/* * Copyright 2017 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #include #include #include #include "linux/delay.h" #include #include "smumgr.h" #include "pp_debug.h" #include "ci_smumgr.h" #include "ppsmc.h" #include "smu7_hwmgr.h" #include "hardwaremanager.h" #include "ppatomctrl.h" #include "cgs_common.h" #include "atombios.h" #include "pppcielanes.h" #include "smu/smu_7_0_1_d.h" #include "smu/smu_7_0_1_sh_mask.h" #include "dce/dce_8_0_d.h" #include "dce/dce_8_0_sh_mask.h" #include "bif/bif_4_1_d.h" #include "bif/bif_4_1_sh_mask.h" #include "gca/gfx_7_2_d.h" #include "gca/gfx_7_2_sh_mask.h" #include "gmc/gmc_7_1_d.h" #include "gmc/gmc_7_1_sh_mask.h" #include "processpptables.h" #define MC_CG_ARB_FREQ_F0 0x0a #define MC_CG_ARB_FREQ_F1 0x0b #define MC_CG_ARB_FREQ_F2 0x0c #define MC_CG_ARB_FREQ_F3 0x0d #define SMC_RAM_END 0x40000 #define VOLTAGE_SCALE 4 #define VOLTAGE_VID_OFFSET_SCALE1 625 #define VOLTAGE_VID_OFFSET_SCALE2 100 #define CISLAND_MINIMUM_ENGINE_CLOCK 800 #define CISLAND_MAX_DEEPSLEEP_DIVIDER_ID 5 static const struct ci_pt_defaults defaults_hawaii_xt = { 1, 0xF, 0xFD, 0x19, 5, 0x14, 0, 0xB0000, { 0x2E, 0x00, 0x00, 0x88, 0x00, 0x00, 0x72, 0x60, 0x51, 0xA7, 0x79, 0x6B, 0x90, 0xBD, 0x79 }, { 0x217, 0x217, 0x217, 0x242, 0x242, 0x242, 0x269, 0x269, 0x269, 0x2A1, 0x2A1, 0x2A1, 0x2C9, 0x2C9, 0x2C9 } }; static const struct ci_pt_defaults defaults_hawaii_pro = { 1, 0xF, 0xFD, 0x19, 5, 0x14, 0, 0x65062, { 0x2E, 0x00, 0x00, 0x88, 0x00, 0x00, 0x72, 0x60, 0x51, 0xA7, 0x79, 0x6B, 0x90, 0xBD, 0x79 }, { 0x217, 0x217, 0x217, 0x242, 0x242, 0x242, 0x269, 0x269, 0x269, 0x2A1, 0x2A1, 0x2A1, 0x2C9, 0x2C9, 0x2C9 } }; static const struct ci_pt_defaults defaults_bonaire_xt = { 1, 0xF, 0xFD, 0x19, 5, 45, 0, 0xB0000, { 0x79, 0x253, 0x25D, 0xAE, 0x72, 0x80, 0x83, 0x86, 0x6F, 0xC8, 0xC9, 0xC9, 0x2F, 0x4D, 0x61 }, { 0x17C, 0x172, 0x180, 0x1BC, 0x1B3, 0x1BD, 0x206, 0x200, 0x203, 0x25D, 0x25A, 0x255, 0x2C3, 0x2C5, 0x2B4 } }; static const struct ci_pt_defaults defaults_saturn_xt = { 1, 0xF, 0xFD, 0x19, 5, 55, 0, 0x70000, { 0x8C, 0x247, 0x249, 0xA6, 0x80, 0x81, 0x8B, 0x89, 0x86, 0xC9, 0xCA, 0xC9, 0x4D, 0x4D, 0x4D }, { 0x187, 0x187, 0x187, 0x1C7, 0x1C7, 0x1C7, 0x210, 0x210, 0x210, 0x266, 0x266, 0x266, 0x2C9, 0x2C9, 0x2C9 } }; static int ci_set_smc_sram_address(struct pp_hwmgr *hwmgr, uint32_t smc_addr, uint32_t limit) { if ((0 != (3 & smc_addr)) || ((smc_addr + 3) >= limit)) { pr_err("smc_addr invalid \n"); return -EINVAL; } cgs_write_register(hwmgr->device, mmSMC_IND_INDEX_0, smc_addr); PHM_WRITE_FIELD(hwmgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_0, 0); return 0; } static int ci_copy_bytes_to_smc(struct pp_hwmgr *hwmgr, uint32_t smc_start_address, const uint8_t *src, uint32_t byte_count, uint32_t limit) { int result; uint32_t data = 0; uint32_t original_data; uint32_t addr = 0; uint32_t extra_shift; if ((3 & smc_start_address) || ((smc_start_address + byte_count) >= limit)) { pr_err("smc_start_address invalid \n"); return -EINVAL; } addr = smc_start_address; while (byte_count >= 4) { /* Bytes are written into the SMC address space with the MSB first. */ data = src[0] * 0x1000000 + src[1] * 0x10000 + src[2] * 0x100 + src[3]; result = ci_set_smc_sram_address(hwmgr, addr, limit); if (0 != result) return result; cgs_write_register(hwmgr->device, mmSMC_IND_DATA_0, data); src += 4; byte_count -= 4; addr += 4; } if (0 != byte_count) { data = 0; result = ci_set_smc_sram_address(hwmgr, addr, limit); if (0 != result) return result; original_data = cgs_read_register(hwmgr->device, mmSMC_IND_DATA_0); extra_shift = 8 * (4 - byte_count); while (byte_count > 0) { /* Bytes are written into the SMC addres space with the MSB first. */ data = (0x100 * data) + *src++; byte_count--; } data <<= extra_shift; data |= (original_data & ~((~0UL) << extra_shift)); result = ci_set_smc_sram_address(hwmgr, addr, limit); if (0 != result) return result; cgs_write_register(hwmgr->device, mmSMC_IND_DATA_0, data); } return 0; } static int ci_program_jump_on_start(struct pp_hwmgr *hwmgr) { static const unsigned char data[4] = { 0xE0, 0x00, 0x80, 0x40 }; ci_copy_bytes_to_smc(hwmgr, 0x0, data, 4, sizeof(data)+1); return 0; } bool ci_is_smc_ram_running(struct pp_hwmgr *hwmgr) { return ((0 == PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_CLOCK_CNTL_0, ck_disable)) && (0x20100 <= cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixSMC_PC_C))); } static int ci_read_smc_sram_dword(struct pp_hwmgr *hwmgr, uint32_t smc_addr, uint32_t *value, uint32_t limit) { int result; result = ci_set_smc_sram_address(hwmgr, smc_addr, limit); if (result) return result; *value = cgs_read_register(hwmgr->device, mmSMC_IND_DATA_0); return 0; } static int ci_send_msg_to_smc(struct pp_hwmgr *hwmgr, uint16_t msg) { int ret; if (!ci_is_smc_ram_running(hwmgr)) return -EINVAL; cgs_write_register(hwmgr->device, mmSMC_MESSAGE_0, msg); PHM_WAIT_FIELD_UNEQUAL(hwmgr, SMC_RESP_0, SMC_RESP, 0); ret = PHM_READ_FIELD(hwmgr->device, SMC_RESP_0, SMC_RESP); if (ret != 1) pr_info("\n failed to send message %x ret is %d\n", msg, ret); return 0; } static int ci_send_msg_to_smc_with_parameter(struct pp_hwmgr *hwmgr, uint16_t msg, uint32_t parameter) { cgs_write_register(hwmgr->device, mmSMC_MSG_ARG_0, parameter); return ci_send_msg_to_smc(hwmgr, msg); } static void ci_initialize_power_tune_defaults(struct pp_hwmgr *hwmgr) { struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend); struct cgs_system_info sys_info = {0}; uint32_t dev_id; sys_info.size = sizeof(struct cgs_system_info); sys_info.info_id = CGS_SYSTEM_INFO_PCIE_DEV; cgs_query_system_info(hwmgr->device, &sys_info); dev_id = (uint32_t)sys_info.value; switch (dev_id) { case 0x67BA: case 0x66B1: smu_data->power_tune_defaults = &defaults_hawaii_pro; break; case 0x67B8: case 0x66B0: smu_data->power_tune_defaults = &defaults_hawaii_xt; break; case 0x6640: case 0x6641: case 0x6646: case 0x6647: smu_data->power_tune_defaults = &defaults_saturn_xt; break; case 0x6649: case 0x6650: case 0x6651: case 0x6658: case 0x665C: case 0x665D: case 0x67A0: case 0x67A1: case 0x67A2: case 0x67A8: case 0x67A9: case 0x67AA: case 0x67B9: case 0x67BE: default: smu_data->power_tune_defaults = &defaults_bonaire_xt; break; } } static int ci_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr, struct phm_clock_voltage_dependency_table *allowed_clock_voltage_table, uint32_t clock, uint32_t *vol) { uint32_t i = 0; if (allowed_clock_voltage_table->count == 0) return -EINVAL; for (i = 0; i < allowed_clock_voltage_table->count; i++) { if (allowed_clock_voltage_table->entries[i].clk >= clock) { *vol = allowed_clock_voltage_table->entries[i].v; return 0; } } *vol = allowed_clock_voltage_table->entries[i - 1].v; return 0; } static int ci_calculate_sclk_params(struct pp_hwmgr *hwmgr, uint32_t clock, struct SMU7_Discrete_GraphicsLevel *sclk) { const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); struct pp_atomctrl_clock_dividers_vi dividers; uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL; uint32_t spll_func_cntl_3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3; uint32_t spll_func_cntl_4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4; uint32_t cg_spll_spread_spectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM; uint32_t cg_spll_spread_spectrum_2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2; uint32_t ref_clock; uint32_t ref_divider; uint32_t fbdiv; int result; /* get the engine clock dividers for this clock value */ result = atomctrl_get_engine_pll_dividers_vi(hwmgr, clock, ÷rs); PP_ASSERT_WITH_CODE(result == 0, "Error retrieving Engine Clock dividers from VBIOS.", return result); /* To get FBDIV we need to multiply this by 16384 and divide it by Fref. */ ref_clock = atomctrl_get_reference_clock(hwmgr); ref_divider = 1 + dividers.uc_pll_ref_div; /* low 14 bits is fraction and high 12 bits is divider */ fbdiv = dividers.ul_fb_div.ul_fb_divider & 0x3FFFFFF; /* SPLL_FUNC_CNTL setup */ spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL, SPLL_REF_DIV, dividers.uc_pll_ref_div); spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL, SPLL_PDIV_A, dividers.uc_pll_post_div); /* SPLL_FUNC_CNTL_3 setup*/ spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3, SPLL_FB_DIV, fbdiv); /* set to use fractional accumulation*/ spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3, SPLL_DITHEN, 1); if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_EngineSpreadSpectrumSupport)) { struct pp_atomctrl_internal_ss_info ss_info; uint32_t vco_freq = clock * dividers.uc_pll_post_div; if (!atomctrl_get_engine_clock_spread_spectrum(hwmgr, vco_freq, &ss_info)) { uint32_t clk_s = ref_clock * 5 / (ref_divider * ss_info.speed_spectrum_rate); uint32_t clk_v = 4 * ss_info.speed_spectrum_percentage * fbdiv / (clk_s * 10000); cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum, CG_SPLL_SPREAD_SPECTRUM, CLKS, clk_s); cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum, CG_SPLL_SPREAD_SPECTRUM, SSEN, 1); cg_spll_spread_spectrum_2 = PHM_SET_FIELD(cg_spll_spread_spectrum_2, CG_SPLL_SPREAD_SPECTRUM_2, CLKV, clk_v); } } sclk->SclkFrequency = clock; sclk->CgSpllFuncCntl3 = spll_func_cntl_3; sclk->CgSpllFuncCntl4 = spll_func_cntl_4; sclk->SpllSpreadSpectrum = cg_spll_spread_spectrum; sclk->SpllSpreadSpectrum2 = cg_spll_spread_spectrum_2; sclk->SclkDid = (uint8_t)dividers.pll_post_divider; return 0; } static void ci_populate_phase_value_based_on_sclk(struct pp_hwmgr *hwmgr, const struct phm_phase_shedding_limits_table *pl, uint32_t sclk, uint32_t *p_shed) { unsigned int i; /* use the minimum phase shedding */ *p_shed = 1; for (i = 0; i < pl->count; i++) { if (sclk < pl->entries[i].Sclk) { *p_shed = i; break; } } } static uint8_t ci_get_sleep_divider_id_from_clock(uint32_t clock, uint32_t clock_insr) { uint8_t i; uint32_t temp; uint32_t min = min_t(uint32_t, clock_insr, CISLAND_MINIMUM_ENGINE_CLOCK); if (clock < min) { pr_info("Engine clock can't satisfy stutter requirement!\n"); return 0; } for (i = CISLAND_MAX_DEEPSLEEP_DIVIDER_ID; ; i--) { temp = clock >> i; if (temp >= min || i == 0) break; } return i; } static int ci_populate_single_graphic_level(struct pp_hwmgr *hwmgr, uint32_t clock, uint16_t sclk_al_threshold, struct SMU7_Discrete_GraphicsLevel *level) { int result; struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); result = ci_calculate_sclk_params(hwmgr, clock, level); /* populate graphics levels */ result = ci_get_dependency_volt_by_clk(hwmgr, hwmgr->dyn_state.vddc_dependency_on_sclk, clock, (uint32_t *)(&level->MinVddc)); if (result) { pr_err("vdd_dep_on_sclk table is NULL\n"); return result; } level->SclkFrequency = clock; level->MinVddcPhases = 1; if (data->vddc_phase_shed_control) ci_populate_phase_value_based_on_sclk(hwmgr, hwmgr->dyn_state.vddc_phase_shed_limits_table, clock, &level->MinVddcPhases); level->ActivityLevel = sclk_al_threshold; level->CcPwrDynRm = 0; level->CcPwrDynRm1 = 0; level->EnabledForActivity = 0; /* this level can be used for throttling.