blk-mq.c 47.0 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
#include <linux/delay.h>

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
#include "blk-mq-tag.h"

static DEFINE_MUTEX(all_q_mutex);
static LIST_HEAD(all_q_list);

static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);

/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
{
	unsigned int i;

43 44
	for (i = 0; i < hctx->ctx_map.map_size; i++)
		if (hctx->ctx_map.map[i].word)
45 46 47 48 49
			return true;

	return false;
}

50 51 52 53 54 55 56 57 58
static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
					      struct blk_mq_ctx *ctx)
{
	return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
}

#define CTX_TO_BIT(hctx, ctx)	\
	((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))

59 60 61 62 63 64
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
65 66 67 68 69 70 71 72 73 74 75 76
	struct blk_align_bitmap *bm = get_bm(hctx, ctx);

	if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
		set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
	struct blk_align_bitmap *bm = get_bm(hctx, ctx);

	clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
77 78 79 80 81 82 83 84
}

static int blk_mq_queue_enter(struct request_queue *q)
{
	int ret;

	__percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
	smp_wmb();
85 86 87 88

	/* we have problems freezing the queue if it's initializing */
	if (!blk_queue_dying(q) &&
	    (!blk_queue_bypass(q) || !blk_queue_init_done(q)))
89 90 91 92 93 94
		return 0;

	__percpu_counter_add(&q->mq_usage_counter, -1, 1000000);

	spin_lock_irq(q->queue_lock);
	ret = wait_event_interruptible_lock_irq(q->mq_freeze_wq,
95 96
		!blk_queue_bypass(q) || blk_queue_dying(q),
		*q->queue_lock);
97
	/* inc usage with lock hold to avoid freeze_queue runs here */
98
	if (!ret && !blk_queue_dying(q))
99
		__percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
100 101
	else if (blk_queue_dying(q))
		ret = -ENODEV;
102 103 104 105 106 107 108 109 110 111
	spin_unlock_irq(q->queue_lock);

	return ret;
}

static void blk_mq_queue_exit(struct request_queue *q)
{
	__percpu_counter_add(&q->mq_usage_counter, -1, 1000000);
}

112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
static void __blk_mq_drain_queue(struct request_queue *q)
{
	while (true) {
		s64 count;

		spin_lock_irq(q->queue_lock);
		count = percpu_counter_sum(&q->mq_usage_counter);
		spin_unlock_irq(q->queue_lock);

		if (count == 0)
			break;
		blk_mq_run_queues(q, false);
		msleep(10);
	}
}

128 129 130 131 132 133 134 135 136 137 138 139 140
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
static void blk_mq_freeze_queue(struct request_queue *q)
{
	bool drain;

	spin_lock_irq(q->queue_lock);
	drain = !q->bypass_depth++;
	queue_flag_set(QUEUE_FLAG_BYPASS, q);
	spin_unlock_irq(q->queue_lock);

141 142 143
	if (drain)
		__blk_mq_drain_queue(q);
}
144

145 146 147
void blk_mq_drain_queue(struct request_queue *q)
{
	__blk_mq_drain_queue(q);
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
}

static void blk_mq_unfreeze_queue(struct request_queue *q)
{
	bool wake = false;

	spin_lock_irq(q->queue_lock);
	if (!--q->bypass_depth) {
		queue_flag_clear(QUEUE_FLAG_BYPASS, q);
		wake = true;
	}
	WARN_ON_ONCE(q->bypass_depth < 0);
	spin_unlock_irq(q->queue_lock);
	if (wake)
		wake_up_all(&q->mq_freeze_wq);
}

bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

171 172
static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
			       struct request *rq, unsigned int rw_flags)
173
{
174 175 176
	if (blk_queue_io_stat(q))
		rw_flags |= REQ_IO_STAT;

177 178 179
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
	rq->q = q;
180
	rq->mq_ctx = ctx;
181
	rq->cmd_flags |= rw_flags;
182 183 184 185 186 187
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
188
	rq->start_time = jiffies;
189 190
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
191
	set_start_time_ns(rq);
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->errors = 0;

	rq->extra_len = 0;
	rq->sense_len = 0;
	rq->resid_len = 0;
	rq->sense = NULL;

	INIT_LIST_HEAD(&rq->timeout_list);
208 209
	rq->timeout = 0;

210 211 212 213
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

214 215 216
	ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
}

217
static struct request *
218
__blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
219 220 221 222
{
	struct request *rq;
	unsigned int tag;

223
	tag = blk_mq_get_tag(data);
224
	if (tag != BLK_MQ_TAG_FAIL) {
225
		rq = data->hctx->tags->rqs[tag];
226 227

		rq->cmd_flags = 0;
228
		if (blk_mq_tag_busy(data->hctx)) {
229
			rq->cmd_flags = REQ_MQ_INFLIGHT;
230
			atomic_inc(&data->hctx->nr_active);
231 232 233
		}

		rq->tag = tag;
234
		blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
235 236 237 238 239 240
		return rq;
	}

	return NULL;
}

241 242
struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp,
		bool reserved)
243
{
244 245
	struct blk_mq_ctx *ctx;
	struct blk_mq_hw_ctx *hctx;
246
	struct request *rq;
247
	struct blk_mq_alloc_data alloc_data;
248 249 250 251

	if (blk_mq_queue_enter(q))
		return NULL;

252 253
	ctx = blk_mq_get_ctx(q);
	hctx = q->mq_ops->map_queue(q, ctx->cpu);
254 255
	blk_mq_set_alloc_data(&alloc_data, q, gfp & ~__GFP_WAIT,
			reserved, ctx, hctx);
256

257
	rq = __blk_mq_alloc_request(&alloc_data, rw);
258 259 260 261 262 263
	if (!rq && (gfp & __GFP_WAIT)) {
		__blk_mq_run_hw_queue(hctx);
		blk_mq_put_ctx(ctx);

		ctx = blk_mq_get_ctx(q);
		hctx = q->mq_ops->map_queue(q, ctx->cpu);
264 265 266 267
		blk_mq_set_alloc_data(&alloc_data, q, gfp, reserved, ctx,
				hctx);
		rq =  __blk_mq_alloc_request(&alloc_data, rw);
		ctx = alloc_data.ctx;
268 269
	}
	blk_mq_put_ctx(ctx);
270 271
	return rq;
}
272
EXPORT_SYMBOL(blk_mq_alloc_request);
273 274 275 276 277 278 279

static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
				  struct blk_mq_ctx *ctx, struct request *rq)
{
	const int tag = rq->tag;
	struct request_queue *q = rq->q;

