_factor;
	unsigned int up_threshold;
	unsigned int down_threshold;
	unsigned int ignore_nice;
	unsigned int freq_step;
94
} dbs_tuners_ins = {
95 96 97 98 99
	.up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
	.down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD,
	.sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
	.ignore_nice = 0,
	.freq_step = 5,
100 101
};

102 103
static inline cputime64_t get_cpu_idle_time_jiffy(unsigned int cpu,
							cputime64_t *wall)
104
{
105 106 107 108 109 110 111
	cputime64_t idle_time;
	cputime64_t cur_wall_time;
	cputime64_t busy_time;

	cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
	busy_time = cputime64_add(kstat_cpu(cpu).cpustat.user,
			kstat_cpu(cpu).cpustat.system);
112

113 114 115 116
	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.irq);
	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.softirq);
	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.steal);
	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.nice);
117

118 119 120
	idle_time = cputime64_sub(cur_wall_time, busy_time);
	if (wall)
		*wall = cur_wall_time;
121

122 123 124 125 126 127 128 129 130 131 132
	return idle_time;
}

static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
{
	u64 idle_time = get_cpu_idle_time_us(cpu, wall);

	if (idle_time == -1ULL)
		return get_cpu_idle_time_jiffy(cpu, wall);

	return idle_time;
133 134
}

135 136 137 138 139 140 141 142 143
/* keep track of frequency transitions */
static int
dbs_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
		     void *data)
{
	struct cpufreq_freqs *freq = data;
	struct cpu_dbs_info_s *this_dbs_info = &per_cpu(cpu_dbs_info,
							freq->cpu);

144 145
	struct cpufreq_policy *policy;

146 147 148
	if (!this_dbs_info->enable)
		return 0;

149 150 151 152 153 154 155 156 157 158
	policy = this_dbs_info->cur_policy;

	/*
	 * we only care if our internally tracked freq moves outside
	 * the 'valid' ranges of freqency available to us otherwise
	 * we do not change it
	*/
	if (this_dbs_info->requested_freq > policy->max
			|| this_dbs_info->requested_freq < policy->min)
		this_dbs_info->requested_freq = freq->new;
159 160 161 162 163 164 165 166

	return 0;
}

static struct notifier_block dbs_cpufreq_notifier_block = {
	.notifier_call = dbs_cpufreq_notifier
};

167 168 169
/************************** sysfs interface ************************/
static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
{
170 171
	printk_once(KERN_INFO "CPUFREQ: conservative sampling_rate_max "
		    "sysfs file is deprecated - used by: %s\n", current->comm);
172
	return sprintf(buf, "%u\n", -1U);
173 174 175 176
}

static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
{
177
	return sprintf(buf, "%u\n", min_sampling_rate);
178 179
}

180 181
#define define_one_ro(_name)		\
static struct freq_attr _name =		\
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
__ATTR(_name, 0444, show_##_name, NULL)

define_one_ro(sampling_rate_max);
define_one_ro(sampling_rate_min);

/* cpufreq_conservative Governor Tunables */
#define show_one(file_name, object)					\
static ssize_t show_##file_name						\
(struct cpufreq_policy *unused, char *buf)				\
{									\
	return sprintf(buf, "%u\n", dbs_tuners_ins.object);		\
}
show_one(sampling_rate, sampling_rate);
show_one(sampling_down_factor, sampling_down_factor);
show_one(up_threshold, up_threshold);
show_one(down_threshold, down_threshold);
198
show_one(ignore_nice_load, ignore_nice);
199 200
show_one(freq_step, freq_step);

201
static ssize_t store_sampling_down_factor(struct cpufreq_policy *unused,
202 203 204 205
		const char *buf, size_t count)
{
	unsigned int input;
	int ret;
206
	ret = sscanf(buf, "%u", &input);
207

208
	if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
209 210
		return -EINVAL;