*/ level->EnabledForThrottle = 1; level->UpH = 0; level->DownH = 0; level->VoltageDownH = 0; level->PowerThrottle = 0; if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep)) level->DeepSleepDivId = ci_get_sleep_divider_id_from_clock(clock, CISLAND_MINIMUM_ENGINE_CLOCK); /* Default to slow, highest DPM level will be set to PPSMC_DISPLAY_WATERMARK_LOW later.*/ level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW; if (0 == result) { level->MinVddc = PP_HOST_TO_SMC_UL(level->MinVddc * VOLTAGE_SCALE); CONVERT_FROM_HOST_TO_SMC_UL(level->MinVddcPhases); CONVERT_FROM_HOST_TO_SMC_UL(level->SclkFrequency); CONVERT_FROM_HOST_TO_SMC_US(level->ActivityLevel); CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl3); CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl4); CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum); CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum2); CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm); CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm1); } return result; } static int ci_populate_all_graphic_levels(struct pp_hwmgr *hwmgr) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend); struct smu7_dpm_table *dpm_table = &data->dpm_table; int result = 0; uint32_t array = smu_data->dpm_table_start + offsetof(SMU7_Discrete_DpmTable, GraphicsLevel); uint32_t array_size = sizeof(struct SMU7_Discrete_GraphicsLevel) * SMU7_MAX_LEVELS_GRAPHICS; struct SMU7_Discrete_GraphicsLevel *levels = smu_data->smc_state_table.GraphicsLevel; uint32_t i; for (i = 0; i < dpm_table->sclk_table.count; i++) { result = ci_populate_single_graphic_level(hwmgr, dpm_table->sclk_table.dpm_levels[i].value, (uint16_t)smu_data->activity_target[i], &levels[i]); if (result) return result; if (i > 1) smu_data->smc_state_table.GraphicsLevel[i].DeepSleepDivId = 0; if (i == (dpm_table->sclk_table.count - 1)) smu_data->smc_state_table.GraphicsLevel[i].DisplayWatermark = PPSMC_DISPLAY_WATERMARK_HIGH; } smu_data->smc_state_table.GraphicsLevel[0].EnabledForActivity = 1; smu_data->smc_state_table.GraphicsDpmLevelCount = (u8)dpm_table->sclk_table.count; data->dpm_level_enable_mask.sclk_dpm_enable_mask = phm_get_dpm_level_enable_mask_value(&dpm_table->sclk_table); result = ci_copy_bytes_to_smc(hwmgr, array, (u8 *)levels, array_size, SMC_RAM_END); return result; } static int ci_populate_svi_load_line(struct pp_hwmgr *hwmgr) { struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend); const struct ci_pt_defaults *defaults = smu_data->power_tune_defaults; smu_data->power_tune_table.SviLoadLineEn = defaults->svi_load_line_en; smu_data->power_tune_table.SviLoadLineVddC = defaults->svi_load_line_vddc; smu_data->power_tune_table.SviLoadLineTrimVddC = 3; smu_data->power_tune_table.SviLoadLineOffsetVddC = 0; return 0; } static int ci_populate_tdc_limit(struct pp_hwmgr *hwmgr) { uint16_t tdc_limit; struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend); const struct ci_pt_defaults *defaults = smu_data->power_tune_defaults; tdc_limit = (uint16_t)(hwmgr->dyn_state.cac_dtp_table->usTDC * 256); smu_data->power_tune_table.TDC_VDDC_PkgLimit = CONVERT_FROM_HOST_TO_SMC_US(tdc_limit); smu_data->power_tune_table.TDC_VDDC_ThrottleReleaseLimitPerc = defaults->tdc_vddc_throttle_release_limit_perc; smu_data->power_tune_table.TDC_MAWt = defaults->tdc_mawt; return 0; } static int ci_populate_dw8(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset) { struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend); const struct ci_pt_defaults *defaults = smu_data->power_tune_defaults; uint32_t temp; if (ci_read_smc_sram_dword(hwmgr, fuse_table_offset + offsetof(SMU7_Discrete_PmFuses, TdcWaterfallCtl), (uint32_t *)&temp, SMC_RAM_END)) PP_ASSERT_WITH_CODE(false, "Attempt to read PmFuses.DW6 (SviLoadLineEn) from SMC Failed!", return -EINVAL); else smu_data->power_tune_table.TdcWaterfallCtl = defaults->tdc_waterfall_ctl; return 0; } static int ci_populate_fuzzy_fan(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset) { uint16_t tmp; struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend); if ((hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity & (1 << 15)) || 0 == hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity) tmp = hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity; else tmp = hwmgr->thermal_controller.advanceFanControlParameters.usDefaultFanOutputSensitivity; smu_data->power_tune_table.FuzzyFan_PwmSetDelta = CONVERT_FROM_HOST_TO_SMC_US(tmp); return 0; } static int ci_populate_bapm_vddc_vid_sidd(struct pp_hwmgr *hwmgr) { int i; struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend); uint8_t *hi_vid = smu_data->power_tune_table.BapmVddCVidHiSidd; uint8_t *lo_vid = smu_data->power_tune_table.BapmVddCVidLoSidd; uint8_t *hi2_vid = smu_data->power_tune_table.BapmVddCVidHiSidd2; PP_ASSERT_WITH_CODE(NULL != hwmgr->dyn_state.cac_leakage_table, "The CAC Leakage table does not exist!", return -EINVAL); PP_ASSERT_WITH_CODE(hwmgr->dyn_state.cac_leakage_table->count <= 8, "There should never be more than 8 entries for BapmVddcVid!!!", return -EINVAL); PP_ASSERT_WITH_CODE(hwmgr->dyn_state.cac_leakage_table->count == hwmgr->dyn_state.vddc_dependency_on_sclk->count, "CACLeakageTable->count and VddcDependencyOnSCLk->count not equal", return -EINVAL); for (i = 0; (uint32_t) i < hwmgr->dyn_state.cac_leakage_table->count; i++) { if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_EVV)) { lo_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc1); hi_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc2); hi2_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc3); } else { lo_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc); hi_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Leakage); } } return 0; } static int ci_populate_vddc_vid(struct pp_hwmgr *hwmgr) { int i; struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend); uint8_t *vid = smu_data->power_tune_table.VddCVid; struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); PP_ASSERT_WITH_CODE(data->vddc_voltage_table.count <= 8, "There should never be more than 8 entries for VddcVid!!!", return -EINVAL); for (i = 0; i < (int)data->vddc_voltage_table.count; i++) vid[i] = convert_to_vid(data->vddc_voltage_table.entries[i].value); return 0; } static int ci_min_max_v_gnbl_pm_lid_from_bapm_vddc(struct pp_hwmgr *hwmgr) { struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend); u8 *hi_vid = smu_data->power_tune_table.BapmVddCVidHiSidd; u8 *lo_vid = smu_data->power_tune_table.BapmVddCVidLoSidd; int i, min, max; min = max = hi_vid[0]; for (i = 0; i < 8; i++) { if (0 != hi_vid[i]) { if (min > hi_vid[i]) min = hi_vid[i]; if (max < hi_vid[i]) max = hi_vid[i]; } if (0 != lo_vid[i]) { if (min > lo_vid[i]) min = lo_vid[i]; if (max < lo_vid[i]) max = lo_vid[i]; } } if ((min == 0) || (max == 0)) return -EINVAL; smu_data->power_tune_table.GnbLPMLMaxVid = (u8)max; smu_data->power_tune_table.GnbLPMLMinVid = (u8)min; return 0; } static int ci_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr *hwmgr) { struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend); uint16_t HiSidd = smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd; uint16_t LoSidd = smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd; struct phm_cac_tdp_table *cac_table = hwmgr->dyn_state.cac_dtp_table; HiSidd = (uint16_t)(cac_table->usHighCACLeakage / 100 * 256); LoSidd = (uint16_t)(cac_table->usLowCACLeakage / 100 * 256); smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd = CONVERT_FROM_HOST_TO_SMC_US(HiSidd); smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd = CONVERT_FROM_HOST_TO_SMC_US(LoSidd); return 0; } static int ci_populate_pm_fuses(struct pp_hwmgr *hwmgr) { struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend); uint32_t pm_fuse_table_offset; int ret = 0; if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_PowerContainment)) { if (ci_read_smc_sram_dword(hwmgr, SMU7_FIRMWARE_HEADER_LOCATION + offsetof(SMU7_Firmware_Header, PmFuseTable), &pm_fuse_table_offset, SMC_RAM_END)) { pr_err("Attempt to get pm_fuse_table_offset Failed!\n"); return -EINVAL; } /* DW0 - DW3 */ ret = ci_populate_bapm_vddc_vid_sidd(hwmgr); /* DW4 - DW5 */ ret |= ci_populate_vddc_vid(hwmgr); /* DW6 */ ret |= ci_populate_svi_load_line(hwmgr); /* DW7 */ ret |= ci_populate_tdc_limit(hwmgr); /* DW8 */ ret |= ci_populate_dw8(hwmgr, pm_fuse_table_offset); ret |= ci_populate_fuzzy_fan(hwmgr, pm_fuse_table_offset); ret |= ci_min_max_v_gnbl_pm_lid_from_bapm_vddc(hwmgr); ret |= ci_populate_bapm_vddc_base_leakage_sidd(hwmgr); if (ret) return ret; ret = ci_copy_bytes_to_smc(hwmgr, pm_fuse_table_offset, (uint8_t *)&smu_data->power_tune_table, sizeof(struct SMU7_Discrete_PmFuses), SMC_RAM_END); } return ret; } static int ci_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr *hwmgr) { struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend); struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); const struct ci_pt_defaults *defaults = smu_data->power_tune_defaults; SMU7_Discrete_DpmTable *dpm_table = &(smu_data->smc_state_table); struct phm_cac_tdp_table *cac_dtp_table = hwmgr->dyn_state.cac_dtp_table; struct phm_ppm_table *ppm = hwmgr->dyn_state.ppm_parameter_table; const uint16_t *def1, *def2; int i, j, k; dpm_table->DefaultTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usTDP * 256)); dpm_table->TargetTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usConfigurableTDP * 256)); dpm_table->DTETjOffset = 0; dpm_table->GpuTjMax = (uint8_t)(data->thermal_temp_setting.temperature_high / PP_TEMPERATURE_UNITS_PER_CENTIGRADES); dpm_table->GpuTjHyst = 8; dpm_table->DTEAmbientTempBase = defaults->dte_ambient_temp_base; if (ppm) { dpm_table->PPM_PkgPwrLimit = (uint16_t)ppm->dgpu_tdp * 256 / 1000; dpm_table->PPM_TemperatureLimit = (uint16_t)ppm->tj_max * 256; } else { dpm_table->PPM_PkgPwrLimit = 0; dpm_table->PPM_TemperatureLimit = 0; } CONVERT_FROM_HOST_TO_SMC_US(dpm_table->PPM_PkgPwrLimit); CONVERT_FROM_HOST_TO_SMC_US(dpm_table->PPM_TemperatureLimit); dpm_table->BAPM_TEMP_GRADIENT = PP_HOST_TO_SMC_UL(defaults->bapm_temp_gradient); def1 = defaults->bapmti_r; def2 = defaults->bapmti_rc; for (i = 0; i < SMU7_DTE_ITERATIONS; i++) { for (j = 0; j < SMU7_DTE_SOURCES; j++) { for (k = 0; k < SMU7_DTE_SINKS; k++) { dpm_table->BAPMTI_R[i][j][k] = PP_HOST_TO_SMC_US(*def1); dpm_table->BAPMTI_RC[i][j][k] = PP_HOST_TO_SMC_US(*def2); def1++; def2++; } } } return 0; } static int ci_get_std_voltage_value_sidd(struct pp_hwmgr *hwmgr, pp_atomctrl_voltage_table_entry *tab, uint16_t *hi, uint16_t *lo) { uint16_t v_index; bool vol_found = false; *hi = tab->value * VOLTAGE_SCALE; *lo = tab->value * VOLTAGE_SCALE; PP_ASSERT_WITH_CODE(NULL != hwmgr->dyn_state.vddc_dependency_on_sclk, "The SCLK/VDDC Dependency Table does not exist.