280 281 282
	if (rq->cmd_flags & REQ_MQ_INFLIGHT)
		atomic_dec(&hctx->nr_active);

283
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
284
	blk_mq_put_tag(hctx, tag, &ctx->last_tag);
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
	blk_mq_queue_exit(q);
}

void blk_mq_free_request(struct request *rq)
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx;
	struct request_queue *q = rq->q;

	ctx->rq_completed[rq_is_sync(rq)]++;

	hctx = q->mq_ops->map_queue(q, ctx->cpu);
	__blk_mq_free_request(hctx, ctx, rq);
}

300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
/*
 * Clone all relevant state from a request that has been put on hold in
 * the flush state machine into the preallocated flush request that hangs
 * off the request queue.
 *
 * For a driver the flush request should be invisible, that's why we are
 * impersonating the original request here.
 */
void blk_mq_clone_flush_request(struct request *flush_rq,
		struct request *orig_rq)
{
	struct blk_mq_hw_ctx *hctx =
		orig_rq->q->mq_ops->map_queue(orig_rq->q, orig_rq->mq_ctx->cpu);

	flush_rq->mq_ctx = orig_rq->mq_ctx;
	flush_rq->tag = orig_rq->tag;
	memcpy(blk_mq_rq_to_pdu(flush_rq), blk_mq_rq_to_pdu(orig_rq),
		hctx->cmd_size);
}

320
inline void __blk_mq_end_io(struct request *rq, int error)
321
{
M
Ming Lei 已提交
322 323
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
324
	if (rq->end_io) {
325
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
326 327 328
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
329
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
330
	}
331
}
332 333 334 335 336 337 338 339 340
EXPORT_SYMBOL(__blk_mq_end_io);

void blk_mq_end_io(struct request *rq, int error)
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
	__blk_mq_end_io(rq, error);
}
EXPORT_SYMBOL(blk_mq_end_io);
341

342
static void __blk_mq_complete_request_remote(void *data)
343
{
344
	struct request *rq = data;
345

346
	rq->q->softirq_done_fn(rq);
347 348
}

349
static void blk_mq_ipi_complete_request(struct request *rq)
350 351
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
352
	bool shared = false;
353 354
	int cpu;

C
Christoph Hellwig 已提交
355
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
356 357 358
		rq->q->softirq_done_fn(rq);
		return;
	}
359 360

	cpu = get_cpu();
C
Christoph Hellwig 已提交
361 362 363 364
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
365
		rq->csd.func = __blk_mq_complete_request_remote;
366 367
		rq->csd.info = rq;
		rq->csd.flags = 0;
368
		smp_call_function_single_async(ctx->cpu, &rq->csd);
369
	} else {
370
		rq->q->softirq_done_fn(rq);
371
	}
372 373
	put_cpu();
}
374

375 376 377 378 379 380 381 382 383 384
void __blk_mq_complete_request(struct request *rq)
{
	struct request_queue *q = rq->q;

	if (!q->softirq_done_fn)
		blk_mq_end_io(rq, rq->errors);
	else
		blk_mq_ipi_complete_request(rq);
}

385 386 387 388 389 390 391 392 393 394
/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
void blk_mq_complete_request(struct request *rq)
{
395 396 397
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
398
		return;
399 400
	if (!blk_mark_rq_complete(rq))
		__blk_mq_complete_request(rq);
401 402
}
EXPORT_SYMBOL(blk_mq_complete_request);
403

404
static void blk_mq_start_request(struct request *rq, bool last)
405 406 407 408 409
{
	struct request_queue *q = rq->q;

	trace_block_rq_issue(q, rq);

C
Christoph Hellwig 已提交
410
	rq->resid_len = blk_rq_bytes(rq);
C
Christoph Hellwig 已提交
411 412
	if (unlikely(blk_bidi_rq(rq)))
		rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
C
Christoph Hellwig 已提交
413

414
	blk_add_timer(rq);
415 416 417 418 419 420 421

	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
	 */
422 423 424 425
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}

	/*
	 * Flag the last request in the series so that drivers know when IO
	 * should be kicked off, if they don't do it on a per-request basis.
	 *
	 * Note: the flag isn't the only condition drivers should do kick off.
	 * If drive is busy, the last request might not have the bit set.
	 */
	if (last)
		rq->cmd_flags |= REQ_END;
445 446
}

447
static void __blk_mq_requeue_request(struct request *rq)
448 449 450 451 452
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
453 454 455 456 457

	rq->cmd_flags &= ~REQ_END;

	if (q->dma_drain_size && blk_rq_bytes(rq))
		rq->nr_phys_segments--;
458 459
}

460 461 462 463 464 465
void blk_mq_requeue_request(struct request *rq)
{
	__blk_mq_requeue_request(rq);
	blk_clear_rq_complete(rq);

	BUG_ON(blk_queued_rq(rq));
466
	blk_mq_add_to_requeue_list(rq, true);
467 468 469
}
EXPORT_SYMBOL(blk_mq_requeue_request);

470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
		container_of(work, struct request_queue, requeue_work);
	LIST_HEAD(rq_list);
	struct request *rq, *next;
	unsigned long flags;

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
		if (!(rq->cmd_flags & REQ_SOFTBARRIER))
			continue;

		rq->cmd_flags &= ~REQ_SOFTBARRIER;
		list_del_init(&rq->queuelist);
		blk_mq_insert_request(rq, true, false, false);
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
		blk_mq_insert_request(rq, false, false, false);
	}

	blk_mq_run_queues(q, false);
}

void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
	 * request head insertation from the workqueue.
	 */
	BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
		rq->cmd_flags |= REQ_SOFTBARRIER;
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
	kblockd_schedule_work(&q->requeue_work);
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