211
	mutex_lock(&dbs_mutex);
212
	dbs_tuners_ins.sampling_down_factor = input;
213
	mutex_unlock(&dbs_mutex);
214 215 216 217

	return count;
}

218
static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
219 220 221 222
		const char *buf, size_t count)
{
	unsigned int input;
	int ret;
223
	ret = sscanf(buf, "%u", &input);
224

225
	if (ret != 1)
226
		return -EINVAL;
227 228

	mutex_lock(&dbs_mutex);
229
	dbs_tuners_ins.sampling_rate = max(input, min_sampling_rate);
230
	mutex_unlock(&dbs_mutex);
231 232 233 234

	return count;
}

235
static ssize_t store_up_threshold(struct cpufreq_policy *unused,
236 237 238 239
		const char *buf, size_t count)
{
	unsigned int input;
	int ret;
240
	ret = sscanf(buf, "%u", &input);
241

242
	mutex_lock(&dbs_mutex);
243
	if (ret != 1 || input > 100 ||
244
			input <= dbs_tuners_ins.down_threshold) {
245
		mutex_unlock(&dbs_mutex);
246 247 248 249
		return -EINVAL;
	}

	dbs_tuners_ins.up_threshold = input;
250
	mutex_unlock(&dbs_mutex);
251 252 253 254

	return count;
}

255
static ssize_t store_down_threshold(struct cpufreq_policy *unused,
256 257 258 259
		const char *buf, size_t count)
{
	unsigned int input;
	int ret;
260
	ret = sscanf(buf, "%u", &input);
261

262
	mutex_lock(&dbs_mutex);
263 264 265
	/* cannot be lower than 11 otherwise freq will not fall */
	if (ret != 1 || input < 11 || input > 100 ||
			input >= dbs_tuners_ins.up_threshold) {
266
		mutex_unlock(&dbs_mutex);
267 268 269 270
		return -EINVAL;
	}

	dbs_tuners_ins.down_threshold = input;
271
	mutex_unlock(&dbs_mutex);
272 273 274 275

	return count;
}

276
static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
277 278 279 280 281 282
		const char *buf, size_t count)
{
	unsigned int input;
	int ret;

	unsigned int j;
283 284 285

	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
286 287
		return -EINVAL;

288
	if (input > 1)
289
		input = 1;
290

291
	mutex_lock(&dbs_mutex);
292
	if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */
293
		mutex_unlock(&dbs_mutex);
294 295 296 297
		return count;
	}
	dbs_tuners_ins.ignore_nice = input;

298
	/* we need to re-evaluate prev_cpu_idle */
299
	for_each_online_cpu(j) {
300 301 302 303 304 305
		struct cpu_dbs_info_s *dbs_info;
		dbs_info = &per_cpu(cpu_dbs_info, j);
		dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
						&dbs_info->prev_cpu_wall);
		if (dbs_tuners_ins.ignore_nice)
			dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
306
	}
307
	mutex_unlock(&dbs_mutex);
308 309 310 311 312 313 314 315 316

	return count;
}

static ssize_t store_freq_step(struct cpufreq_policy *policy,
		const char *buf, size_t count)
{
	unsigned int input;
	int ret;
317
	ret = sscanf(buf, "%u", &input);
318

319
	if (ret != 1)
320 321
		return -EINVAL;

322
	if (input > 100)
323
		input = 100;
324

325 326
	/* no need to test here if freq_step is zero as the user might actually
	 * want this, they would be crazy though :) */
327
	mutex_lock(&dbs_mutex);
328
	dbs_tuners_ins.freq_step = input;
329
	mutex_unlock(&dbs_mutex);
330 331 332 333 334 335 336 337 338 339 340 341

	return count;
}

#define define_one_rw(_name) \
static struct freq_attr _name = \
__ATTR(_name, 0644, show_##_name, store_##_name)

define_one_rw(sampling_rate);
define_one_rw(sampling_down_factor);
define_one_rw(up_threshold);
define_one_rw(down_threshold);
342
define_one_rw(ignore_nice_load);
343 344
define_one_rw(freq_step);

