ci_smumgr.c 90.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
/*
 * Copyright 2017 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 *
 */
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/fb.h>
#include "linux/delay.h"
#include <linux/types.h>

#include "smumgr.h"
#include "pp_debug.h"
#include "ci_smumgr.h"
#include "ppsmc.h"
#include "smu7_hwmgr.h"
#include "hardwaremanager.h"
#include "ppatomctrl.h"
#include "cgs_common.h"
#include "atombios.h"
#include "pppcielanes.h"

#include "smu/smu_7_0_1_d.h"
#include "smu/smu_7_0_1_sh_mask.h"

#include "dce/dce_8_0_d.h"
#include "dce/dce_8_0_sh_mask.h"

#include "bif/bif_4_1_d.h"
#include "bif/bif_4_1_sh_mask.h"

#include "gca/gfx_7_2_d.h"
#include "gca/gfx_7_2_sh_mask.h"

#include "gmc/gmc_7_1_d.h"
#include "gmc/gmc_7_1_sh_mask.h"

#include "processpptables.h"

#define MC_CG_ARB_FREQ_F0           0x0a
#define MC_CG_ARB_FREQ_F1           0x0b
#define MC_CG_ARB_FREQ_F2           0x0c
#define MC_CG_ARB_FREQ_F3           0x0d

#define SMC_RAM_END 0x40000

#define VOLTAGE_SCALE               4
#define VOLTAGE_VID_OFFSET_SCALE1    625
#define VOLTAGE_VID_OFFSET_SCALE2    100
#define CISLAND_MINIMUM_ENGINE_CLOCK 800
#define CISLAND_MAX_DEEPSLEEP_DIVIDER_ID 5

static const struct ci_pt_defaults defaults_hawaii_xt = {
	1, 0xF, 0xFD, 0x19, 5, 0x14, 0, 0xB0000,
	{ 0x2E,  0x00,  0x00,  0x88,  0x00,  0x00,  0x72,  0x60,  0x51,  0xA7,  0x79,  0x6B,  0x90,  0xBD,  0x79  },
	{ 0x217, 0x217, 0x217, 0x242, 0x242, 0x242, 0x269, 0x269, 0x269, 0x2A1, 0x2A1, 0x2A1, 0x2C9, 0x2C9, 0x2C9 }
};

static const struct ci_pt_defaults defaults_hawaii_pro = {
	1, 0xF, 0xFD, 0x19, 5, 0x14, 0, 0x65062,
	{ 0x2E,  0x00,  0x00,  0x88,  0x00,  0x00,  0x72,  0x60,  0x51,  0xA7,  0x79,  0x6B,  0x90,  0xBD,  0x79  },
	{ 0x217, 0x217, 0x217, 0x242, 0x242, 0x242, 0x269, 0x269, 0x269, 0x2A1, 0x2A1, 0x2A1, 0x2C9, 0x2C9, 0x2C9 }
};

static const struct ci_pt_defaults defaults_bonaire_xt = {
	1, 0xF, 0xFD, 0x19, 5, 45, 0, 0xB0000,
	{ 0x79,  0x253, 0x25D, 0xAE,  0x72,  0x80,  0x83,  0x86,  0x6F,  0xC8,  0xC9,  0xC9,  0x2F,  0x4D,  0x61  },
	{ 0x17C, 0x172, 0x180, 0x1BC, 0x1B3, 0x1BD, 0x206, 0x200, 0x203, 0x25D, 0x25A, 0x255, 0x2C3, 0x2C5, 0x2B4 }
};


static const struct ci_pt_defaults defaults_saturn_xt = {
	1, 0xF, 0xFD, 0x19, 5, 55, 0, 0x70000,
	{ 0x8C,  0x247, 0x249, 0xA6,  0x80,  0x81,  0x8B,  0x89,  0x86,  0xC9,  0xCA,  0xC9,  0x4D,  0x4D,  0x4D  },
	{ 0x187, 0x187, 0x187, 0x1C7, 0x1C7, 0x1C7, 0x210, 0x210, 0x210, 0x266, 0x266, 0x266, 0x2C9, 0x2C9, 0x2C9 }
};


96
static int ci_set_smc_sram_address(struct pp_hwmgr *hwmgr,
97 98 99 100 101 102 103 104
					uint32_t smc_addr, uint32_t limit)
{
	if ((0 != (3 & smc_addr))
		|| ((smc_addr + 3) >= limit)) {
		pr_err("smc_addr invalid \n");
		return -EINVAL;
	}

105
	cgs_write_register(hwmgr->device, mmSMC_IND_INDEX_0, smc_addr);
106
	PHM_WRITE_FIELD(hwmgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_0, 0);
107 108 109
	return 0;
}

110
static int ci_copy_bytes_to_smc(struct pp_hwmgr *hwmgr, uint32_t smc_start_address,
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
				const uint8_t *src, uint32_t byte_count, uint32_t limit)
{
	int result;
	uint32_t data = 0;
	uint32_t original_data;
	uint32_t addr = 0;
	uint32_t extra_shift;

	if ((3 & smc_start_address)
		|| ((smc_start_address + byte_count) >= limit)) {
		pr_err("smc_start_address invalid \n");
		return -EINVAL;
	}

	addr = smc_start_address;

	while (byte_count >= 4) {
	/* Bytes are written into the SMC address space with the MSB first. */
		data = src[0] * 0x1000000 + src[1] * 0x10000 + src[2] * 0x100 + src[3];

131
		result = ci_set_smc_sram_address(hwmgr, addr, limit);
132 133 134 135

		if (0 != result)
			return result;

136
		cgs_write_register(hwmgr->device, mmSMC_IND_DATA_0, data);
137 138 139 140 141 142 143 144 145 146

		src += 4;
		byte_count -= 4;
		addr += 4;
	}

	if (0 != byte_count) {

		data = 0;

147
		result = ci_set_smc_sram_address(hwmgr, addr, limit);
148 149 150 151 152

		if (0 != result)
			return result;


153
		original_data = cgs_read_register(hwmgr->device, mmSMC_IND_DATA_0);
154 155 156 157 158 159 160 161 162 163 164 165 166

		extra_shift = 8 * (4 - byte_count);

		while (byte_count > 0) {
			/* Bytes are written into the SMC addres space with the MSB first. */
			data = (0x100 * data) + *src++;
			byte_count--;
		}

		data <<= extra_shift;

		data |= (original_data & ~((~0UL) << extra_shift));

167
		result = ci_set_smc_sram_address(hwmgr, addr, limit);
168 169 170 171

		if (0 != result)
			return result;

172
		cgs_write_register(hwmgr->device, mmSMC_IND_DATA_0, data);
173 174 175 176 177 178
	}

	return 0;
}


179
static int ci_program_jump_on_start(struct pp_hwmgr *hwmgr)
180 181 182
{
	static const unsigned char data[4] = { 0xE0, 0x00, 0x80, 0x40 };

183
	ci_copy_bytes_to_smc(hwmgr, 0x0, data, 4, sizeof(data)+1);
184 185 186 187

	return 0;
}

188
bool ci_is_smc_ram_running(struct pp_hwmgr *hwmgr)
189
{
190
	return ((0 == PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device,
191
			CGS_IND_REG__SMC, SMC_SYSCON_CLOCK_CNTL_0, ck_disable))
192
	&& (0x20100 <= cgs_read_ind_register(hwmgr->device,
193 194 195
			CGS_IND_REG__SMC, ixSMC_PC_C)));
}

196
static int ci_read_smc_sram_dword(struct pp_hwmgr *hwmgr, uint32_t smc_addr,
197 198 199 200
				uint32_t *value, uint32_t limit)
{
	int result;

201
	result = ci_set_smc_sram_address(hwmgr, smc_addr, limit);
202 203 204 205

	if (result)
		return result;

206
	*value = cgs_read_register(hwmgr->device, mmSMC_IND_DATA_0);
207 208 209
	return 0;
}

210
static int ci_send_msg_to_smc(struct pp_hwmgr *hwmgr, uint16_t msg)
211 212 213
{
	int ret;

214
	if (!ci_is_smc_ram_running(hwmgr))
215 216
		return -EINVAL;

217
	cgs_write_register(hwmgr->device, mmSMC_MESSAGE_0, msg);
218

219
	PHM_WAIT_FIELD_UNEQUAL(hwmgr, SMC_RESP_0, SMC_RESP, 0);
220

221
	ret = PHM_READ_FIELD(hwmgr->device, SMC_RESP_0, SMC_RESP);
222 223 224 225 226 227 228

	if (ret != 1)
		pr_info("\n failed to send message %x ret is %d\n",  msg, ret);

	return 0;
}

229
static int ci_send_msg_to_smc_with_parameter(struct pp_hwmgr *hwmgr,
230 231
					uint16_t msg, uint32_t parameter)
{
232 233
	cgs_write_register(hwmgr->device, mmSMC_MSG_ARG_0, parameter);
	return ci_send_msg_to_smc(hwmgr, msg);
234 235 236 237
}

static void ci_initialize_power_tune_defaults(struct pp_hwmgr *hwmgr)
{
238
	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
	struct cgs_system_info sys_info = {0};
	uint32_t dev_id;

	sys_info.size = sizeof(struct cgs_system_info);
	sys_info.info_id = CGS_SYSTEM_INFO_PCIE_DEV;
	cgs_query_system_info(hwmgr->device, &sys_info);
	dev_id = (uint32_t)sys_info.value;

	switch (dev_id) {
	case 0x67BA:
	case 0x66B1:
		smu_data->power_tune_defaults = &defaults_hawaii_pro;
		break;
	case 0x67B8:
	case 0x66B0:
		smu_data->power_tune_defaults = &defaults_hawaii_xt;
		break;
	case 0x6640:
	case 0x6641:
	case 0x6646:
	case 0x6647:
		smu_data->power_tune_defaults = &defaults_saturn_xt;
		break;
	case 0x6649:
	case 0x6650:
	case 0x6651:
	case 0x6658:
	case 0x665C:
	case 0x665D:
	case 0x67A0:
	case 0x67A1:
	case 0x67A2:
	case 0x67A8:
	case 0x67A9:
	case 0x67AA:
	case 0x67B9:
	case 0x67BE:
	default:
		smu_data->power_tune_defaults = &defaults_bonaire_xt;
		break;
	}
}

static int ci_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr,
	struct phm_clock_voltage_dependency_table *allowed_clock_voltage_table,
	uint32_t clock, uint32_t *vol)
{
	uint32_t i = 0;

	if (allowed_clock_voltage_table->count == 0)
		return -EINVAL;

	for (i = 0; i < allowed_clock_voltage_table->count; i++) {
		if (allowed_clock_voltage_table->entries[i].clk >= clock) {
			*vol = allowed_clock_voltage_table->entries[i].v;
			return 0;
		}
	}

	*vol = allowed_clock_voltage_table->entries[i - 1].v;
	return 0;
}

static int ci_calculate_sclk_params(struct pp_hwmgr *hwmgr,
		uint32_t clock, struct SMU7_Discrete_GraphicsLevel *sclk)
{
	const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
	struct pp_atomctrl_clock_dividers_vi dividers;
	uint32_t spll_func_cntl            = data->clock_registers.vCG_SPLL_FUNC_CNTL;
	uint32_t spll_func_cntl_3          = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
	uint32_t spll_func_cntl_4          = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
	uint32_t cg_spll_spread_spectrum   = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
	uint32_t cg_spll_spread_spectrum_2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
	uint32_t ref_clock;
	uint32_t ref_divider;
	uint32_t fbdiv;
	int result;

	/* get the engine clock dividers for this clock value */
	result = atomctrl_get_engine_pll_dividers_vi(hwmgr, clock,  &dividers);

	PP_ASSERT_WITH_CODE(result == 0,
			"Error retrieving Engine Clock dividers from VBIOS.",
			return result);

	/* To get FBDIV we need to multiply this by 16384 and divide it by Fref. */
	ref_clock = atomctrl_get_reference_clock(hwmgr);
	ref_divider = 1 + dividers.uc_pll_ref_div;

	/* low 14 bits is fraction and high 12 bits is divider */
	fbdiv = dividers.ul_fb_div.ul_fb_divider & 0x3FFFFFF;

	/* SPLL_FUNC_CNTL setup */
	spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
			SPLL_REF_DIV, dividers.uc_pll_ref_div);
	spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
			SPLL_PDIV_A,  dividers.uc_pll_post_div);

	/* SPLL_FUNC_CNTL_3 setup*/
	spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3,
			SPLL_FB_DIV, fbdiv);

	/* set to use fractional accumulation*/
	spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3,
			SPLL_DITHEN, 1);

	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
				PHM_PlatformCaps_EngineSpreadSpectrumSupport)) {
		struct pp_atomctrl_internal_ss_info ss_info;
		uint32_t vco_freq = clock * dividers.uc_pll_post_div;

		if (!atomctrl_get_engine_clock_spread_spectrum(hwmgr,
				vco_freq, &ss_info)) {
			uint32_t clk_s = ref_clock * 5 /
					(ref_divider * ss_info.speed_spectrum_rate);
			uint32_t clk_v = 4 * ss_info.speed_spectrum_percentage *
					fbdiv / (clk_s * 10000);

			cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum,
					CG_SPLL_SPREAD_SPECTRUM, CLKS, clk_s);
			cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum,
					CG_SPLL_SPREAD_SPECTRUM, SSEN, 1);
			cg_spll_spread_spectrum_2 = PHM_SET_FIELD(cg_spll_spread_spectrum_2,
					CG_SPLL_SPREAD_SPECTRUM_2, CLKV, clk_v);
		}
	}

	sclk->SclkFrequency        = clock;
	sclk->CgSpllFuncCntl3      = spll_func_cntl_3;
	sclk->CgSpllFuncCntl4      = spll_func_cntl_4;
	sclk->SpllSpreadSpectrum   = cg_spll_spread_spectrum;
	sclk->SpllSpreadSpectrum2  = cg_spll_spread_spectrum_2;
	sclk->SclkDid              = (uint8_t)dividers.pll_post_divider;

	return 0;
}

static void ci_populate_phase_value_based_on_sclk(struct pp_hwmgr *hwmgr,
				const struct phm_phase_shedding_limits_table *pl,
					uint32_t sclk, uint32_t *p_shed)
{
	unsigned int i;