528
static inline bool is_flush_request(struct request *rq, unsigned int tag)
529
{
530 531 532 533 534 535 536
	return ((rq->cmd_flags & REQ_FLUSH_SEQ) &&
			rq->q->flush_rq->tag == tag);
}

struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
	struct request *rq = tags->rqs[tag];
537

538 539
	if (!is_flush_request(rq, tag))
		return rq;
540

541
	return rq->q->flush_rq;
542 543 544
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
struct blk_mq_timeout_data {
	struct blk_mq_hw_ctx *hctx;
	unsigned long *next;
	unsigned int *next_set;
};

static void blk_mq_timeout_check(void *__data, unsigned long *free_tags)
{
	struct blk_mq_timeout_data *data = __data;
	struct blk_mq_hw_ctx *hctx = data->hctx;
	unsigned int tag;

	 /* It may not be in flight yet (this is where
	 * the REQ_ATOMIC_STARTED flag comes in). The requests are
	 * statically allocated, so we know it's always safe to access the
	 * memory associated with a bit offset into ->rqs[].
	 */
	tag = 0;
	do {
		struct request *rq;

566 567
		tag = find_next_zero_bit(free_tags, hctx->tags->nr_tags, tag);
		if (tag >= hctx->tags->nr_tags)
568 569
			break;

570
		rq = blk_mq_tag_to_rq(hctx->tags, tag++);
571 572
		if (rq->q != hctx->queue)
			continue;
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
		if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
			continue;

		blk_rq_check_expired(rq, data->next, data->next_set);
	} while (1);
}

static void blk_mq_hw_ctx_check_timeout(struct blk_mq_hw_ctx *hctx,
					unsigned long *next,
					unsigned int *next_set)
{
	struct blk_mq_timeout_data data = {
		.hctx		= hctx,
		.next		= next,
		.next_set	= next_set,
	};

	/*
	 * Ask the tagging code to iterate busy requests, so we can
	 * check them for timeout.
	 */
	blk_mq_tag_busy_iter(hctx->tags, blk_mq_timeout_check, &data);
}

597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
static enum blk_eh_timer_return blk_mq_rq_timed_out(struct request *rq)
{
	struct request_queue *q = rq->q;

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
	 * we both flags will get cleared. So check here again, and ignore
	 * a timeout event with a request that isn't active.
	 */
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		return BLK_EH_NOT_HANDLED;

	if (!q->mq_ops->timeout)
		return BLK_EH_RESET_TIMER;

	return q->mq_ops->timeout(rq);
}

619 620 621 622 623 624 625
static void blk_mq_rq_timer(unsigned long data)
{
	struct request_queue *q = (struct request_queue *) data;
	struct blk_mq_hw_ctx *hctx;
	unsigned long next = 0;
	int i, next_set = 0;

626 627 628 629 630 631 632 633
	queue_for_each_hw_ctx(q, hctx, i) {
		/*
		 * If not software queues are currently mapped to this
		 * hardware queue, there's nothing to check
		 */
		if (!hctx->nr_ctx || !hctx->tags)
			continue;

634
		blk_mq_hw_ctx_check_timeout(hctx, &next, &next_set);
635
	}
636

637 638 639 640 641 642 643
	if (next_set) {
		next = blk_rq_timeout(round_jiffies_up(next));
		mod_timer(&q->timeout, next);
	} else {
		queue_for_each_hw_ctx(q, hctx, i)
			blk_mq_tag_idle(hctx);
	}
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
}

/*
 * Reverse check our software queue for entries that we could potentially
 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
 * too much time checking for merges.
 */
static bool blk_mq_attempt_merge(struct request_queue *q,
				 struct blk_mq_ctx *ctx, struct bio *bio)
{
	struct request *rq;
	int checked = 8;

	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
		int el_ret;

		if (!checked--)
			break;

		if (!blk_rq_merge_ok(rq, bio))
			continue;

		el_ret = blk_try_merge(rq, bio);
		if (el_ret == ELEVATOR_BACK_MERGE) {
			if (bio_attempt_back_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
			if (bio_attempt_front_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		}
	}

	return false;
}

685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
{
	struct blk_mq_ctx *ctx;
	int i;

	for (i = 0; i < hctx->ctx_map.map_size; i++) {
		struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
		unsigned int off, bit;

		if (!bm->word)
			continue;

		bit = 0;
		off = i * hctx->ctx_map.bits_per_word;
		do {
			bit = find_next_bit(&bm->word, bm->depth, bit);
			if (bit >= bm->depth)
				break;

			ctx = hctx->ctxs[bit + off];
			clear_bit(bit, &bm->word);
			spin_lock(&ctx->lock);
			list_splice_tail_init(&ctx->rq_list, list);
			spin_unlock(&ctx->lock);

			bit++;
		} while (1);
	}
}

719 720 721 722 723 724 725 726 727 728 729
/*
 * Run this hardware queue, pulling any software queues mapped to it in.
 * Note that this function currently has various problems around ordering
 * of IO. In particular, we'd like FIFO behaviour on handling existing
 * items on the hctx->dispatch list. Ignore that for now.
 */
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	struct request_queue *q = hctx->queue;
	struct request *rq;
	LIST_HEAD(rq_list);
730
	int queued;
731

732
	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
733

734
	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
735 736 737 738 739 740 741
		return;

	hctx->run++;

	/*
	 * Touch any software queue that has pending entries.
	 */
742
	flush_busy_ctxs(hctx, &rq_list);
743 744 745 746 747 748 749 750 751 752 753 754 755 756 757

	/*
	 * If we have previous entries on our dispatch list, grab them
	 * and stuff them at the front for more fair dispatch.
	 */
	if (!list_empty_careful(&hctx->dispatch)) {
		spin_lock(&hctx->lock);
		if (!list_empty(&hctx->dispatch))
			list_splice_init(&hctx->dispatch, &rq_list);
		spin_unlock(&hctx->lock);
	}

	/*
	 * Now process all the entries, sending them to the driver.
	 */
758
	queued = 0;
759 760 761 762 763 764
	while (!list_empty(&rq_list)) {
		int ret;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);