345
static struct attribute *dbs_attributes[] = {
346 347 348 349 350 351
	&sampling_rate_max.attr,
	&sampling_rate_min.attr,
	&sampling_rate.attr,
	&sampling_down_factor.attr,
	&up_threshold.attr,
	&down_threshold.attr,
352
	&ignore_nice_load.attr,
353 354 355 356 357 358 359 360 361 362 363
	&freq_step.attr,
	NULL
};

static struct attribute_group dbs_attr_group = {
	.attrs = dbs_attributes,
	.name = "conservative",
};

/************************** sysfs end ************************/

364
static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
365
{
366
	unsigned int load = 0;
367
	unsigned int freq_target;
368

369 370
	struct cpufreq_policy *policy;
	unsigned int j;
371

372 373
	policy = this_dbs_info->cur_policy;

374
	/*
375 376 377 378
	 * Every sampling_rate, we check, if current idle time is less
	 * than 20% (default), then we try to increase frequency
	 * Every sampling_rate*sampling_down_factor, we check, if current
	 * idle time is more than 80%, then we try to decrease frequency
379
	 *
380 381
	 * Any frequency increase takes it to the maximum frequency.
	 * Frequency reduction happens at minimum steps of
382
	 * 5% (default) of maximum frequency
383 384
	 */

385 386 387 388 389
	/* Get Absolute Load */
	for_each_cpu(j, policy->cpus) {
		struct cpu_dbs_info_s *j_dbs_info;
		cputime64_t cur_wall_time, cur_idle_time;
		unsigned int idle_time, wall_time;
390

391 392 393 394 395 396 397
		j_dbs_info = &per_cpu(cpu_dbs_info, j);

		cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);

		wall_time = (unsigned int) cputime64_sub(cur_wall_time,
				j_dbs_info->prev_cpu_wall);
		j_dbs_info->prev_cpu_wall = cur_wall_time;
398

399 400 401
		idle_time = (unsigned int) cputime64_sub(cur_idle_time,
				j_dbs_info->prev_cpu_idle);
		j_dbs_info->prev_cpu_idle = cur_idle_time;
402

403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
		if (dbs_tuners_ins.ignore_nice) {
			cputime64_t cur_nice;
			unsigned long cur_nice_jiffies;

			cur_nice = cputime64_sub(kstat_cpu(j).cpustat.nice,
					 j_dbs_info->prev_cpu_nice);
			/*
			 * Assumption: nice time between sampling periods will
			 * be less than 2^32 jiffies for 32 bit sys
			 */
			cur_nice_jiffies = (unsigned long)
					cputime64_to_jiffies64(cur_nice);

			j_dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
			idle_time += jiffies_to_usecs(cur_nice_jiffies);
		}

		if (unlikely(!wall_time || wall_time < idle_time))
			continue;

		load = 100 * (wall_time - idle_time) / wall_time;
	}

	/*
	 * break out if we 'cannot' reduce the speed as the user might
	 * want freq_step to be zero
	 */
	if (dbs_tuners_ins.freq_step == 0)
		return;
432

433 434
	/* Check for frequency increase */
	if (load > dbs_tuners_ins.up_threshold) {
435
		this_dbs_info->down_skip = 0;
436

437
		/* if we are already at full speed then break out early */
438
		if (this_dbs_info->requested_freq == policy->max)
439
			return;
440

441
		freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
442 443

		/* max freq cannot be less than 100. But who knows.... */
444 445
		if (unlikely(freq_target == 0))
			freq_target = 5;
446

447
		this_dbs_info->requested_freq += freq_target;
448 449
		if (this_dbs_info->requested_freq > policy->max)
			this_dbs_info->requested_freq = policy->max;
450

451
		__cpufreq_driver_target(policy, this_dbs_info->requested_freq,
452 453 454 455
			CPUFREQ_RELATION_H);
		return;
	}