\n", return -EINVAL); if (NULL == hwmgr->dyn_state.cac_leakage_table) { pr_warn("CAC Leakage Table does not exist, using vddc.\n"); return 0; } for (v_index = 0; (uint32_t)v_index < hwmgr->dyn_state.vddc_dependency_on_sclk->count; v_index++) { if (tab->value == hwmgr->dyn_state.vddc_dependency_on_sclk->entries[v_index].v) { vol_found = true; if ((uint32_t)v_index < hwmgr->dyn_state.cac_leakage_table->count) { *lo = hwmgr->dyn_state.cac_leakage_table->entries[v_index].Vddc * VOLTAGE_SCALE; *hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[v_index].Leakage * VOLTAGE_SCALE); } else { pr_warn("Index from SCLK/VDDC Dependency Table exceeds the CAC Leakage Table index, using maximum index from CAC table.\n"); *lo = hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Vddc * VOLTAGE_SCALE; *hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Leakage * VOLTAGE_SCALE); } break; } } if (!vol_found) { for (v_index = 0; (uint32_t)v_index < hwmgr->dyn_state.vddc_dependency_on_sclk->count; v_index++) { if (tab->value <= hwmgr->dyn_state.vddc_dependency_on_sclk->entries[v_index].v) { vol_found = true; if ((uint32_t)v_index < hwmgr->dyn_state.cac_leakage_table->count) { *lo = hwmgr->dyn_state.cac_leakage_table->entries[v_index].Vddc * VOLTAGE_SCALE; *hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[v_index].Leakage) * VOLTAGE_SCALE; } else { pr_warn("Index from SCLK/VDDC Dependency Table exceeds the CAC Leakage Table index in second look up, using maximum index from CAC table."); *lo = hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Vddc * VOLTAGE_SCALE; *hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Leakage * VOLTAGE_SCALE); } break; } } if (!vol_found) pr_warn("Unable to get std_vddc from SCLK/VDDC Dependency Table, using vddc.\n"); } return 0; } static int ci_populate_smc_voltage_table(struct pp_hwmgr *hwmgr, pp_atomctrl_voltage_table_entry *tab, SMU7_Discrete_VoltageLevel *smc_voltage_tab) { int result; result = ci_get_std_voltage_value_sidd(hwmgr, tab, &smc_voltage_tab->StdVoltageHiSidd, &smc_voltage_tab->StdVoltageLoSidd); if (result) { smc_voltage_tab->StdVoltageHiSidd = tab->value * VOLTAGE_SCALE; smc_voltage_tab->StdVoltageLoSidd = tab->value * VOLTAGE_SCALE; } smc_voltage_tab->Voltage = PP_HOST_TO_SMC_US(tab->value * VOLTAGE_SCALE); CONVERT_FROM_HOST_TO_SMC_US(smc_voltage_tab->StdVoltageHiSidd); CONVERT_FROM_HOST_TO_SMC_US(smc_voltage_tab->StdVoltageLoSidd); return 0; } static int ci_populate_smc_vddc_table(struct pp_hwmgr *hwmgr, SMU7_Discrete_DpmTable *table) { unsigned int count; int result; struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); table->VddcLevelCount = data->vddc_voltage_table.count; for (count = 0; count < table->VddcLevelCount; count++) { result = ci_populate_smc_voltage_table(hwmgr, &(data->vddc_voltage_table.entries[count]), &(table->VddcLevel[count])); PP_ASSERT_WITH_CODE(0 == result, "do not populate SMC VDDC voltage table", return -EINVAL); /* GPIO voltage control */ if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->voltage_control) table->VddcLevel[count].Smio |= data->vddc_voltage_table.entries[count].smio_low; else table->VddcLevel[count].Smio = 0; } CONVERT_FROM_HOST_TO_SMC_UL(table->VddcLevelCount); return 0; } static int ci_populate_smc_vdd_ci_table(struct pp_hwmgr *hwmgr, SMU7_Discrete_DpmTable *table) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); uint32_t count; int result; table->VddciLevelCount = data->vddci_voltage_table.count; for (count = 0; count < table->VddciLevelCount; count++) { result = ci_populate_smc_voltage_table(hwmgr, &(data->vddci_voltage_table.entries[count]), &(table->VddciLevel[count])); PP_ASSERT_WITH_CODE(result == 0, "do not populate SMC VDDCI voltage table", return -EINVAL); if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) table->VddciLevel[count].Smio |= data->vddci_voltage_table.entries[count].smio_low; else table->VddciLevel[count].Smio |= 0; } CONVERT_FROM_HOST_TO_SMC_UL(table->VddciLevelCount); return 0; } static int ci_populate_smc_mvdd_table(struct pp_hwmgr *hwmgr, SMU7_Discrete_DpmTable *table) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); uint32_t count; int result; table->MvddLevelCount = data->mvdd_voltage_table.count; for (count = 0; count < table->MvddLevelCount; count++) { result = ci_populate_smc_voltage_table(hwmgr, &(data->mvdd_voltage_table.entries[count]), &table->MvddLevel[count]); PP_ASSERT_WITH_CODE(result == 0, "do not populate SMC mvdd voltage table", return -EINVAL); if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) table->MvddLevel[count].Smio |= data->mvdd_voltage_table.entries[count].smio_low; else table->MvddLevel[count].Smio |= 0; } CONVERT_FROM_HOST_TO_SMC_UL(table->MvddLevelCount); return 0; } static int ci_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr, SMU7_Discrete_DpmTable *table) { int result; result = ci_populate_smc_vddc_table(hwmgr, table); PP_ASSERT_WITH_CODE(0 == result, "can not populate VDDC voltage table to SMC", return -EINVAL); result = ci_populate_smc_vdd_ci_table(hwmgr, table); PP_ASSERT_WITH_CODE(0 == result, "can not populate VDDCI voltage table to SMC", return -EINVAL); result = ci_populate_smc_mvdd_table(hwmgr, table); PP_ASSERT_WITH_CODE(0 == result, "can not populate MVDD voltage table to SMC", return -EINVAL); return 0; } static int ci_populate_ulv_level(struct pp_hwmgr *hwmgr, struct SMU7_Discrete_Ulv *state) { uint32_t voltage_response_time, ulv_voltage; int result; struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); state->CcPwrDynRm = 0; state->CcPwrDynRm1 = 0; result = pp_tables_get_response_times(hwmgr, &voltage_response_time, &ulv_voltage); PP_ASSERT_WITH_CODE((0 == result), "can not get ULV voltage value", return result;); if (ulv_voltage == 0) { data->ulv_supported = false; return 0; } if (data->voltage_control != SMU7_VOLTAGE_CONTROL_BY_SVID2) { /* use minimum voltage if ulv voltage in pptable is bigger than minimum voltage */ if (ulv_voltage > hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v) state->VddcOffset = 0; else /* used in SMIO Mode. not implemented for now. this is backup only for CI. */ state->VddcOffset = (uint16_t)(hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v - ulv_voltage); } else { /* use minimum voltage if ulv voltage in pptable is bigger than minimum voltage */ if (ulv_voltage > hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v) state->VddcOffsetVid = 0; else /* used in SVI2 Mode */ state->VddcOffsetVid = (uint8_t)( (hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v - ulv_voltage) * VOLTAGE_VID_OFFSET_SCALE2 / VOLTAGE_VID_OFFSET_SCALE1); } state->VddcPhase = 1; CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm); CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1); CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset); return 0; } static int ci_populate_ulv_state(struct pp_hwmgr *hwmgr, SMU7_Discrete_Ulv *ulv_level) { return ci_populate_ulv_level(hwmgr, ulv_level); } static int ci_populate_smc_link_level(struct pp_hwmgr *hwmgr, SMU7_Discrete_DpmTable *table) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); struct smu7_dpm_table *dpm_table = &data->dpm_table; struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend); uint32_t i; /* Index dpm_table->pcie_speed_table.count is reserved for PCIE boot level.*/ for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) { table->LinkLevel[i].PcieGenSpeed = (uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value; table->LinkLevel[i].PcieLaneCount = (uint8_t)encode_pcie_lane_width(dpm_table->pcie_speed_table.dpm_levels[i].param1); table->LinkLevel[i].EnabledForActivity = 1; table->LinkLevel[i].DownT = PP_HOST_TO_SMC_UL(5); table->LinkLevel[i].UpT = PP_HOST_TO_SMC_UL(30); } smu_data->smc_state_table.LinkLevelCount = (uint8_t)dpm_table->pcie_speed_table.count; data->dpm_level_enable_mask.pcie_dpm_enable_mask = phm_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table); return 0; } static int ci_calculate_mclk_params( struct pp_hwmgr *hwmgr, uint32_t memory_clock, SMU7_Discrete_MemoryLevel *mclk, bool strobe_mode, bool dllStateOn ) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); uint32_t dll_cntl = data->clock_registers.vDLL_CNTL; uint32_t mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL; uint32_t mpll_ad_func_cntl = data->clock_registers.vMPLL_AD_FUNC_CNTL; uint32_t mpll_dq_func_cntl = data->clock_registers.vMPLL_DQ_FUNC_CNTL; uint32_t mpll_func_cntl = data->clock_registers.vMPLL_FUNC_CNTL; uint32_t mpll_func_cntl_1 = data->clock_registers.vMPLL_FUNC_CNTL_1; uint32_t mpll_func_cntl_2 = data->clock_registers.vMPLL_FUNC_CNTL_2; uint32_t mpll_ss1 = data->clock_registers.vMPLL_SS1; uint32_t mpll_ss2 = data->clock_registers.vMPLL_SS2; pp_atomctrl_memory_clock_param mpll_param; int result; result = atomctrl_get_memory_pll_dividers_si(hwmgr, memory_clock, &mpll_param, strobe_mode); PP_ASSERT_WITH_CODE(0 == result, "Error retrieving Memory Clock Parameters from VBIOS.", return result); mpll_func_cntl = PHM_SET_FIELD(mpll_func_cntl, MPLL_FUNC_CNTL, BWCTRL, mpll_param.bw_ctrl); mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1, MPLL_FUNC_CNTL_1, CLKF, mpll_param.mpll_fb_divider.cl_kf); mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1, MPLL_FUNC_CNTL_1, CLKFRAC, mpll_param.mpll_fb_divider.clk_frac); mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1, MPLL_FUNC_CNTL_1, VCO_MODE, mpll_param.vco_mode); mpll_ad_func_cntl = PHM_SET_FIELD(mpll_ad_func_cntl, MPLL_AD_FUNC_CNTL, YCLK_POST_DIV, mpll_param.mpll_post_divider); if (data->is_memory_gddr5) { mpll_dq_func_cntl = PHM_SET_FIELD(mpll_dq_func_cntl, MPLL_DQ_FUNC_CNTL, YCLK_SEL, mpll_param.yclk_sel); mpll_dq_func_cntl = PHM_SET_FIELD(mpll_dq_func_cntl, MPLL_DQ_FUNC_CNTL, YCLK_POST_DIV, mpll_param.mpll_post_divider); } if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MemorySpreadSpectrumSupport)) { pp_atomctrl_internal_ss_info