765
		blk_mq_start_request(rq, list_empty(&rq_list));
766 767 768 769 770 771 772 773

		ret = q->mq_ops->queue_rq(hctx, rq);
		switch (ret) {
		case BLK_MQ_RQ_QUEUE_OK:
			queued++;
			continue;
		case BLK_MQ_RQ_QUEUE_BUSY:
			list_add(&rq->queuelist, &rq_list);
774
			__blk_mq_requeue_request(rq);
775 776 777 778
			break;
		default:
			pr_err("blk-mq: bad return on queue: %d\n", ret);
		case BLK_MQ_RQ_QUEUE_ERROR:
779
			rq->errors = -EIO;
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
			blk_mq_end_io(rq, rq->errors);
			break;
		}

		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
			break;
	}

	if (!queued)
		hctx->dispatched[0]++;
	else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
		hctx->dispatched[ilog2(queued) + 1]++;

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
	if (!list_empty(&rq_list)) {
		spin_lock(&hctx->lock);
		list_splice(&rq_list, &hctx->dispatch);
		spin_unlock(&hctx->lock);
	}
}

804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
	int cpu = hctx->next_cpu;

	if (--hctx->next_cpu_batch <= 0) {
		int next_cpu;

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

	return cpu;
}

828 829
void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
830
	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
831 832
		return;

833
	if (!async && cpumask_test_cpu(smp_processor_id(), hctx->cpumask))
834
		__blk_mq_run_hw_queue(hctx);
835
	else if (hctx->queue->nr_hw_queues == 1)
836
		kblockd_schedule_delayed_work(&hctx->run_work, 0);
837 838 839
	else {
		unsigned int cpu;

840
		cpu = blk_mq_hctx_next_cpu(hctx);
841
		kblockd_schedule_delayed_work_on(cpu, &hctx->run_work, 0);
842
	}
843 844 845 846 847 848 849 850 851 852
}

void blk_mq_run_queues(struct request_queue *q, bool async)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if ((!blk_mq_hctx_has_pending(hctx) &&
		    list_empty_careful(&hctx->dispatch)) ||
853
		    test_bit(BLK_MQ_S_STOPPED, &hctx->state))
854 855
			continue;

856
		preempt_disable();
857
		blk_mq_run_hw_queue(hctx, async);
858
		preempt_enable();
859 860 861 862 863 864
	}
}
EXPORT_SYMBOL(blk_mq_run_queues);

void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
865 866
	cancel_delayed_work(&hctx->run_work);
	cancel_delayed_work(&hctx->delay_work);
867 868 869 870
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queue);

871 872 873 874 875 876 877 878 879 880
void blk_mq_stop_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

881 882 883
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
884 885

	preempt_disable();
886
	__blk_mq_run_hw_queue(hctx);
887
	preempt_enable();
888 889 890
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

891 892 893 894 895 896 897 898 899 900 901
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);


902
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
903 904 905 906 907 908 909 910 911
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
			continue;

		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
912
		preempt_disable();
913
		blk_mq_run_hw_queue(hctx, async);
914
		preempt_enable();
915 916 917 918
	}
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

919
static void blk_mq_run_work_fn(struct work_struct *work)
920 921 922
{
	struct blk_mq_hw_ctx *hctx;

923
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
924

925 926 927
	__blk_mq_run_hw_queue(hctx);
}

928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
static void blk_mq_delay_work_fn(struct work_struct *work)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);

	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
		__blk_mq_run_hw_queue(hctx);
}

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
	unsigned long tmo = msecs_to_jiffies(msecs);

	if (hctx->queue->nr_hw_queues == 1)
		kblockd_schedule_delayed_work(&hctx->delay_work, tmo);
	else {
		unsigned int cpu;

947
		cpu = blk_mq_hctx_next_cpu(hctx);
948 949 950 951 952
		kblockd_schedule_delayed_work_on(cpu, &hctx->delay_work, tmo);
	}
}
EXPORT_SYMBOL(blk_mq_delay_queue);

953
static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
954
				    struct request *rq, bool at_head)
955 956 957
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

958 959
	trace_block_rq_insert(hctx->queue, rq);

960 961 962 963
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
964

965 966 967
	blk_mq_hctx_mark_pending(hctx, ctx);
}

968 969
void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
		bool async)
970
{
971
	struct request_queue *q = rq->q;
972
	struct blk_mq_hw_ctx *hctx;
973 974 975 976 977
	struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;

	current_ctx = blk_mq_get_ctx(q);
	if (!cpu_online(ctx->cpu))
		rq->mq_ctx = ctx = current_ctx;
978 979 980

	hctx = q->mq_ops->map_queue(q, ctx->cpu);

981 982
	if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA) &&
	    !(rq->cmd_flags & (REQ_FLUSH_SEQ))) {
983 984 985
		blk_insert_flush(rq);
	} else {
		spin_lock(&ctx->lock);
986
		__blk_mq_insert_request(hctx, rq, at_head);
987 988 989 990 991
		spin_unlock(&ctx->lock);
	}

	if (run_queue)
		blk_mq_run_hw_queue(hctx, async);
992 993

	blk_mq_put_ctx(current_ctx);
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
}

static void blk_mq_insert_requests(struct request_queue *q,
				     struct blk_mq_ctx *ctx,
				     struct list_head *list,
				     int depth,
				     bool from_schedule)

{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *current_ctx;

	trace_block_unplug(q, depth, !from_schedule);

	current_ctx = blk_mq_get_ctx(q);

	if (!cpu_online(ctx->cpu))
		ctx = current_ctx;
	hctx = q->mq_ops->map_queue(q, ctx->cpu);

	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
		list_del_init(&rq->queuelist);
		rq->mq_ctx = ctx;
1025
		__blk_mq_insert_request(hctx, rq, false);
1026 1027 1028 1029
	}
	spin_unlock(&ctx->lock);

	blk_mq_run_hw_queue(hctx, from_schedule);
1030
	blk_mq_put_ctx(current_ctx);
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
				blk_mq_insert_requests(this_q, this_ctx,
							&ctx_list, depth,
							from_schedule);
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
		blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
				       from_schedule);
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
	init_request_from_bio(rq, bio);
1093

