bcmgenet.c 95.2 KB
Newer Older
1 2 3
/*
 * Broadcom GENET (Gigabit Ethernet) controller driver
 *
4
 * Copyright (c) 2014-2017 Broadcom
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#define pr_fmt(fmt)				"bcmgenet: " fmt

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/types.h>
#include <linux/fcntl.h>
#include <linux/interrupt.h>
#include <linux/string.h>
#include <linux/if_ether.h>
#include <linux/init.h>
#include <linux/errno.h>
#include <linux/delay.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
#include <linux/pm.h>
#include <linux/clk.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/of_net.h>
#include <linux/of_platform.h>
#include <net/arp.h>

#include <linux/mii.h>
#include <linux/ethtool.h>
#include <linux/netdevice.h>
#include <linux/inetdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/in.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <linux/phy.h>
45
#include <linux/platform_data/bcmgenet.h>
46 47 48 49 50 51 52 53 54 55 56

#include <asm/unaligned.h>

#include "bcmgenet.h"

/* Maximum number of hardware queues, downsized if needed */
#define GENET_MAX_MQ_CNT	4

/* Default highest priority queue for multi queue support */
#define GENET_Q0_PRIORITY	0

57 58
#define GENET_Q16_RX_BD_CNT	\
	(TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q)
59 60
#define GENET_Q16_TX_BD_CNT	\
	(TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q)
61 62 63 64 65 66 67 68 69 70 71 72 73 74

#define RX_BUF_LENGTH		2048
#define SKB_ALIGNMENT		32

/* Tx/Rx DMA register offset, skip 256 descriptors */
#define WORDS_PER_BD(p)		(p->hw_params->words_per_bd)
#define DMA_DESC_SIZE		(WORDS_PER_BD(priv) * sizeof(u32))

#define GENET_TDMA_REG_OFF	(priv->hw_params->tdma_offset + \
				TOTAL_DESC * DMA_DESC_SIZE)

#define GENET_RDMA_REG_OFF	(priv->hw_params->rdma_offset + \
				TOTAL_DESC * DMA_DESC_SIZE)

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
static inline void bcmgenet_writel(u32 value, void __iomem *offset)
{
	/* MIPS chips strapped for BE will automagically configure the
	 * peripheral registers for CPU-native byte order.
	 */
	if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
		__raw_writel(value, offset);
	else
		writel_relaxed(value, offset);
}

static inline u32 bcmgenet_readl(void __iomem *offset)
{
	if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
		return __raw_readl(offset);
	else
		return readl_relaxed(offset);
}

94
static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv,
95
					     void __iomem *d, u32 value)
96
{
97
	bcmgenet_writel(value, d + DMA_DESC_LENGTH_STATUS);
98 99 100
}

static inline u32 dmadesc_get_length_status(struct bcmgenet_priv *priv,
101
					    void __iomem *d)
102
{
103
	return bcmgenet_readl(d + DMA_DESC_LENGTH_STATUS);
104 105 106 107 108 109
}

static inline void dmadesc_set_addr(struct bcmgenet_priv *priv,
				    void __iomem *d,
				    dma_addr_t addr)
{
110
	bcmgenet_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO);
111 112 113

	/* Register writes to GISB bus can take couple hundred nanoseconds
	 * and are done for each packet, save these expensive writes unless
B
Brian Norris 已提交
114
	 * the platform is explicitly configured for 64-bits/LPAE.
115 116 117
	 */
#ifdef CONFIG_PHYS_ADDR_T_64BIT
	if (priv->hw_params->flags & GENET_HAS_40BITS)
118
		bcmgenet_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI);
119 120 121 122 123
#endif
}

/* Combined address + length/status setter */
static inline void dmadesc_set(struct bcmgenet_priv *priv,
124
			       void __iomem *d, dma_addr_t addr, u32 val)
125 126
{
	dmadesc_set_addr(priv, d, addr);
127
	dmadesc_set_length_status(priv, d, val);
128 129 130 131 132 133 134
}

static inline dma_addr_t dmadesc_get_addr(struct bcmgenet_priv *priv,
					  void __iomem *d)
{
	dma_addr_t addr;

135
	addr = bcmgenet_readl(d + DMA_DESC_ADDRESS_LO);
136 137 138

	/* Register writes to GISB bus can take couple hundred nanoseconds
	 * and are done for each packet, save these expensive writes unless
B
Brian Norris 已提交
139
	 * the platform is explicitly configured for 64-bits/LPAE.
140 141 142
	 */
#ifdef CONFIG_PHYS_ADDR_T_64BIT
	if (priv->hw_params->flags & GENET_HAS_40BITS)
143
		addr |= (u64)bcmgenet_readl(d + DMA_DESC_ADDRESS_HI) << 32;
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
#endif
	return addr;
}

#define GENET_VER_FMT	"%1d.%1d EPHY: 0x%04x"

#define GENET_MSG_DEFAULT	(NETIF_MSG_DRV | NETIF_MSG_PROBE | \
				NETIF_MSG_LINK)

static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv)
{
	if (GENET_IS_V1(priv))
		return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1);
	else
		return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL);
}

static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
{
	if (GENET_IS_V1(priv))
		bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1);
	else
		bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL);
}

/* These macros are defined to deal with register map change
 * between GENET1.1 and GENET2. Only those currently being used
 * by driver are defined.
 */
static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv)
{
	if (GENET_IS_V1(priv))
		return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1);
	else
178 179
		return bcmgenet_readl(priv->base +
				      priv->hw_params->tbuf_offset + TBUF_CTRL);
180 181 182 183 184 185 186
}

static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
{
	if (GENET_IS_V1(priv))
		bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1);
	else
187
		bcmgenet_writel(val, priv->base +
188 189 190 191 192 193 194 195
				priv->hw_params->tbuf_offset + TBUF_CTRL);
}

static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv)
{
	if (GENET_IS_V1(priv))
		return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1);
	else
196 197
		return bcmgenet_readl(priv->base +
				      priv->hw_params->tbuf_offset + TBUF_BP_MC);
198 199 200 201 202 203 204
}

static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val)
{
	if (GENET_IS_V1(priv))
		bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1);
	else
205
		bcmgenet_writel(val, priv->base +
206 207 208 209 210 211 212 213 214 215
				priv->hw_params->tbuf_offset + TBUF_BP_MC);
}

/* RX/TX DMA register accessors */
enum dma_reg {
	DMA_RING_CFG = 0,
	DMA_CTRL,
	DMA_STATUS,
	DMA_SCB_BURST_SIZE,
	DMA_ARB_CTRL,
216 217 218
	DMA_PRIORITY_0,
	DMA_PRIORITY_1,
	DMA_PRIORITY_2,
219 220 221 222 223 224 225 226
	DMA_INDEX2RING_0,
	DMA_INDEX2RING_1,
	DMA_INDEX2RING_2,
	DMA_INDEX2RING_3,
	DMA_INDEX2RING_4,
	DMA_INDEX2RING_5,
	DMA_INDEX2RING_6,
	DMA_INDEX2RING_7,
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
	DMA_RING0_TIMEOUT,
	DMA_RING1_TIMEOUT,
	DMA_RING2_TIMEOUT,
	DMA_RING3_TIMEOUT,
	DMA_RING4_TIMEOUT,
	DMA_RING5_TIMEOUT,
	DMA_RING6_TIMEOUT,
	DMA_RING7_TIMEOUT,
	DMA_RING8_TIMEOUT,
	DMA_RING9_TIMEOUT,
	DMA_RING10_TIMEOUT,
	DMA_RING11_TIMEOUT,
	DMA_RING12_TIMEOUT,
	DMA_RING13_TIMEOUT,
	DMA_RING14_TIMEOUT,
	DMA_RING15_TIMEOUT,
	DMA_RING16_TIMEOUT,
244 245 246 247 248 249 250 251
};

static const u8 bcmgenet_dma_regs_v3plus[] = {
	[DMA_RING_CFG]		= 0x00,
	[DMA_CTRL]		= 0x04,
	[DMA_STATUS]		= 0x08,
	[DMA_SCB_BURST_SIZE]	= 0x0C,
	[DMA_ARB_CTRL]		= 0x2C,
252 253 254
	[DMA_PRIORITY_0]	= 0x30,
	[DMA_PRIORITY_1]	= 0x34,
	[DMA_PRIORITY_2]	= 0x38,
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
	[DMA_RING0_TIMEOUT]	= 0x2C,
	[DMA_RING1_TIMEOUT]	= 0x30,
	[DMA_RING2_TIMEOUT]	= 0x34,
	[DMA_RING3_TIMEOUT]	= 0x38,
	[DMA_RING4_TIMEOUT]	= 0x3c,
	[DMA_RING5_TIMEOUT]	= 0x40,
	[DMA_RING6_TIMEOUT]	= 0x44,
	[DMA_RING7_TIMEOUT]	= 0x48,
	[DMA_RING8_TIMEOUT]	= 0x4c,
	[DMA_RING9_TIMEOUT]	= 0x50,
	[DMA_RING10_TIMEOUT]	= 0x54,
	[DMA_RING11_TIMEOUT]	= 0x58,
	[DMA_RING12_TIMEOUT]	= 0x5c,
	[DMA_RING13_TIMEOUT]	= 0x60,
	[DMA_RING14_TIMEOUT]	= 0x64,
	[DMA_RING15_TIMEOUT]	= 0x68,
	[DMA_RING16_TIMEOUT]	= 0x6C,
272 273 274 275 276 277 278 279
	[DMA_INDEX2RING_0]	= 0x70,
	[DMA_INDEX2RING_1]	= 0x74,
	[DMA_INDEX2RING_2]	= 0x78,
	[DMA_INDEX2RING_3]	= 0x7C,
	[DMA_INDEX2RING_4]	= 0x80,
	[DMA_INDEX2RING_5]	= 0x84,
	[DMA_INDEX2RING_6]	= 0x88,
	[DMA_INDEX2RING_7]	= 0x8C,
280 281 282 283 284 285 286 287
};