456 457 458 459 460 461
	/*
	 * The optimal frequency is the frequency that is the lowest that
	 * can support the current CPU usage without triggering the up
	 * policy. To be safe, we focus 10 points under the threshold.
	 */
	if (load < (dbs_tuners_ins.down_threshold - 10)) {
462
		freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
463

464
		this_dbs_info->requested_freq -= freq_target;
465 466
		if (this_dbs_info->requested_freq < policy->min)
			this_dbs_info->requested_freq = policy->min;
467

468 469 470 471 472 473
		/*
		 * if we cannot reduce the frequency anymore, break out early
		 */
		if (policy->cur == policy->min)
			return;

474
		__cpufreq_driver_target(policy, this_dbs_info->requested_freq,
475
				CPUFREQ_RELATION_H);
476 477 478 479
		return;
	}
}

D
David Howells 已提交
480
static void do_dbs_timer(struct work_struct *work)
481
{
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
	struct cpu_dbs_info_s *dbs_info =
		container_of(work, struct cpu_dbs_info_s, work.work);
	unsigned int cpu = dbs_info->cpu;

	/* We want all CPUs to do sampling nearly on same jiffy */
	int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);

	delay -= jiffies % delay;

	if (lock_policy_rwsem_write(cpu) < 0)
		return;

	if (!dbs_info->enable) {
		unlock_policy_rwsem_write(cpu);
		return;
	}

	dbs_check_cpu(dbs_info);

	queue_delayed_work_on(cpu, kconservative_wq, &dbs_info->work, delay);
	unlock_policy_rwsem_write(cpu);
503
}
504

505
static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
506
{
507 508 509 510 511 512 513 514
	/* We want all CPUs to do sampling nearly on same jiffy */
	int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
	delay -= jiffies % delay;

	dbs_info->enable = 1;
	INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
	queue_delayed_work_on(dbs_info->cpu, kconservative_wq, &dbs_info->work,
				delay);
515 516
}

517
static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
518
{
519
	dbs_info->enable = 0;
520
	cancel_delayed_work_sync(&dbs_info->work);
521 522 523 524 525 526 527 528
}

static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
				   unsigned int event)
{
	unsigned int cpu = policy->cpu;
	struct cpu_dbs_info_s *this_dbs_info;
	unsigned int j;
J
Jeff Garzik 已提交
529
	int rc;
530 531 532 533 534

	this_dbs_info = &per_cpu(cpu_dbs_info, cpu);

	switch (event) {
	case CPUFREQ_GOV_START:
535
		if ((!cpu_online(cpu)) || (!policy->cur))
536 537 538 539
			return -EINVAL;

		if (this_dbs_info->enable) /* Already enabled */
			break;
540

541
		mutex_lock(&dbs_mutex);
J
Jeff Garzik 已提交
542 543 544 545 546 547 548

		rc = sysfs_create_group(&policy->kobj, &dbs_attr_group);
		if (rc) {
			mutex_unlock(&dbs_mutex);
			return rc;
		}

549
		for_each_cpu(j, policy->cpus) {
550 551 552
			struct cpu_dbs_info_s *j_dbs_info;
			j_dbs_info = &per_cpu(cpu_dbs_info, j);
			j_dbs_info->cur_policy = policy;
553

554 555 556 557 558 559
			j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
						&j_dbs_info->prev_cpu_wall);
			if (dbs_tuners_ins.ignore_nice) {
				j_dbs_info->prev_cpu_nice =
						kstat_cpu(j).cpustat.nice;
			}
560
		}
561 562
		this_dbs_info->down_skip = 0;
		this_dbs_info->requested_freq = policy->cur;
J
Jeff Garzik 已提交
563

564 565 566 567 568 569 570 571
		dbs_enable++;
		/*
		 * Start the timerschedule work, when this governor
		 * is used for first time
		 */
		if (dbs_enable == 1) {
			unsigned int latency;
			/* policy latency is in nS. Convert it to uS first */
572 573 574
			latency = policy->cpuinfo.transition_latency / 1000;
			if (latency == 0)
				latency = 1;
575