ss_info; uint32_t freq_nom; uint32_t tmp; uint32_t reference_clock = atomctrl_get_mpll_reference_clock(hwmgr); /* for GDDR5 for all modes and DDR3 */ if (1 == mpll_param.qdr) freq_nom = memory_clock * 4 * (1 << mpll_param.mpll_post_divider); else freq_nom = memory_clock * 2 * (1 << mpll_param.mpll_post_divider); /* tmp = (freq_nom / reference_clock * reference_divider) ^ 2 Note: S.I. reference_divider = 1*/ tmp = (freq_nom / reference_clock); tmp = tmp * tmp; if (0 == atomctrl_get_memory_clock_spread_spectrum(hwmgr, freq_nom, &ss_info)) { uint32_t clks = reference_clock * 5 / ss_info.speed_spectrum_rate; uint32_t clkv = (uint32_t)((((131 * ss_info.speed_spectrum_percentage * ss_info.speed_spectrum_rate) / 100) * tmp) / freq_nom); mpll_ss1 = PHM_SET_FIELD(mpll_ss1, MPLL_SS1, CLKV, clkv); mpll_ss2 = PHM_SET_FIELD(mpll_ss2, MPLL_SS2, CLKS, clks); } } mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, MCLK_PWRMGT_CNTL, DLL_SPEED, mpll_param.dll_speed); mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, MCLK_PWRMGT_CNTL, MRDCK0_PDNB, dllStateOn); mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, MCLK_PWRMGT_CNTL, MRDCK1_PDNB, dllStateOn); mclk->MclkFrequency = memory_clock; mclk->MpllFuncCntl = mpll_func_cntl; mclk->MpllFuncCntl_1 = mpll_func_cntl_1; mclk->MpllFuncCntl_2 = mpll_func_cntl_2; mclk->MpllAdFuncCntl = mpll_ad_func_cntl; mclk->MpllDqFuncCntl = mpll_dq_func_cntl; mclk->MclkPwrmgtCntl = mclk_pwrmgt_cntl; mclk->DllCntl = dll_cntl; mclk->MpllSs1 = mpll_ss1; mclk->MpllSs2 = mpll_ss2; return 0; } static uint8_t ci_get_mclk_frequency_ratio(uint32_t memory_clock, bool strobe_mode) { uint8_t mc_para_index; if (strobe_mode) { if (memory_clock < 12500) mc_para_index = 0x00; else if (memory_clock > 47500) mc_para_index = 0x0f; else mc_para_index = (uint8_t)((memory_clock - 10000) / 2500); } else { if (memory_clock < 65000) mc_para_index = 0x00; else if (memory_clock > 135000) mc_para_index = 0x0f; else mc_para_index = (uint8_t)((memory_clock - 60000) / 5000); } return mc_para_index; } static uint8_t ci_get_ddr3_mclk_frequency_ratio(uint32_t memory_clock) { uint8_t mc_para_index; if (memory_clock < 10000) mc_para_index = 0; else if (memory_clock >= 80000) mc_para_index = 0x0f; else mc_para_index = (uint8_t)((memory_clock - 10000) / 5000 + 1); return mc_para_index; } static int ci_populate_phase_value_based_on_mclk(struct pp_hwmgr *hwmgr, const struct phm_phase_shedding_limits_table *pl, uint32_t memory_clock, uint32_t *p_shed) { unsigned int i; *p_shed = 1; for (i = 0; i < pl->count; i++) { if (memory_clock < pl->entries[i].Mclk) { *p_shed = i; break; } } return 0; } static int ci_populate_single_memory_level( struct pp_hwmgr *hwmgr, uint32_t memory_clock, SMU7_Discrete_MemoryLevel *memory_level ) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); int result = 0; bool dll_state_on; struct cgs_display_info info = {0}; uint32_t mclk_edc_wr_enable_threshold = 40000; uint32_t mclk_edc_enable_threshold = 40000; uint32_t mclk_strobe_mode_threshold = 40000; if (hwmgr->dyn_state.vddc_dependency_on_mclk != NULL) { result = ci_get_dependency_volt_by_clk(hwmgr, hwmgr->dyn_state.vddc_dependency_on_mclk, memory_clock, &memory_level->MinVddc); PP_ASSERT_WITH_CODE((0 == result), "can not find MinVddc voltage value from memory VDDC voltage dependency table", return result); } if (NULL != hwmgr->dyn_state.vddci_dependency_on_mclk) { result = ci_get_dependency_volt_by_clk(hwmgr, hwmgr->dyn_state.vddci_dependency_on_mclk, memory_clock, &memory_level->MinVddci); PP_ASSERT_WITH_CODE((0 == result), "can not find MinVddci voltage value from memory VDDCI voltage dependency table", return result); } if (NULL != hwmgr->dyn_state.mvdd_dependency_on_mclk) { result = ci_get_dependency_volt_by_clk(hwmgr, hwmgr->dyn_state.mvdd_dependency_on_mclk, memory_clock, &memory_level->MinMvdd); PP_ASSERT_WITH_CODE((0 == result), "can not find MinVddci voltage value from memory MVDD voltage dependency table", return result); } memory_level->MinVddcPhases = 1; if (data->vddc_phase_shed_control) { ci_populate_phase_value_based_on_mclk(hwmgr, hwmgr->dyn_state.vddc_phase_shed_limits_table, memory_clock, &memory_level->MinVddcPhases); } memory_level->EnabledForThrottle = 1; memory_level->EnabledForActivity = 1; memory_level->UpH = 0; memory_level->DownH = 100; memory_level->VoltageDownH = 0; /* Indicates maximum activity level for this performance level.*/ memory_level->ActivityLevel = (uint16_t)data->mclk_activity_target; memory_level->StutterEnable = 0; memory_level->StrobeEnable = 0; memory_level->EdcReadEnable = 0; memory_level->EdcWriteEnable = 0; memory_level->RttEnable = 0; /* default set to low watermark. Highest level will be set to high later.*/ memory_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW; cgs_get_active_displays_info(hwmgr->device, &info); data->display_timing.num_existing_displays = info.display_count; /* stutter mode not support on ci */ /* decide strobe mode*/ memory_level->StrobeEnable = (mclk_strobe_mode_threshold != 0) && (memory_clock <= mclk_strobe_mode_threshold); /* decide EDC mode and memory clock ratio*/ if (data->is_memory_gddr5) { memory_level->StrobeRatio = ci_get_mclk_frequency_ratio(memory_clock, memory_level->StrobeEnable); if ((mclk_edc_enable_threshold != 0) && (memory_clock > mclk_edc_enable_threshold)) { memory_level->EdcReadEnable = 1; } if ((mclk_edc_wr_enable_threshold != 0) && (memory_clock > mclk_edc_wr_enable_threshold)) { memory_level->EdcWriteEnable = 1; } if (memory_level->StrobeEnable) { if (ci_get_mclk_frequency_ratio(memory_clock, 1) >= ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC7) >> 16) & 0xf)) dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0; else dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC6) >> 1) & 0x1) ? 1 : 0; } else dll_state_on = data->dll_default_on; } else { memory_level->StrobeRatio = ci_get_ddr3_mclk_frequency_ratio(memory_clock); dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0; } result = ci_calculate_mclk_params(hwmgr, memory_clock, memory_level, memory_level->StrobeEnable, dll_state_on); if (0 == result) { memory_level->MinVddc = PP_HOST_TO_SMC_UL(memory_level->MinVddc * VOLTAGE_SCALE); CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MinVddcPhases); memory_level->MinVddci = PP_HOST_TO_SMC_UL(memory_level->MinVddci * VOLTAGE_SCALE); memory_level->MinMvdd = PP_HOST_TO_SMC_UL(memory_level->MinMvdd * VOLTAGE_SCALE); /* MCLK frequency in units of 10KHz*/ CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkFrequency); /* Indicates maximum activity level for this performance level.*/ CONVERT_FROM_HOST_TO_SMC_US(memory_level->ActivityLevel); CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl); CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_1); CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_2); CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllAdFuncCntl); CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllDqFuncCntl); CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkPwrmgtCntl); CONVERT_FROM_HOST_TO_SMC_UL(memory_level->DllCntl); CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs1); CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs2); } return result; } static int ci_populate_all_memory_levels(struct pp_hwmgr *hwmgr) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend); struct smu7_dpm_table *dpm_table = &data->dpm_table; int result; struct cgs_system_info sys_info = {0}; uint32_t dev_id; uint32_t level_array_address = smu_data->dpm_table_start + offsetof(SMU7_Discrete_DpmTable, MemoryLevel); uint32_t level_array_size = sizeof(SMU7_Discrete_MemoryLevel) * SMU7_MAX_LEVELS_MEMORY; SMU7_Discrete_MemoryLevel *levels = smu_data->smc_state_table.MemoryLevel; uint32_t i; memset(levels, 0x00, level_array_size); for (i = 0; i < dpm_table->mclk_table.count; i++) { PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value), "can not populate memory level as memory clock is zero", return -EINVAL); result = ci_populate_single_memory_level(hwmgr, dpm_table->mclk_table.dpm_levels[i].value, &(smu_data->smc_state_table.MemoryLevel[i])); if (0 != result) return result; } smu_data->smc_state_table.MemoryLevel[0].EnabledForActivity = 1; sys_info.size = sizeof(struct cgs_system_info); sys_info.info_id = CGS_SYSTEM_INFO_PCIE_DEV; cgs_query_system_info(hwmgr->device, &sys_info); dev_id = (uint32_t)sys_info.value; if ((dpm_table->mclk_table.count >= 2) && ((dev_id == 0x67B0) || (dev_id == 0x67B1))) { smu_data->smc_state_table.MemoryLevel[1].MinVddci = smu_data->smc_state_table.MemoryLevel[0].MinVddci; smu_data->smc_state_table.MemoryLevel[1].MinMvdd = smu_data->smc_state_table.MemoryLevel[0].MinMvdd; } smu_data->smc_state_table.MemoryLevel[0].ActivityLevel = 0x1F; CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.MemoryLevel[0].ActivityLevel); smu_data->smc_state_table.MemoryDpmLevelCount = (uint8_t)dpm_table->mclk_table.count; data->dpm_level_enable_mask.mclk_dpm_enable_mask = phm_get_dpm_level_enable_mask_value(&dpm_table->mclk_table); smu_data->smc_state_table.MemoryLevel[dpm_table->mclk_table.count-1].DisplayWatermark = PPSMC_DISPLAY_WATERMARK_HIGH; result = ci_copy_bytes_to_smc(hwmgr, level_array_address, (uint8_t *)levels, (uint32_t)level_array_size, SMC_RAM_END); return result; } static int ci_populate_mvdd_value(struct pp_hwmgr *hwmgr, uint32_t mclk, SMU7_Discrete_VoltageLevel *voltage) { const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); uint32_t i = 0; if (SMU7_VOLTAGE_CONTROL_NONE != data->mvdd_control) { /* find mvdd value which clock is more than request */ for (i = 0; i < hwmgr->dyn_state.mvdd_dependency_on_mclk->count; i++) { if (mclk <= hwmgr->dyn_state.mvdd_dependency_on_mclk->entries[i].clk) { /* Always round to higher voltage. */ voltage->Voltage = data->mvdd_voltage_table.entries[i].value; break; } } PP_ASSERT_WITH_CODE(i < hwmgr->dyn_state.mvdd_dependency_on_mclk->count, "MVDD Voltage is outside the supported range.", return -EINVAL); } else { return -EINVAL; } return 0; } static int ci_populate_smc_acpi_level(struct pp_hwmgr *hwmgr, SMU7_Discrete_DpmTable *table) { int result = 0; const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); struct pp_atomctrl_clock_dividers_vi dividers; SMU7_Discrete_VoltageLevel voltage_level; uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL; uint32_t spll_func_cntl_2 = data->clock_registers.vCG_SPLL_FUNC_CNTL_2; uint32_t dll_cntl = data->clock_registers.vDLL_CNTL; uint32_t mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL; /* The ACPI state should not do DPM on DC (or ever).