static const u8 bcmgenet_dma_regs_v2[] = {
	[DMA_RING_CFG]		= 0x00,
	[DMA_CTRL]		= 0x04,
	[DMA_STATUS]		= 0x08,
	[DMA_SCB_BURST_SIZE]	= 0x0C,
	[DMA_ARB_CTRL]		= 0x30,
288 289 290
	[DMA_PRIORITY_0]	= 0x34,
	[DMA_PRIORITY_1]	= 0x38,
	[DMA_PRIORITY_2]	= 0x3C,
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
	[DMA_RING0_TIMEOUT]	= 0x2C,
	[DMA_RING1_TIMEOUT]	= 0x30,
	[DMA_RING2_TIMEOUT]	= 0x34,
	[DMA_RING3_TIMEOUT]	= 0x38,
	[DMA_RING4_TIMEOUT]	= 0x3c,
	[DMA_RING5_TIMEOUT]	= 0x40,
	[DMA_RING6_TIMEOUT]	= 0x44,
	[DMA_RING7_TIMEOUT]	= 0x48,
	[DMA_RING8_TIMEOUT]	= 0x4c,
	[DMA_RING9_TIMEOUT]	= 0x50,
	[DMA_RING10_TIMEOUT]	= 0x54,
	[DMA_RING11_TIMEOUT]	= 0x58,
	[DMA_RING12_TIMEOUT]	= 0x5c,
	[DMA_RING13_TIMEOUT]	= 0x60,
	[DMA_RING14_TIMEOUT]	= 0x64,
	[DMA_RING15_TIMEOUT]	= 0x68,
	[DMA_RING16_TIMEOUT]	= 0x6C,
308 309 310 311 312 313 314
};

static const u8 bcmgenet_dma_regs_v1[] = {
	[DMA_CTRL]		= 0x00,
	[DMA_STATUS]		= 0x04,
	[DMA_SCB_BURST_SIZE]	= 0x0C,
	[DMA_ARB_CTRL]		= 0x30,
315 316 317
	[DMA_PRIORITY_0]	= 0x34,
	[DMA_PRIORITY_1]	= 0x38,
	[DMA_PRIORITY_2]	= 0x3C,
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
	[DMA_RING0_TIMEOUT]	= 0x2C,
	[DMA_RING1_TIMEOUT]	= 0x30,
	[DMA_RING2_TIMEOUT]	= 0x34,
	[DMA_RING3_TIMEOUT]	= 0x38,
	[DMA_RING4_TIMEOUT]	= 0x3c,
	[DMA_RING5_TIMEOUT]	= 0x40,
	[DMA_RING6_TIMEOUT]	= 0x44,
	[DMA_RING7_TIMEOUT]	= 0x48,
	[DMA_RING8_TIMEOUT]	= 0x4c,
	[DMA_RING9_TIMEOUT]	= 0x50,
	[DMA_RING10_TIMEOUT]	= 0x54,
	[DMA_RING11_TIMEOUT]	= 0x58,
	[DMA_RING12_TIMEOUT]	= 0x5c,
	[DMA_RING13_TIMEOUT]	= 0x60,
	[DMA_RING14_TIMEOUT]	= 0x64,
	[DMA_RING15_TIMEOUT]	= 0x68,
	[DMA_RING16_TIMEOUT]	= 0x6C,
335 336 337 338 339 340 341 342 343 344 345
};

/* Set at runtime once bcmgenet version is known */
static const u8 *bcmgenet_dma_regs;

static inline struct bcmgenet_priv *dev_to_priv(struct device *dev)
{
	return netdev_priv(dev_get_drvdata(dev));
}

static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv,
346
				      enum dma_reg r)
347
{
348 349
	return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
			      DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
350 351 352 353 354
}

static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv,
					u32 val, enum dma_reg r)
{
355
	bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
356 357 358 359
			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
}

static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv,
360
				      enum dma_reg r)
361
{
362 363
	return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
			      DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
364 365 366 367 368
}

static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv,
					u32 val, enum dma_reg r)
{
369
	bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
}

/* RDMA/TDMA ring registers and accessors
 * we merge the common fields and just prefix with T/D the registers
 * having different meaning depending on the direction
 */
enum dma_ring_reg {
	TDMA_READ_PTR = 0,
	RDMA_WRITE_PTR = TDMA_READ_PTR,
	TDMA_READ_PTR_HI,
	RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI,
	TDMA_CONS_INDEX,
	RDMA_PROD_INDEX = TDMA_CONS_INDEX,
	TDMA_PROD_INDEX,
	RDMA_CONS_INDEX = TDMA_PROD_INDEX,
	DMA_RING_BUF_SIZE,
	DMA_START_ADDR,
	DMA_START_ADDR_HI,
	DMA_END_ADDR,
	DMA_END_ADDR_HI,
	DMA_MBUF_DONE_THRESH,
	TDMA_FLOW_PERIOD,
	RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD,
	TDMA_WRITE_PTR,
	RDMA_READ_PTR = TDMA_WRITE_PTR,
	TDMA_WRITE_PTR_HI,
	RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI
};

/* GENET v4 supports 40-bits pointer addressing
 * for obvious reasons the LO and HI word parts
 * are contiguous, but this offsets the other
 * registers.
 */
static const u8 genet_dma_ring_regs_v4[] = {
	[TDMA_READ_PTR]			= 0x00,
	[TDMA_READ_PTR_HI]		= 0x04,
	[TDMA_CONS_INDEX]		= 0x08,
	[TDMA_PROD_INDEX]		= 0x0C,
	[DMA_RING_BUF_SIZE]		= 0x10,
	[DMA_START_ADDR]		= 0x14,
	[DMA_START_ADDR_HI]		= 0x18,
	[DMA_END_ADDR]			= 0x1C,
	[DMA_END_ADDR_HI]		= 0x20,
	[DMA_MBUF_DONE_THRESH]		= 0x24,
	[TDMA_FLOW_PERIOD]		= 0x28,
	[TDMA_WRITE_PTR]		= 0x2C,
	[TDMA_WRITE_PTR_HI]		= 0x30,
};

static const u8 genet_dma_ring_regs_v123[] = {
	[TDMA_READ_PTR]			= 0x00,
	[TDMA_CONS_INDEX]		= 0x04,
	[TDMA_PROD_INDEX]		= 0x08,
	[DMA_RING_BUF_SIZE]		= 0x0C,
	[DMA_START_ADDR]		= 0x10,
	[DMA_END_ADDR]			= 0x14,
	[DMA_MBUF_DONE_THRESH]		= 0x18,
	[TDMA_FLOW_PERIOD]		= 0x1C,
	[TDMA_WRITE_PTR]		= 0x20,
};

/* Set at runtime once GENET version is known */
static const u8 *genet_dma_ring_regs;

static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv,
437 438
					   unsigned int ring,
					   enum dma_ring_reg r)
439
{
440 441 442
	return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
			      (DMA_RING_SIZE * ring) +
			      genet_dma_ring_regs[r]);
443 444 445
}

static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv,
446 447
					     unsigned int ring, u32 val,
					     enum dma_ring_reg r)
448
{
449
	bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
450 451 452 453 454
			(DMA_RING_SIZE * ring) +
			genet_dma_ring_regs[r]);
}

static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv,
455 456
					   unsigned int ring,
					   enum dma_ring_reg r)
457
{
458 459 460
	return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
			      (DMA_RING_SIZE * ring) +
			      genet_dma_ring_regs[r]);
461 462 463
}

static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv,
464 465
					     unsigned int ring, u32 val,
					     enum dma_ring_reg r)
466
{
467
	bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
468 469 470 471
			(DMA_RING_SIZE * ring) +
			genet_dma_ring_regs[r]);
}

472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
static int bcmgenet_begin(struct net_device *dev)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);

	/* Turn on the clock */
	return clk_prepare_enable(priv->clk);
}

static void bcmgenet_complete(struct net_device *dev)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);

	/* Turn off the clock */
	clk_disable_unprepare(priv->clk);
}

488 489
static int bcmgenet_get_link_ksettings(struct net_device *dev,
				       struct ethtool_link_ksettings *cmd)
490 491 492 493
{
	if (!netif_running(dev))
		return -EINVAL;

494
	if (!dev->phydev)
495 496
		return -ENODEV;

497
	phy_ethtool_ksettings_get(dev->phydev, cmd);
498 499

	return 0;
500 501
}

502 503
static int bcmgenet_set_link_ksettings(struct net_device *dev,
				       const struct ethtool_link_ksettings *cmd)
504 505 506 507
{
	if (!netif_running(dev))
		return -EINVAL;

508
	if (!dev->phydev)
509 510
		return -ENODEV;

511
	return phy_ethtool_ksettings_set(dev->phydev, cmd);
512 513
}

514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
static int bcmgenet_set_rx_csum(struct net_device *dev,
				netdev_features_t wanted)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
	u32 rbuf_chk_ctrl;
	bool rx_csum_en;

	rx_csum_en = !!(wanted & NETIF_F_RXCSUM);

	rbuf_chk_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL);

	/* enable rx checksumming */
	if (rx_csum_en)
		rbuf_chk_ctrl |= RBUF_RXCHK_EN;
	else
		rbuf_chk_ctrl &= ~RBUF_RXCHK_EN;
	priv->desc_rxchk_en = rx_csum_en;
531 532 533 534 535 536 537 538 539

	/* If UniMAC forwards CRC, we need to skip over it to get
	 * a valid CHK bit to be set in the per-packet status word
	*/
	if (rx_csum_en && priv->crc_fwd_en)
		rbuf_chk_ctrl |= RBUF_SKIP_FCS;
	else
		rbuf_chk_ctrl &= ~RBUF_SKIP_FCS;

540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
	bcmgenet_rbuf_writel(priv, rbuf_chk_ctrl, RBUF_CHK_CTRL);

	return 0;
}

static int bcmgenet_set_tx_csum(struct net_device *dev,
				netdev_features_t wanted)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
	bool desc_64b_en;
	u32 tbuf_ctrl, rbuf_ctrl;

	tbuf_ctrl = bcmgenet_tbuf_ctrl_get(priv);
	rbuf_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CTRL);

	desc_64b_en = !!(wanted & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM));