576 577 578 579 580 581 582 583 584 585 586 587
			/*
			 * conservative does not implement micro like ondemand
			 * governor, thus we are bound to jiffes/HZ
			 */
			min_sampling_rate =
				MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10);
			/* Bring kernel and HW constraints together */
			min_sampling_rate = max(min_sampling_rate,
					MIN_LATENCY_MULTIPLIER * latency);
			dbs_tuners_ins.sampling_rate =
				max(min_sampling_rate,
				    latency * LATENCY_MULTIPLIER);
588

589 590 591
			cpufreq_register_notifier(
					&dbs_cpufreq_notifier_block,
					CPUFREQ_TRANSITION_NOTIFIER);
592
		}
593
		dbs_timer_init(this_dbs_info);
594

595
		mutex_unlock(&dbs_mutex);
596

597 598 599
		break;

	case CPUFREQ_GOV_STOP:
600
		mutex_lock(&dbs_mutex);
601
		dbs_timer_exit(this_dbs_info);
602 603
		sysfs_remove_group(&policy->kobj, &dbs_attr_group);
		dbs_enable--;
604

605 606 607 608
		/*
		 * Stop the timerschedule work, when this governor
		 * is used for first time
		 */
609
		if (dbs_enable == 0)
610 611 612 613
			cpufreq_unregister_notifier(
					&dbs_cpufreq_notifier_block,
					CPUFREQ_TRANSITION_NOTIFIER);

614
		mutex_unlock(&dbs_mutex);
615 616 617 618

		break;

	case CPUFREQ_GOV_LIMITS:
619
		mutex_lock(&dbs_mutex);
620 621 622
		if (policy->max < this_dbs_info->cur_policy->cur)
			__cpufreq_driver_target(
					this_dbs_info->cur_policy,
623
					policy->max, CPUFREQ_RELATION_H);
624 625 626
		else if (policy->min > this_dbs_info->cur_policy->cur)
			__cpufreq_driver_target(
					this_dbs_info->cur_policy,
627
					policy->min, CPUFREQ_RELATION_L);
628
		mutex_unlock(&dbs_mutex);
629

630 631 632 633 634
		break;
	}
	return 0;
}

635 636 637
#ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
static
#endif
638 639 640 641 642
struct cpufreq_governor cpufreq_gov_conservative = {
	.name			= "conservative",
	.governor		= cpufreq_governor_dbs,
	.max_transition_latency	= TRANSITION_LATENCY_LIMIT,
	.owner			= THIS_MODULE,
643 644 645 646
};

static int __init cpufreq_gov_dbs_init(void)
{
647 648 649 650 651 652 653 654 655 656 657 658 659
	int err;

	kconservative_wq = create_workqueue("kconservative");
	if (!kconservative_wq) {
		printk(KERN_ERR "Creation of kconservative failed\n");
		return -EFAULT;
	}

	err = cpufreq_register_governor(&cpufreq_gov_conservative);
	if (err)
		destroy_workqueue(kconservative_wq);

	return err;
660 661 662 663
}

static void __exit cpufreq_gov_dbs_exit(void)
{
664
	cpufreq_unregister_governor(&cpufreq_gov_conservative);
665
	destroy_workqueue(kconservative_wq);
666 667 668
}


669
MODULE_AUTHOR("Alexander Clouter <alex@digriz.org.uk>");
670
MODULE_DESCRIPTION("'cpufreq_conservative' - A dynamic cpufreq governor for "
671 672
		"Low Latency Frequency Transition capable processors "
		"optimised for use in a battery environment");
673
MODULE_LICENSE("GPL");
674

675 676 677
#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
fs_initcall(cpufreq_gov_dbs_init);
#else
678
module_init(cpufreq_gov_dbs_init);
679
#endif
680
module_exit(cpufreq_gov_dbs_exit);