1094
	if (blk_do_io_stat(rq))
1095
		blk_account_io_start(rq, 1);
1096 1097
}

1098 1099 1100
static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
					 struct blk_mq_ctx *ctx,
					 struct request *rq, struct bio *bio)
1101
{
1102
	struct request_queue *q = hctx->queue;
1103

1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
	if (!(hctx->flags & BLK_MQ_F_SHOULD_MERGE)) {
		blk_mq_bio_to_request(rq, bio);
		spin_lock(&ctx->lock);
insert_rq:
		__blk_mq_insert_request(hctx, rq, false);
		spin_unlock(&ctx->lock);
		return false;
	} else {
		spin_lock(&ctx->lock);
		if (!blk_mq_attempt_merge(q, ctx, bio)) {
			blk_mq_bio_to_request(rq, bio);
			goto insert_rq;
		}
1117

1118 1119 1120
		spin_unlock(&ctx->lock);
		__blk_mq_free_request(hctx, ctx, rq);
		return true;
1121
	}
1122
}
1123

1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
struct blk_map_ctx {
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
};

static struct request *blk_mq_map_request(struct request_queue *q,
					  struct bio *bio,
					  struct blk_map_ctx *data)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
	struct request *rq;
	int rw = bio_data_dir(bio);
1137
	struct blk_mq_alloc_data alloc_data;
1138

1139
	if (unlikely(blk_mq_queue_enter(q))) {
1140
		bio_endio(bio, -EIO);
1141
		return NULL;
1142 1143 1144 1145 1146
	}

	ctx = blk_mq_get_ctx(q);
	hctx = q->mq_ops->map_queue(q, ctx->cpu);

1147
	if (rw_is_sync(bio->bi_rw))
S
Shaohua Li 已提交
1148
		rw |= REQ_SYNC;
1149

1150
	trace_block_getrq(q, bio, rw);
1151 1152 1153
	blk_mq_set_alloc_data(&alloc_data, q, GFP_ATOMIC, false, ctx,
			hctx);
	rq = __blk_mq_alloc_request(&alloc_data, rw);
1154
	if (unlikely(!rq)) {
1155
		__blk_mq_run_hw_queue(hctx);
1156 1157
		blk_mq_put_ctx(ctx);
		trace_block_sleeprq(q, bio, rw);
1158 1159

		ctx = blk_mq_get_ctx(q);
1160
		hctx = q->mq_ops->map_queue(q, ctx->cpu);
1161 1162 1163 1164 1165
		blk_mq_set_alloc_data(&alloc_data, q,
				__GFP_WAIT|GFP_ATOMIC, false, ctx, hctx);
		rq = __blk_mq_alloc_request(&alloc_data, rw);
		ctx = alloc_data.ctx;
		hctx = alloc_data.hctx;
1166 1167 1168
	}

	hctx->queued++;
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
	data->hctx = hctx;
	data->ctx = ctx;
	return rq;
}

/*
 * Multiple hardware queue variant. This will not use per-process plugs,
 * but will attempt to bypass the hctx queueing if we can go straight to
 * hardware for SYNC IO.
 */
static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
{
	const int is_sync = rw_is_sync(bio->bi_rw);
	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
	struct blk_map_ctx data;
	struct request *rq;

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
		bio_endio(bio, -EIO);
		return;
	}

	rq = blk_mq_map_request(q, bio, &data);
	if (unlikely(!rq))
		return;

	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
		goto run_queue;
	}

	if (is_sync) {
		int ret;

		blk_mq_bio_to_request(rq, bio);
		blk_mq_start_request(rq, true);

		/*
		 * For OK queue, we are done. For error, kill it. Any other
		 * error (busy), just add it to our list as we previously
		 * would have done
		 */
		ret = q->mq_ops->queue_rq(data.hctx, rq);
		if (ret == BLK_MQ_RQ_QUEUE_OK)
			goto done;
		else {
			__blk_mq_requeue_request(rq);

			if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
				rq->errors = -EIO;
				blk_mq_end_io(rq, rq->errors);
				goto done;
			}
		}
	}

	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
run_queue:
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
	}
done:
	blk_mq_put_ctx(data.ctx);
}

/*
 * Single hardware queue variant. This will attempt to use any per-process
 * plug for merging and IO deferral.
 */
static void blk_sq_make_request(struct request_queue *q, struct bio *bio)
{
	const int is_sync = rw_is_sync(bio->bi_rw);
	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
	unsigned int use_plug, request_count = 0;
	struct blk_map_ctx data;
	struct request *rq;

	/*
	 * If we have multiple hardware queues, just go directly to
	 * one of those for sync IO.
	 */
	use_plug = !is_flush_fua && !is_sync;

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
		bio_endio(bio, -EIO);
		return;
	}

	if (use_plug && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count))
		return;

	rq = blk_mq_map_request(q, bio, &data);
1272 1273
	if (unlikely(!rq))
		return;
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290

	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
		goto run_queue;
	}

	/*
	 * A task plug currently exists. Since this is completely lockless,
	 * utilize that to temporarily store requests until the task is
	 * either done or scheduled away.
	 */
	if (use_plug) {
		struct blk_plug *plug = current->plug;

		if (plug) {
			blk_mq_bio_to_request(rq, bio);
S
Shaohua Li 已提交
1291
			if (list_empty(&plug->mq_list))
1292 1293 1294 1295 1296 1297
				trace_block_plug(q);
			else if (request_count >= BLK_MAX_REQUEST_COUNT) {
				blk_flush_plug_list(plug, false);
				trace_block_plug(q);
			}
			list_add_tail(&rq->queuelist, &plug->mq_list);
1298
			blk_mq_put_ctx(data.ctx);
1299 1300 1301 1302
			return;
		}
	}

1303 1304 1305 1306 1307 1308 1309 1310 1311
	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
run_queue:
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1312 1313
	}

1314
	blk_mq_put_ctx(data.ctx);
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
}