	/* enable 64 bytes descriptor in both directions (RBUF and TBUF) */
	if (desc_64b_en) {
		tbuf_ctrl |= RBUF_64B_EN;
		rbuf_ctrl |= RBUF_64B_EN;
	} else {
		tbuf_ctrl &= ~RBUF_64B_EN;
		rbuf_ctrl &= ~RBUF_64B_EN;
	}
	priv->desc_64b_en = desc_64b_en;

	bcmgenet_tbuf_ctrl_set(priv, tbuf_ctrl);
	bcmgenet_rbuf_writel(priv, rbuf_ctrl, RBUF_CTRL);

	return 0;
}

static int bcmgenet_set_features(struct net_device *dev,
574
				 netdev_features_t features)
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
{
	netdev_features_t changed = features ^ dev->features;
	netdev_features_t wanted = dev->wanted_features;
	int ret = 0;

	if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))
		ret = bcmgenet_set_tx_csum(dev, wanted);
	if (changed & (NETIF_F_RXCSUM))
		ret = bcmgenet_set_rx_csum(dev, wanted);

	return ret;
}

static u32 bcmgenet_get_msglevel(struct net_device *dev)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);

	return priv->msg_enable;
}

static void bcmgenet_set_msglevel(struct net_device *dev, u32 level)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);

	priv->msg_enable = level;
}

602 603 604 605 606 607 608 609
static int bcmgenet_get_coalesce(struct net_device *dev,
				 struct ethtool_coalesce *ec)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);

	ec->tx_max_coalesced_frames =
		bcmgenet_tdma_ring_readl(priv, DESC_INDEX,
					 DMA_MBUF_DONE_THRESH);
610 611 612 613 614
	ec->rx_max_coalesced_frames =
		bcmgenet_rdma_ring_readl(priv, DESC_INDEX,
					 DMA_MBUF_DONE_THRESH);
	ec->rx_coalesce_usecs =
		bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT) * 8192 / 1000;
615 616 617 618 619 620 621 622 623

	return 0;
}

static int bcmgenet_set_coalesce(struct net_device *dev,
				 struct ethtool_coalesce *ec)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
	unsigned int i;
624
	u32 reg;
625

626 627 628 629
	/* Base system clock is 125Mhz, DMA timeout is this reference clock
	 * divided by 1024, which yields roughly 8.192us, our maximum value
	 * has to fit in the DMA_TIMEOUT_MASK (16 bits)
	 */
630
	if (ec->tx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
631 632 633 634 635 636
	    ec->tx_max_coalesced_frames == 0 ||
	    ec->rx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
	    ec->rx_coalesce_usecs > (DMA_TIMEOUT_MASK * 8) + 1)
		return -EINVAL;

	if (ec->rx_coalesce_usecs == 0 && ec->rx_max_coalesced_frames == 0)
637 638 639 640
		return -EINVAL;

	/* GENET TDMA hardware does not support a configurable timeout, but will
	 * always generate an interrupt either after MBDONE packets have been
641
	 * transmitted, or when the ring is empty.
642 643
	 */
	if (ec->tx_coalesce_usecs || ec->tx_coalesce_usecs_high ||
644
	    ec->tx_coalesce_usecs_irq || ec->tx_coalesce_usecs_low)
645 646 647 648 649 650 651 652 653 654 655 656 657
		return -EOPNOTSUPP;

	/* Program all TX queues with the same values, as there is no
	 * ethtool knob to do coalescing on a per-queue basis
	 */
	for (i = 0; i < priv->hw_params->tx_queues; i++)
		bcmgenet_tdma_ring_writel(priv, i,
					  ec->tx_max_coalesced_frames,
					  DMA_MBUF_DONE_THRESH);
	bcmgenet_tdma_ring_writel(priv, DESC_INDEX,
				  ec->tx_max_coalesced_frames,
				  DMA_MBUF_DONE_THRESH);

658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
	for (i = 0; i < priv->hw_params->rx_queues; i++) {
		bcmgenet_rdma_ring_writel(priv, i,
					  ec->rx_max_coalesced_frames,
					  DMA_MBUF_DONE_THRESH);

		reg = bcmgenet_rdma_readl(priv, DMA_RING0_TIMEOUT + i);
		reg &= ~DMA_TIMEOUT_MASK;
		reg |= DIV_ROUND_UP(ec->rx_coalesce_usecs * 1000, 8192);
		bcmgenet_rdma_writel(priv, reg, DMA_RING0_TIMEOUT + i);
	}

	bcmgenet_rdma_ring_writel(priv, DESC_INDEX,
				  ec->rx_max_coalesced_frames,
				  DMA_MBUF_DONE_THRESH);

	reg = bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT);
	reg &= ~DMA_TIMEOUT_MASK;
	reg |= DIV_ROUND_UP(ec->rx_coalesce_usecs * 1000, 8192);
	bcmgenet_rdma_writel(priv, reg, DMA_RING16_TIMEOUT);

678 679 680
	return 0;
}

681 682 683 684 685 686 687
/* standard ethtool support functions. */
enum bcmgenet_stat_type {
	BCMGENET_STAT_NETDEV = -1,
	BCMGENET_STAT_MIB_RX,
	BCMGENET_STAT_MIB_TX,
	BCMGENET_STAT_RUNT,
	BCMGENET_STAT_MISC,
688
	BCMGENET_STAT_SOFT,
689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
};

struct bcmgenet_stats {
	char stat_string[ETH_GSTRING_LEN];
	int stat_sizeof;
	int stat_offset;
	enum bcmgenet_stat_type type;
	/* reg offset from UMAC base for misc counters */
	u16 reg_offset;
};

#define STAT_NETDEV(m) { \
	.stat_string = __stringify(m), \
	.stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \
	.stat_offset = offsetof(struct net_device_stats, m), \
	.type = BCMGENET_STAT_NETDEV, \
}

#define STAT_GENET_MIB(str, m, _type) { \
	.stat_string = str, \
	.stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
	.stat_offset = offsetof(struct bcmgenet_priv, m), \
	.type = _type, \
}

#define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX)
#define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX)
#define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT)
717
#define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT)
718 719 720 721 722 723 724 725 726

#define STAT_GENET_MISC(str, m, offset) { \
	.stat_string = str, \
	.stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
	.stat_offset = offsetof(struct bcmgenet_priv, m), \
	.type = BCMGENET_STAT_MISC, \
	.reg_offset = offset, \
}

727 728 729 730 731 732 733 734 735 736 737 738 739
#define STAT_GENET_Q(num) \
	STAT_GENET_SOFT_MIB("txq" __stringify(num) "_packets", \
			tx_rings[num].packets), \
	STAT_GENET_SOFT_MIB("txq" __stringify(num) "_bytes", \
			tx_rings[num].bytes), \
	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_bytes", \
			rx_rings[num].bytes),	 \
	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_packets", \
			rx_rings[num].packets), \
	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_errors", \
			rx_rings[num].errors), \
	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_dropped", \
			rx_rings[num].dropped)
740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826

/* There is a 0xC gap between the end of RX and beginning of TX stats and then
 * between the end of TX stats and the beginning of the RX RUNT
 */
#define BCMGENET_STAT_OFFSET	0xc

/* Hardware counters must be kept in sync because the order/offset
 * is important here (order in structure declaration = order in hardware)
 */
static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = {
	/* general stats */
	STAT_NETDEV(rx_packets),
	STAT_NETDEV(tx_packets),
	STAT_NETDEV(rx_bytes),
	STAT_NETDEV(tx_bytes),
	STAT_NETDEV(rx_errors),
	STAT_NETDEV(tx_errors),
	STAT_NETDEV(rx_dropped),
	STAT_NETDEV(tx_dropped),
	STAT_NETDEV(multicast),
	/* UniMAC RSV counters */
	STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
	STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
	STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
	STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
	STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
	STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
	STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
	STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
	STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
	STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
	STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt),
	STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes),
	STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca),
	STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca),
	STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs),
	STAT_GENET_MIB_RX("rx_control", mib.rx.cf),
	STAT_GENET_MIB_RX("rx_pause", mib.rx.pf),
	STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo),
	STAT_GENET_MIB_RX("rx_align", mib.rx.aln),
	STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr),
	STAT_GENET_MIB_RX("rx_code", mib.rx.cde),
	STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr),
	STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr),
	STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr),
	STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue),
	STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok),
	STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc),
	STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp),
	STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc),
	/* UniMAC TSV counters */
	STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
	STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
	STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
	STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
	STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
	STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
	STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
	STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
	STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
	STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
	STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts),
	STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca),
	STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca),
	STAT_GENET_MIB_TX("tx_pause", mib.tx.pf),
	STAT_GENET_MIB_TX("tx_control", mib.tx.cf),
	STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs),
	STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr),
	STAT_GENET_MIB_TX("tx_defer", mib.tx.drf),
	STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf),
	STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl),
	STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl),
	STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl),
	STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl),
	STAT_GENET_MIB_TX("tx_frags", mib.tx.frg),
	STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl),
	STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr),
	STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes),
	STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok),
	STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc),
	/* UniMAC RUNT counters */
	STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
	STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
	STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
	STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
	/* Misc UniMAC counters */
	STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt,
827 828 829
			UMAC_RBUF_OVFL_CNT_V1),
	STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt,
			UMAC_RBUF_ERR_CNT_V1),
830
	STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT),
831 832 833
	STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed),
	STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed),
	STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed),
834 835 836 837 838 839
	/* Per TX queues */
	STAT_GENET_Q(0),
	STAT_GENET_Q(1),
	STAT_GENET_Q(2),
	STAT_GENET_Q(3),
	STAT_GENET_Q(16),
840 841 842 843 844
};

#define BCMGENET_STATS_LEN	ARRAY_SIZE(bcmgenet_gstrings_stats)

static void bcmgenet_get_drvinfo(struct net_device *dev,
845
				 struct ethtool_drvinfo *info)
846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
{
	strlcpy(info->driver, "bcmgenet", sizeof(info->driver));
	strlcpy(info->version, "v2.0", sizeof(info->version));
}

static int bcmgenet_get_sset_count(struct net_device *dev, int string_set)
{
	switch (string_set) {
	case ETH_SS_STATS:
		return BCMGENET_STATS_LEN;
	default:
		return -EOPNOTSUPP;
	}
}