*/ table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC; if (data->acpi_vddc) table->ACPILevel.MinVddc = PP_HOST_TO_SMC_UL(data->acpi_vddc * VOLTAGE_SCALE); else table->ACPILevel.MinVddc = PP_HOST_TO_SMC_UL(data->min_vddc_in_pptable * VOLTAGE_SCALE); table->ACPILevel.MinVddcPhases = data->vddc_phase_shed_control ? 0 : 1; /* assign zero for now*/ table->ACPILevel.SclkFrequency = atomctrl_get_reference_clock(hwmgr); /* get the engine clock dividers for this clock value*/ result = atomctrl_get_engine_pll_dividers_vi(hwmgr, table->ACPILevel.SclkFrequency, ÷rs); PP_ASSERT_WITH_CODE(result == 0, "Error retrieving Engine Clock dividers from VBIOS.", return result); /* divider ID for required SCLK*/ table->ACPILevel.SclkDid = (uint8_t)dividers.pll_post_divider; table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW; table->ACPILevel.DeepSleepDivId = 0; spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL, SPLL_PWRON, 0); spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL, SPLL_RESET, 1); spll_func_cntl_2 = PHM_SET_FIELD(spll_func_cntl_2, CG_SPLL_FUNC_CNTL_2, SCLK_MUX_SEL, 4); table->ACPILevel.CgSpllFuncCntl = spll_func_cntl; table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2; table->ACPILevel.CgSpllFuncCntl3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3; table->ACPILevel.CgSpllFuncCntl4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4; table->ACPILevel.SpllSpreadSpectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM; table->ACPILevel.SpllSpreadSpectrum2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2; table->ACPILevel.CcPwrDynRm = 0; table->ACPILevel.CcPwrDynRm1 = 0; /* For various features to be enabled/disabled while this level is active.*/ CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags); /* SCLK frequency in units of 10KHz*/ CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkFrequency); CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl); CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl2); CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl3); CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl4); CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum); CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum2); CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm); CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1); /* table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases;*/ table->MemoryACPILevel.MinVddc = table->ACPILevel.MinVddc; table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases; if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control) table->MemoryACPILevel.MinVddci = table->MemoryACPILevel.MinVddc; else { if (data->acpi_vddci != 0) table->MemoryACPILevel.MinVddci = PP_HOST_TO_SMC_UL(data->acpi_vddci * VOLTAGE_SCALE); else table->MemoryACPILevel.MinVddci = PP_HOST_TO_SMC_UL(data->min_vddci_in_pptable * VOLTAGE_SCALE); } if (0 == ci_populate_mvdd_value(hwmgr, 0, &voltage_level)) table->MemoryACPILevel.MinMvdd = PP_HOST_TO_SMC_UL(voltage_level.Voltage * VOLTAGE_SCALE); else table->MemoryACPILevel.MinMvdd = 0; /* Force reset on DLL*/ mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, MCLK_PWRMGT_CNTL, MRDCK0_RESET, 0x1); mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, MCLK_PWRMGT_CNTL, MRDCK1_RESET, 0x1); /* Disable DLL in ACPIState*/ mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, MCLK_PWRMGT_CNTL, MRDCK0_PDNB, 0); mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, MCLK_PWRMGT_CNTL, MRDCK1_PDNB, 0); /* Enable DLL bypass signal*/ dll_cntl = PHM_SET_FIELD(dll_cntl, DLL_CNTL, MRDCK0_BYPASS, 0); dll_cntl = PHM_SET_FIELD(dll_cntl, DLL_CNTL, MRDCK1_BYPASS, 0); table->MemoryACPILevel.DllCntl = PP_HOST_TO_SMC_UL(dll_cntl); table->MemoryACPILevel.MclkPwrmgtCntl = PP_HOST_TO_SMC_UL(mclk_pwrmgt_cntl); table->MemoryACPILevel.MpllAdFuncCntl = PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_AD_FUNC_CNTL); table->MemoryACPILevel.MpllDqFuncCntl = PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_DQ_FUNC_CNTL); table->MemoryACPILevel.MpllFuncCntl = PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL); table->MemoryACPILevel.MpllFuncCntl_1 = PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_1); table->MemoryACPILevel.MpllFuncCntl_2 = PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_2); table->MemoryACPILevel.MpllSs1 = PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS1); table->MemoryACPILevel.MpllSs2 = PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS2); table->MemoryACPILevel.EnabledForThrottle = 0; table->MemoryACPILevel.EnabledForActivity = 0; table->MemoryACPILevel.UpH = 0; table->MemoryACPILevel.DownH = 100; table->MemoryACPILevel.VoltageDownH = 0; /* Indicates maximum activity level for this performance level.*/ table->MemoryACPILevel.ActivityLevel = PP_HOST_TO_SMC_US((uint16_t)data->mclk_activity_target); table->MemoryACPILevel.StutterEnable = 0; table->MemoryACPILevel.StrobeEnable = 0; table->MemoryACPILevel.EdcReadEnable = 0; table->MemoryACPILevel.EdcWriteEnable = 0; table->MemoryACPILevel.RttEnable = 0; return result; } static int ci_populate_smc_uvd_level(struct pp_hwmgr *hwmgr, SMU7_Discrete_DpmTable *table) { int result = 0; uint8_t count; struct pp_atomctrl_clock_dividers_vi dividers; struct phm_uvd_clock_voltage_dependency_table *uvd_table = hwmgr->dyn_state.uvd_clock_voltage_dependency_table; table->UvdLevelCount = (uint8_t)(uvd_table->count); for (count = 0; count < table->UvdLevelCount; count++) { table->UvdLevel[count].VclkFrequency = uvd_table->entries[count].vclk; table->UvdLevel[count].DclkFrequency = uvd_table->entries[count].dclk; table->UvdLevel[count].MinVddc = uvd_table->entries[count].v * VOLTAGE_SCALE; table->UvdLevel[count].MinVddcPhases = 1; result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, table->UvdLevel[count].VclkFrequency, ÷rs); PP_ASSERT_WITH_CODE((0 == result), "can not find divide id for Vclk clock", return result); table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider; result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, table->UvdLevel[count].DclkFrequency, ÷rs); PP_ASSERT_WITH_CODE((0 == result), "can not find divide id for Dclk clock", return result); table->UvdLevel[count].DclkDivider = (uint8_t)dividers.pll_post_divider; CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency); CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency); CONVERT_FROM_HOST_TO_SMC_US(table->UvdLevel[count].MinVddc); } return result; } static int ci_populate_smc_vce_level(struct pp_hwmgr *hwmgr, SMU7_Discrete_DpmTable *table) { int result = -EINVAL; uint8_t count; struct pp_atomctrl_clock_dividers_vi dividers; struct phm_vce_clock_voltage_dependency_table *vce_table = hwmgr->dyn_state.vce_clock_voltage_dependency_table; table->VceLevelCount = (uint8_t)(vce_table->count); table->VceBootLevel = 0; for (count = 0; count < table->VceLevelCount; count++) { table->VceLevel[count].Frequency = vce_table->entries[count].evclk; table->VceLevel[count].MinVoltage = vce_table->entries[count].v * VOLTAGE_SCALE; table->VceLevel[count].MinPhases = 1; result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, table->VceLevel[count].Frequency, ÷rs); PP_ASSERT_WITH_CODE((0 == result), "can not find divide id for VCE engine clock", return result); table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider; CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency); CONVERT_FROM_HOST_TO_SMC_US(table->VceLevel[count].MinVoltage); } return result; } static int ci_populate_smc_acp_level(struct pp_hwmgr *hwmgr, SMU7_Discrete_DpmTable *table) { int result = -EINVAL; uint8_t count; struct pp_atomctrl_clock_dividers_vi dividers; struct phm_acp_clock_voltage_dependency_table *acp_table = hwmgr->dyn_state.acp_clock_voltage_dependency_table; table->AcpLevelCount = (uint8_t)(acp_table->count); table->AcpBootLevel = 0; for (count = 0; count < table->AcpLevelCount; count++) { table->AcpLevel[count].Frequency = acp_table->entries[count].acpclk; table->AcpLevel[count].MinVoltage = acp_table->entries[count].v; table->AcpLevel[count].MinPhases = 1; result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, table->AcpLevel[count].Frequency, ÷rs); PP_ASSERT_WITH_CODE((0 == result), "can not find divide id for engine clock", return result); table->AcpLevel[count].Divider = (uint8_t)dividers.pll_post_divider; CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].Frequency); CONVERT_FROM_HOST_TO_SMC_US(table->AcpLevel[count].MinVoltage); } return result; } static int ci_populate_smc_samu_level(struct pp_hwmgr *hwmgr, SMU7_Discrete_DpmTable *table) { int result = -EINVAL; uint8_t count; struct pp_atomctrl_clock_dividers_vi dividers; struct phm_samu_clock_voltage_dependency_table *samu_table = hwmgr->dyn_state.samu_clock_voltage_dependency_table; table->SamuBootLevel = 0; table->SamuLevelCount = (uint8_t)(samu_table->count); for (count = 0; count < table->SamuLevelCount; count++) { table->SamuLevel[count].Frequency = samu_table->entries[count].samclk; table->SamuLevel[count].MinVoltage = samu_table->entries[count].v * VOLTAGE_SCALE; table->SamuLevel[count].MinPhases = 1; /* retrieve divider value for VBIOS */ result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, table->SamuLevel[count].Frequency, ÷rs); PP_ASSERT_WITH_CODE((0 == result), "can not find divide id for samu clock", return result); table->SamuLevel[count].Divider = (uint8_t)dividers.pll_post_divider; CONVERT_FROM_HOST_TO_SMC_UL(table->SamuLevel[count].Frequency); CONVERT_FROM_HOST_TO_SMC_US(table->SamuLevel[count].MinVoltage); } return result; } static int ci_populate_memory_timing_parameters( struct pp_hwmgr *hwmgr, uint32_t engine_clock, uint32_t memory_clock, struct SMU7_Discrete_MCArbDramTimingTableEntry *arb_regs ) { uint32_t dramTiming; uint32_t dramTiming2; uint32_t burstTime; int result; result = atomctrl_set_engine_dram_timings_rv770(hwmgr, engine_clock, memory_clock); PP_ASSERT_WITH_CODE(result == 0, "Error calling VBIOS to set DRAM_TIMING.", return result); dramTiming = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING); dramTiming2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2); burstTime = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0); arb_regs->McArbDramTiming = PP_HOST_TO_SMC_UL(dramTiming); arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dramTiming2); arb_regs->McArbBurstTime = (uint8_t)burstTime; return 0; } static int ci_program_memory_timing_parameters(struct pp_hwmgr *hwmgr) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend); int result = 0; SMU7_Discrete_MCArbDramTimingTable arb_regs; uint32_t i, j; memset(&arb_regs, 0x00, sizeof(SMU7_Discrete_MCArbDramTimingTable)); for (i = 0; i < data->dpm_table.sclk_table.count; i++) { for (j = 0; j < data->dpm_table.mclk_table.count; j++) { result = ci_populate_memory_timing_parameters (hwmgr, data->dpm_table.sclk_table.dpm_levels[i].value, data->dpm_table.mclk_table.dpm_levels[j].value, &arb_regs.entries[i][j]); if (0 != result) break; } } if (0 == result) { result = ci_copy_bytes_to_smc( hwmgr, smu_data->arb_table_start, (uint8_t *)&arb_regs, sizeof(SMU7_Discrete_MCArbDramTimingTable), SMC_RAM_END ); } return result; } static int ci_populate_smc_boot_level(struct pp_hwmgr *hwmgr, SMU7_Discrete_DpmTable *table) { int result = 0; struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend); table->GraphicsBootLevel = 0; table->MemoryBootLevel = 0; /* find boot level from dpm table*/ result = phm_find_boot_level(&(data->dpm_table.sclk_table), data->vbios_boot_state.sclk_bootup_value, (uint32_t *)&(smu_data->smc_state_table.GraphicsBootLevel)); if (0 != result) { smu_data->smc_state_table.GraphicsBootLevel = 0; pr_err("VBIOS did not find boot engine clock value in dependency table. Using Graphics DPM level 0!