	/* use the minimum phase shedding */
	*p_shed = 1;

	for (i = 0; i < pl->count; i++) {
		if (sclk < pl->entries[i].Sclk) {
			*p_shed = i;
			break;
		}
	}
}

static uint8_t ci_get_sleep_divider_id_from_clock(uint32_t clock,
			uint32_t clock_insr)
{
	uint8_t i;
	uint32_t temp;
	uint32_t min = min_t(uint32_t, clock_insr, CISLAND_MINIMUM_ENGINE_CLOCK);

	if (clock < min) {
		pr_info("Engine clock can't satisfy stutter requirement!\n");
		return 0;
	}
	for (i = CISLAND_MAX_DEEPSLEEP_DIVIDER_ID;  ; i--) {
		temp = clock >> i;

		if (temp >= min || i == 0)
			break;
	}
	return i;
}

static int ci_populate_single_graphic_level(struct pp_hwmgr *hwmgr,
		uint32_t clock, uint16_t sclk_al_threshold,
		struct SMU7_Discrete_GraphicsLevel *level)
{
	int result;
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);


	result = ci_calculate_sclk_params(hwmgr, clock, level);

	/* populate graphics levels */
	result = ci_get_dependency_volt_by_clk(hwmgr,
			hwmgr->dyn_state.vddc_dependency_on_sclk, clock,
			(uint32_t *)(&level->MinVddc));
	if (result) {
		pr_err("vdd_dep_on_sclk table is NULL\n");
		return result;
	}

	level->SclkFrequency = clock;
	level->MinVddcPhases = 1;

	if (data->vddc_phase_shed_control)
		ci_populate_phase_value_based_on_sclk(hwmgr,
				hwmgr->dyn_state.vddc_phase_shed_limits_table,
				clock,
				&level->MinVddcPhases);

	level->ActivityLevel = sclk_al_threshold;
	level->CcPwrDynRm = 0;
	level->CcPwrDynRm1 = 0;
	level->EnabledForActivity = 0;
	/* this level can be used for throttling.*/
	level->EnabledForThrottle = 1;
	level->UpH = 0;
	level->DownH = 0;
	level->VoltageDownH = 0;
	level->PowerThrottle = 0;


	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_SclkDeepSleep))
		level->DeepSleepDivId =
				ci_get_sleep_divider_id_from_clock(clock,
						CISLAND_MINIMUM_ENGINE_CLOCK);

	/* Default to slow, highest DPM level will be set to PPSMC_DISPLAY_WATERMARK_LOW later.*/
	level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;

	if (0 == result) {
		level->MinVddc = PP_HOST_TO_SMC_UL(level->MinVddc * VOLTAGE_SCALE);
		CONVERT_FROM_HOST_TO_SMC_UL(level->MinVddcPhases);
		CONVERT_FROM_HOST_TO_SMC_UL(level->SclkFrequency);
		CONVERT_FROM_HOST_TO_SMC_US(level->ActivityLevel);
		CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl3);
		CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl4);
		CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum);
		CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum2);
		CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm);
		CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm1);
	}

	return result;
}

478
static int ci_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
479 480
{
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
481
	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
	struct smu7_dpm_table *dpm_table = &data->dpm_table;
	int result = 0;
	uint32_t array = smu_data->dpm_table_start +
			offsetof(SMU7_Discrete_DpmTable, GraphicsLevel);
	uint32_t array_size = sizeof(struct SMU7_Discrete_GraphicsLevel) *
			SMU7_MAX_LEVELS_GRAPHICS;
	struct SMU7_Discrete_GraphicsLevel *levels =
			smu_data->smc_state_table.GraphicsLevel;
	uint32_t i;

	for (i = 0; i < dpm_table->sclk_table.count; i++) {
		result = ci_populate_single_graphic_level(hwmgr,
				dpm_table->sclk_table.dpm_levels[i].value,
				(uint16_t)smu_data->activity_target[i],
				&levels[i]);
		if (result)
			return result;
		if (i > 1)
			smu_data->smc_state_table.GraphicsLevel[i].DeepSleepDivId = 0;
		if (i == (dpm_table->sclk_table.count - 1))
			smu_data->smc_state_table.GraphicsLevel[i].DisplayWatermark =
				PPSMC_DISPLAY_WATERMARK_HIGH;
	}

	smu_data->smc_state_table.GraphicsLevel[0].EnabledForActivity = 1;

	smu_data->smc_state_table.GraphicsDpmLevelCount = (u8)dpm_table->sclk_table.count;
	data->dpm_level_enable_mask.sclk_dpm_enable_mask =
		phm_get_dpm_level_enable_mask_value(&dpm_table->sclk_table);

512
	result = ci_copy_bytes_to_smc(hwmgr, array,
513 514 515 516 517 518 519 520 521
				   (u8 *)levels, array_size,
				   SMC_RAM_END);

	return result;

}

static int ci_populate_svi_load_line(struct pp_hwmgr *hwmgr)
{
522
	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
523 524 525 526 527 528 529 530 531 532 533 534 535
	const struct ci_pt_defaults *defaults = smu_data->power_tune_defaults;

	smu_data->power_tune_table.SviLoadLineEn = defaults->svi_load_line_en;
	smu_data->power_tune_table.SviLoadLineVddC = defaults->svi_load_line_vddc;
	smu_data->power_tune_table.SviLoadLineTrimVddC = 3;
	smu_data->power_tune_table.SviLoadLineOffsetVddC = 0;

	return 0;
}

static int ci_populate_tdc_limit(struct pp_hwmgr *hwmgr)
{
	uint16_t tdc_limit;
536
	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
537 538 539 540 541 542 543 544 545 546 547 548 549 550
	const struct ci_pt_defaults *defaults = smu_data->power_tune_defaults;

	tdc_limit = (uint16_t)(hwmgr->dyn_state.cac_dtp_table->usTDC * 256);
	smu_data->power_tune_table.TDC_VDDC_PkgLimit =
			CONVERT_FROM_HOST_TO_SMC_US(tdc_limit);
	smu_data->power_tune_table.TDC_VDDC_ThrottleReleaseLimitPerc =
			defaults->tdc_vddc_throttle_release_limit_perc;
	smu_data->power_tune_table.TDC_MAWt = defaults->tdc_mawt;

	return 0;
}

static int ci_populate_dw8(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset)
{
551
	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
552 553 554
	const struct ci_pt_defaults *defaults = smu_data->power_tune_defaults;
	uint32_t temp;

555
	if (ci_read_smc_sram_dword(hwmgr,
556 557 558 559 560 561 562 563 564 565 566 567 568 569
			fuse_table_offset +
			offsetof(SMU7_Discrete_PmFuses, TdcWaterfallCtl),
			(uint32_t *)&temp, SMC_RAM_END))
		PP_ASSERT_WITH_CODE(false,
				"Attempt to read PmFuses.DW6 (SviLoadLineEn) from SMC Failed!",
				return -EINVAL);
	else
		smu_data->power_tune_table.TdcWaterfallCtl = defaults->tdc_waterfall_ctl;

	return 0;
}

static int ci_populate_fuzzy_fan(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset)
{
570 571
	uint16_t tmp;
	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586

	if ((hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity & (1 << 15))
		|| 0 == hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity)
		tmp = hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity;
	else
		tmp = hwmgr->thermal_controller.advanceFanControlParameters.usDefaultFanOutputSensitivity;

	smu_data->power_tune_table.FuzzyFan_PwmSetDelta = CONVERT_FROM_HOST_TO_SMC_US(tmp);

	return 0;
}

static int ci_populate_bapm_vddc_vid_sidd(struct pp_hwmgr *hwmgr)
{
	int i;
587
	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
	uint8_t *hi_vid = smu_data->power_tune_table.BapmVddCVidHiSidd;
	uint8_t *lo_vid = smu_data->power_tune_table.BapmVddCVidLoSidd;
	uint8_t *hi2_vid = smu_data->power_tune_table.BapmVddCVidHiSidd2;

	PP_ASSERT_WITH_CODE(NULL != hwmgr->dyn_state.cac_leakage_table,
			    "The CAC Leakage table does not exist!", return -EINVAL);
	PP_ASSERT_WITH_CODE(hwmgr->dyn_state.cac_leakage_table->count <= 8,
			    "There should never be more than 8 entries for BapmVddcVid!!!", return -EINVAL);
	PP_ASSERT_WITH_CODE(hwmgr->dyn_state.cac_leakage_table->count == hwmgr->dyn_state.vddc_dependency_on_sclk->count,
			    "CACLeakageTable->count and VddcDependencyOnSCLk->count not equal", return -EINVAL);

	for (i = 0; (uint32_t) i < hwmgr->dyn_state.cac_leakage_table->count; i++) {
		if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_EVV)) {
			lo_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc1);
			hi_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc2);
			hi2_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc3);
		} else {
			lo_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc);
			hi_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Leakage);
		}
	}

	return 0;
}

static int ci_populate_vddc_vid(struct pp_hwmgr *hwmgr)
{
	int i;
616
	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
	uint8_t *vid = smu_data->power_tune_table.VddCVid;
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);

	PP_ASSERT_WITH_CODE(data->vddc_voltage_table.count <= 8,
		"There should never be more than 8 entries for VddcVid!!!",
		return -EINVAL);

	for (i = 0; i < (int)data->vddc_voltage_table.count; i++)
		vid[i] = convert_to_vid(data->vddc_voltage_table.entries[i].value);

	return 0;
}

static int ci_min_max_v_gnbl_pm_lid_from_bapm_vddc(struct pp_hwmgr *hwmgr)
{
632
	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
	u8 *hi_vid = smu_data->power_tune_table.BapmVddCVidHiSidd;
	u8 *lo_vid = smu_data->power_tune_table.BapmVddCVidLoSidd;
	int i, min, max;

	min = max = hi_vid[0];
	for (i = 0; i < 8; i++) {
		if (0 != hi_vid[i]) {
			if (min > hi_vid[i])
				min = hi_vid[i];
			if (max < hi_vid[i])
				max = hi_vid[i];
		}

		if (0 != lo_vid[i]) {
			if (min > lo_vid[i])
				min = lo_vid[i];
			if (max < lo_vid[i])
				max = lo_vid[i];
		}
	}

	if ((min == 0) || (max == 0))
		return -EINVAL;
	smu_data->power_tune_table.GnbLPMLMaxVid = (u8)max;
	smu_data->power_tune_table.GnbLPMLMinVid = (u8)min;

	return 0;
}

static int ci_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr *hwmgr)
{
664
	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
	uint16_t HiSidd = smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd;
	uint16_t LoSidd = smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd;
	struct phm_cac_tdp_table *cac_table = hwmgr->dyn_state.cac_dtp_table;

	HiSidd = (uint16_t)(cac_table->usHighCACLeakage / 100 * 256);
	LoSidd = (uint16_t)(cac_table->usLowCACLeakage / 100 * 256);

	smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd =
			CONVERT_FROM_HOST_TO_SMC_US(HiSidd);
	smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd =
			CONVERT_FROM_HOST_TO_SMC_US(LoSidd);

	return 0;
}

static int ci_populate_pm_fuses(struct pp_hwmgr *hwmgr)
{
682
	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
683 684 685 686 687
	uint32_t pm_fuse_table_offset;
	int ret = 0;

	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_PowerContainment)) {
688
		if (ci_read_smc_sram_dword(hwmgr,
689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
				SMU7_FIRMWARE_HEADER_LOCATION +
				offsetof(SMU7_Firmware_Header, PmFuseTable),
				&pm_fuse_table_offset, SMC_RAM_END)) {
			pr_err("Attempt to get pm_fuse_table_offset Failed!\n");
			return -EINVAL;
		}

		/* DW0 - DW3 */
		ret = ci_populate_bapm_vddc_vid_sidd(hwmgr);
		/* DW4 - DW5 */
		ret |= ci_populate_vddc_vid(hwmgr);
		/* DW6 */
		ret |= ci_populate_svi_load_line(hwmgr);
		/* DW7 */
		ret |= ci_populate_tdc_limit(hwmgr);
		/* DW8 */
		ret |= ci_populate_dw8(hwmgr, pm_fuse_table_offset);

		ret |= ci_populate_fuzzy_fan(hwmgr, pm_fuse_table_offset);

		ret |= ci_min_max_v_gnbl_pm_lid_from_bapm_vddc(hwmgr);

		ret |= ci_populate_bapm_vddc_base_leakage_sidd(hwmgr);
		if (ret)
			return ret;