861 862
static void bcmgenet_get_strings(struct net_device *dev, u32 stringset,
				 u8 *data)
863 864 865 866 867 868 869
{
	int i;

	switch (stringset) {
	case ETH_SS_STATS:
		for (i = 0; i < BCMGENET_STATS_LEN; i++) {
			memcpy(data + i * ETH_GSTRING_LEN,
870 871
			       bcmgenet_gstrings_stats[i].stat_string,
			       ETH_GSTRING_LEN);
872 873 874 875 876
		}
		break;
	}
}

877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
static u32 bcmgenet_update_stat_misc(struct bcmgenet_priv *priv, u16 offset)
{
	u16 new_offset;
	u32 val;

	switch (offset) {
	case UMAC_RBUF_OVFL_CNT_V1:
		if (GENET_IS_V2(priv))
			new_offset = RBUF_OVFL_CNT_V2;
		else
			new_offset = RBUF_OVFL_CNT_V3PLUS;

		val = bcmgenet_rbuf_readl(priv,	new_offset);
		/* clear if overflowed */
		if (val == ~0)
			bcmgenet_rbuf_writel(priv, 0, new_offset);
		break;
	case UMAC_RBUF_ERR_CNT_V1:
		if (GENET_IS_V2(priv))
			new_offset = RBUF_ERR_CNT_V2;
		else
			new_offset = RBUF_ERR_CNT_V3PLUS;

		val = bcmgenet_rbuf_readl(priv,	new_offset);
		/* clear if overflowed */
		if (val == ~0)
			bcmgenet_rbuf_writel(priv, 0, new_offset);
		break;
	default:
		val = bcmgenet_umac_readl(priv, offset);
		/* clear if overflowed */
		if (val == ~0)
			bcmgenet_umac_writel(priv, 0, offset);
		break;
	}

	return val;
}

916 917 918 919 920 921 922 923 924 925 926 927 928
static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv)
{
	int i, j = 0;

	for (i = 0; i < BCMGENET_STATS_LEN; i++) {
		const struct bcmgenet_stats *s;
		u8 offset = 0;
		u32 val = 0;
		char *p;

		s = &bcmgenet_gstrings_stats[i];
		switch (s->type) {
		case BCMGENET_STAT_NETDEV:
929
		case BCMGENET_STAT_SOFT:
930 931
			continue;
		case BCMGENET_STAT_RUNT:
932 933 934 935 936 937
			offset += BCMGENET_STAT_OFFSET;
			/* fall through */
		case BCMGENET_STAT_MIB_TX:
			offset += BCMGENET_STAT_OFFSET;
			/* fall through */
		case BCMGENET_STAT_MIB_RX:
938 939
			val = bcmgenet_umac_readl(priv,
						  UMAC_MIB_START + j + offset);
940
			offset = 0;	/* Reset Offset */
941 942
			break;
		case BCMGENET_STAT_MISC:
943 944 945 946 947 948 949 950 951 952
			if (GENET_IS_V1(priv)) {
				val = bcmgenet_umac_readl(priv, s->reg_offset);
				/* clear if overflowed */
				if (val == ~0)
					bcmgenet_umac_writel(priv, 0,
							     s->reg_offset);
			} else {
				val = bcmgenet_update_stat_misc(priv,
								s->reg_offset);
			}
953 954 955 956 957 958 959 960 961 962
			break;
		}

		j += s->stat_sizeof;
		p = (char *)priv + s->stat_offset;
		*(u32 *)p = val;
	}
}

static void bcmgenet_get_ethtool_stats(struct net_device *dev,
963 964
				       struct ethtool_stats *stats,
				       u64 *data)
965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
	int i;

	if (netif_running(dev))
		bcmgenet_update_mib_counters(priv);

	for (i = 0; i < BCMGENET_STATS_LEN; i++) {
		const struct bcmgenet_stats *s;
		char *p;

		s = &bcmgenet_gstrings_stats[i];
		if (s->type == BCMGENET_STAT_NETDEV)
			p = (char *)&dev->stats;
		else
			p = (char *)priv;
		p += s->stat_offset;
982 983 984 985 986
		if (sizeof(unsigned long) != sizeof(u32) &&
		    s->stat_sizeof == sizeof(unsigned long))
			data[i] = *(unsigned long *)p;
		else
			data[i] = *(u32 *)p;
987 988 989
	}
}

F
Florian Fainelli 已提交
990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
static void bcmgenet_eee_enable_set(struct net_device *dev, bool enable)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
	u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL;
	u32 reg;

	if (enable && !priv->clk_eee_enabled) {
		clk_prepare_enable(priv->clk_eee);
		priv->clk_eee_enabled = true;
	}

	reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL);
	if (enable)
		reg |= EEE_EN;
	else
		reg &= ~EEE_EN;
	bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL);

	/* Enable EEE and switch to a 27Mhz clock automatically */
1009
	reg = bcmgenet_readl(priv->base + off);
F
Florian Fainelli 已提交
1010 1011 1012 1013
	if (enable)
		reg |= TBUF_EEE_EN | TBUF_PM_EN;
	else
		reg &= ~(TBUF_EEE_EN | TBUF_PM_EN);
1014
	bcmgenet_writel(reg, priv->base + off);
F
Florian Fainelli 已提交
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040

	/* Do the same for thing for RBUF */
	reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL);
	if (enable)
		reg |= RBUF_EEE_EN | RBUF_PM_EN;
	else
		reg &= ~(RBUF_EEE_EN | RBUF_PM_EN);
	bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL);

	if (!enable && priv->clk_eee_enabled) {
		clk_disable_unprepare(priv->clk_eee);
		priv->clk_eee_enabled = false;
	}

	priv->eee.eee_enabled = enable;
	priv->eee.eee_active = enable;
}

static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
	struct ethtool_eee *p = &priv->eee;

	if (GENET_IS_V1(priv))
		return -EOPNOTSUPP;

1041 1042 1043
	if (!dev->phydev)
		return -ENODEV;

F
Florian Fainelli 已提交
1044 1045 1046 1047
	e->eee_enabled = p->eee_enabled;
	e->eee_active = p->eee_active;
	e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER);

1048
	return phy_ethtool_get_eee(dev->phydev, e);
F
Florian Fainelli 已提交
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
}

static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
	struct ethtool_eee *p = &priv->eee;
	int ret = 0;

	if (GENET_IS_V1(priv))
		return -EOPNOTSUPP;

1060 1061 1062
	if (!dev->phydev)
		return -ENODEV;

F
Florian Fainelli 已提交
1063 1064 1065 1066 1067
	p->eee_enabled = e->eee_enabled;

	if (!p->eee_enabled) {
		bcmgenet_eee_enable_set(dev, false);
	} else {
1068
		ret = phy_init_eee(dev->phydev, 0);
F
Florian Fainelli 已提交
1069 1070 1071 1072 1073 1074 1075 1076 1077
		if (ret) {
			netif_err(priv, hw, dev, "EEE initialization failed\n");
			return ret;
		}

		bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER);
		bcmgenet_eee_enable_set(dev, true);
	}

1078
	return phy_ethtool_set_eee(dev->phydev, e);
F
Florian Fainelli 已提交
1079 1080
}

1081
/* standard ethtool support functions. */
1082
static const struct ethtool_ops bcmgenet_ethtool_ops = {
1083 1084
	.begin			= bcmgenet_begin,
	.complete		= bcmgenet_complete,
1085 1086 1087 1088 1089 1090 1091
	.get_strings		= bcmgenet_get_strings,
	.get_sset_count		= bcmgenet_get_sset_count,
	.get_ethtool_stats	= bcmgenet_get_ethtool_stats,
	.get_drvinfo		= bcmgenet_get_drvinfo,
	.get_link		= ethtool_op_get_link,
	.get_msglevel		= bcmgenet_get_msglevel,
	.set_msglevel		= bcmgenet_set_msglevel,
1092 1093
	.get_wol		= bcmgenet_get_wol,
	.set_wol		= bcmgenet_set_wol,
F
Florian Fainelli 已提交
1094 1095
	.get_eee		= bcmgenet_get_eee,
	.set_eee		= bcmgenet_set_eee,
1096
	.nway_reset		= phy_ethtool_nway_reset,
1097 1098
	.get_coalesce		= bcmgenet_get_coalesce,
	.set_coalesce		= bcmgenet_set_coalesce,
1099 1100
	.get_link_ksettings	= bcmgenet_get_link_ksettings,
	.set_link_ksettings	= bcmgenet_set_link_ksettings,
1101 1102 1103
};

/* Power down the unimac, based on mode. */
1104
static int bcmgenet_power_down(struct bcmgenet_priv *priv,
1105 1106
				enum bcmgenet_power_mode mode)
{
1107
	int ret = 0;
1108 1109 1110 1111
	u32 reg;

	switch (mode) {
	case GENET_POWER_CABLE_SENSE:
1112
		phy_detach(priv->dev->phydev);
1113 1114
		break;

1115
	case GENET_POWER_WOL_MAGIC:
1116
		ret = bcmgenet_wol_power_down_cfg(priv, mode);
1117 1118
		break;

1119 1120 1121 1122
	case GENET_POWER_PASSIVE:
		/* Power down LED */
		if (priv->hw_params->flags & GENET_HAS_EXT) {
			reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
			if (GENET_IS_V5(priv))
				reg |= EXT_PWR_DOWN_PHY_EN |
				       EXT_PWR_DOWN_PHY_RD |
				       EXT_PWR_DOWN_PHY_SD |
				       EXT_PWR_DOWN_PHY_RX |
				       EXT_PWR_DOWN_PHY_TX |
				       EXT_IDDQ_GLBL_PWR;
			else
				reg |= EXT_PWR_DOWN_PHY;

			reg |= (EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1134
			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1135 1136

			bcmgenet_phy_power_set(priv->dev, false);
1137 1138 1139 1140 1141
		}
		break;
	default:
		break;
	}
1142 1143

	return 0;
1144 1145 1146
}

static void bcmgenet_power_up(struct bcmgenet_priv *priv,
1147
			      enum bcmgenet_power_mode mode)
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
{
	u32 reg;

	if (!(priv->hw_params->flags & GENET_HAS_EXT))
		return;

	reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);

	switch (mode) {
	case GENET_POWER_PASSIVE:
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
		reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
		if (GENET_IS_V5(priv)) {
			reg &= ~(EXT_PWR_DOWN_PHY_EN |
				 EXT_PWR_DOWN_PHY_RD |
				 EXT_PWR_DOWN_PHY_SD |
				 EXT_PWR_DOWN_PHY_RX |
				 EXT_PWR_DOWN_PHY_TX |
				 EXT_IDDQ_GLBL_PWR);
			reg |=   EXT_PHY_RESET;
			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
			mdelay(1);

			reg &=  ~EXT_PHY_RESET;
		} else {
			reg &= ~EXT_PWR_DOWN_PHY;
			reg |= EXT_PWR_DN_EN_LD;
		}
		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
		bcmgenet_phy_power_set(priv->dev, true);
		break;