/*
 * Default mapping to a software queue, since we use one per CPU.
 */
struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
{
	return q->queue_hw_ctx[q->mq_map[cpu]];
}
EXPORT_SYMBOL(blk_mq_map_queue);

1326 1327
static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
		struct blk_mq_tags *tags, unsigned int hctx_idx)
1328
{
1329
	struct page *page;
1330

1331
	if (tags->rqs && set->ops->exit_request) {
1332
		int i;
1333

1334 1335
		for (i = 0; i < tags->nr_tags; i++) {
			if (!tags->rqs[i])
1336
				continue;
1337 1338
			set->ops->exit_request(set->driver_data, tags->rqs[i],
						hctx_idx, i);
1339
		}
1340 1341
	}

1342 1343
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1344
		list_del_init(&page->lru);
1345 1346 1347
		__free_pages(page, page->private);
	}

1348
	kfree(tags->rqs);
1349

1350
	blk_mq_free_tags(tags);
1351 1352 1353 1354
}

static size_t order_to_size(unsigned int order)
{
1355
	return (size_t)PAGE_SIZE << order;
1356 1357
}

1358 1359
static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
		unsigned int hctx_idx)
1360
{
1361
	struct blk_mq_tags *tags;
1362 1363 1364
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;

1365 1366 1367 1368
	tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
				set->numa_node);
	if (!tags)
		return NULL;
1369

1370 1371 1372 1373 1374 1375 1376 1377
	INIT_LIST_HEAD(&tags->page_list);

	tags->rqs = kmalloc_node(set->queue_depth * sizeof(struct request *),
					GFP_KERNEL, set->numa_node);
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1378 1379 1380 1381 1382

	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1383
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1384
				cache_line_size());
1385
	left = rq_size * set->queue_depth;
1386

1387
	for (i = 0; i < set->queue_depth; ) {
1388 1389 1390 1391 1392 1393 1394 1395 1396
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

		while (left < order_to_size(this_order - 1) && this_order)
			this_order--;

		do {
1397 1398
			page = alloc_pages_node(set->numa_node, GFP_KERNEL,
						this_order);
1399 1400 1401 1402 1403 1404 1405 1406 1407
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1408
			goto fail;
1409 1410

		page->private = this_order;
1411
		list_add_tail(&page->lru, &tags->page_list);
1412 1413 1414

		p = page_address(page);
		entries_per_page = order_to_size(this_order) / rq_size;
1415
		to_do = min(entries_per_page, set->queue_depth - i);
1416 1417
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
1418 1419 1420 1421 1422 1423
			tags->rqs[i] = p;
			if (set->ops->init_request) {
				if (set->ops->init_request(set->driver_data,
						tags->rqs[i], hctx_idx, i,
						set->numa_node))
					goto fail;
1424 1425
			}

1426 1427 1428 1429 1430
			p += rq_size;
			i++;
		}
	}

1431
	return tags;
1432

1433 1434 1435 1436
fail:
	pr_warn("%s: failed to allocate requests\n", __func__);
	blk_mq_free_rq_map(set, tags, hctx_idx);
	return NULL;
1437 1438
}

1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
{
	kfree(bitmap->map);
}

static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
{
	unsigned int bpw = 8, total, num_maps, i;

	bitmap->bits_per_word = bpw;

	num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
	bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
					GFP_KERNEL, node);
	if (!bitmap->map)
		return -ENOMEM;

	bitmap->map_size = num_maps;

	total = nr_cpu_ids;
	for (i = 0; i < num_maps; i++) {
		bitmap->map[i].depth = min(total, bitmap->bits_per_word);
		total -= bitmap->map[i].depth;
	}

	return 0;
}

1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
{
	struct request_queue *q = hctx->queue;
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

	/*
	 * Move ctx entries to new CPU, if this one is going away.
	 */
	ctx = __blk_mq_get_ctx(q, cpu);

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
		return NOTIFY_OK;

	ctx = blk_mq_get_ctx(q);
	spin_lock(&ctx->lock);

	while (!list_empty(&tmp)) {
		struct request *rq;

		rq = list_first_entry(&tmp, struct request, queuelist);
		rq->mq_ctx = ctx;
		list_move_tail(&rq->queuelist, &ctx->rq_list);
	}

	hctx = q->mq_ops->map_queue(q, ctx->cpu);
	blk_mq_hctx_mark_pending(hctx, ctx);

	spin_unlock(&ctx->lock);

	blk_mq_run_hw_queue(hctx, true);
	blk_mq_put_ctx(ctx);
	return NOTIFY_OK;
}

static int blk_mq_hctx_cpu_online(struct blk_mq_hw_ctx *hctx, int cpu)
{
	struct request_queue *q = hctx->queue;
	struct blk_mq_tag_set *set = q->tag_set;

	if (set->tags[hctx->queue_num])
		return NOTIFY_OK;

	set->tags[hctx->queue_num] = blk_mq_init_rq_map(set, hctx->queue_num);
	if (!set->tags[hctx->queue_num])
		return NOTIFY_STOP;

	hctx->tags = set->tags[hctx->queue_num];
	return NOTIFY_OK;
}

static int blk_mq_hctx_notify(void *data, unsigned long action,
			      unsigned int cpu)
{
	struct blk_mq_hw_ctx *hctx = data;

	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
		return blk_mq_hctx_cpu_offline(hctx, cpu);
	else if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN)
		return blk_mq_hctx_cpu_online(hctx, cpu);

	return NOTIFY_OK;
}

M
Ming Lei 已提交
1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;

1548 1549
		blk_mq_tag_idle(hctx);

M
Ming Lei 已提交
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
		if (set->ops->exit_hctx)
			set->ops->exit_hctx(hctx, i);

		blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
		kfree(hctx->ctxs);
		blk_mq_free_bitmap(&hctx->ctx_map);
	}

}

static void blk_mq_free_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		free_cpumask_var(hctx->cpumask);
1568
		kfree(hctx);
M
Ming Lei 已提交
1569 1570 1571
	}
}

1572
static int blk_mq_init_hw_queues(struct request_queue *q,
1573
		struct blk_mq_tag_set *set)
1574 1575
{
	struct blk_mq_hw_ctx *hctx;
M
Ming Lei 已提交
1576
	unsigned int i;
1577 1578 1579 1580 1581 1582 1583 1584 1585