715
		ret = ci_copy_bytes_to_smc(hwmgr, pm_fuse_table_offset,
716 717 718 719 720 721 722 723
				(uint8_t *)&smu_data->power_tune_table,
				sizeof(struct SMU7_Discrete_PmFuses), SMC_RAM_END);
	}
	return ret;
}

static int ci_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr *hwmgr)
{
724
	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
	const struct ci_pt_defaults *defaults = smu_data->power_tune_defaults;
	SMU7_Discrete_DpmTable  *dpm_table = &(smu_data->smc_state_table);
	struct phm_cac_tdp_table *cac_dtp_table = hwmgr->dyn_state.cac_dtp_table;
	struct phm_ppm_table *ppm = hwmgr->dyn_state.ppm_parameter_table;
	const uint16_t *def1, *def2;
	int i, j, k;

	dpm_table->DefaultTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usTDP * 256));
	dpm_table->TargetTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usConfigurableTDP * 256));

	dpm_table->DTETjOffset = 0;
	dpm_table->GpuTjMax = (uint8_t)(data->thermal_temp_setting.temperature_high / PP_TEMPERATURE_UNITS_PER_CENTIGRADES);
	dpm_table->GpuTjHyst = 8;

	dpm_table->DTEAmbientTempBase = defaults->dte_ambient_temp_base;

	if (ppm) {
		dpm_table->PPM_PkgPwrLimit = (uint16_t)ppm->dgpu_tdp * 256 / 1000;
		dpm_table->PPM_TemperatureLimit = (uint16_t)ppm->tj_max * 256;
	} else {
		dpm_table->PPM_PkgPwrLimit = 0;
		dpm_table->PPM_TemperatureLimit = 0;
	}

	CONVERT_FROM_HOST_TO_SMC_US(dpm_table->PPM_PkgPwrLimit);
	CONVERT_FROM_HOST_TO_SMC_US(dpm_table->PPM_TemperatureLimit);

	dpm_table->BAPM_TEMP_GRADIENT = PP_HOST_TO_SMC_UL(defaults->bapm_temp_gradient);
	def1 = defaults->bapmti_r;
	def2 = defaults->bapmti_rc;

	for (i = 0; i < SMU7_DTE_ITERATIONS; i++) {
		for (j = 0; j < SMU7_DTE_SOURCES; j++) {
			for (k = 0; k < SMU7_DTE_SINKS; k++) {
				dpm_table->BAPMTI_R[i][j][k] = PP_HOST_TO_SMC_US(*def1);
				dpm_table->BAPMTI_RC[i][j][k] = PP_HOST_TO_SMC_US(*def2);
				def1++;
				def2++;
			}
		}
	}

	return 0;
}

static int ci_get_std_voltage_value_sidd(struct pp_hwmgr *hwmgr,
		pp_atomctrl_voltage_table_entry *tab, uint16_t *hi,
		uint16_t *lo)
{
	uint16_t v_index;
	bool vol_found = false;
	*hi = tab->value * VOLTAGE_SCALE;
	*lo = tab->value * VOLTAGE_SCALE;

	PP_ASSERT_WITH_CODE(NULL != hwmgr->dyn_state.vddc_dependency_on_sclk,
			"The SCLK/VDDC Dependency Table does not exist.\n",
			return -EINVAL);

	if (NULL == hwmgr->dyn_state.cac_leakage_table) {
		pr_warn("CAC Leakage Table does not exist, using vddc.\n");
		return 0;
	}

	for (v_index = 0; (uint32_t)v_index < hwmgr->dyn_state.vddc_dependency_on_sclk->count; v_index++) {
		if (tab->value == hwmgr->dyn_state.vddc_dependency_on_sclk->entries[v_index].v) {
			vol_found = true;
			if ((uint32_t)v_index < hwmgr->dyn_state.cac_leakage_table->count) {
				*lo = hwmgr->dyn_state.cac_leakage_table->entries[v_index].Vddc * VOLTAGE_SCALE;
				*hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[v_index].Leakage * VOLTAGE_SCALE);
			} else {
				pr_warn("Index from SCLK/VDDC Dependency Table exceeds the CAC Leakage Table index, using maximum index from CAC table.\n");
				*lo = hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Vddc * VOLTAGE_SCALE;
				*hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Leakage * VOLTAGE_SCALE);
			}
			break;
		}
	}

	if (!vol_found) {
		for (v_index = 0; (uint32_t)v_index < hwmgr->dyn_state.vddc_dependency_on_sclk->count; v_index++) {
			if (tab->value <= hwmgr->dyn_state.vddc_dependency_on_sclk->entries[v_index].v) {
				vol_found = true;
				if ((uint32_t)v_index < hwmgr->dyn_state.cac_leakage_table->count) {
					*lo = hwmgr->dyn_state.cac_leakage_table->entries[v_index].Vddc * VOLTAGE_SCALE;
					*hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[v_index].Leakage) * VOLTAGE_SCALE;
				} else {
					pr_warn("Index from SCLK/VDDC Dependency Table exceeds the CAC Leakage Table index in second look up, using maximum index from CAC table.");
					*lo = hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Vddc * VOLTAGE_SCALE;
					*hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Leakage * VOLTAGE_SCALE);
				}
				break;
			}
		}

		if (!vol_found)
			pr_warn("Unable to get std_vddc from SCLK/VDDC Dependency Table, using vddc.\n");
	}

	return 0;
}

static int ci_populate_smc_voltage_table(struct pp_hwmgr *hwmgr,
		pp_atomctrl_voltage_table_entry *tab,
		SMU7_Discrete_VoltageLevel *smc_voltage_tab)
{
	int result;

	result = ci_get_std_voltage_value_sidd(hwmgr, tab,
			&smc_voltage_tab->StdVoltageHiSidd,
			&smc_voltage_tab->StdVoltageLoSidd);
	if (result) {
		smc_voltage_tab->StdVoltageHiSidd = tab->value * VOLTAGE_SCALE;
		smc_voltage_tab->StdVoltageLoSidd = tab->value * VOLTAGE_SCALE;
	}

	smc_voltage_tab->Voltage = PP_HOST_TO_SMC_US(tab->value * VOLTAGE_SCALE);
	CONVERT_FROM_HOST_TO_SMC_US(smc_voltage_tab->StdVoltageHiSidd);
	CONVERT_FROM_HOST_TO_SMC_US(smc_voltage_tab->StdVoltageLoSidd);

	return 0;
}

static int ci_populate_smc_vddc_table(struct pp_hwmgr *hwmgr,
			SMU7_Discrete_DpmTable *table)
{
	unsigned int count;
	int result;
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);

	table->VddcLevelCount = data->vddc_voltage_table.count;
	for (count = 0; count < table->VddcLevelCount; count++) {
		result = ci_populate_smc_voltage_table(hwmgr,
				&(data->vddc_voltage_table.entries[count]),
				&(table->VddcLevel[count]));
		PP_ASSERT_WITH_CODE(0 == result, "do not populate SMC VDDC voltage table", return -EINVAL);

		/* GPIO voltage control */
		if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->voltage_control)
			table->VddcLevel[count].Smio |= data->vddc_voltage_table.entries[count].smio_low;
		else
			table->VddcLevel[count].Smio = 0;
	}

	CONVERT_FROM_HOST_TO_SMC_UL(table->VddcLevelCount);

	return 0;
}

static int ci_populate_smc_vdd_ci_table(struct pp_hwmgr *hwmgr,
			SMU7_Discrete_DpmTable *table)
{
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
	uint32_t count;
	int result;

	table->VddciLevelCount = data->vddci_voltage_table.count;

	for (count = 0; count < table->VddciLevelCount; count++) {
		result = ci_populate_smc_voltage_table(hwmgr,
				&(data->vddci_voltage_table.entries[count]),
				&(table->VddciLevel[count]));
		PP_ASSERT_WITH_CODE(result == 0, "do not populate SMC VDDCI voltage table", return -EINVAL);
		if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control)
			table->VddciLevel[count].Smio |= data->vddci_voltage_table.entries[count].smio_low;
		else
			table->VddciLevel[count].Smio |= 0;
	}

	CONVERT_FROM_HOST_TO_SMC_UL(table->VddciLevelCount);

	return 0;
}

static int ci_populate_smc_mvdd_table(struct pp_hwmgr *hwmgr,
			SMU7_Discrete_DpmTable *table)
{
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
	uint32_t count;
	int result;

	table->MvddLevelCount = data->mvdd_voltage_table.count;

	for (count = 0; count < table->MvddLevelCount; count++) {
		result = ci_populate_smc_voltage_table(hwmgr,
				&(data->mvdd_voltage_table.entries[count]),
				&table->MvddLevel[count]);
		PP_ASSERT_WITH_CODE(result == 0, "do not populate SMC mvdd voltage table", return -EINVAL);
		if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control)
			table->MvddLevel[count].Smio |= data->mvdd_voltage_table.entries[count].smio_low;
		else
			table->MvddLevel[count].Smio |= 0;
	}

	CONVERT_FROM_HOST_TO_SMC_UL(table->MvddLevelCount);

	return 0;
}


static int ci_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr,
	SMU7_Discrete_DpmTable *table)
{
	int result;

	result = ci_populate_smc_vddc_table(hwmgr, table);
	PP_ASSERT_WITH_CODE(0 == result,
			"can not populate VDDC voltage table to SMC", return -EINVAL);

	result = ci_populate_smc_vdd_ci_table(hwmgr, table);
	PP_ASSERT_WITH_CODE(0 == result,
			"can not populate VDDCI voltage table to SMC", return -EINVAL);

	result = ci_populate_smc_mvdd_table(hwmgr, table);
	PP_ASSERT_WITH_CODE(0 == result,
			"can not populate MVDD voltage table to SMC", return -EINVAL);

	return 0;
}

static int ci_populate_ulv_level(struct pp_hwmgr *hwmgr,
		struct SMU7_Discrete_Ulv *state)
{
	uint32_t voltage_response_time, ulv_voltage;
	int result;
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);

	state->CcPwrDynRm = 0;
	state->CcPwrDynRm1 = 0;

	result = pp_tables_get_response_times(hwmgr, &voltage_response_time, &ulv_voltage);
	PP_ASSERT_WITH_CODE((0 == result), "can not get ULV voltage value", return result;);

	if (ulv_voltage == 0) {
		data->ulv_supported = false;
		return 0;
	}

	if (data->voltage_control != SMU7_VOLTAGE_CONTROL_BY_SVID2) {
		/* use minimum voltage if ulv voltage in pptable is bigger than minimum voltage */
		if (ulv_voltage > hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v)
			state->VddcOffset = 0;
		else
			/* used in SMIO Mode. not implemented for now. this is backup only for CI. */
			state->VddcOffset = (uint16_t)(hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v - ulv_voltage);
	} else {
		/* use minimum voltage if ulv voltage in pptable is bigger than minimum voltage */
		if (ulv_voltage > hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v)
			state->VddcOffsetVid = 0;
		else  /* used in SVI2 Mode */
			state->VddcOffsetVid = (uint8_t)(
					(hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v - ulv_voltage)
						* VOLTAGE_VID_OFFSET_SCALE2
						/ VOLTAGE_VID_OFFSET_SCALE1);
	}
	state->VddcPhase = 1;

	CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm);
	CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1);
	CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset);

	return 0;
}

static int ci_populate_ulv_state(struct pp_hwmgr *hwmgr,
		 SMU7_Discrete_Ulv *ulv_level)
{
	return ci_populate_ulv_level(hwmgr, ulv_level);
}

static int ci_populate_smc_link_level(struct pp_hwmgr *hwmgr, SMU7_Discrete_DpmTable *table)
{
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
	struct smu7_dpm_table *dpm_table = &data->dpm_table;
999
	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
	uint32_t i;

/* Index dpm_table->pcie_speed_table.count is reserved for PCIE boot level.*/
	for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) {
		table->LinkLevel[i].PcieGenSpeed  =
			(uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value;
		table->LinkLevel[i].PcieLaneCount =
			(uint8_t)encode_pcie_lane_width(dpm_table->pcie_speed_table.dpm_levels[i].param1);
		table->LinkLevel[i].EnabledForActivity = 1;
		table->LinkLevel[i].DownT = PP_HOST_TO_SMC_UL(5);
		table->LinkLevel[i].UpT = PP_HOST_TO_SMC_UL(30);
	}

	smu_data->smc_state_table.LinkLevelCount =
		(uint8_t)dpm_table->pcie_speed_table.count;
	data->dpm_level_enable_mask.pcie_dpm_enable_mask =
		phm_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table);

	return 0;
}

static int ci_calculate_mclk_params(
		struct pp_hwmgr *hwmgr,
		uint32_t memory_clock,
		SMU7_Discrete_MemoryLevel *mclk,
		bool strobe_mode,
		bool dllStateOn
		)
{
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
	uint32_t  dll_cntl = data->clock_registers.vDLL_CNTL;
	uint32_t  mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL;
	uint32_t  mpll_ad_func_cntl = data->clock_registers.vMPLL_AD_FUNC_CNTL;
	uint32_t  mpll_dq_func_cntl = data->clock_registers.vMPLL_DQ_FUNC_CNTL;
	uint32_t  mpll_func_cntl = data->clock_registers.vMPLL_FUNC_CNTL;
	uint32_t  mpll_func_cntl_1 = data->clock_registers.vMPLL_FUNC_CNTL_1;
	uint32_t  mpll_func_cntl_2 = data->clock_registers.vMPLL_FUNC_CNTL_2;
	uint32_t  mpll_ss1 = data->clock_registers.vMPLL_SS1;
	uint32_t  mpll_ss2 = data->clock_registers.vMPLL_SS2;

	pp_atomctrl_memory_clock_param mpll_param;
	int result;

	result = atomctrl_get_memory_pll_dividers_si(hwmgr,
				memory_clock, &mpll_param, strobe_mode);
	PP_ASSERT_WITH_CODE(0 == result,
		"Error retrieving Memory Clock Parameters from VBIOS.", return result);

	mpll_func_cntl = PHM_SET_FIELD(mpll_func_cntl, MPLL_FUNC_CNTL, BWCTRL, mpll_param.bw_ctrl);

	mpll_func_cntl_1  = PHM_SET_FIELD(mpll_func_cntl_1,
							MPLL_FUNC_CNTL_1, CLKF, mpll_param.mpll_fb_divider.cl_kf);
	mpll_func_cntl_1  = PHM_SET_FIELD(mpll_func_cntl_1,
							MPLL_FUNC_CNTL_1, CLKFRAC, mpll_param.mpll_fb_divider.clk_frac);
	mpll_func_cntl_1  = PHM_SET_FIELD(mpll_func_cntl_1,
							MPLL_FUNC_CNTL_1, VCO_MODE, mpll_param.vco_mode);

	mpll_ad_func_cntl = PHM_SET_FIELD(mpll_ad_func_cntl,
							MPLL_AD_FUNC_CNTL, YCLK_POST_DIV, mpll_param.mpll_post_divider);

	if (data->is_memory_gddr5) {
		mpll_dq_func_cntl  = PHM_SET_FIELD(mpll_dq_func_cntl,
								MPLL_DQ_FUNC_CNTL, YCLK_SEL, mpll_param.yclk_sel);
		mpll_dq_func_cntl  = PHM_SET_FIELD(mpll_dq_func_cntl,
								MPLL_DQ_FUNC_CNTL, YCLK_POST_DIV, mpll_param.mpll_post_divider);
	}