1179 1180
	case GENET_POWER_CABLE_SENSE:
		/* enable APD */
1181 1182 1183 1184
		if (!GENET_IS_V5(priv)) {
			reg |= EXT_PWR_DN_EN_LD;
			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
		}
1185
		break;
1186 1187 1188
	case GENET_POWER_WOL_MAGIC:
		bcmgenet_wol_power_up_cfg(priv, mode);
		return;
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
	default:
		break;
	}
}

/* ioctl handle special commands that are not present in ethtool. */
static int bcmgenet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
	if (!netif_running(dev))
		return -EINVAL;

1200
	if (!dev->phydev)
1201
		return -ENODEV;
1202

1203
	return phy_mii_ioctl(dev->phydev, rq, cmd);
1204 1205 1206 1207 1208 1209 1210 1211 1212
}

static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv,
					 struct bcmgenet_tx_ring *ring)
{
	struct enet_cb *tx_cb_ptr;

	tx_cb_ptr = ring->cbs;
	tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1213

1214 1215 1216 1217 1218 1219 1220 1221 1222
	/* Advancing local write pointer */
	if (ring->write_ptr == ring->end_ptr)
		ring->write_ptr = ring->cb_ptr;
	else
		ring->write_ptr++;

	return tx_cb_ptr;
}

1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
static struct enet_cb *bcmgenet_put_txcb(struct bcmgenet_priv *priv,
					 struct bcmgenet_tx_ring *ring)
{
	struct enet_cb *tx_cb_ptr;

	tx_cb_ptr = ring->cbs;
	tx_cb_ptr += ring->write_ptr - ring->cb_ptr;

	/* Rewinding local write pointer */
	if (ring->write_ptr == ring->cb_ptr)
		ring->write_ptr = ring->end_ptr;
	else
		ring->write_ptr--;

	return tx_cb_ptr;
}

1240 1241
static inline void bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring *ring)
{
1242
	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1243 1244 1245 1246 1247
				 INTRL2_CPU_MASK_SET);
}

static inline void bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring *ring)
{
1248
	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
				 INTRL2_CPU_MASK_CLEAR);
}

static inline void bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring *ring)
{
	bcmgenet_intrl2_1_writel(ring->priv,
				 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
				 INTRL2_CPU_MASK_SET);
}

static inline void bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring *ring)
{
	bcmgenet_intrl2_1_writel(ring->priv,
				 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
				 INTRL2_CPU_MASK_CLEAR);
}

1266
static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring *ring)
1267
{
1268
	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1269
				 INTRL2_CPU_MASK_SET);
1270 1271
}

1272
static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring *ring)
1273
{
1274
	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1275
				 INTRL2_CPU_MASK_CLEAR);
1276 1277
}

1278
static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring *ring)
1279
{
1280
	bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1281
				 INTRL2_CPU_MASK_CLEAR);
1282 1283
}

1284
static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring *ring)
1285
{
1286
	bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1287
				 INTRL2_CPU_MASK_SET);
1288 1289
}

1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
/* Simple helper to free a transmit control block's resources
 * Returns an skb when the last transmit control block associated with the
 * skb is freed.  The skb should be freed by the caller if necessary.
 */
static struct sk_buff *bcmgenet_free_tx_cb(struct device *dev,
					   struct enet_cb *cb)
{
	struct sk_buff *skb;

	skb = cb->skb;

	if (skb) {
		cb->skb = NULL;
		if (cb == GENET_CB(skb)->first_cb)
			dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
					 dma_unmap_len(cb, dma_len),
					 DMA_TO_DEVICE);
		else
			dma_unmap_page(dev, dma_unmap_addr(cb, dma_addr),
				       dma_unmap_len(cb, dma_len),
				       DMA_TO_DEVICE);
		dma_unmap_addr_set(cb, dma_addr, 0);

		if (cb == GENET_CB(skb)->last_cb)
			return skb;

	} else if (dma_unmap_addr(cb, dma_addr)) {
		dma_unmap_page(dev,
			       dma_unmap_addr(cb, dma_addr),
			       dma_unmap_len(cb, dma_len),
			       DMA_TO_DEVICE);
		dma_unmap_addr_set(cb, dma_addr, 0);
	}

	return 0;
}

/* Simple helper to free a receive control block's resources */
static struct sk_buff *bcmgenet_free_rx_cb(struct device *dev,
					   struct enet_cb *cb)
{
	struct sk_buff *skb;

	skb = cb->skb;
	cb->skb = NULL;

	if (dma_unmap_addr(cb, dma_addr)) {
		dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
				 dma_unmap_len(cb, dma_len), DMA_FROM_DEVICE);
		dma_unmap_addr_set(cb, dma_addr, 0);
	}

	return skb;
}

1345
/* Unlocked version of the reclaim routine */
1346 1347
static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev,
					  struct bcmgenet_tx_ring *ring)
1348 1349
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
1350
	unsigned int txbds_processed = 0;
1351
	unsigned int bytes_compl = 0;
1352
	unsigned int pkts_compl = 0;
1353
	unsigned int txbds_ready;
1354 1355
	unsigned int c_index;
	struct sk_buff *skb;
1356

1357 1358 1359 1360 1361 1362 1363 1364
	/* Clear status before servicing to reduce spurious interrupts */
	if (ring->index == DESC_INDEX)
		bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_TXDMA_DONE,
					 INTRL2_CPU_CLEAR);
	else
		bcmgenet_intrl2_1_writel(priv, (1 << ring->index),
					 INTRL2_CPU_CLEAR);

B
Brian Norris 已提交
1365
	/* Compute how many buffers are transmitted since last xmit call */
1366 1367 1368
	c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX)
		& DMA_C_INDEX_MASK;
	txbds_ready = (c_index - ring->c_index) & DMA_C_INDEX_MASK;
1369 1370

	netif_dbg(priv, tx_done, dev,
1371 1372
		  "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n",
		  __func__, ring->index, ring->c_index, c_index, txbds_ready);
1373 1374

	/* Reclaim transmitted buffers */
1375
	while (txbds_processed < txbds_ready) {
1376 1377 1378
		skb = bcmgenet_free_tx_cb(&priv->pdev->dev,
					  &priv->tx_cbs[ring->clean_ptr]);
		if (skb) {
1379
			pkts_compl++;
1380
			bytes_compl += GENET_CB(skb)->bytes_sent;
1381
			dev_consume_skb_any(skb);
1382 1383
		}

1384 1385 1386 1387 1388
		txbds_processed++;
		if (likely(ring->clean_ptr < ring->end_ptr))
			ring->clean_ptr++;
		else
			ring->clean_ptr = ring->cb_ptr;
1389 1390
	}

1391
	ring->free_bds += txbds_processed;
1392
	ring->c_index = c_index;
1393

1394 1395
	ring->packets += pkts_compl;
	ring->bytes += bytes_compl;
1396

1397 1398
	netdev_tx_completed_queue(netdev_get_tx_queue(dev, ring->queue),
				  pkts_compl, bytes_compl);
1399

1400
	return txbds_processed;
1401 1402
}

1403
static unsigned int bcmgenet_tx_reclaim(struct net_device *dev,
1404
				struct bcmgenet_tx_ring *ring)
1405
{
1406
	unsigned int released;
1407

1408
	spin_lock_bh(&ring->lock);
1409
	released = __bcmgenet_tx_reclaim(dev, ring);
1410
	spin_unlock_bh(&ring->lock);
1411 1412 1413 1414 1415 1416 1417 1418 1419

	return released;
}

static int bcmgenet_tx_poll(struct napi_struct *napi, int budget)
{
	struct bcmgenet_tx_ring *ring =
		container_of(napi, struct bcmgenet_tx_ring, napi);
	unsigned int work_done = 0;
1420
	struct netdev_queue *txq;
1421

1422
	spin_lock(&ring->lock);
1423 1424 1425 1426 1427
	work_done = __bcmgenet_tx_reclaim(ring->priv->dev, ring);
	if (ring->free_bds > (MAX_SKB_FRAGS + 1)) {
		txq = netdev_get_tx_queue(ring->priv->dev, ring->queue);
		netif_tx_wake_queue(txq);
	}
1428
	spin_unlock(&ring->lock);
1429 1430 1431

	if (work_done == 0) {
		napi_complete(napi);
1432
		ring->int_enable(ring);
1433 1434 1435 1436 1437

		return 0;
	}

	return budget;
1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
}

static void bcmgenet_tx_reclaim_all(struct net_device *dev)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
	int i;

	if (netif_is_multiqueue(dev)) {
		for (i = 0; i < priv->hw_params->tx_queues; i++)
			bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]);
	}

	bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]);
}

/* Reallocate the SKB to put enough headroom in front of it and insert
 * the transmit checksum offsets in the descriptors
 */
1456 1457
static struct sk_buff *bcmgenet_put_tx_csum(struct net_device *dev,
					    struct sk_buff *skb)
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
{
	struct status_64 *status = NULL;
	struct sk_buff *new_skb;
	u16 offset;
	u8 ip_proto;
	u16 ip_ver;
	u32 tx_csum_info;

	if (unlikely(skb_headroom(skb) < sizeof(*status))) {
		/* If 64 byte status block enabled, must make sure skb has
		 * enough headroom for us to insert 64B status block.
		 */
		new_skb = skb_realloc_headroom(skb, sizeof(*status));
		dev_kfree_skb(skb);
		if (!new_skb) {
			dev->stats.tx_dropped++;
1474
			return NULL;
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
		}
		skb = new_skb;
	}

	skb_push(skb, sizeof(*status));
	status = (struct status_64 *)skb->data;

	if (skb->ip_summed  == CHECKSUM_PARTIAL) {
		ip_ver = htons(skb->protocol);
		switch (ip_ver) {
		case ETH_P_IP:
			ip_proto = ip_hdr(skb)->protocol;
			break;
		case ETH_P_IPV6:
			ip_proto = ipv6_hdr(skb)->nexthdr;
			break;
		default:
1492
			return skb;
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
		}

		offset = skb_checksum_start_offset(skb) - sizeof(*status);
		tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) |
				(offset + skb->csum_offset);