	/*
	 * Initialize hardware queues
	 */
	queue_for_each_hw_ctx(q, hctx, i) {
		int node;

		node = hctx->numa_node;
		if (node == NUMA_NO_NODE)
1586
			node = hctx->numa_node = set->numa_node;
1587

1588 1589
		INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
		INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1590 1591 1592 1593
		spin_lock_init(&hctx->lock);
		INIT_LIST_HEAD(&hctx->dispatch);
		hctx->queue = q;
		hctx->queue_num = i;
1594 1595
		hctx->flags = set->flags;
		hctx->cmd_size = set->cmd_size;
1596 1597 1598 1599 1600

		blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
						blk_mq_hctx_notify, hctx);
		blk_mq_register_cpu_notifier(&hctx->cpu_notifier);

1601
		hctx->tags = set->tags[i];
1602 1603 1604 1605 1606 1607 1608 1609 1610 1611

		/*
		 * Allocate space for all possible cpus to avoid allocation in
		 * runtime
		 */
		hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
						GFP_KERNEL, node);
		if (!hctx->ctxs)
			break;

1612
		if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
1613 1614 1615 1616
			break;

		hctx->nr_ctx = 0;

1617 1618
		if (set->ops->init_hctx &&
		    set->ops->init_hctx(hctx, set->driver_data, i))
1619 1620 1621 1622 1623 1624 1625 1626 1627
			break;
	}

	if (i == q->nr_hw_queues)
		return 0;

	/*
	 * Init failed
	 */
M
Ming Lei 已提交
1628
	blk_mq_exit_hw_queues(q, set, i);
1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651

	return 1;
}

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		memset(__ctx, 0, sizeof(*__ctx));
		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

		/* If the cpu isn't online, the cpu is mapped to first hctx */
		if (!cpu_online(i))
			continue;

1652 1653 1654 1655
		hctx = q->mq_ops->map_queue(q, i);
		cpumask_set_cpu(i, hctx->cpumask);
		hctx->nr_ctx++;

1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
			hctx->numa_node = cpu_to_node(i);
	}
}

static void blk_mq_map_swqueue(struct request_queue *q)
{
	unsigned int i;
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;

	queue_for_each_hw_ctx(q, hctx, i) {
1672
		cpumask_clear(hctx->cpumask);
1673 1674 1675 1676 1677 1678 1679 1680
		hctx->nr_ctx = 0;
	}

	/*
	 * Map software to hardware queues
	 */
	queue_for_each_ctx(q, ctx, i) {
		/* If the cpu isn't online, the cpu is mapped to first hctx */
1681 1682 1683
		if (!cpu_online(i))
			continue;

1684
		hctx = q->mq_ops->map_queue(q, i);
1685
		cpumask_set_cpu(i, hctx->cpumask);
1686 1687 1688
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
1689 1690

	queue_for_each_hw_ctx(q, hctx, i) {
1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
		/*
		 * If not software queues are mapped to this hardware queue,
		 * disable it and free the request entries
		 */
		if (!hctx->nr_ctx) {
			struct blk_mq_tag_set *set = q->tag_set;

			if (set->tags[i]) {
				blk_mq_free_rq_map(set, set->tags[i], i);
				set->tags[i] = NULL;
				hctx->tags = NULL;
			}
			continue;
		}

		/*
		 * Initialize batch roundrobin counts
		 */
1709 1710 1711
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
1712 1713
}

1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763
static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set)
{
	struct blk_mq_hw_ctx *hctx;
	struct request_queue *q;
	bool shared;
	int i;

	if (set->tag_list.next == set->tag_list.prev)
		shared = false;
	else
		shared = true;

	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);

		queue_for_each_hw_ctx(q, hctx, i) {
			if (shared)
				hctx->flags |= BLK_MQ_F_TAG_SHARED;
			else
				hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
		}
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	blk_mq_freeze_queue(q);

	mutex_lock(&set->tag_list_lock);
	list_del_init(&q->tag_set_list);
	blk_mq_update_tag_set_depth(set);
	mutex_unlock(&set->tag_list_lock);

	blk_mq_unfreeze_queue(q);
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
	list_add_tail(&q->tag_set_list, &set->tag_list);
	blk_mq_update_tag_set_depth(set);
	mutex_unlock(&set->tag_list_lock);
}

1764
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1765 1766
{
	struct blk_mq_hw_ctx **hctxs;
1767
	struct blk_mq_ctx __percpu *ctx;
1768
	struct request_queue *q;
1769
	unsigned int *map;
1770 1771 1772 1773 1774 1775
	int i;

	ctx = alloc_percpu(struct blk_mq_ctx);
	if (!ctx)
		return ERR_PTR(-ENOMEM);

1776 1777
	hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
			set->numa_node);
1778 1779 1780 1781

	if (!hctxs)
		goto err_percpu;

1782 1783 1784 1785
	map = blk_mq_make_queue_map(set);
	if (!map)
		goto err_map;

1786
	for (i = 0; i < set->nr_hw_queues; i++) {
1787 1788
		int node = blk_mq_hw_queue_to_node(map, i);

1789 1790
		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
					GFP_KERNEL, node);
1791 1792 1793
		if (!hctxs[i])
			goto err_hctxs;

1794 1795 1796
		if (!zalloc_cpumask_var(&hctxs[i]->cpumask, GFP_KERNEL))
			goto err_hctxs;

1797
		atomic_set(&hctxs[i]->nr_active, 0);
1798
		hctxs[i]->numa_node = node;
1799 1800 1801
		hctxs[i]->queue_num = i;
	}

1802
	q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1803 1804 1805
	if (!q)
		goto err_hctxs;

1806 1807 1808
	if (percpu_counter_init(&q->mq_usage_counter, 0))
		goto err_map;

1809 1810 1811 1812
	setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
	blk_queue_rq_timeout(q, 30000);

	q->nr_queues = nr_cpu_ids;
1813
	q->nr_hw_queues = set->nr_hw_queues;
1814
	q->mq_map = map;
1815 1816 1817 1818

	q->queue_ctx = ctx;
	q->queue_hw_ctx = hctxs;