	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_MemorySpreadSpectrumSupport)) {
		pp_atomctrl_internal_ss_info ss_info;
		uint32_t freq_nom;
		uint32_t tmp;
		uint32_t reference_clock = atomctrl_get_mpll_reference_clock(hwmgr);

		/* for GDDR5 for all modes and DDR3 */
		if (1 == mpll_param.qdr)
			freq_nom = memory_clock * 4 * (1 << mpll_param.mpll_post_divider);
		else
			freq_nom = memory_clock * 2 * (1 << mpll_param.mpll_post_divider);

		/* tmp = (freq_nom / reference_clock * reference_divider) ^ 2  Note: S.I. reference_divider = 1*/
		tmp = (freq_nom / reference_clock);
		tmp = tmp * tmp;

		if (0 == atomctrl_get_memory_clock_spread_spectrum(hwmgr, freq_nom, &ss_info)) {
			uint32_t clks = reference_clock * 5 / ss_info.speed_spectrum_rate;
			uint32_t clkv =
				(uint32_t)((((131 * ss_info.speed_spectrum_percentage *
							ss_info.speed_spectrum_rate) / 100) * tmp) / freq_nom);

			mpll_ss1 = PHM_SET_FIELD(mpll_ss1, MPLL_SS1, CLKV, clkv);
			mpll_ss2 = PHM_SET_FIELD(mpll_ss2, MPLL_SS2, CLKS, clks);
		}
	}

	mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
		MCLK_PWRMGT_CNTL, DLL_SPEED, mpll_param.dll_speed);
	mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
		MCLK_PWRMGT_CNTL, MRDCK0_PDNB, dllStateOn);
	mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
		MCLK_PWRMGT_CNTL, MRDCK1_PDNB, dllStateOn);


	mclk->MclkFrequency   = memory_clock;
	mclk->MpllFuncCntl    = mpll_func_cntl;
	mclk->MpllFuncCntl_1  = mpll_func_cntl_1;
	mclk->MpllFuncCntl_2  = mpll_func_cntl_2;
	mclk->MpllAdFuncCntl  = mpll_ad_func_cntl;
	mclk->MpllDqFuncCntl  = mpll_dq_func_cntl;
	mclk->MclkPwrmgtCntl  = mclk_pwrmgt_cntl;
	mclk->DllCntl         = dll_cntl;
	mclk->MpllSs1         = mpll_ss1;
	mclk->MpllSs2         = mpll_ss2;

	return 0;
}

static uint8_t ci_get_mclk_frequency_ratio(uint32_t memory_clock,
		bool strobe_mode)
{
	uint8_t mc_para_index;

	if (strobe_mode) {
		if (memory_clock < 12500)
			mc_para_index = 0x00;
		else if (memory_clock > 47500)
			mc_para_index = 0x0f;
		else
			mc_para_index = (uint8_t)((memory_clock - 10000) / 2500);
	} else {
		if (memory_clock < 65000)
			mc_para_index = 0x00;
		else if (memory_clock > 135000)
			mc_para_index = 0x0f;
		else
			mc_para_index = (uint8_t)((memory_clock - 60000) / 5000);
	}

	return mc_para_index;
}

static uint8_t ci_get_ddr3_mclk_frequency_ratio(uint32_t memory_clock)
{
	uint8_t mc_para_index;

	if (memory_clock < 10000)
		mc_para_index = 0;
	else if (memory_clock >= 80000)
		mc_para_index = 0x0f;
	else
		mc_para_index = (uint8_t)((memory_clock - 10000) / 5000 + 1);

	return mc_para_index;
}

static int ci_populate_phase_value_based_on_mclk(struct pp_hwmgr *hwmgr, const struct phm_phase_shedding_limits_table *pl,
					uint32_t memory_clock, uint32_t *p_shed)
{
	unsigned int i;

	*p_shed = 1;

	for (i = 0; i < pl->count; i++) {
		if (memory_clock < pl->entries[i].Mclk) {
			*p_shed = i;
			break;
		}
	}

	return 0;
}

static int ci_populate_single_memory_level(
		struct pp_hwmgr *hwmgr,
		uint32_t memory_clock,
		SMU7_Discrete_MemoryLevel *memory_level
		)
{
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
	int result = 0;
	bool dll_state_on;
	struct cgs_display_info info = {0};
	uint32_t mclk_edc_wr_enable_threshold = 40000;
	uint32_t mclk_edc_enable_threshold = 40000;
	uint32_t mclk_strobe_mode_threshold = 40000;

	if (hwmgr->dyn_state.vddc_dependency_on_mclk != NULL) {
		result = ci_get_dependency_volt_by_clk(hwmgr,
			hwmgr->dyn_state.vddc_dependency_on_mclk, memory_clock, &memory_level->MinVddc);
		PP_ASSERT_WITH_CODE((0 == result),
			"can not find MinVddc voltage value from memory VDDC voltage dependency table", return result);
	}

	if (NULL != hwmgr->dyn_state.vddci_dependency_on_mclk) {
		result = ci_get_dependency_volt_by_clk(hwmgr,
				hwmgr->dyn_state.vddci_dependency_on_mclk,
				memory_clock,
				&memory_level->MinVddci);
		PP_ASSERT_WITH_CODE((0 == result),
			"can not find MinVddci voltage value from memory VDDCI voltage dependency table", return result);
	}

	if (NULL != hwmgr->dyn_state.mvdd_dependency_on_mclk) {
		result = ci_get_dependency_volt_by_clk(hwmgr,
				hwmgr->dyn_state.mvdd_dependency_on_mclk,
				memory_clock,
				&memory_level->MinMvdd);
		PP_ASSERT_WITH_CODE((0 == result),
			"can not find MinVddci voltage value from memory MVDD voltage dependency table", return result);
	}

	memory_level->MinVddcPhases = 1;

	if (data->vddc_phase_shed_control) {
		ci_populate_phase_value_based_on_mclk(hwmgr, hwmgr->dyn_state.vddc_phase_shed_limits_table,
				memory_clock, &memory_level->MinVddcPhases);
	}

	memory_level->EnabledForThrottle = 1;
	memory_level->EnabledForActivity = 1;
	memory_level->UpH = 0;
	memory_level->DownH = 100;
	memory_level->VoltageDownH = 0;

	/* Indicates maximum activity level for this performance level.*/
	memory_level->ActivityLevel = (uint16_t)data->mclk_activity_target;
	memory_level->StutterEnable = 0;
	memory_level->StrobeEnable = 0;
	memory_level->EdcReadEnable = 0;
	memory_level->EdcWriteEnable = 0;
	memory_level->RttEnable = 0;

	/* default set to low watermark. Highest level will be set to high later.*/
	memory_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;

	cgs_get_active_displays_info(hwmgr->device, &info);
	data->display_timing.num_existing_displays = info.display_count;

	/* stutter mode not support on ci */

	/* decide strobe mode*/
	memory_level->StrobeEnable = (mclk_strobe_mode_threshold != 0) &&
		(memory_clock <= mclk_strobe_mode_threshold);

	/* decide EDC mode and memory clock ratio*/
	if (data->is_memory_gddr5) {
		memory_level->StrobeRatio = ci_get_mclk_frequency_ratio(memory_clock,
					memory_level->StrobeEnable);

		if ((mclk_edc_enable_threshold != 0) &&
				(memory_clock > mclk_edc_enable_threshold)) {
			memory_level->EdcReadEnable = 1;
		}

		if ((mclk_edc_wr_enable_threshold != 0) &&
				(memory_clock > mclk_edc_wr_enable_threshold)) {
			memory_level->EdcWriteEnable = 1;
		}

		if (memory_level->StrobeEnable) {
			if (ci_get_mclk_frequency_ratio(memory_clock, 1) >=
					((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC7) >> 16) & 0xf))
				dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0;
			else
				dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC6) >> 1) & 0x1) ? 1 : 0;
		} else
			dll_state_on = data->dll_default_on;
	} else {
		memory_level->StrobeRatio =
			ci_get_ddr3_mclk_frequency_ratio(memory_clock);
		dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0;
	}

	result = ci_calculate_mclk_params(hwmgr,
		memory_clock, memory_level, memory_level->StrobeEnable, dll_state_on);

	if (0 == result) {
		memory_level->MinVddc = PP_HOST_TO_SMC_UL(memory_level->MinVddc * VOLTAGE_SCALE);
		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MinVddcPhases);
		memory_level->MinVddci = PP_HOST_TO_SMC_UL(memory_level->MinVddci * VOLTAGE_SCALE);
		memory_level->MinMvdd = PP_HOST_TO_SMC_UL(memory_level->MinMvdd * VOLTAGE_SCALE);
		/* MCLK frequency in units of 10KHz*/
		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkFrequency);
		/* Indicates maximum activity level for this performance level.*/
		CONVERT_FROM_HOST_TO_SMC_US(memory_level->ActivityLevel);
		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl);
		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_1);
		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_2);
		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllAdFuncCntl);
		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllDqFuncCntl);
		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkPwrmgtCntl);
		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->DllCntl);
		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs1);
		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs2);
	}

	return result;
}

1299
static int ci_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
1300 1301
{
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1302
	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
	struct smu7_dpm_table *dpm_table = &data->dpm_table;
	int result;
	struct cgs_system_info sys_info = {0};
	uint32_t dev_id;

	uint32_t level_array_address = smu_data->dpm_table_start + offsetof(SMU7_Discrete_DpmTable, MemoryLevel);
	uint32_t level_array_size = sizeof(SMU7_Discrete_MemoryLevel) * SMU7_MAX_LEVELS_MEMORY;
	SMU7_Discrete_MemoryLevel *levels = smu_data->smc_state_table.MemoryLevel;
	uint32_t i;

	memset(levels, 0x00, level_array_size);

	for (i = 0; i < dpm_table->mclk_table.count; i++) {
		PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value),
			"can not populate memory level as memory clock is zero", return -EINVAL);
		result = ci_populate_single_memory_level(hwmgr, dpm_table->mclk_table.dpm_levels[i].value,
			&(smu_data->smc_state_table.MemoryLevel[i]));
		if (0 != result)
			return result;
	}

	smu_data->smc_state_table.MemoryLevel[0].EnabledForActivity = 1;

	sys_info.size = sizeof(struct cgs_system_info);
	sys_info.info_id = CGS_SYSTEM_INFO_PCIE_DEV;
	cgs_query_system_info(hwmgr->device, &sys_info);
	dev_id = (uint32_t)sys_info.value;

	if ((dpm_table->mclk_table.count >= 2)
		&& ((dev_id == 0x67B0) ||  (dev_id == 0x67B1))) {
		smu_data->smc_state_table.MemoryLevel[1].MinVddci =
				smu_data->smc_state_table.MemoryLevel[0].MinVddci;
		smu_data->smc_state_table.MemoryLevel[1].MinMvdd =
				smu_data->smc_state_table.MemoryLevel[0].MinMvdd;
	}
	smu_data->smc_state_table.MemoryLevel[0].ActivityLevel = 0x1F;
	CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.MemoryLevel[0].ActivityLevel);

	smu_data->smc_state_table.MemoryDpmLevelCount = (uint8_t)dpm_table->mclk_table.count;
	data->dpm_level_enable_mask.mclk_dpm_enable_mask = phm_get_dpm_level_enable_mask_value(&dpm_table->mclk_table);
	smu_data->smc_state_table.MemoryLevel[dpm_table->mclk_table.count-1].DisplayWatermark = PPSMC_DISPLAY_WATERMARK_HIGH;

1345
	result = ci_copy_bytes_to_smc(hwmgr,
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
		level_array_address, (uint8_t *)levels, (uint32_t)level_array_size,
		SMC_RAM_END);

	return result;
}

static int ci_populate_mvdd_value(struct pp_hwmgr *hwmgr, uint32_t mclk,
					SMU7_Discrete_VoltageLevel *voltage)
{
	const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);

	uint32_t i = 0;

	if (SMU7_VOLTAGE_CONTROL_NONE != data->mvdd_control) {
		/* find mvdd value which clock is more than request */
		for (i = 0; i < hwmgr->dyn_state.mvdd_dependency_on_mclk->count; i++) {
			if (mclk <= hwmgr->dyn_state.mvdd_dependency_on_mclk->entries[i].clk) {
				/* Always round to higher voltage. */
				voltage->Voltage = data->mvdd_voltage_table.entries[i].value;
				break;
			}
		}