		/* Set the length valid bit for TCP and UDP and just set
		 * the special UDP flag for IPv4, else just set to 0.
		 */
		if (ip_proto == IPPROTO_TCP || ip_proto == IPPROTO_UDP) {
			tx_csum_info |= STATUS_TX_CSUM_LV;
			if (ip_proto == IPPROTO_UDP && ip_ver == ETH_P_IP)
				tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP;
1506
		} else {
1507
			tx_csum_info = 0;
1508
		}
1509 1510 1511 1512

		status->tx_csum_info = tx_csum_info;
	}

1513
	return skb;
1514 1515 1516 1517 1518
}

static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
1519
	struct device *kdev = &priv->pdev->dev;
1520
	struct bcmgenet_tx_ring *ring = NULL;
1521
	struct enet_cb *tx_cb_ptr;
1522
	struct netdev_queue *txq;
1523
	int nr_frags, index;
1524 1525 1526 1527
	dma_addr_t mapping;
	unsigned int size;
	skb_frag_t *frag;
	u32 len_stat;
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
	int ret;
	int i;

	index = skb_get_queue_mapping(skb);
	/* Mapping strategy:
	 * queue_mapping = 0, unclassified, packet xmited through ring16
	 * queue_mapping = 1, goes to ring 0. (highest priority queue
	 * queue_mapping = 2, goes to ring 1.
	 * queue_mapping = 3, goes to ring 2.
	 * queue_mapping = 4, goes to ring 3.
	 */
	if (index == 0)
		index = DESC_INDEX;
	else
		index -= 1;

	ring = &priv->tx_rings[index];
1545
	txq = netdev_get_tx_queue(dev, ring->queue);
1546

1547 1548
	nr_frags = skb_shinfo(skb)->nr_frags;

1549
	spin_lock(&ring->lock);
1550 1551 1552 1553 1554 1555 1556
	if (ring->free_bds <= (nr_frags + 1)) {
		if (!netif_tx_queue_stopped(txq)) {
			netif_tx_stop_queue(txq);
			netdev_err(dev,
				   "%s: tx ring %d full when queue %d awake\n",
				   __func__, index, ring->queue);
		}
1557 1558 1559 1560
		ret = NETDEV_TX_BUSY;
		goto out;
	}

1561 1562 1563 1564 1565
	if (skb_padto(skb, ETH_ZLEN)) {
		ret = NETDEV_TX_OK;
		goto out;
	}

1566 1567 1568 1569 1570
	/* Retain how many bytes will be sent on the wire, without TSB inserted
	 * by transmit checksum offload
	 */
	GENET_CB(skb)->bytes_sent = skb->len;

1571 1572
	/* set the SKB transmit checksum */
	if (priv->desc_64b_en) {
1573 1574
		skb = bcmgenet_put_tx_csum(dev, skb);
		if (!skb) {
1575 1576 1577 1578 1579
			ret = NETDEV_TX_OK;
			goto out;
		}
	}

1580 1581
	for (i = 0; i <= nr_frags; i++) {
		tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
1582

1583
		BUG_ON(!tx_cb_ptr);
1584

1585 1586
		if (!i) {
			/* Transmit single SKB or head of fragment list */
1587
			GENET_CB(skb)->first_cb = tx_cb_ptr;
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
			size = skb_headlen(skb);
			mapping = dma_map_single(kdev, skb->data, size,
						 DMA_TO_DEVICE);
		} else {
			/* xmit fragment */
			frag = &skb_shinfo(skb)->frags[i - 1];
			size = skb_frag_size(frag);
			mapping = skb_frag_dma_map(kdev, frag, 0, size,
						   DMA_TO_DEVICE);
		}

		ret = dma_mapping_error(kdev, mapping);
1600
		if (ret) {
1601 1602
			priv->mib.tx_dma_failed++;
			netif_err(priv, tx_err, dev, "Tx DMA map failed\n");
1603
			ret = NETDEV_TX_OK;
1604 1605 1606 1607 1608
			goto out_unmap_frags;
		}
		dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
		dma_unmap_len_set(tx_cb_ptr, dma_len, size);

1609 1610
		tx_cb_ptr->skb = skb;

1611 1612 1613 1614 1615 1616 1617
		len_stat = (size << DMA_BUFLENGTH_SHIFT) |
			   (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT);

		if (!i) {
			len_stat |= DMA_TX_APPEND_CRC | DMA_SOP;
			if (skb->ip_summed == CHECKSUM_PARTIAL)
				len_stat |= DMA_TX_DO_CSUM;
1618
		}
1619 1620 1621 1622
		if (i == nr_frags)
			len_stat |= DMA_EOP;

		dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, len_stat);
1623 1624
	}

1625
	GENET_CB(skb)->last_cb = tx_cb_ptr;
1626 1627
	skb_tx_timestamp(skb);

1628 1629 1630 1631 1632
	/* Decrement total BD count and advance our write pointer */
	ring->free_bds -= nr_frags + 1;
	ring->prod_index += nr_frags + 1;
	ring->prod_index &= DMA_P_INDEX_MASK;

P
Petri Gynther 已提交
1633 1634
	netdev_tx_sent_queue(txq, GENET_CB(skb)->bytes_sent);

1635
	if (ring->free_bds <= (MAX_SKB_FRAGS + 1))
1636
		netif_tx_stop_queue(txq);
1637

1638 1639 1640 1641
	if (!skb->xmit_more || netif_xmit_stopped(txq))
		/* Packets are ready, update producer index */
		bcmgenet_tdma_ring_writel(priv, ring->index,
					  ring->prod_index, TDMA_PROD_INDEX);
1642
out:
1643
	spin_unlock(&ring->lock);
1644 1645

	return ret;
1646 1647 1648 1649 1650 1651 1652 1653

out_unmap_frags:
	/* Back up for failed control block mapping */
	bcmgenet_put_txcb(priv, ring);

	/* Unmap successfully mapped control blocks */
	while (i-- > 0) {
		tx_cb_ptr = bcmgenet_put_txcb(priv, ring);
1654
		bcmgenet_free_tx_cb(kdev, tx_cb_ptr);
1655 1656 1657 1658
	}

	dev_kfree_skb(skb);
	goto out;
1659 1660
}

1661 1662
static struct sk_buff *bcmgenet_rx_refill(struct bcmgenet_priv *priv,
					  struct enet_cb *cb)
1663 1664 1665
{
	struct device *kdev = &priv->pdev->dev;
	struct sk_buff *skb;
1666
	struct sk_buff *rx_skb;
1667 1668
	dma_addr_t mapping;

1669
	/* Allocate a new Rx skb */
1670
	skb = netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT);
1671 1672 1673 1674 1675 1676
	if (!skb) {
		priv->mib.alloc_rx_buff_failed++;
		netif_err(priv, rx_err, priv->dev,
			  "%s: Rx skb allocation failed\n", __func__);
		return NULL;
	}
1677

1678 1679 1680 1681
	/* DMA-map the new Rx skb */
	mapping = dma_map_single(kdev, skb->data, priv->rx_buf_len,
				 DMA_FROM_DEVICE);
	if (dma_mapping_error(kdev, mapping)) {
1682
		priv->mib.rx_dma_failed++;
1683
		dev_kfree_skb_any(skb);
1684
		netif_err(priv, rx_err, priv->dev,
1685 1686
			  "%s: Rx skb DMA mapping failed\n", __func__);
		return NULL;
1687 1688
	}

1689
	/* Grab the current Rx skb from the ring and DMA-unmap it */
1690
	rx_skb = bcmgenet_free_rx_cb(kdev, cb);
1691 1692 1693

	/* Put the new Rx skb on the ring */
	cb->skb = skb;
1694
	dma_unmap_addr_set(cb, dma_addr, mapping);
1695
	dma_unmap_len_set(cb, dma_len, priv->rx_buf_len);
1696
	dmadesc_set_addr(priv, cb->bd_addr, mapping);
1697

1698 1699
	/* Return the current Rx skb to caller */
	return rx_skb;
1700 1701 1702 1703 1704
}

/* bcmgenet_desc_rx - descriptor based rx process.
 * this could be called from bottom half, or from NAPI polling method.
 */
1705
static unsigned int bcmgenet_desc_rx(struct bcmgenet_rx_ring *ring,
1706 1707
				     unsigned int budget)
{
1708
	struct bcmgenet_priv *priv = ring->priv;
1709 1710 1711 1712 1713
	struct net_device *dev = priv->dev;
	struct enet_cb *cb;
	struct sk_buff *skb;
	u32 dma_length_status;
	unsigned long dma_flag;
1714
	int len;
1715
	unsigned int rxpktprocessed = 0, rxpkttoprocess;
1716
	unsigned int p_index, mask;
1717
	unsigned int discards;
1718 1719
	unsigned int chksum_ok = 0;

1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
	/* Clear status before servicing to reduce spurious interrupts */
	if (ring->index == DESC_INDEX) {
		bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_RXDMA_DONE,
					 INTRL2_CPU_CLEAR);
	} else {
		mask = 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index);
		bcmgenet_intrl2_1_writel(priv,
					 mask,
					 INTRL2_CPU_CLEAR);
	}

1731
	p_index = bcmgenet_rdma_ring_readl(priv, ring->index, RDMA_PROD_INDEX);
1732 1733 1734 1735 1736

	discards = (p_index >> DMA_P_INDEX_DISCARD_CNT_SHIFT) &
		   DMA_P_INDEX_DISCARD_CNT_MASK;
	if (discards > ring->old_discards) {
		discards = discards - ring->old_discards;
1737
		ring->errors += discards;
1738 1739 1740 1741 1742
		ring->old_discards += discards;

		/* Clear HW register when we reach 75% of maximum 0xFFFF */
		if (ring->old_discards >= 0xC000) {
			ring->old_discards = 0;
1743
			bcmgenet_rdma_ring_writel(priv, ring->index, 0,
1744 1745 1746 1747
						  RDMA_PROD_INDEX);
		}
	}