\n"); result = 0; } result = phm_find_boot_level(&(data->dpm_table.mclk_table), data->vbios_boot_state.mclk_bootup_value, (uint32_t *)&(smu_data->smc_state_table.MemoryBootLevel)); if (0 != result) { smu_data->smc_state_table.MemoryBootLevel = 0; pr_err("VBIOS did not find boot engine clock value in dependency table. Using Memory DPM level 0!\n"); result = 0; } table->BootVddc = data->vbios_boot_state.vddc_bootup_value; table->BootVddci = data->vbios_boot_state.vddci_bootup_value; table->BootMVdd = data->vbios_boot_state.mvdd_bootup_value; return result; } static int ci_populate_mc_reg_address(struct pp_hwmgr *hwmgr, SMU7_Discrete_MCRegisters *mc_reg_table) { const struct ci_smumgr *smu_data = (struct ci_smumgr *)hwmgr->smu_backend; uint32_t i, j; for (i = 0, j = 0; j < smu_data->mc_reg_table.last; j++) { if (smu_data->mc_reg_table.validflag & 1<address[] array out of boundary", return -EINVAL); mc_reg_table->address[i].s0 = PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s0); mc_reg_table->address[i].s1 = PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s1); i++; } } mc_reg_table->last = (uint8_t)i; return 0; } static void ci_convert_mc_registers( const struct ci_mc_reg_entry *entry, SMU7_Discrete_MCRegisterSet *data, uint32_t num_entries, uint32_t valid_flag) { uint32_t i, j; for (i = 0, j = 0; j < num_entries; j++) { if (valid_flag & 1<value[i] = PP_HOST_TO_SMC_UL(entry->mc_data[j]); i++; } } } static int ci_convert_mc_reg_table_entry_to_smc( struct pp_hwmgr *hwmgr, const uint32_t memory_clock, SMU7_Discrete_MCRegisterSet *mc_reg_table_data ) { struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend); uint32_t i = 0; for (i = 0; i < smu_data->mc_reg_table.num_entries; i++) { if (memory_clock <= smu_data->mc_reg_table.mc_reg_table_entry[i].mclk_max) { break; } } if ((i == smu_data->mc_reg_table.num_entries) && (i > 0)) --i; ci_convert_mc_registers(&smu_data->mc_reg_table.mc_reg_table_entry[i], mc_reg_table_data, smu_data->mc_reg_table.last, smu_data->mc_reg_table.validflag); return 0; } static int ci_convert_mc_reg_table_to_smc(struct pp_hwmgr *hwmgr, SMU7_Discrete_MCRegisters *mc_regs) { int result = 0; struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); int res; uint32_t i; for (i = 0; i < data->dpm_table.mclk_table.count; i++) { res = ci_convert_mc_reg_table_entry_to_smc( hwmgr, data->dpm_table.mclk_table.dpm_levels[i].value, &mc_regs->data[i] ); if (0 != res) result = res; } return result; } static int ci_update_and_upload_mc_reg_table(struct pp_hwmgr *hwmgr) { struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend); struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); uint32_t address; int32_t result; if (0 == (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK)) return 0; memset(&smu_data->mc_regs, 0, sizeof(SMU7_Discrete_MCRegisters)); result = ci_convert_mc_reg_table_to_smc(hwmgr, &(smu_data->mc_regs)); if (result != 0) return result; address = smu_data->mc_reg_table_start + (uint32_t)offsetof(SMU7_Discrete_MCRegisters, data[0]); return ci_copy_bytes_to_smc(hwmgr, address, (uint8_t *)&smu_data->mc_regs.data[0], sizeof(SMU7_Discrete_MCRegisterSet) * data->dpm_table.mclk_table.count, SMC_RAM_END); } static int ci_populate_initial_mc_reg_table(struct pp_hwmgr *hwmgr) { int result; struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend); memset(&smu_data->mc_regs, 0x00, sizeof(SMU7_Discrete_MCRegisters)); result = ci_populate_mc_reg_address(hwmgr, &(smu_data->mc_regs)); PP_ASSERT_WITH_CODE(0 == result, "Failed to initialize MCRegTable for the MC register addresses!", return result;); result = ci_convert_mc_reg_table_to_smc(hwmgr, &smu_data->mc_regs); PP_ASSERT_WITH_CODE(0 == result, "Failed to initialize MCRegTable for driver state!", return result;); return ci_copy_bytes_to_smc(hwmgr, smu_data->mc_reg_table_start, (uint8_t *)&smu_data->mc_regs, sizeof(SMU7_Discrete_MCRegisters), SMC_RAM_END); } static int ci_populate_smc_initial_state(struct pp_hwmgr *hwmgr) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend); uint8_t count, level; count = (uint8_t)(hwmgr->dyn_state.vddc_dependency_on_sclk->count); for (level = 0; level < count; level++) { if (hwmgr->dyn_state.vddc_dependency_on_sclk->entries[level].clk >= data->vbios_boot_state.sclk_bootup_value) { smu_data->smc_state_table.GraphicsBootLevel = level; break; } } count = (uint8_t)(hwmgr->dyn_state.vddc_dependency_on_mclk->count); for (level = 0; level < count; level++) { if (hwmgr->dyn_state.vddc_dependency_on_mclk->entries[level].clk >= data->vbios_boot_state.mclk_bootup_value) { smu_data->smc_state_table.MemoryBootLevel = level; break; } } return 0; } static int ci_populate_smc_svi2_config(struct pp_hwmgr *hwmgr, SMU7_Discrete_DpmTable *table) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) table->SVI2Enable = 1; else table->SVI2Enable = 0; return 0; } static int ci_start_smc(struct pp_hwmgr *hwmgr) { /* set smc instruct start point at 0x0 */ ci_program_jump_on_start(hwmgr); /* enable smc clock */ PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0); PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_RESET_CNTL, rst_reg, 0); PHM_WAIT_INDIRECT_FIELD(hwmgr, SMC_IND, FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1); return 0; } static int ci_init_smc_table(struct pp_hwmgr *hwmgr) { int result; struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend); SMU7_Discrete_DpmTable *table = &(smu_data->smc_state_table); struct pp_atomctrl_gpio_pin_assignment gpio_pin; u32 i; ci_initialize_power_tune_defaults(hwmgr); memset(&(smu_data->smc_state_table), 0x00, sizeof(smu_data->smc_state_table)); if (SMU7_VOLTAGE_CONTROL_NONE != data->voltage_control) ci_populate_smc_voltage_tables(hwmgr, table); if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_AutomaticDCTransition)) table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC; if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StepVddc)) table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC; if (data->is_memory_gddr5) table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5; if (data->ulv_supported) { result = ci_populate_ulv_state(hwmgr, &(table->Ulv)); PP_ASSERT_WITH_CODE(0 == result, "Failed to initialize ULV state!", return result); cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_ULV_PARAMETER, 0x40035); } result = ci_populate_all_graphic_levels(hwmgr); PP_ASSERT_WITH_CODE(0 == result, "Failed to initialize Graphics Level!", return result); result = ci_populate_all_memory_levels(hwmgr); PP_ASSERT_WITH_CODE(0 == result, "Failed to initialize Memory Level!", return result); result = ci_populate_smc_link_level(hwmgr, table); PP_ASSERT_WITH_CODE(0 == result, "Failed to initialize Link Level!", return result); result = ci_populate_smc_acpi_level(hwmgr, table); PP_ASSERT_WITH_CODE(0 == result, "Failed to initialize ACPI Level!", return result); result = ci_populate_smc_vce_level(hwmgr, table); PP_ASSERT_WITH_CODE(0 == result, "Failed to initialize VCE Level!", return result); result = ci_populate_smc_acp_level(hwmgr, table); PP_ASSERT_WITH_CODE(0 == result, "Failed to initialize ACP Level!", return result); result = ci_populate_smc_samu_level(hwmgr, table); PP_ASSERT_WITH_CODE(0 == result, "Failed to initialize SAMU Level!", return result); /* Since only the initial state is completely set up at this point (the other states are just copies of the boot state) we only */ /* need to populate the ARB settings for the initial state. */ result = ci_program_memory_timing_parameters(hwmgr); PP_ASSERT_WITH_CODE(0 == result, "Failed to Write ARB settings for the initial state.", return result); result = ci_populate_smc_uvd_level(hwmgr, table); PP_ASSERT_WITH_CODE(0 == result, "Failed to initialize UVD Level!", return result); table->UvdBootLevel = 0; table->VceBootLevel = 0; table->AcpBootLevel = 0; table->SamuBootLevel = 0; table->GraphicsBootLevel = 0; table->MemoryBootLevel = 0; result = ci_populate_smc_boot_level(hwmgr, table); PP_ASSERT_WITH_CODE(0 == result, "Failed to initialize Boot Level!", return result); result = ci_populate_smc_initial_state(hwmgr); PP_ASSERT_WITH_CODE(0 == result, "Failed to initialize Boot State!", return result); result = ci_populate_bapm_parameters_in_dpm_table(hwmgr); PP_ASSERT_WITH_CODE(0 == result, "Failed to populate BAPM Parameters!", return result); table->UVDInterval = 1; table->VCEInterval = 1; table->ACPInterval = 1; table->SAMUInterval = 1; table->GraphicsVoltageChangeEnable = 1; table->GraphicsThermThrottleEnable = 1; table->GraphicsInterval = 1; table->VoltageInterval = 1; table->ThermalInterval = 1; table->TemperatureLimitHigh = (data->thermal_temp_setting.temperature_high * SMU7_Q88_FORMAT_CONVERSION_UNIT) / PP_TEMPERATURE_UNITS_PER_CENTIGRADES; table->TemperatureLimitLow = (data->thermal_temp_setting.temperature_low * SMU7_Q88_FORMAT_CONVERSION_UNIT) / PP_TEMPERATURE_UNITS_PER_CENTIGRADES; table->MemoryVoltageChangeEnable = 1; table->MemoryInterval = 1; table->VoltageResponseTime = 0; table->VddcVddciDelta = 4000; table->PhaseResponseTime = 0; table->MemoryThermThrottleEnable = 1; PP_ASSERT_WITH_CODE((1 <= data->dpm_table.pcie_speed_table.count), "There must be 1 or more PCIE levels defined in PPTable.", return -EINVAL); table->PCIeBootLinkLevel = (uint8_t)data->dpm_table.pcie_speed_table.count; table->PCIeGenInterval = 1; ci_populate_smc_svi2_config(hwmgr, table); for (i = 0; i < SMU7_MAX_ENTRIES_SMIO; i++) CONVERT_FROM_HOST_TO_SMC_UL(table->Smio[i]); table->ThermGpio = 17; table->SclkStepSize = 0x4000; if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_VRHOT_GPIO_PINID, &gpio_pin)) { table->VRHotGpio = gpio_pin.uc_gpio_pin_bit_shift; phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_RegulatorHot); } else { table->VRHotGpio = SMU7_UNUSED_GPIO_PIN; phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_RegulatorHot); } table->AcDcGpio = SMU7_UNUSED_GPIO_PIN; CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags); CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddcVid); CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddcPhase); CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddciVid); CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskMvddVid); CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize); CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh); CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow); table->VddcVddciDelta = PP_HOST_TO_SMC_US(table->VddcVddciDelta); CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime); CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime); table->BootVddc = PP_HOST_TO_SMC_US(table->BootVddc * VOLTAGE_SCALE); table->BootVddci = PP_HOST_TO_SMC_US(table->BootVddci * VOLTAGE_SCALE); table->BootMVdd = PP_HOST_TO_SMC_US(table->BootMVdd * VOLTAGE_SCALE); /* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */ result = ci_copy_bytes_to_smc(hwmgr, smu_data->dpm_table_start + offsetof(SMU7_Discrete_DpmTable, SystemFlags), (uint8_t *)&(table->SystemFlags), sizeof(SMU7_Discrete_DpmTable)-3 * sizeof(SMU7_PIDController), SMC_RAM_END); PP_ASSERT_WITH_CODE(0 == result, "Failed to upload dpm data to SMC memory!", return result;); result = ci_populate_initial_mc_reg_table(hwmgr); PP_ASSERT_WITH_CODE((0 == result), "Failed to populate initialize MC Reg table!", return result); result = ci_populate_pm_fuses(hwmgr); PP_ASSERT_WITH_CODE(0 == result, "Failed to populate PM fuses to SMC memory!", return result); ci_start_smc(hwmgr); return 0; } static int ci_thermal_setup_fan_table(struct pp_hwmgr *hwmgr) { struct ci_smumgr *ci_data = (struct ci_smumgr *)(hwmgr->smu_backend); SMU7_Discrete_FanTable fan_table = { FDO_MODE_HARDWARE }; uint32_t duty100; uint32_t t_diff1, t_diff2, pwm_diff1, pwm_diff2; uint16_t fdo_min, slope1, slope2; uint32_t reference_clock; int res; uint64_t tmp64; if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl)) return 0; if (hwmgr->thermal_controller.fanInfo.bNoFan) { phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl); return 0; } if (0 == ci_data->fan_table_start) { phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl); return 0; } duty100 = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_FDO_CTRL1, FMAX_DUTY100); if (0 == duty100) { phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl); return 0; } tmp64 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin * duty100; do_div(tmp64, 10000); fdo_min = (uint16_t)tmp64; t_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usTMed - hwmgr->thermal_controller.advanceFanControlParameters.usTMin; t_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usTHigh - hwmgr->thermal_controller.advanceFanControlParameters.usTMed; pwm_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed - hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin; pwm_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh - hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed; slope1 = (uint16_t)((50 + ((16 * duty100 * pwm_diff1) / t_diff1)) / 100); slope2 = (uint16_t)((50 + ((16 * duty100 * pwm_diff2) / t_diff2)) / 100); fan_table.TempMin = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMin) / 100); fan_table.TempMed = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMed) / 100); fan_table.TempMax = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMax) / 100); fan_table.Slope1 = cpu_to_be16(slope1); fan_table.Slope2 = cpu_to_be16(slope2); fan_table.FdoMin = cpu_to_be16(fdo_min); fan_table.HystDown = cpu_to_be16(hwmgr->thermal_controller.advanceFanControlParameters.ucTHyst); fan_table.HystUp = cpu_to_be16(1); fan_table.HystSlope = cpu_to_be16(1); fan_table.TempRespLim = cpu_to_be16(5); reference_clock = smu7_get_xclk(hwmgr); fan_table.RefreshPeriod = cpu_to_be32((hwmgr->thermal_controller.advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600); fan_table.FdoMax = cpu_to_be16((uint16_t)duty100); fan_table.TempSrc = (uint8_t)PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_MULT_THERMAL_CTRL, TEMP_SEL); res = ci_copy_bytes_to_smc(hwmgr, ci_data->fan_table_start, (uint8_t *)&fan_table, (uint32_t)sizeof(fan_table), SMC_RAM_END); return 0; } static int ci_program_mem_timing_parameters(struct pp_hwmgr *hwmgr) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); if (data->need_update_smu7_dpm_table & (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_OD_UPDATE_MCLK)) return ci_program_memory_timing_parameters(hwmgr); return 0; } static int ci_update_sclk_threshold(struct pp_hwmgr *hwmgr) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend); int result = 0; uint32_t low_sclk_interrupt_threshold = 0; if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkThrottleLowNotification) && (data->low_sclk_interrupt_threshold != 0)) { low_sclk_interrupt_threshold = data->low_sclk_interrupt_threshold; CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold); result = ci_copy_bytes_to_smc( hwmgr, smu_data->dpm_table_start + offsetof(SMU7_Discrete_DpmTable, LowSclkInterruptT), (uint8_t *)&low_sclk_interrupt_threshold, sizeof(uint32_t), SMC_RAM_END); } result = ci_update_and_upload_mc_reg_table(hwmgr); PP_ASSERT_WITH_CODE((0 == result), "Failed to upload MC reg table!", return result); result = ci_program_mem_timing_parameters(hwmgr); PP_ASSERT_WITH_CODE((result == 0), "Failed to program memory timing parameters!", ); return result; } static uint32_t ci_get_offsetof(uint32_t type, uint32_t member) { switch (type) { case SMU_SoftRegisters: switch (member) { case HandshakeDisables: return offsetof(SMU7_SoftRegisters, HandshakeDisables); case VoltageChangeTimeout: return offsetof(SMU7_SoftRegisters, VoltageChangeTimeout); case AverageGraphicsActivity: return offsetof(SMU7_SoftRegisters, AverageGraphicsA); case PreVBlankGap: return offsetof(SMU7_SoftRegisters, PreVBlankGap); case VBlankTimeout: return offsetof(SMU7_SoftRegisters, VBlankTimeout); case DRAM_LOG_ADDR_H: return offsetof(SMU7_SoftRegisters, DRAM_LOG_ADDR_H); case DRAM_LOG_ADDR_L: return offsetof(SMU7_SoftRegisters, DRAM_LOG_ADDR_L); case DRAM_LOG_PHY_ADDR_H: return offsetof(SMU7_SoftRegisters, DRAM_LOG_PHY_ADDR_H); case DRAM_LOG_PHY_ADDR_L: return offsetof(SMU7_SoftRegisters, DRAM_LOG_PHY_ADDR_L); case DRAM_LOG_BUFF_SIZE: return offsetof(SMU7_SoftRegisters, DRAM_LOG_BUFF_SIZE); } case SMU_Discrete_DpmTable: switch (member) { case LowSclkInterruptThreshold: return offsetof(SMU7_Discrete_DpmTable, LowSclkInterruptT); } } pr_debug("can't get the offset of type %x member %x\n", type, member); return 0; } static uint32_t ci_get_mac_definition(uint32_t value) { switch (value) { case SMU_MAX_LEVELS_GRAPHICS: return SMU7_MAX_LEVELS_GRAPHICS; case SMU_MAX_LEVELS_MEMORY: return SMU7_MAX_LEVELS_MEMORY; case SMU_MAX_LEVELS_LINK: return SMU7_MAX_LEVELS_LINK; case SMU_MAX_ENTRIES_SMIO: return SMU7_MAX_ENTRIES_SMIO; case SMU_MAX_LEVELS_VDDC: return SMU7_MAX_LEVELS_VDDC; case SMU_MAX_LEVELS_VDDCI: return SMU7_MAX_LEVELS_VDDCI; case SMU_MAX_LEVELS_MVDD: return SMU7_MAX_LEVELS_MVDD; } pr_debug("can't get the mac of %x\n", value); return 0; } static int ci_load_smc_ucode(struct pp_hwmgr *hwmgr) { uint32_t byte_count, start_addr; uint8_t *src; uint32_t data; struct cgs_firmware_info info = {0}; cgs_get_firmware_info(hwmgr->device, CGS_UCODE_ID_SMU, &info); hwmgr->is_kicker = info.is_kicker; byte_count = info.image_size; src = (uint8_t *)info.kptr; start_addr = info.ucode_start_address; if (byte_count > SMC_RAM_END) { pr_err("SMC address is beyond the SMC RAM area.\n"); return -EINVAL; } cgs_write_register(hwmgr->device, mmSMC_IND_INDEX_0, start_addr); PHM_WRITE_FIELD(hwmgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_0, 1); for (; byte_count >= 4; byte_count -= 4) { data = (src[0] << 24) | (src[1] << 16) | (src[2] << 8) | src[3]; cgs_write_register(hwmgr->device, mmSMC_IND_DATA_0, data); src += 4; } PHM_WRITE_FIELD(hwmgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_0, 0); if (0 != byte_count) { pr_err("SMC size must be divisible by 4\n"); return -EINVAL; } return 0; } static int ci_upload_firmware(struct pp_hwmgr *hwmgr) { if (ci_is_smc_ram_running(hwmgr)) { pr_info("smc is running, no need to load smc firmware\n"); return 0; } PHM_WAIT_INDIRECT_FIELD(hwmgr, SMC_IND, RCU_UC_EVENTS, boot_seq_done, 1); PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_MISC_CNTL, pre_fetcher_en, 1); PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 1); PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_RESET_CNTL, rst_reg, 1); return ci_load_smc_ucode(hwmgr); } static int ci_process_firmware_header(struct pp_hwmgr *hwmgr) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); struct ci_smumgr *ci_data = (struct ci_smumgr *)(hwmgr->smu_backend); uint32_t tmp = 0; int result; bool error = false; if (ci_upload_firmware(hwmgr)) return -EINVAL; result = ci_read_smc_sram_dword(hwmgr, SMU7_FIRMWARE_HEADER_LOCATION + offsetof(SMU7_Firmware_Header, DpmTable), &tmp, SMC_RAM_END); if (0 == result) ci_data->dpm_table_start = tmp; error |= (0 != result); result = ci_read_smc_sram_dword(hwmgr, SMU7_FIRMWARE_HEADER_LOCATION + offsetof(SMU7_Firmware_Header, SoftRegisters), &tmp, SMC_RAM_END); if (0 == result) { data->soft_regs_start = tmp; ci_data->soft_regs_start = tmp; } error |= (0 != result); result = ci_read_smc_sram_dword(hwmgr, SMU7_FIRMWARE_HEADER_LOCATION + offsetof(SMU7_Firmware_Header, mcRegisterTable), &tmp, SMC_RAM_END); if (0 == result) ci_data->mc_reg_table_start = tmp; result = ci_read_smc_sram_dword(hwmgr, SMU7_FIRMWARE_HEADER_LOCATION + offsetof(SMU7_Firmware_Header, FanTable), &tmp, SMC_RAM_END); if (0 == result) ci_data->fan_table_start = tmp; error |= (0 != result); result = ci_read_smc_sram_dword(hwmgr, SMU7_FIRMWARE_HEADER_LOCATION + offsetof(SMU7_Firmware_Header, mcArbDramTimingTable), &tmp, SMC_RAM_END); if (0 == result) ci_data->arb_table_start = tmp; error |= (0 != result); result = ci_read_smc_sram_dword(hwmgr, SMU7_FIRMWARE_HEADER_LOCATION + offsetof(SMU7_Firmware_Header, Version), &tmp, SMC_RAM_END); if (0 == result) hwmgr->microcode_version_info.SMC = tmp; error |= (0 != result); return error ? 