		PP_ASSERT_WITH_CODE(i < hwmgr->dyn_state.mvdd_dependency_on_mclk->count,
			"MVDD Voltage is outside the supported range.", return -EINVAL);

	} else {
		return -EINVAL;
	}

	return 0;
}

static int ci_populate_smc_acpi_level(struct pp_hwmgr *hwmgr,
	SMU7_Discrete_DpmTable *table)
{
	int result = 0;
	const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
	struct pp_atomctrl_clock_dividers_vi dividers;

	SMU7_Discrete_VoltageLevel voltage_level;
	uint32_t spll_func_cntl    = data->clock_registers.vCG_SPLL_FUNC_CNTL;
	uint32_t spll_func_cntl_2  = data->clock_registers.vCG_SPLL_FUNC_CNTL_2;
	uint32_t dll_cntl          = data->clock_registers.vDLL_CNTL;
	uint32_t mclk_pwrmgt_cntl  = data->clock_registers.vMCLK_PWRMGT_CNTL;


	/* The ACPI state should not do DPM on DC (or ever).*/
	table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC;

	if (data->acpi_vddc)
		table->ACPILevel.MinVddc = PP_HOST_TO_SMC_UL(data->acpi_vddc * VOLTAGE_SCALE);
	else
		table->ACPILevel.MinVddc = PP_HOST_TO_SMC_UL(data->min_vddc_in_pptable * VOLTAGE_SCALE);

	table->ACPILevel.MinVddcPhases = data->vddc_phase_shed_control ? 0 : 1;
	/* assign zero for now*/
	table->ACPILevel.SclkFrequency = atomctrl_get_reference_clock(hwmgr);

	/* get the engine clock dividers for this clock value*/
	result = atomctrl_get_engine_pll_dividers_vi(hwmgr,
		table->ACPILevel.SclkFrequency,  &dividers);

	PP_ASSERT_WITH_CODE(result == 0,
		"Error retrieving Engine Clock dividers from VBIOS.", return result);

	/* divider ID for required SCLK*/
	table->ACPILevel.SclkDid = (uint8_t)dividers.pll_post_divider;
	table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
	table->ACPILevel.DeepSleepDivId = 0;

	spll_func_cntl      = PHM_SET_FIELD(spll_func_cntl,
							CG_SPLL_FUNC_CNTL,   SPLL_PWRON,     0);
	spll_func_cntl      = PHM_SET_FIELD(spll_func_cntl,
							CG_SPLL_FUNC_CNTL,   SPLL_RESET,     1);
	spll_func_cntl_2    = PHM_SET_FIELD(spll_func_cntl_2,
							CG_SPLL_FUNC_CNTL_2, SCLK_MUX_SEL,   4);

	table->ACPILevel.CgSpllFuncCntl = spll_func_cntl;
	table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2;
	table->ACPILevel.CgSpllFuncCntl3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
	table->ACPILevel.CgSpllFuncCntl4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
	table->ACPILevel.SpllSpreadSpectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
	table->ACPILevel.SpllSpreadSpectrum2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
	table->ACPILevel.CcPwrDynRm = 0;
	table->ACPILevel.CcPwrDynRm1 = 0;

	/* For various features to be enabled/disabled while this level is active.*/
	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags);
	/* SCLK frequency in units of 10KHz*/
	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkFrequency);
	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl);
	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl2);
	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl3);
	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl4);
	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum);
	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum2);
	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm);
	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1);


	/* table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases;*/
	table->MemoryACPILevel.MinVddc = table->ACPILevel.MinVddc;
	table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases;

	if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control)
		table->MemoryACPILevel.MinVddci = table->MemoryACPILevel.MinVddc;
	else {
		if (data->acpi_vddci != 0)
			table->MemoryACPILevel.MinVddci = PP_HOST_TO_SMC_UL(data->acpi_vddci * VOLTAGE_SCALE);
		else
			table->MemoryACPILevel.MinVddci = PP_HOST_TO_SMC_UL(data->min_vddci_in_pptable * VOLTAGE_SCALE);
	}

	if (0 == ci_populate_mvdd_value(hwmgr, 0, &voltage_level))
		table->MemoryACPILevel.MinMvdd =
			PP_HOST_TO_SMC_UL(voltage_level.Voltage * VOLTAGE_SCALE);
	else
		table->MemoryACPILevel.MinMvdd = 0;

	/* Force reset on DLL*/
	mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
		MCLK_PWRMGT_CNTL, MRDCK0_RESET, 0x1);
	mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
		MCLK_PWRMGT_CNTL, MRDCK1_RESET, 0x1);

	/* Disable DLL in ACPIState*/
	mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
		MCLK_PWRMGT_CNTL, MRDCK0_PDNB, 0);
	mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
		MCLK_PWRMGT_CNTL, MRDCK1_PDNB, 0);

	/* Enable DLL bypass signal*/
	dll_cntl            = PHM_SET_FIELD(dll_cntl,
		DLL_CNTL, MRDCK0_BYPASS, 0);
	dll_cntl            = PHM_SET_FIELD(dll_cntl,
		DLL_CNTL, MRDCK1_BYPASS, 0);

	table->MemoryACPILevel.DllCntl            =
		PP_HOST_TO_SMC_UL(dll_cntl);
	table->MemoryACPILevel.MclkPwrmgtCntl     =
		PP_HOST_TO_SMC_UL(mclk_pwrmgt_cntl);
	table->MemoryACPILevel.MpllAdFuncCntl     =
		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_AD_FUNC_CNTL);
	table->MemoryACPILevel.MpllDqFuncCntl     =
		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_DQ_FUNC_CNTL);
	table->MemoryACPILevel.MpllFuncCntl       =
		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL);
	table->MemoryACPILevel.MpllFuncCntl_1     =
		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_1);
	table->MemoryACPILevel.MpllFuncCntl_2     =
		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_2);
	table->MemoryACPILevel.MpllSs1            =
		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS1);
	table->MemoryACPILevel.MpllSs2            =
		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS2);

	table->MemoryACPILevel.EnabledForThrottle = 0;
	table->MemoryACPILevel.EnabledForActivity = 0;
	table->MemoryACPILevel.UpH = 0;
	table->MemoryACPILevel.DownH = 100;
	table->MemoryACPILevel.VoltageDownH = 0;
	/* Indicates maximum activity level for this performance level.*/
	table->MemoryACPILevel.ActivityLevel = PP_HOST_TO_SMC_US((uint16_t)data->mclk_activity_target);

	table->MemoryACPILevel.StutterEnable = 0;
	table->MemoryACPILevel.StrobeEnable = 0;
	table->MemoryACPILevel.EdcReadEnable = 0;
	table->MemoryACPILevel.EdcWriteEnable = 0;
	table->MemoryACPILevel.RttEnable = 0;

	return result;
}

static int ci_populate_smc_uvd_level(struct pp_hwmgr *hwmgr,
					SMU7_Discrete_DpmTable *table)
{
	int result = 0;
	uint8_t count;
	struct pp_atomctrl_clock_dividers_vi dividers;
	struct phm_uvd_clock_voltage_dependency_table *uvd_table =
		hwmgr->dyn_state.uvd_clock_voltage_dependency_table;

	table->UvdLevelCount = (uint8_t)(uvd_table->count);

	for (count = 0; count < table->UvdLevelCount; count++) {
		table->UvdLevel[count].VclkFrequency =
					uvd_table->entries[count].vclk;
		table->UvdLevel[count].DclkFrequency =
					uvd_table->entries[count].dclk;
		table->UvdLevel[count].MinVddc =
					uvd_table->entries[count].v * VOLTAGE_SCALE;
		table->UvdLevel[count].MinVddcPhases = 1;

		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
				table->UvdLevel[count].VclkFrequency, &dividers);
		PP_ASSERT_WITH_CODE((0 == result),
				"can not find divide id for Vclk clock", return result);

		table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider;

		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
				table->UvdLevel[count].DclkFrequency, &dividers);
		PP_ASSERT_WITH_CODE((0 == result),
				"can not find divide id for Dclk clock", return result);

		table->UvdLevel[count].DclkDivider = (uint8_t)dividers.pll_post_divider;
		CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency);
		CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency);
		CONVERT_FROM_HOST_TO_SMC_US(table->UvdLevel[count].MinVddc);
	}

	return result;
}

static int ci_populate_smc_vce_level(struct pp_hwmgr *hwmgr,
		SMU7_Discrete_DpmTable *table)
{
	int result = -EINVAL;
	uint8_t count;
	struct pp_atomctrl_clock_dividers_vi dividers;
	struct phm_vce_clock_voltage_dependency_table *vce_table =
				hwmgr->dyn_state.vce_clock_voltage_dependency_table;

	table->VceLevelCount = (uint8_t)(vce_table->count);
	table->VceBootLevel = 0;

	for (count = 0; count < table->VceLevelCount; count++) {
		table->VceLevel[count].Frequency = vce_table->entries[count].evclk;
		table->VceLevel[count].MinVoltage =
				vce_table->entries[count].v * VOLTAGE_SCALE;
		table->VceLevel[count].MinPhases = 1;

		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
				table->VceLevel[count].Frequency, &dividers);
		PP_ASSERT_WITH_CODE((0 == result),
				"can not find divide id for VCE engine clock",
				return result);

		table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider;

		CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency);
		CONVERT_FROM_HOST_TO_SMC_US(table->VceLevel[count].MinVoltage);
	}
	return result;
}

static int ci_populate_smc_acp_level(struct pp_hwmgr *hwmgr,
					SMU7_Discrete_DpmTable *table)
{
	int result = -EINVAL;
	uint8_t count;
	struct pp_atomctrl_clock_dividers_vi dividers;
	struct phm_acp_clock_voltage_dependency_table *acp_table =
				hwmgr->dyn_state.acp_clock_voltage_dependency_table;

	table->AcpLevelCount = (uint8_t)(acp_table->count);
	table->AcpBootLevel = 0;

	for (count = 0; count < table->AcpLevelCount; count++) {
		table->AcpLevel[count].Frequency = acp_table->entries[count].acpclk;
		table->AcpLevel[count].MinVoltage = acp_table->entries[count].v;
		table->AcpLevel[count].MinPhases = 1;

		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
				table->AcpLevel[count].Frequency, &dividers);
		PP_ASSERT_WITH_CODE((0 == result),
				"can not find divide id for engine clock", return result);

		table->AcpLevel[count].Divider = (uint8_t)dividers.pll_post_divider;

		CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].Frequency);
		CONVERT_FROM_HOST_TO_SMC_US(table->AcpLevel[count].MinVoltage);
	}
	return result;
}

static int ci_populate_smc_samu_level(struct pp_hwmgr *hwmgr,
					SMU7_Discrete_DpmTable *table)
{
	int result = -EINVAL;
	uint8_t count;
	struct pp_atomctrl_clock_dividers_vi dividers;
	struct phm_samu_clock_voltage_dependency_table *samu_table =
				hwmgr->dyn_state.samu_clock_voltage_dependency_table;

	table->SamuBootLevel = 0;
	table->SamuLevelCount = (uint8_t)(samu_table->count);

	for (count = 0; count < table->SamuLevelCount; count++) {
		table->SamuLevel[count].Frequency = samu_table->entries[count].samclk;
		table->SamuLevel[count].MinVoltage = samu_table->entries[count].v * VOLTAGE_SCALE;
		table->SamuLevel[count].MinPhases = 1;

		/* retrieve divider value for VBIOS */
		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
				table->SamuLevel[count].Frequency, &dividers);
		PP_ASSERT_WITH_CODE((0 == result),
				"can not find divide id for samu clock", return result);

		table->SamuLevel[count].Divider = (uint8_t)dividers.pll_post_divider;

		CONVERT_FROM_HOST_TO_SMC_UL(table->SamuLevel[count].Frequency);
		CONVERT_FROM_HOST_TO_SMC_US(table->SamuLevel[count].MinVoltage);
	}
	return result;
}

static int ci_populate_memory_timing_parameters(
		struct pp_hwmgr *hwmgr,
		uint32_t engine_clock,
		uint32_t memory_clock,
		struct SMU7_Discrete_MCArbDramTimingTableEntry *arb_regs
		)
{
	uint32_t dramTiming;
	uint32_t dramTiming2;
	uint32_t burstTime;
	int result;

	result = atomctrl_set_engine_dram_timings_rv770(hwmgr,
				engine_clock, memory_clock);