1748
	p_index &= DMA_P_INDEX_MASK;
1749
	rxpkttoprocess = (p_index - ring->c_index) & DMA_C_INDEX_MASK;
1750 1751

	netif_dbg(priv, rx_status, dev,
1752
		  "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess);
1753 1754

	while ((rxpktprocessed < rxpkttoprocess) &&
1755
	       (rxpktprocessed < budget)) {
1756
		cb = &priv->rx_cbs[ring->read_ptr];
1757
		skb = bcmgenet_rx_refill(priv, cb);
1758 1759

		if (unlikely(!skb)) {
1760
			ring->dropped++;
1761
			goto next;
1762 1763
		}

1764
		if (!priv->desc_64b_en) {
1765
			dma_length_status =
1766
				dmadesc_get_length_status(priv, cb->bd_addr);
1767 1768
		} else {
			struct status_64 *status;
1769

1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
			status = (struct status_64 *)skb->data;
			dma_length_status = status->length_status;
		}

		/* DMA flags and length are still valid no matter how
		 * we got the Receive Status Vector (64B RSB or register)
		 */
		dma_flag = dma_length_status & 0xffff;
		len = dma_length_status >> DMA_BUFLENGTH_SHIFT;

		netif_dbg(priv, rx_status, dev,
1781
			  "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n",
1782 1783
			  __func__, p_index, ring->c_index,
			  ring->read_ptr, dma_length_status);
1784 1785 1786

		if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) {
			netif_err(priv, rx_status, dev,
1787
				  "dropping fragmented packet!\n");
1788
			ring->errors++;
1789 1790
			dev_kfree_skb_any(skb);
			goto next;
1791
		}
1792

1793 1794 1795 1796 1797 1798 1799
		/* report errors */
		if (unlikely(dma_flag & (DMA_RX_CRC_ERROR |
						DMA_RX_OV |
						DMA_RX_NO |
						DMA_RX_LG |
						DMA_RX_RXER))) {
			netif_err(priv, rx_status, dev, "dma_flag=0x%x\n",
1800
				  (unsigned int)dma_flag);
1801 1802 1803 1804 1805 1806 1807 1808 1809
			if (dma_flag & DMA_RX_CRC_ERROR)
				dev->stats.rx_crc_errors++;
			if (dma_flag & DMA_RX_OV)
				dev->stats.rx_over_errors++;
			if (dma_flag & DMA_RX_NO)
				dev->stats.rx_frame_errors++;
			if (dma_flag & DMA_RX_LG)
				dev->stats.rx_length_errors++;
			dev->stats.rx_errors++;
1810 1811
			dev_kfree_skb_any(skb);
			goto next;
1812 1813 1814
		} /* error packet */

		chksum_ok = (dma_flag & priv->dma_rx_chk_bit) &&
1815
			     priv->desc_rxchk_en;
1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836

		skb_put(skb, len);
		if (priv->desc_64b_en) {
			skb_pull(skb, 64);
			len -= 64;
		}

		if (likely(chksum_ok))
			skb->ip_summed = CHECKSUM_UNNECESSARY;

		/* remove hardware 2bytes added for IP alignment */
		skb_pull(skb, 2);
		len -= 2;

		if (priv->crc_fwd_en) {
			skb_trim(skb, len - ETH_FCS_LEN);
			len -= ETH_FCS_LEN;
		}

		/*Finish setting up the received SKB and send it to the kernel*/
		skb->protocol = eth_type_trans(skb, priv->dev);
1837 1838
		ring->packets++;
		ring->bytes += len;
1839 1840 1841 1842
		if (dma_flag & DMA_RX_MULT)
			dev->stats.multicast++;

		/* Notify kernel */
1843
		napi_gro_receive(&ring->napi, skb);
1844 1845
		netif_dbg(priv, rx_status, dev, "pushed up to kernel\n");

1846
next:
1847
		rxpktprocessed++;
1848 1849 1850 1851 1852 1853
		if (likely(ring->read_ptr < ring->end_ptr))
			ring->read_ptr++;
		else
			ring->read_ptr = ring->cb_ptr;

		ring->c_index = (ring->c_index + 1) & DMA_C_INDEX_MASK;
1854
		bcmgenet_rdma_ring_writel(priv, ring->index, ring->c_index, RDMA_CONS_INDEX);
1855 1856 1857 1858 1859
	}

	return rxpktprocessed;
}

1860 1861 1862
/* Rx NAPI polling method */
static int bcmgenet_rx_poll(struct napi_struct *napi, int budget)
{
1863 1864
	struct bcmgenet_rx_ring *ring = container_of(napi,
			struct bcmgenet_rx_ring, napi);
1865 1866
	unsigned int work_done;

1867
	work_done = bcmgenet_desc_rx(ring, budget);
1868 1869

	if (work_done < budget) {
1870
		napi_complete_done(napi, work_done);
1871
		ring->int_enable(ring);
1872 1873 1874 1875 1876
	}

	return work_done;
}

1877
/* Assign skb to RX DMA descriptor. */
1878 1879
static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv,
				     struct bcmgenet_rx_ring *ring)
1880 1881
{
	struct enet_cb *cb;
1882
	struct sk_buff *skb;
1883 1884
	int i;

1885
	netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
1886 1887

	/* loop here for each buffer needing assign */
1888 1889
	for (i = 0; i < ring->size; i++) {
		cb = ring->cbs + i;
1890 1891
		skb = bcmgenet_rx_refill(priv, cb);
		if (skb)
1892
			dev_consume_skb_any(skb);
1893 1894
		if (!cb->skb)
			return -ENOMEM;
1895 1896
	}

1897
	return 0;
1898 1899 1900 1901
}

static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv)
{
1902
	struct sk_buff *skb;
1903 1904 1905 1906 1907 1908
	struct enet_cb *cb;
	int i;

	for (i = 0; i < priv->num_rx_bds; i++) {
		cb = &priv->rx_cbs[i];

1909 1910
		skb = bcmgenet_free_rx_cb(&priv->pdev->dev, cb);
		if (skb)
1911
			dev_consume_skb_any(skb);
1912 1913 1914
	}
}

1915
static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable)
1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
{
	u32 reg;

	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
	if (enable)
		reg |= mask;
	else
		reg &= ~mask;
	bcmgenet_umac_writel(priv, reg, UMAC_CMD);

	/* UniMAC stops on a packet boundary, wait for a full-size packet
	 * to be processed
	 */
	if (enable == 0)
		usleep_range(1000, 2000);
}

1933
static void reset_umac(struct bcmgenet_priv *priv)
1934 1935 1936 1937 1938 1939 1940 1941
{
	/* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */
	bcmgenet_rbuf_ctrl_set(priv, 0);
	udelay(10);

	/* disable MAC while updating its registers */
	bcmgenet_umac_writel(priv, 0, UMAC_CMD);

1942 1943 1944 1945
	/* issue soft reset with (rg)mii loopback to ensure a stable rxclk */
	bcmgenet_umac_writel(priv, CMD_SW_RESET | CMD_LCL_LOOP_EN, UMAC_CMD);
	udelay(2);
	bcmgenet_umac_writel(priv, 0, UMAC_CMD);
1946 1947
}

1948 1949 1950 1951 1952 1953 1954 1955 1956
static void bcmgenet_intr_disable(struct bcmgenet_priv *priv)
{
	/* Mask all interrupts.*/
	bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
	bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
	bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
	bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
}

1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
static void bcmgenet_link_intr_enable(struct bcmgenet_priv *priv)
{
	u32 int0_enable = 0;

	/* Monitor cable plug/unplugged event for internal PHY, external PHY
	 * and MoCA PHY
	 */
	if (priv->internal_phy) {
		int0_enable |= UMAC_IRQ_LINK_EVENT;
	} else if (priv->ext_phy) {
		int0_enable |= UMAC_IRQ_LINK_EVENT;
	} else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
		if (priv->hw_params->flags & GENET_HAS_MOCA_LINK_DET)
			int0_enable |= UMAC_IRQ_LINK_EVENT;
	}
	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
}

1975
static void init_umac(struct bcmgenet_priv *priv)
1976 1977
{
	struct device *kdev = &priv->pdev->dev;
P
Petri Gynther 已提交
1978 1979
	u32 reg;
	u32 int0_enable = 0;
1980 1981 1982

	dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n");

1983
	reset_umac(priv);
1984 1985 1986

	/* clear tx/rx counter */
	bcmgenet_umac_writel(priv,
1987 1988
			     MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT,
			     UMAC_MIB_CTRL);
1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
	bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL);

	bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);

	/* init rx registers, enable ip header optimization */
	reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
	reg |= RBUF_ALIGN_2B;
	bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL);

	if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv))
		bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL);

2001
	bcmgenet_intr_disable(priv);
2002

2003 2004
	/* Configure backpressure vectors for MoCA */
	if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
		reg = bcmgenet_bp_mc_get(priv);
		reg |= BIT(priv->hw_params->bp_in_en_shift);

		/* bp_mask: back pressure mask */
		if (netif_is_multiqueue(priv->dev))
			reg |= priv->hw_params->bp_in_mask;
		else
			reg &= ~priv->hw_params->bp_in_mask;
		bcmgenet_bp_mc_set(priv, reg);
	}

	/* Enable MDIO interrupts on GENET v3+ */
	if (priv->hw_params->flags & GENET_HAS_MDIO_INTR)
P
Petri Gynther 已提交
2018
		int0_enable |= (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
2019

P
Petri Gynther 已提交
2020
	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2021