1819
	q->mq_ops = set->ops;
1820
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
1821

1822 1823 1824
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

1825 1826
	q->sg_reserved_size = INT_MAX;

1827 1828 1829 1830
	INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

1831 1832 1833 1834 1835
	if (q->nr_hw_queues > 1)
		blk_queue_make_request(q, blk_mq_make_request);
	else
		blk_queue_make_request(q, blk_sq_make_request);

1836
	blk_queue_rq_timed_out(q, blk_mq_rq_timed_out);
1837 1838
	if (set->timeout)
		blk_queue_rq_timeout(q, set->timeout);
1839

1840 1841 1842 1843 1844
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

1845 1846
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
1847

1848
	blk_mq_init_flush(q);
1849
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
1850

1851 1852 1853
	q->flush_rq = kzalloc(round_up(sizeof(struct request) +
				set->cmd_size, cache_line_size()),
				GFP_KERNEL);
1854
	if (!q->flush_rq)
1855 1856
		goto err_hw;

1857
	if (blk_mq_init_hw_queues(q, set))
1858 1859
		goto err_flush_rq;

1860 1861 1862 1863
	mutex_lock(&all_q_mutex);
	list_add_tail(&q->all_q_node, &all_q_list);
	mutex_unlock(&all_q_mutex);

1864 1865
	blk_mq_add_queue_tag_set(set, q);

1866 1867
	blk_mq_map_swqueue(q);

1868
	return q;
1869 1870 1871

err_flush_rq:
	kfree(q->flush_rq);
1872 1873 1874
err_hw:
	blk_cleanup_queue(q);
err_hctxs:
1875
	kfree(map);
1876
	for (i = 0; i < set->nr_hw_queues; i++) {
1877 1878
		if (!hctxs[i])
			break;
1879
		free_cpumask_var(hctxs[i]->cpumask);
1880
		kfree(hctxs[i]);
1881
	}
1882
err_map:
1883 1884 1885 1886 1887 1888 1889 1890 1891
	kfree(hctxs);
err_percpu:
	free_percpu(ctx);
	return ERR_PTR(-ENOMEM);
}
EXPORT_SYMBOL(blk_mq_init_queue);

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
1892
	struct blk_mq_tag_set	*set = q->tag_set;
1893

1894 1895
	blk_mq_del_queue_tag_set(q);

M
Ming Lei 已提交
1896 1897
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
	blk_mq_free_hw_queues(q, set);
1898

1899 1900
	percpu_counter_destroy(&q->mq_usage_counter);

1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
	free_percpu(q->queue_ctx);
	kfree(q->queue_hw_ctx);
	kfree(q->mq_map);

	q->queue_ctx = NULL;
	q->queue_hw_ctx = NULL;
	q->mq_map = NULL;

	mutex_lock(&all_q_mutex);
	list_del_init(&q->all_q_node);
	mutex_unlock(&all_q_mutex);
}

/* Basically redo blk_mq_init_queue with queue frozen */
1915
static void blk_mq_queue_reinit(struct request_queue *q)
1916 1917 1918
{
	blk_mq_freeze_queue(q);

1919 1920
	blk_mq_sysfs_unregister(q);

1921 1922 1923 1924 1925 1926 1927 1928 1929 1930
	blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);

	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

	blk_mq_map_swqueue(q);

1931 1932
	blk_mq_sysfs_register(q);

1933 1934 1935
	blk_mq_unfreeze_queue(q);
}

1936 1937
static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
				      unsigned long action, void *hcpu)
1938 1939 1940 1941
{
	struct request_queue *q;

	/*
1942 1943 1944 1945
	 * Before new mappings are established, hotadded cpu might already
	 * start handling requests. This doesn't break anything as we map
	 * offline CPUs to first hardware queue. We will re-init the queue
	 * below to get optimal settings.
1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957
	 */
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
	    action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
		return NOTIFY_OK;

	mutex_lock(&all_q_mutex);
	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_queue_reinit(q);
	mutex_unlock(&all_q_mutex);
	return NOTIFY_OK;
}

1958 1959 1960 1961 1962 1963
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
1964 1965 1966 1967 1968 1969
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
	int i;

	if (!set->nr_hw_queues)
		return -EINVAL;
1970
	if (!set->queue_depth)
1971 1972 1973 1974
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

1975
	if (!set->nr_hw_queues || !set->ops->queue_rq || !set->ops->map_queue)
1976 1977
		return -EINVAL;

1978 1979 1980 1981 1982
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
1983

M
Ming Lei 已提交
1984 1985
	set->tags = kmalloc_node(set->nr_hw_queues *
				 sizeof(struct blk_mq_tags *),
1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
		goto out;

	for (i = 0; i < set->nr_hw_queues; i++) {
		set->tags[i] = blk_mq_init_rq_map(set, i);
		if (!set->tags[i])
			goto out_unwind;
	}

1996 1997 1998
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
	return 0;

out_unwind:
	while (--i >= 0)
		blk_mq_free_rq_map(set, set->tags[i], i);
out:
	return -ENOMEM;
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2013 2014 2015 2016 2017
	for (i = 0; i < set->nr_hw_queues; i++) {
		if (set->tags[i])
			blk_mq_free_rq_map(set, set->tags[i], i);
	}

M
Ming Lei 已提交
2018
	kfree(set->tags);
2019 2020 2021
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

	if (!set || nr > set->queue_depth)
		return -EINVAL;

	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
		ret = blk_mq_tag_update_depth(hctx->tags, nr);
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

	return ret;
}

2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
void blk_mq_disable_hotplug(void)
{
	mutex_lock(&all_q_mutex);
}

void blk_mq_enable_hotplug(void)
{
	mutex_unlock(&all_q_mutex);
}

2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
static int __init blk_mq_init(void)
{
	blk_mq_cpu_init();

	/* Must be called after percpu_counter_hotcpu_callback() */
	hotcpu_notifier(blk_mq_queue_reinit_notify, -10);

	return 0;
}
subsys_initcall(blk_mq_init);