	PP_ASSERT_WITH_CODE(result == 0,
		"Error calling VBIOS to set DRAM_TIMING.", return result);

	dramTiming  = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
	dramTiming2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
	burstTime = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0);

	arb_regs->McArbDramTiming  = PP_HOST_TO_SMC_UL(dramTiming);
	arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dramTiming2);
	arb_regs->McArbBurstTime = (uint8_t)burstTime;

	return 0;
}

static int ci_program_memory_timing_parameters(struct pp_hwmgr *hwmgr)
{
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1686
	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
	int result = 0;
	SMU7_Discrete_MCArbDramTimingTable  arb_regs;
	uint32_t i, j;

	memset(&arb_regs, 0x00, sizeof(SMU7_Discrete_MCArbDramTimingTable));

	for (i = 0; i < data->dpm_table.sclk_table.count; i++) {
		for (j = 0; j < data->dpm_table.mclk_table.count; j++) {
			result = ci_populate_memory_timing_parameters
				(hwmgr, data->dpm_table.sclk_table.dpm_levels[i].value,
				 data->dpm_table.mclk_table.dpm_levels[j].value,
				 &arb_regs.entries[i][j]);

			if (0 != result)
				break;
		}
	}

	if (0 == result) {
		result = ci_copy_bytes_to_smc(
1707
				hwmgr,
1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
				smu_data->arb_table_start,
				(uint8_t *)&arb_regs,
				sizeof(SMU7_Discrete_MCArbDramTimingTable),
				SMC_RAM_END
				);
	}

	return result;
}

static int ci_populate_smc_boot_level(struct pp_hwmgr *hwmgr,
			SMU7_Discrete_DpmTable *table)
{
	int result = 0;
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1723
	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734

	table->GraphicsBootLevel = 0;
	table->MemoryBootLevel = 0;

	/* find boot level from dpm table*/
	result = phm_find_boot_level(&(data->dpm_table.sclk_table),
			data->vbios_boot_state.sclk_bootup_value,
			(uint32_t *)&(smu_data->smc_state_table.GraphicsBootLevel));

	if (0 != result) {
		smu_data->smc_state_table.GraphicsBootLevel = 0;
1735
		pr_err("VBIOS did not find boot engine clock value in dependency table. Using Graphics DPM level 0!\n");
1736 1737 1738 1739 1740 1741 1742 1743 1744
		result = 0;
	}

	result = phm_find_boot_level(&(data->dpm_table.mclk_table),
		data->vbios_boot_state.mclk_bootup_value,
		(uint32_t *)&(smu_data->smc_state_table.MemoryBootLevel));

	if (0 != result) {
		smu_data->smc_state_table.MemoryBootLevel = 0;
1745
		pr_err("VBIOS did not find boot engine clock value in dependency table. Using Memory DPM level 0!\n");
1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
		result = 0;
	}

	table->BootVddc = data->vbios_boot_state.vddc_bootup_value;
	table->BootVddci = data->vbios_boot_state.vddci_bootup_value;
	table->BootMVdd = data->vbios_boot_state.mvdd_bootup_value;

	return result;
}

1756
static int ci_populate_mc_reg_address(struct pp_hwmgr *hwmgr,
1757 1758
				 SMU7_Discrete_MCRegisters *mc_reg_table)
{
1759
	const struct ci_smumgr *smu_data = (struct ci_smumgr *)hwmgr->smu_backend;
1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795

	uint32_t i, j;

	for (i = 0, j = 0; j < smu_data->mc_reg_table.last; j++) {
		if (smu_data->mc_reg_table.validflag & 1<<j) {
			PP_ASSERT_WITH_CODE(i < SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE,
				"Index of mc_reg_table->address[] array out of boundary", return -EINVAL);
			mc_reg_table->address[i].s0 =
				PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s0);
			mc_reg_table->address[i].s1 =
				PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s1);
			i++;
		}
	}

	mc_reg_table->last = (uint8_t)i;

	return 0;
}

static void ci_convert_mc_registers(
	const struct ci_mc_reg_entry *entry,
	SMU7_Discrete_MCRegisterSet *data,
	uint32_t num_entries, uint32_t valid_flag)
{
	uint32_t i, j;

	for (i = 0, j = 0; j < num_entries; j++) {
		if (valid_flag & 1<<j) {
			data->value[i] = PP_HOST_TO_SMC_UL(entry->mc_data[j]);
			i++;
		}
	}
}

static int ci_convert_mc_reg_table_entry_to_smc(
1796
		struct pp_hwmgr *hwmgr,
1797 1798 1799 1800
		const uint32_t memory_clock,
		SMU7_Discrete_MCRegisterSet *mc_reg_table_data
		)
{
1801
	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
	uint32_t i = 0;

	for (i = 0; i < smu_data->mc_reg_table.num_entries; i++) {
		if (memory_clock <=
			smu_data->mc_reg_table.mc_reg_table_entry[i].mclk_max) {
			break;
		}
	}

	if ((i == smu_data->mc_reg_table.num_entries) && (i > 0))
		--i;

	ci_convert_mc_registers(&smu_data->mc_reg_table.mc_reg_table_entry[i],
				mc_reg_table_data, smu_data->mc_reg_table.last,
				smu_data->mc_reg_table.validflag);

	return 0;
}

static int ci_convert_mc_reg_table_to_smc(struct pp_hwmgr *hwmgr,
		SMU7_Discrete_MCRegisters *mc_regs)
{
	int result = 0;
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
	int res;
	uint32_t i;

	for (i = 0; i < data->dpm_table.mclk_table.count; i++) {
		res = ci_convert_mc_reg_table_entry_to_smc(
1831
				hwmgr,
1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
				data->dpm_table.mclk_table.dpm_levels[i].value,
				&mc_regs->data[i]
				);

		if (0 != res)
			result = res;
	}

	return result;
}

static int ci_update_and_upload_mc_reg_table(struct pp_hwmgr *hwmgr)
{
1845
	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
	uint32_t address;
	int32_t result;

	if (0 == (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK))
		return 0;


	memset(&smu_data->mc_regs, 0, sizeof(SMU7_Discrete_MCRegisters));

	result = ci_convert_mc_reg_table_to_smc(hwmgr, &(smu_data->mc_regs));

	if (result != 0)
		return result;

	address = smu_data->mc_reg_table_start + (uint32_t)offsetof(SMU7_Discrete_MCRegisters, data[0]);

1863
	return  ci_copy_bytes_to_smc(hwmgr, address,
1864 1865 1866 1867 1868 1869 1870 1871
				 (uint8_t *)&smu_data->mc_regs.data[0],
				sizeof(SMU7_Discrete_MCRegisterSet) * data->dpm_table.mclk_table.count,
				SMC_RAM_END);
}

static int ci_populate_initial_mc_reg_table(struct pp_hwmgr *hwmgr)
{
	int result;
1872
	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1873 1874

	memset(&smu_data->mc_regs, 0x00, sizeof(SMU7_Discrete_MCRegisters));
1875
	result = ci_populate_mc_reg_address(hwmgr, &(smu_data->mc_regs));
1876 1877 1878 1879 1880 1881 1882
	PP_ASSERT_WITH_CODE(0 == result,
		"Failed to initialize MCRegTable for the MC register addresses!", return result;);

	result = ci_convert_mc_reg_table_to_smc(hwmgr, &smu_data->mc_regs);
	PP_ASSERT_WITH_CODE(0 == result,
		"Failed to initialize MCRegTable for driver state!", return result;);

1883
	return ci_copy_bytes_to_smc(hwmgr, smu_data->mc_reg_table_start,
1884 1885 1886 1887 1888 1889
			(uint8_t *)&smu_data->mc_regs, sizeof(SMU7_Discrete_MCRegisters), SMC_RAM_END);
}

static int ci_populate_smc_initial_state(struct pp_hwmgr *hwmgr)
{
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1890
	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
	uint8_t count, level;

	count = (uint8_t)(hwmgr->dyn_state.vddc_dependency_on_sclk->count);

	for (level = 0; level < count; level++) {
		if (hwmgr->dyn_state.vddc_dependency_on_sclk->entries[level].clk
			 >= data->vbios_boot_state.sclk_bootup_value) {
			smu_data->smc_state_table.GraphicsBootLevel = level;
			break;
		}
	}

	count = (uint8_t)(hwmgr->dyn_state.vddc_dependency_on_mclk->count);

	for (level = 0; level < count; level++) {
		if (hwmgr->dyn_state.vddc_dependency_on_mclk->entries[level].clk
			>= data->vbios_boot_state.mclk_bootup_value) {
			smu_data->smc_state_table.MemoryBootLevel = level;
			break;
		}
	}

	return 0;
}

static int ci_populate_smc_svi2_config(struct pp_hwmgr *hwmgr,
					    SMU7_Discrete_DpmTable *table)
{
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);

	if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control)
		table->SVI2Enable = 1;
	else
		table->SVI2Enable = 0;
	return 0;
}

1928
static int ci_start_smc(struct pp_hwmgr *hwmgr)
1929 1930
{
	/* set smc instruct start point at 0x0 */
1931
	ci_program_jump_on_start(hwmgr);
1932 1933

	/* enable smc clock */
1934
	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0);
1935

1936
	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_RESET_CNTL, rst_reg, 0);
1937

1938
	PHM_WAIT_INDIRECT_FIELD(hwmgr, SMC_IND, FIRMWARE_FLAGS,
1939 1940 1941 1942 1943
				 INTERRUPTS_ENABLED, 1);

	return 0;
}

1944
static int ci_init_smc_table(struct pp_hwmgr *hwmgr)
1945 1946 1947
{
	int result;
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1948
	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102
	SMU7_Discrete_DpmTable  *table = &(smu_data->smc_state_table);
	struct pp_atomctrl_gpio_pin_assignment gpio_pin;
	u32 i;

	ci_initialize_power_tune_defaults(hwmgr);
	memset(&(smu_data->smc_state_table), 0x00, sizeof(smu_data->smc_state_table));

	if (SMU7_VOLTAGE_CONTROL_NONE != data->voltage_control)
		ci_populate_smc_voltage_tables(hwmgr, table);

	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_AutomaticDCTransition))
		table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC;


	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_StepVddc))
		table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC;

	if (data->is_memory_gddr5)
		table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5;

	if (data->ulv_supported) {
		result = ci_populate_ulv_state(hwmgr, &(table->Ulv));
		PP_ASSERT_WITH_CODE(0 == result,
			"Failed to initialize ULV state!", return result);

		cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
			ixCG_ULV_PARAMETER, 0x40035);
	}

	result = ci_populate_all_graphic_levels(hwmgr);
	PP_ASSERT_WITH_CODE(0 == result,
		"Failed to initialize Graphics Level!", return result);

	result = ci_populate_all_memory_levels(hwmgr);
	PP_ASSERT_WITH_CODE(0 == result,
		"Failed to initialize Memory Level!", return result);

	result = ci_populate_smc_link_level(hwmgr, table);
	PP_ASSERT_WITH_CODE(0 == result,
		"Failed to initialize Link Level!", return result);

	result = ci_populate_smc_acpi_level(hwmgr, table);
	PP_ASSERT_WITH_CODE(0 == result,
		"Failed to initialize ACPI Level!", return result);

	result = ci_populate_smc_vce_level(hwmgr, table);
	PP_ASSERT_WITH_CODE(0 == result,
		"Failed to initialize VCE Level!", return result);

	result = ci_populate_smc_acp_level(hwmgr, table);
	PP_ASSERT_WITH_CODE(0 == result,
		"Failed to initialize ACP Level!", return result);

	result = ci_populate_smc_samu_level(hwmgr, table);
	PP_ASSERT_WITH_CODE(0 == result,
		"Failed to initialize SAMU Level!", return result);

	/* Since only the initial state is completely set up at this point (the other states are just copies of the boot state) we only */
	/* need to populate the  ARB settings for the initial state. */
	result = ci_program_memory_timing_parameters(hwmgr);
	PP_ASSERT_WITH_CODE(0 == result,
		"Failed to Write ARB settings for the initial state.", return result);

	result = ci_populate_smc_uvd_level(hwmgr, table);
	PP_ASSERT_WITH_CODE(0 == result,
		"Failed to initialize UVD Level!", return result);

	table->UvdBootLevel  = 0;
	table->VceBootLevel  = 0;
	table->AcpBootLevel  = 0;
	table->SamuBootLevel  = 0;

	table->GraphicsBootLevel = 0;
	table->MemoryBootLevel = 0;

	result = ci_populate_smc_boot_level(hwmgr, table);
	PP_ASSERT_WITH_CODE(0 == result,
		"Failed to initialize Boot Level!", return result);

	result = ci_populate_smc_initial_state(hwmgr);
	PP_ASSERT_WITH_CODE(0 == result, "Failed to initialize Boot State!", return result);

	result = ci_populate_bapm_parameters_in_dpm_table(hwmgr);
	PP_ASSERT_WITH_CODE(0 == result, "Failed to populate BAPM Parameters!", return result);

	table->UVDInterval = 1;
	table->VCEInterval = 1;
	table->ACPInterval = 1;
	table->SAMUInterval = 1;
	table->GraphicsVoltageChangeEnable  = 1;
	table->GraphicsThermThrottleEnable  = 1;
	table->GraphicsInterval = 1;
	table->VoltageInterval  = 1;
	table->ThermalInterval  = 1;

	table->TemperatureLimitHigh =
		(data->thermal_temp_setting.temperature_high *
		 SMU7_Q88_FORMAT_CONVERSION_UNIT) / PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
	table->TemperatureLimitLow =
		(data->thermal_temp_setting.temperature_low *
		SMU7_Q88_FORMAT_CONVERSION_UNIT) / PP_TEMPERATURE_UNITS_PER_CENTIGRADES;

	table->MemoryVoltageChangeEnable  = 1;
	table->MemoryInterval  = 1;
	table->VoltageResponseTime  = 0;
	table->VddcVddciDelta = 4000;
	table->PhaseResponseTime  = 0;
	table->MemoryThermThrottleEnable  = 1;