1 : 0; } static uint8_t ci_get_memory_modile_index(struct pp_hwmgr *hwmgr) { return (uint8_t) (0xFF & (cgs_read_register(hwmgr->device, mmBIOS_SCRATCH_4) >> 16)); } static bool ci_check_s0_mc_reg_index(uint16_t in_reg, uint16_t *out_reg) { bool result = true; switch (in_reg) { case mmMC_SEQ_RAS_TIMING: *out_reg = mmMC_SEQ_RAS_TIMING_LP; break; case mmMC_SEQ_DLL_STBY: *out_reg = mmMC_SEQ_DLL_STBY_LP; break; case mmMC_SEQ_G5PDX_CMD0: *out_reg = mmMC_SEQ_G5PDX_CMD0_LP; break; case mmMC_SEQ_G5PDX_CMD1: *out_reg = mmMC_SEQ_G5PDX_CMD1_LP; break; case mmMC_SEQ_G5PDX_CTRL: *out_reg = mmMC_SEQ_G5PDX_CTRL_LP; break; case mmMC_SEQ_CAS_TIMING: *out_reg = mmMC_SEQ_CAS_TIMING_LP; break; case mmMC_SEQ_MISC_TIMING: *out_reg = mmMC_SEQ_MISC_TIMING_LP; break; case mmMC_SEQ_MISC_TIMING2: *out_reg = mmMC_SEQ_MISC_TIMING2_LP; break; case mmMC_SEQ_PMG_DVS_CMD: *out_reg = mmMC_SEQ_PMG_DVS_CMD_LP; break; case mmMC_SEQ_PMG_DVS_CTL: *out_reg = mmMC_SEQ_PMG_DVS_CTL_LP; break; case mmMC_SEQ_RD_CTL_D0: *out_reg = mmMC_SEQ_RD_CTL_D0_LP; break; case mmMC_SEQ_RD_CTL_D1: *out_reg = mmMC_SEQ_RD_CTL_D1_LP; break; case mmMC_SEQ_WR_CTL_D0: *out_reg = mmMC_SEQ_WR_CTL_D0_LP; break; case mmMC_SEQ_WR_CTL_D1: *out_reg = mmMC_SEQ_WR_CTL_D1_LP; break; case mmMC_PMG_CMD_EMRS: *out_reg = mmMC_SEQ_PMG_CMD_EMRS_LP; break; case mmMC_PMG_CMD_MRS: *out_reg = mmMC_SEQ_PMG_CMD_MRS_LP; break; case mmMC_PMG_CMD_MRS1: *out_reg = mmMC_SEQ_PMG_CMD_MRS1_LP; break; case mmMC_SEQ_PMG_TIMING: *out_reg = mmMC_SEQ_PMG_TIMING_LP; break; case mmMC_PMG_CMD_MRS2: *out_reg = mmMC_SEQ_PMG_CMD_MRS2_LP; break; case mmMC_SEQ_WR_CTL_2: *out_reg = mmMC_SEQ_WR_CTL_2_LP; break; default: result = false; break; } return result; } static int ci_set_s0_mc_reg_index(struct ci_mc_reg_table *table) { uint32_t i; uint16_t address; for (i = 0; i < table->last; i++) { table->mc_reg_address[i].s0 = ci_check_s0_mc_reg_index(table->mc_reg_address[i].s1, &address) ? address : table->mc_reg_address[i].s1; } return 0; } static int ci_copy_vbios_smc_reg_table(const pp_atomctrl_mc_reg_table *table, struct ci_mc_reg_table *ni_table) { uint8_t i, j; PP_ASSERT_WITH_CODE((table->last <= SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE), "Invalid VramInfo table.", return -EINVAL); PP_ASSERT_WITH_CODE((table->num_entries <= MAX_AC_TIMING_ENTRIES), "Invalid VramInfo table.", return -EINVAL); for (i = 0; i < table->last; i++) ni_table->mc_reg_address[i].s1 = table->mc_reg_address[i].s1; ni_table->last = table->last; for (i = 0; i < table->num_entries; i++) { ni_table->mc_reg_table_entry[i].mclk_max = table->mc_reg_table_entry[i].mclk_max; for (j = 0; j < table->last; j++) { ni_table->mc_reg_table_entry[i].mc_data[j] = table->mc_reg_table_entry[i].mc_data[j]; } } ni_table->num_entries = table->num_entries; return 0; } static int ci_set_mc_special_registers(struct pp_hwmgr *hwmgr, struct ci_mc_reg_table *table) { uint8_t i, j, k; uint32_t temp_reg; struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); for (i = 0, j = table->last; i < table->last; i++) { PP_ASSERT_WITH_CODE((j < SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE), "Invalid VramInfo table.", return -EINVAL); switch (table->mc_reg_address[i].s1) { case mmMC_SEQ_MISC1: temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS); table->mc_reg_address[j].s1 = mmMC_PMG_CMD_EMRS; table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_EMRS_LP; for (k = 0; k < table->num_entries; k++) { table->mc_reg_table_entry[k].mc_data[j] = ((temp_reg & 0xffff0000)) | ((table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16); } j++; PP_ASSERT_WITH_CODE((j < SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE), "Invalid VramInfo table.", return -EINVAL); temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS); table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS; table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS_LP; for (k = 0; k < table->num_entries; k++) { table->mc_reg_table_entry[k].mc_data[j] = (temp_reg & 0xffff0000) | (table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff); if (!data->is_memory_gddr5) table->mc_reg_table_entry[k].mc_data[j] |= 0x100; } j++; if (!data->is_memory_gddr5) { PP_ASSERT_WITH_CODE((j < SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE), "Invalid VramInfo table.", return -EINVAL); table->mc_reg_address[j].s1 = mmMC_PMG_AUTO_CMD; table->mc_reg_address[j].s0 = mmMC_PMG_AUTO_CMD; for (k = 0; k < table->num_entries; k++) { table->mc_reg_table_entry[k].mc_data[j] = (table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16; } j++; } break; case mmMC_SEQ_RESERVE_M: temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1); table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS1; table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS1_LP; for (k = 0; k < table->num_entries; k++) { table->mc_reg_table_entry[k].mc_data[j] = (temp_reg & 0xffff0000) | (table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff); } j++; break; default: break; } } table->last = j; return 0; } static int ci_set_valid_flag(struct ci_mc_reg_table *table) { uint8_t i, j; for (i = 0; i < table->last; i++) { for (j = 1; j < table->num_entries; j++) { if (table->mc_reg_table_entry[j-1].mc_data[i] != table->mc_reg_table_entry[j].mc_data[i]) { table->validflag |= (1 << i); break; } } } return 0; } static int ci_initialize_mc_reg_table(struct pp_hwmgr *hwmgr) { int result; struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend); pp_atomctrl_mc_reg_table *table; struct ci_mc_reg_table *ni_table = &smu_data->mc_reg_table; uint8_t module_index = ci_get_memory_modile_index(hwmgr); table = kzalloc(sizeof(pp_atomctrl_mc_reg_table), GFP_KERNEL); if (NULL == table) return -ENOMEM; /* Program additional LP registers that are no longer programmed by VBIOS */ cgs_write_register(hwmgr->device, mmMC_SEQ_RAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RAS_TIMING)); cgs_write_register(hwmgr->device, mmMC_SEQ_CAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_CAS_TIMING)); cgs_write_register(hwmgr->device, mmMC_SEQ_DLL_STBY_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_DLL_STBY)); cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0)); cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1)); cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL)); cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD)); cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL)); cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING)); cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2)); cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_EMRS_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS)); cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS)); cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS1_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1)); cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0)); cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1)); cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0)); cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1)); cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_TIMING)); cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS2_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS2)); cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_2_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_2)); memset(table, 0x00, sizeof(pp_atomctrl_mc_reg_table)); result = atomctrl_initialize_mc_reg_table(hwmgr, module_index, table); if (0 == result) result = ci_copy_vbios_smc_reg_table(table, ni_table); if (0 == result) { ci_set_s0_mc_reg_index(ni_table); result = ci_set_mc_special_registers(hwmgr, ni_table); } if (0 == result) ci_set_valid_flag(ni_table); kfree(table); return result; } static bool ci_is_dpm_running(struct pp_hwmgr *hwmgr) { return ci_is_smc_ram_running(hwmgr); } static int ci_populate_requested_graphic_levels(struct pp_hwmgr *hwmgr, struct amd_pp_profile *request) { struct ci_smumgr *smu_data = (struct ci_smumgr *) (hwmgr->smu_backend); struct SMU7_Discrete_GraphicsLevel *levels = smu_data->smc_state_table.GraphicsLevel; uint32_t array = smu_data->dpm_table_start + offsetof(SMU7_Discrete_DpmTable, GraphicsLevel); uint32_t array_size = sizeof(struct SMU7_Discrete_GraphicsLevel) * SMU7_MAX_LEVELS_GRAPHICS; uint32_t i; for (i = 0; i < smu_data->smc_state_table.GraphicsDpmLevelCount; i++) { levels[i].ActivityLevel = cpu_to_be16(request->activity_threshold); levels[i].EnabledForActivity = 1; levels[i].UpH = request->up_hyst; levels[i].DownH = request->down_hyst; } return ci_copy_bytes_to_smc(hwmgr, array, (uint8_t *)levels, array_size, SMC_RAM_END); } static int ci_smu_init(struct pp_hwmgr *hwmgr) { int i; struct ci_smumgr *ci_priv = NULL; ci_priv = kzalloc(sizeof(struct ci_smumgr), GFP_KERNEL); if (ci_priv == NULL) return -ENOMEM; for (i = 0; i < SMU7_MAX_LEVELS_GRAPHICS; i++) ci_priv->activity_target[i] = 30; hwmgr->smu_backend = ci_priv; return 0; } static int ci_smu_fini(struct pp_hwmgr *hwmgr) { kfree(hwmgr->smu_backend); hwmgr->smu_backend = NULL; cgs_rel_firmware(hwmgr->device, CGS_UCODE_ID_SMU); return 0; } static int ci_start_smu(struct pp_hwmgr *hwmgr) { return 0; } const struct pp_smumgr_func ci_smu_funcs = { .smu_init = ci_smu_init, .smu_fini = ci_smu_fini, .start_smu = ci_start_smu, .check_fw_load_finish = NULL, .request_smu_load_fw = NULL, .request_smu_load_specific_fw = NULL, .send_msg_to_smc = ci_send_msg_to_smc, .send_msg_to_smc_with_parameter = ci_send_msg_to_smc_with_parameter, .download_pptable_settings = NULL, .upload_pptable_settings = NULL, .get_offsetof = ci_get_offsetof, .process_firmware_header = ci_process_firmware_header, .init_smc_table = ci_init_smc_table, .update_sclk_threshold = ci_update_sclk_threshold, .thermal_setup_fan_table = ci_thermal_setup_fan_table, .populate_all_graphic_levels = ci_populate_all_graphic_levels, .populate_all_memory_levels = ci_populate_all_memory_levels, .get_mac_definition = ci_get_mac_definition, .initialize_mc_reg_table = ci_initialize_mc_reg_table, .is_dpm_running = ci_is_dpm_running, .populate_requested_graphic_levels = ci_populate_requested_graphic_levels, };