	PP_ASSERT_WITH_CODE((1 <= data->dpm_table.pcie_speed_table.count),
			"There must be 1 or more PCIE levels defined in PPTable.",
			return -EINVAL);

	table->PCIeBootLinkLevel = (uint8_t)data->dpm_table.pcie_speed_table.count;
	table->PCIeGenInterval = 1;

	ci_populate_smc_svi2_config(hwmgr, table);

	for (i = 0; i < SMU7_MAX_ENTRIES_SMIO; i++)
		CONVERT_FROM_HOST_TO_SMC_UL(table->Smio[i]);

	table->ThermGpio  = 17;
	table->SclkStepSize = 0x4000;
	if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_VRHOT_GPIO_PINID, &gpio_pin)) {
		table->VRHotGpio = gpio_pin.uc_gpio_pin_bit_shift;
		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
				PHM_PlatformCaps_RegulatorHot);
	} else {
		table->VRHotGpio = SMU7_UNUSED_GPIO_PIN;
		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
				PHM_PlatformCaps_RegulatorHot);
	}

	table->AcDcGpio = SMU7_UNUSED_GPIO_PIN;

	CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags);
	CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddcVid);
	CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddcPhase);
	CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddciVid);
	CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskMvddVid);
	CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize);
	CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh);
	CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow);
	table->VddcVddciDelta = PP_HOST_TO_SMC_US(table->VddcVddciDelta);
	CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime);
	CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime);

	table->BootVddc = PP_HOST_TO_SMC_US(table->BootVddc * VOLTAGE_SCALE);
	table->BootVddci = PP_HOST_TO_SMC_US(table->BootVddci * VOLTAGE_SCALE);
	table->BootMVdd = PP_HOST_TO_SMC_US(table->BootMVdd * VOLTAGE_SCALE);

	/* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */
2103
	result = ci_copy_bytes_to_smc(hwmgr, smu_data->dpm_table_start +
2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119
					offsetof(SMU7_Discrete_DpmTable, SystemFlags),
					(uint8_t *)&(table->SystemFlags),
					sizeof(SMU7_Discrete_DpmTable)-3 * sizeof(SMU7_PIDController),
					SMC_RAM_END);

	PP_ASSERT_WITH_CODE(0 == result,
		"Failed to upload dpm data to SMC memory!", return result;);

	result = ci_populate_initial_mc_reg_table(hwmgr);
	PP_ASSERT_WITH_CODE((0 == result),
		"Failed to populate initialize MC Reg table!", return result);

	result = ci_populate_pm_fuses(hwmgr);
	PP_ASSERT_WITH_CODE(0 == result,
			"Failed to  populate PM fuses to SMC memory!", return result);

2120
	ci_start_smc(hwmgr);
2121 2122 2123 2124

	return 0;
}

2125
static int ci_thermal_setup_fan_table(struct pp_hwmgr *hwmgr)
2126
{
2127
	struct ci_smumgr *ci_data = (struct ci_smumgr *)(hwmgr->smu_backend);
2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194
	SMU7_Discrete_FanTable fan_table = { FDO_MODE_HARDWARE };
	uint32_t duty100;
	uint32_t t_diff1, t_diff2, pwm_diff1, pwm_diff2;
	uint16_t fdo_min, slope1, slope2;
	uint32_t reference_clock;
	int res;
	uint64_t tmp64;

	if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl))
		return 0;

	if (hwmgr->thermal_controller.fanInfo.bNoFan) {
		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_MicrocodeFanControl);
		return 0;
	}

	if (0 == ci_data->fan_table_start) {
		phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl);
		return 0;
	}

	duty100 = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_FDO_CTRL1, FMAX_DUTY100);

	if (0 == duty100) {
		phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl);
		return 0;
	}

	tmp64 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin * duty100;
	do_div(tmp64, 10000);
	fdo_min = (uint16_t)tmp64;

	t_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usTMed - hwmgr->thermal_controller.advanceFanControlParameters.usTMin;
	t_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usTHigh - hwmgr->thermal_controller.advanceFanControlParameters.usTMed;

	pwm_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed - hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin;
	pwm_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh - hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed;

	slope1 = (uint16_t)((50 + ((16 * duty100 * pwm_diff1) / t_diff1)) / 100);
	slope2 = (uint16_t)((50 + ((16 * duty100 * pwm_diff2) / t_diff2)) / 100);

	fan_table.TempMin = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMin) / 100);
	fan_table.TempMed = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMed) / 100);
	fan_table.TempMax = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMax) / 100);

	fan_table.Slope1 = cpu_to_be16(slope1);
	fan_table.Slope2 = cpu_to_be16(slope2);

	fan_table.FdoMin = cpu_to_be16(fdo_min);

	fan_table.HystDown = cpu_to_be16(hwmgr->thermal_controller.advanceFanControlParameters.ucTHyst);

	fan_table.HystUp = cpu_to_be16(1);

	fan_table.HystSlope = cpu_to_be16(1);

	fan_table.TempRespLim = cpu_to_be16(5);

	reference_clock = smu7_get_xclk(hwmgr);

	fan_table.RefreshPeriod = cpu_to_be32((hwmgr->thermal_controller.advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600);

	fan_table.FdoMax = cpu_to_be16((uint16_t)duty100);

	fan_table.TempSrc = (uint8_t)PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_MULT_THERMAL_CTRL, TEMP_SEL);

2195
	res = ci_copy_bytes_to_smc(hwmgr, ci_data->fan_table_start, (uint8_t *)&fan_table, (uint32_t)sizeof(fan_table), SMC_RAM_END);
2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210

	return 0;
}

static int ci_program_mem_timing_parameters(struct pp_hwmgr *hwmgr)
{
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);

	if (data->need_update_smu7_dpm_table &
			(DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_OD_UPDATE_MCLK))
		return ci_program_memory_timing_parameters(hwmgr);

	return 0;
}

2211
static int ci_update_sclk_threshold(struct pp_hwmgr *hwmgr)
2212 2213
{
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2214
	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
2215 2216 2217 2218 2219 2220

	int result = 0;
	uint32_t low_sclk_interrupt_threshold = 0;

	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_SclkThrottleLowNotification)
2221
		&& (data->low_sclk_interrupt_threshold != 0)) {
2222 2223 2224 2225 2226 2227
		low_sclk_interrupt_threshold =
				data->low_sclk_interrupt_threshold;

		CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold);

		result = ci_copy_bytes_to_smc(
2228
				hwmgr,
2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248
				smu_data->dpm_table_start +
				offsetof(SMU7_Discrete_DpmTable,
					LowSclkInterruptT),
				(uint8_t *)&low_sclk_interrupt_threshold,
				sizeof(uint32_t),
				SMC_RAM_END);
	}

	result = ci_update_and_upload_mc_reg_table(hwmgr);

	PP_ASSERT_WITH_CODE((0 == result), "Failed to upload MC reg table!", return result);

	result = ci_program_mem_timing_parameters(hwmgr);
	PP_ASSERT_WITH_CODE((result == 0),
			"Failed to program memory timing parameters!",
			);

	return result;
}

2249
static uint32_t ci_get_offsetof(uint32_t type, uint32_t member)
2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263
{
	switch (type) {
	case SMU_SoftRegisters:
		switch (member) {
		case HandshakeDisables:
			return offsetof(SMU7_SoftRegisters, HandshakeDisables);
		case VoltageChangeTimeout:
			return offsetof(SMU7_SoftRegisters, VoltageChangeTimeout);
		case AverageGraphicsActivity:
			return offsetof(SMU7_SoftRegisters, AverageGraphicsA);
		case PreVBlankGap:
			return offsetof(SMU7_SoftRegisters, PreVBlankGap);
		case VBlankTimeout:
			return offsetof(SMU7_SoftRegisters, VBlankTimeout);
2264 2265 2266 2267 2268 2269 2270 2271 2272 2273
		case DRAM_LOG_ADDR_H:
			return offsetof(SMU7_SoftRegisters, DRAM_LOG_ADDR_H);
		case DRAM_LOG_ADDR_L:
			return offsetof(SMU7_SoftRegisters, DRAM_LOG_ADDR_L);
		case DRAM_LOG_PHY_ADDR_H:
			return offsetof(SMU7_SoftRegisters, DRAM_LOG_PHY_ADDR_H);
		case DRAM_LOG_PHY_ADDR_L:
			return offsetof(SMU7_SoftRegisters, DRAM_LOG_PHY_ADDR_L);
		case DRAM_LOG_BUFF_SIZE:
			return offsetof(SMU7_SoftRegisters, DRAM_LOG_BUFF_SIZE);
2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284
		}
	case SMU_Discrete_DpmTable:
		switch (member) {
		case LowSclkInterruptThreshold:
			return offsetof(SMU7_Discrete_DpmTable, LowSclkInterruptT);
		}
	}
	pr_debug("can't get the offset of type %x member %x\n", type, member);
	return 0;
}

2285
static uint32_t ci_get_mac_definition(uint32_t value)
2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307
{
	switch (value) {
	case SMU_MAX_LEVELS_GRAPHICS:
		return SMU7_MAX_LEVELS_GRAPHICS;
	case SMU_MAX_LEVELS_MEMORY:
		return SMU7_MAX_LEVELS_MEMORY;
	case SMU_MAX_LEVELS_LINK:
		return SMU7_MAX_LEVELS_LINK;
	case SMU_MAX_ENTRIES_SMIO:
		return SMU7_MAX_ENTRIES_SMIO;
	case SMU_MAX_LEVELS_VDDC:
		return SMU7_MAX_LEVELS_VDDC;
	case SMU_MAX_LEVELS_VDDCI:
		return SMU7_MAX_LEVELS_VDDCI;
	case SMU_MAX_LEVELS_MVDD:
		return SMU7_MAX_LEVELS_MVDD;
	}

	pr_debug("can't get the mac of %x\n", value);
	return 0;
}

2308
static int ci_load_smc_ucode(struct pp_hwmgr *hwmgr)
2309 2310 2311 2312 2313 2314 2315
{
	uint32_t byte_count, start_addr;
	uint8_t *src;
	uint32_t data;

	struct cgs_firmware_info info = {0};

2316
	cgs_get_firmware_info(hwmgr->device, CGS_UCODE_ID_SMU, &info);
2317

2318
	hwmgr->is_kicker = info.is_kicker;
2319 2320 2321 2322 2323 2324 2325 2326 2327
	byte_count = info.image_size;
	src = (uint8_t *)info.kptr;
	start_addr = info.ucode_start_address;

	if  (byte_count > SMC_RAM_END) {
		pr_err("SMC address is beyond the SMC RAM area.\n");
		return -EINVAL;
	}

2328
	cgs_write_register(hwmgr->device, mmSMC_IND_INDEX_0, start_addr);
2329
	PHM_WRITE_FIELD(hwmgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_0, 1);
2330 2331 2332

	for (; byte_count >= 4; byte_count -= 4) {
		data = (src[0] << 24) | (src[1] << 16) | (src[2] << 8) | src[3];
2333
		cgs_write_register(hwmgr->device, mmSMC_IND_DATA_0, data);
2334 2335
		src += 4;
	}
2336
	PHM_WRITE_FIELD(hwmgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_0, 0);
2337 2338

	if (0 != byte_count) {
2339
		pr_err("SMC size must be divisible by 4\n");
2340 2341 2342 2343 2344 2345 2346 2347
		return -EINVAL;
	}

	return 0;
}

static int ci_upload_firmware(struct pp_hwmgr *hwmgr)
{
2348
	if (ci_is_smc_ram_running(hwmgr)) {
2349 2350 2351
		pr_info("smc is running, no need to load smc firmware\n");
		return 0;
	}
2352
	PHM_WAIT_INDIRECT_FIELD(hwmgr, SMC_IND, RCU_UC_EVENTS,
2353 2354 2355 2356 2357 2358
			boot_seq_done, 1);
	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_MISC_CNTL,
			pre_fetcher_en, 1);

	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 1);
	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_RESET_CNTL, rst_reg, 1);
2359
	return ci_load_smc_ucode(hwmgr);
2360 2361
}

2362
static int ci_process_firmware_header(struct pp_hwmgr *hwmgr)
2363 2364
{
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2365
	struct ci_smumgr *ci_data = (struct ci_smumgr *)(hwmgr->smu_backend);
2366 2367 2368 2369 2370 2371 2372 2373

	uint32_t tmp = 0;
	int result;
	bool error = false;

	if (ci_upload_firmware(hwmgr))
		return -EINVAL;

2374
	result = ci_read_smc_sram_dword(hwmgr,
2375 2376 2377 2378 2379 2380 2381 2382 2383
				SMU7_FIRMWARE_HEADER_LOCATION +
				offsetof(SMU7_Firmware_Header, DpmTable),
				&tmp, SMC_RAM_END);

	if (0 == result)
		ci_data->dpm_table_start = tmp;

	error |= (0 != result);

2384
	result = ci_read_smc_sram_dword(hwmgr,
2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395
				SMU7_FIRMWARE_HEADER_LOCATION +
				offsetof(SMU7_Firmware_Header, SoftRegisters),
				&tmp, SMC_RAM_END);

	if (0 == result) {
		data->soft_regs_start = tmp;
		ci_data->soft_regs_start = tmp;
	}

	error |= (0 != result);

2396
	result = ci_read_smc_sram_dword(hwmgr,
2397 2398 2399 2400 2401 2402 2403
				SMU7_FIRMWARE_HEADER_LOCATION +
				offsetof(SMU7_Firmware_Header, mcRegisterTable),
				&tmp, SMC_RAM_END);

	if (0 == result)
		ci_data->mc_reg_table_start = tmp;

2404
	result = ci_read_smc_sram_dword(hwmgr,
2405 2406 2407 2408 2409 2410 2411 2412 2413
				SMU7_FIRMWARE_HEADER_LOCATION +
				offsetof(SMU7_Firmware_Header, FanTable),
				&tmp, SMC_RAM_END);

	if (0 == result)
		ci_data->fan_table_start = tmp;

	error |= (0 != result);

2414
	result = ci_read_smc_sram_dword(hwmgr,
2415 2416 2417 2418 2419 2420 2421 2422 2423
				SMU7_FIRMWARE_HEADER_LOCATION +
				offsetof(SMU7_Firmware_Header, mcArbDramTimingTable),
				&tmp, SMC_RAM_END);

	if (0 == result)
		ci_data->arb_table_start = tmp;

	error |= (0 != result);

2424
	result = ci_read_smc_sram_dword(hwmgr,
2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599
				SMU7_FIRMWARE_HEADER_LOCATION +
				offsetof(SMU7_Firmware_Header, Version),
				&tmp, SMC_RAM_END);

	if (0 == result)
		hwmgr->microcode_version_info.SMC = tmp;

	error |= (0 != result);

	return error ? 1 : 0;
}

static uint8_t ci_get_memory_modile_index(struct pp_hwmgr *hwmgr)
{
	return (uint8_t) (0xFF & (cgs_read_register(hwmgr->device, mmBIOS_SCRATCH_4) >> 16));
}

static bool ci_check_s0_mc_reg_index(uint16_t in_reg, uint16_t *out_reg)
{
	bool result = true;

	switch (in_reg) {
	case  mmMC_SEQ_RAS_TIMING:
		*out_reg = mmMC_SEQ_RAS_TIMING_LP;
		break;

	case  mmMC_SEQ_DLL_STBY:
		*out_reg = mmMC_SEQ_DLL_STBY_LP;
		break;

	case  mmMC_SEQ_G5PDX_CMD0:
		*out_reg = mmMC_SEQ_G5PDX_CMD0_LP;
		break;

	case  mmMC_SEQ_G5PDX_CMD1:
		*out_reg = mmMC_SEQ_G5PDX_CMD1_LP;
		break;

	case  mmMC_SEQ_G5PDX_CTRL:
		*out_reg = mmMC_SEQ_G5PDX_CTRL_LP;
		break;

	case mmMC_SEQ_CAS_TIMING:
		*out_reg = mmMC_SEQ_CAS_TIMING_LP;
		break;

	case mmMC_SEQ_MISC_TIMING:
		*out_reg = mmMC_SEQ_MISC_TIMING_LP;
		break;

	case mmMC_SEQ_MISC_TIMING2:
		*out_reg = mmMC_SEQ_MISC_TIMING2_LP;
		break;

	case mmMC_SEQ_PMG_DVS_CMD:
		*out_reg = mmMC_SEQ_PMG_DVS_CMD_LP;
		break;

	case mmMC_SEQ_PMG_DVS_CTL:
		*out_reg = mmMC_SEQ_PMG_DVS_CTL_LP;
		break;

	case mmMC_SEQ_RD_CTL_D0:
		*out_reg = mmMC_SEQ_RD_CTL_D0_LP;
		break;

	case mmMC_SEQ_RD_CTL_D1:
		*out_reg = mmMC_SEQ_RD_CTL_D1_LP;
		break;

	case mmMC_SEQ_WR_CTL_D0:
		*out_reg = mmMC_SEQ_WR_CTL_D0_LP;
		break;

	case mmMC_SEQ_WR_CTL_D1:
		*out_reg = mmMC_SEQ_WR_CTL_D1_LP;
		break;

	case mmMC_PMG_CMD_EMRS:
		*out_reg = mmMC_SEQ_PMG_CMD_EMRS_LP;
		break;

	case mmMC_PMG_CMD_MRS:
		*out_reg = mmMC_SEQ_PMG_CMD_MRS_LP;
		break;

	case mmMC_PMG_CMD_MRS1:
		*out_reg = mmMC_SEQ_PMG_CMD_MRS1_LP;
		break;

	case mmMC_SEQ_PMG_TIMING:
		*out_reg = mmMC_SEQ_PMG_TIMING_LP;
		break;

	case mmMC_PMG_CMD_MRS2:
		*out_reg = mmMC_SEQ_PMG_CMD_MRS2_LP;
		break;

	case mmMC_SEQ_WR_CTL_2:
		*out_reg = mmMC_SEQ_WR_CTL_2_LP;
		break;

	default:
		result = false;
		break;
	}

	return result;
}

static int ci_set_s0_mc_reg_index(struct ci_mc_reg_table *table)
{
	uint32_t i;
	uint16_t address;

	for (i = 0; i < table->last; i++) {
		table->mc_reg_address[i].s0 =
			ci_check_s0_mc_reg_index(table->mc_reg_address[i].s1, &address)
			? address : table->mc_reg_address[i].s1;
	}
	return 0;
}

static int ci_copy_vbios_smc_reg_table(const pp_atomctrl_mc_reg_table *table,
					struct ci_mc_reg_table *ni_table)
{
	uint8_t i, j;

	PP_ASSERT_WITH_CODE((table->last <= SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE),
		"Invalid VramInfo table.", return -EINVAL);
	PP_ASSERT_WITH_CODE((table->num_entries <= MAX_AC_TIMING_ENTRIES),
		"Invalid VramInfo table.", return -EINVAL);

	for (i = 0; i < table->last; i++)
		ni_table->mc_reg_address[i].s1 = table->mc_reg_address[i].s1;

	ni_table->last = table->last;

	for (i = 0; i < table->num_entries; i++) {
		ni_table->mc_reg_table_entry[i].mclk_max =
			table->mc_reg_table_entry[i].mclk_max;
		for (j = 0; j < table->last; j++) {
			ni_table->mc_reg_table_entry[i].mc_data[j] =
				table->mc_reg_table_entry[i].mc_data[j];
		}
	}

	ni_table->num_entries = table->num_entries;

	return 0;
}

static int ci_set_mc_special_registers(struct pp_hwmgr *hwmgr,
					struct ci_mc_reg_table *table)
{
	uint8_t i, j, k;
	uint32_t temp_reg;
	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);

	for (i = 0, j = table->last; i < table->last; i++) {
		PP_ASSERT_WITH_CODE((j < SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE),
			"Invalid VramInfo table.", return -EINVAL);

		switch (table->mc_reg_address[i].s1) {

		case mmMC_SEQ_MISC1:
			temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS);
			table->mc_reg_address[j].s1 = mmMC_PMG_CMD_EMRS;
			table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_EMRS_LP;
			for (k = 0; k < table->num_entries; k++) {
				table->mc_reg_table_entry[k].mc_data[j] =
					((temp_reg & 0xffff0000)) |
					((table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16);
			}
			j++;
2600

2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615
			PP_ASSERT_WITH_CODE((j < SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE),
				"Invalid VramInfo table.", return -EINVAL);
			temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS);
			table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS;
			table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS_LP;
			for (k = 0; k < table->num_entries; k++) {
				table->mc_reg_table_entry[k].mc_data[j] =
					(temp_reg & 0xffff0000) |
					(table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff);

				if (!data->is_memory_gddr5)
					table->mc_reg_table_entry[k].mc_data[j] |= 0x100;
			}
			j++;

2616 2617 2618
			if (!data->is_memory_gddr5) {
				PP_ASSERT_WITH_CODE((j < SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE),
					"Invalid VramInfo table.", return -EINVAL);
2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669
				table->mc_reg_address[j].s1 = mmMC_PMG_AUTO_CMD;
				table->mc_reg_address[j].s0 = mmMC_PMG_AUTO_CMD;
				for (k = 0; k < table->num_entries; k++) {
					table->mc_reg_table_entry[k].mc_data[j] =
						(table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16;
				}
				j++;
			}

			break;

		case mmMC_SEQ_RESERVE_M:
			temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1);
			table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS1;
			table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS1_LP;
			for (k = 0; k < table->num_entries; k++) {
				table->mc_reg_table_entry[k].mc_data[j] =
					(temp_reg & 0xffff0000) |
					(table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff);
			}
			j++;
			break;

		default:
			break;
		}

	}

	table->last = j;

	return 0;
}

static int ci_set_valid_flag(struct ci_mc_reg_table *table)
{
	uint8_t i, j;

	for (i = 0; i < table->last; i++) {
		for (j = 1; j < table->num_entries; j++) {
			if (table->mc_reg_table_entry[j-1].mc_data[i] !=
				table->mc_reg_table_entry[j].mc_data[i]) {
				table->validflag |= (1 << i);
				break;
			}
		}
	}

	return 0;
}

2670
static int ci_initialize_mc_reg_table(struct pp_hwmgr *hwmgr)
2671 2672
{
	int result;
2673
	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724
	pp_atomctrl_mc_reg_table *table;
	struct ci_mc_reg_table *ni_table = &smu_data->mc_reg_table;
	uint8_t module_index = ci_get_memory_modile_index(hwmgr);

	table = kzalloc(sizeof(pp_atomctrl_mc_reg_table), GFP_KERNEL);

	if (NULL == table)
		return -ENOMEM;

	/* Program additional LP registers that are no longer programmed by VBIOS */
	cgs_write_register(hwmgr->device, mmMC_SEQ_RAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RAS_TIMING));
	cgs_write_register(hwmgr->device, mmMC_SEQ_CAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_CAS_TIMING));
	cgs_write_register(hwmgr->device, mmMC_SEQ_DLL_STBY_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_DLL_STBY));
	cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0));
	cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1));
	cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL));
	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD));
	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL));
	cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING));
	cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2));
	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_EMRS_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS));
	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS));
	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS1_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1));
	cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0));
	cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1));
	cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0));
	cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1));
	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_TIMING));
	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS2_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS2));
	cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_2_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_2));

	memset(table, 0x00, sizeof(pp_atomctrl_mc_reg_table));

	result = atomctrl_initialize_mc_reg_table(hwmgr, module_index, table);

	if (0 == result)
		result = ci_copy_vbios_smc_reg_table(table, ni_table);

	if (0 == result) {
		ci_set_s0_mc_reg_index(ni_table);
		result = ci_set_mc_special_registers(hwmgr, ni_table);
	}

	if (0 == result)
		ci_set_valid_flag(ni_table);

	kfree(table);

	return result;
}

2725
static bool ci_is_dpm_running(struct pp_hwmgr *hwmgr)
2726
{
2727
	return ci_is_smc_ram_running(hwmgr);
2728 2729
}

2730 2731
static int ci_populate_requested_graphic_levels(struct pp_hwmgr *hwmgr,
						struct amd_pp_profile *request)
2732 2733
{
	struct ci_smumgr *smu_data = (struct ci_smumgr *)
2734
			(hwmgr->smu_backend);
2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750
	struct SMU7_Discrete_GraphicsLevel *levels =
			smu_data->smc_state_table.GraphicsLevel;
	uint32_t array = smu_data->dpm_table_start +
			offsetof(SMU7_Discrete_DpmTable, GraphicsLevel);
	uint32_t array_size = sizeof(struct SMU7_Discrete_GraphicsLevel) *
			SMU7_MAX_LEVELS_GRAPHICS;
	uint32_t i;

	for (i = 0; i < smu_data->smc_state_table.GraphicsDpmLevelCount; i++) {
		levels[i].ActivityLevel =
				cpu_to_be16(request->activity_threshold);
		levels[i].EnabledForActivity = 1;
		levels[i].UpH = request->up_hyst;
		levels[i].DownH = request->down_hyst;
	}

2751
	return ci_copy_bytes_to_smc(hwmgr, array, (uint8_t *)levels,
2752 2753
				array_size, SMC_RAM_END);
}
2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809


static int ci_smu_init(struct pp_hwmgr *hwmgr)
{
	int i;
	struct ci_smumgr *ci_priv = NULL;

	ci_priv = kzalloc(sizeof(struct ci_smumgr), GFP_KERNEL);

	if (ci_priv == NULL)
		return -ENOMEM;

	for (i = 0; i < SMU7_MAX_LEVELS_GRAPHICS; i++)
		ci_priv->activity_target[i] = 30;

	hwmgr->smu_backend = ci_priv;

	return 0;
}

static int ci_smu_fini(struct pp_hwmgr *hwmgr)
{
	kfree(hwmgr->smu_backend);
	hwmgr->smu_backend = NULL;
	cgs_rel_firmware(hwmgr->device, CGS_UCODE_ID_SMU);
	return 0;
}

static int ci_start_smu(struct pp_hwmgr *hwmgr)
{
	return 0;
}

const struct pp_smumgr_func ci_smu_funcs = {
	.smu_init = ci_smu_init,
	.smu_fini = ci_smu_fini,
	.start_smu = ci_start_smu,
	.check_fw_load_finish = NULL,
	.request_smu_load_fw = NULL,
	.request_smu_load_specific_fw = NULL,
	.send_msg_to_smc = ci_send_msg_to_smc,
	.send_msg_to_smc_with_parameter = ci_send_msg_to_smc_with_parameter,
	.download_pptable_settings = NULL,
	.upload_pptable_settings = NULL,
	.get_offsetof = ci_get_offsetof,
	.process_firmware_header = ci_process_firmware_header,
	.init_smc_table = ci_init_smc_table,
	.update_sclk_threshold = ci_update_sclk_threshold,
	.thermal_setup_fan_table = ci_thermal_setup_fan_table,
	.populate_all_graphic_levels = ci_populate_all_graphic_levels,
	.populate_all_memory_levels = ci_populate_all_memory_levels,
	.get_mac_definition = ci_get_mac_definition,
	.initialize_mc_reg_table = ci_initialize_mc_reg_table,
	.is_dpm_running = ci_is_dpm_running,
	.populate_requested_graphic_levels = ci_populate_requested_graphic_levels,
};