2022 2023 2024
	dev_dbg(kdev, "done init umac\n");
}

2025
/* Initialize a Tx ring along with corresponding hardware registers */
2026 2027
static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv,
				  unsigned int index, unsigned int size,
2028
				  unsigned int start_ptr, unsigned int end_ptr)
2029 2030 2031 2032 2033 2034
{
	struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
	u32 words_per_bd = WORDS_PER_BD(priv);
	u32 flow_period_val = 0;

	spin_lock_init(&ring->lock);
2035
	ring->priv = priv;
2036 2037 2038 2039 2040 2041 2042 2043 2044 2045
	ring->index = index;
	if (index == DESC_INDEX) {
		ring->queue = 0;
		ring->int_enable = bcmgenet_tx_ring16_int_enable;
		ring->int_disable = bcmgenet_tx_ring16_int_disable;
	} else {
		ring->queue = index + 1;
		ring->int_enable = bcmgenet_tx_ring_int_enable;
		ring->int_disable = bcmgenet_tx_ring_int_disable;
	}
2046
	ring->cbs = priv->tx_cbs + start_ptr;
2047
	ring->size = size;
2048
	ring->clean_ptr = start_ptr;
2049 2050
	ring->c_index = 0;
	ring->free_bds = size;
2051 2052
	ring->write_ptr = start_ptr;
	ring->cb_ptr = start_ptr;
2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064
	ring->end_ptr = end_ptr - 1;
	ring->prod_index = 0;

	/* Set flow period for ring != 16 */
	if (index != DESC_INDEX)
		flow_period_val = ENET_MAX_MTU_SIZE << 16;

	bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX);
	bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX);
	bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
	/* Disable rate control for now */
	bcmgenet_tdma_ring_writel(priv, index, flow_period_val,
2065
				  TDMA_FLOW_PERIOD);
2066
	bcmgenet_tdma_ring_writel(priv, index,
2067 2068
				  ((size << DMA_RING_SIZE_SHIFT) |
				   RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2069 2070

	/* Set start and end address, read and write pointers */
2071
	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2072
				  DMA_START_ADDR);
2073
	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2074
				  TDMA_READ_PTR);
2075
	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2076
				  TDMA_WRITE_PTR);
2077
	bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2078
				  DMA_END_ADDR);
2079 2080 2081 2082

	/* Initialize Tx NAPI */
	netif_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll,
		       NAPI_POLL_WEIGHT);
2083 2084 2085 2086
}

/* Initialize a RDMA ring */
static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv,
2087 2088
				 unsigned int index, unsigned int size,
				 unsigned int start_ptr, unsigned int end_ptr)
2089
{
2090
	struct bcmgenet_rx_ring *ring = &priv->rx_rings[index];
2091 2092 2093
	u32 words_per_bd = WORDS_PER_BD(priv);
	int ret;

2094
	ring->priv = priv;
2095
	ring->index = index;
2096 2097 2098 2099 2100 2101 2102
	if (index == DESC_INDEX) {
		ring->int_enable = bcmgenet_rx_ring16_int_enable;
		ring->int_disable = bcmgenet_rx_ring16_int_disable;
	} else {
		ring->int_enable = bcmgenet_rx_ring_int_enable;
		ring->int_disable = bcmgenet_rx_ring_int_disable;
	}
2103 2104 2105 2106 2107 2108
	ring->cbs = priv->rx_cbs + start_ptr;
	ring->size = size;
	ring->c_index = 0;
	ring->read_ptr = start_ptr;
	ring->cb_ptr = start_ptr;
	ring->end_ptr = end_ptr - 1;
2109

2110 2111
	ret = bcmgenet_alloc_rx_buffers(priv, ring);
	if (ret)
2112 2113
		return ret;

2114 2115 2116 2117
	/* Initialize Rx NAPI */
	netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll,
		       NAPI_POLL_WEIGHT);

2118 2119
	bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX);
	bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX);
2120
	bcmgenet_rdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
2121
	bcmgenet_rdma_ring_writel(priv, index,
2122 2123
				  ((size << DMA_RING_SIZE_SHIFT) |
				   RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2124
	bcmgenet_rdma_ring_writel(priv, index,
2125 2126 2127
				  (DMA_FC_THRESH_LO <<
				   DMA_XOFF_THRESHOLD_SHIFT) |
				   DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH);
2128 2129

	/* Set start and end address, read and write pointers */
2130 2131 2132 2133 2134 2135 2136
	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
				  DMA_START_ADDR);
	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
				  RDMA_READ_PTR);
	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
				  RDMA_WRITE_PTR);
	bcmgenet_rdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2137
				  DMA_END_ADDR);
2138 2139 2140 2141

	return ret;
}

2142 2143 2144 2145 2146 2147 2148 2149
static void bcmgenet_enable_tx_napi(struct bcmgenet_priv *priv)
{
	unsigned int i;
	struct bcmgenet_tx_ring *ring;

	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
		ring = &priv->tx_rings[i];
		napi_enable(&ring->napi);
2150
		ring->int_enable(ring);
2151 2152 2153 2154
	}

	ring = &priv->tx_rings[DESC_INDEX];
	napi_enable(&ring->napi);
2155
	ring->int_enable(ring);
2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185
}

static void bcmgenet_disable_tx_napi(struct bcmgenet_priv *priv)
{
	unsigned int i;
	struct bcmgenet_tx_ring *ring;

	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
		ring = &priv->tx_rings[i];
		napi_disable(&ring->napi);
	}

	ring = &priv->tx_rings[DESC_INDEX];
	napi_disable(&ring->napi);
}

static void bcmgenet_fini_tx_napi(struct bcmgenet_priv *priv)
{
	unsigned int i;
	struct bcmgenet_tx_ring *ring;

	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
		ring = &priv->tx_rings[i];
		netif_napi_del(&ring->napi);
	}

	ring = &priv->tx_rings[DESC_INDEX];
	netif_napi_del(&ring->napi);
}

2186
/* Initialize Tx queues
2187
 *
2188
 * Queues 0-3 are priority-based, each one has 32 descriptors,
2189 2190
 * with queue 0 being the highest priority queue.
 *
2191
 * Queue 16 is the default Tx queue with
2192
 * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors.
2193
 *
2194 2195 2196 2197 2198 2199
 * The transmit control block pool is then partitioned as follows:
 * - Tx queue 0 uses tx_cbs[0..31]
 * - Tx queue 1 uses tx_cbs[32..63]
 * - Tx queue 2 uses tx_cbs[64..95]
 * - Tx queue 3 uses tx_cbs[96..127]
 * - Tx queue 16 uses tx_cbs[128..255]
2200
 */
2201
static void bcmgenet_init_tx_queues(struct net_device *dev)
2202 2203
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
2204 2205
	u32 i, dma_enable;
	u32 dma_ctrl, ring_cfg;
2206
	u32 dma_priority[3] = {0, 0, 0};
2207 2208 2209 2210 2211 2212

	dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL);
	dma_enable = dma_ctrl & DMA_EN;
	dma_ctrl &= ~DMA_EN;
	bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);

2213 2214 2215
	dma_ctrl = 0;
	ring_cfg = 0;

2216 2217 2218
	/* Enable strict priority arbiter mode */
	bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL);

2219
	/* Initialize Tx priority queues */
2220
	for (i = 0; i < priv->hw_params->tx_queues; i++) {
2221 2222 2223
		bcmgenet_init_tx_ring(priv, i, priv->hw_params->tx_bds_per_q,
				      i * priv->hw_params->tx_bds_per_q,
				      (i + 1) * priv->hw_params->tx_bds_per_q);
2224 2225
		ring_cfg |= (1 << i);
		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2226 2227
		dma_priority[DMA_PRIO_REG_INDEX(i)] |=
			((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i));
2228 2229
	}

2230
	/* Initialize Tx default queue 16 */
2231
	bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_Q16_TX_BD_CNT,
2232
			      priv->hw_params->tx_queues *
2233
			      priv->hw_params->tx_bds_per_q,
2234 2235 2236
			      TOTAL_DESC);
	ring_cfg |= (1 << DESC_INDEX);
	dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2237 2238 2239
	dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |=
		((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) <<
		 DMA_PRIO_REG_SHIFT(DESC_INDEX));
2240 2241

	/* Set Tx queue priorities */
2242 2243 2244 2245
	bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0);
	bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1);
	bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2);

2246 2247
	/* Enable Tx queues */
	bcmgenet_tdma_writel(priv, ring_cfg, DMA_RING_CFG);
2248

2249
	/* Enable Tx DMA */
2250
	if (dma_enable)
2251 2252
		dma_ctrl |= DMA_EN;
	bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2253 2254
}

2255 2256
static void bcmgenet_enable_rx_napi(struct bcmgenet_priv *priv)
{
2257 2258 2259 2260 2261 2262
	unsigned int i;
	struct bcmgenet_rx_ring *ring;

	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
		ring = &priv->rx_rings[i];
		napi_enable(&ring->napi);
2263
		ring->int_enable(ring);
2264 2265 2266 2267
	}

	ring = &priv->rx_rings[DESC_INDEX];
	napi_enable(&ring->napi);
2268
	ring->int_enable(ring);
2269 2270 2271 2272
}

static void bcmgenet_disable_rx_napi(struct bcmgenet_priv *priv)
{
2273 2274 2275 2276 2277 2278 2279 2280 2281 2282
	unsigned int i;
	struct bcmgenet_rx_ring *ring;

	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
		ring = &priv->rx_rings[i];
		napi_disable(&ring->napi);
	}

	ring = &priv->rx_rings[DESC_INDEX];
	napi_disable(&ring->napi);
2283 2284 2285 2286
}

static void bcmgenet_fini_rx_napi(struct bcmgenet_priv *priv)
{
2287 2288 2289 2290 2291 2292 2293 2294 2295 2296
	unsigned int i;
	struct bcmgenet_rx_ring *ring;

	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
		ring = &priv->rx_rings[i];
		netif_napi_del(&ring->napi);
	}

	ring = &priv->rx_rings[DESC_INDEX];
	netif_napi_del(&ring->napi);
2297 2298
}

2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358
/* Initialize Rx queues
 *
 * Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be
 * used to direct traffic to these queues.
 *
 * Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors.
 */
static int bcmgenet_init_rx_queues(struct net_device *dev)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
	u32 i;
	u32 dma_enable;
	u32 dma_ctrl;
	u32 ring_cfg;
	int ret;

	dma_ctrl = bcmgenet_rdma_readl(priv, DMA_CTRL);
	dma_enable = dma_ctrl & DMA_EN;
	dma_ctrl &= ~DMA_EN;
	bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);

	dma_ctrl = 0;
	ring_cfg = 0;

	/* Initialize Rx priority queues */
	for (i = 0; i < priv->hw_params->rx_queues; i++) {
		ret = bcmgenet_init_rx_ring(priv, i,
					    priv->hw_params->rx_bds_per_q,
					    i * priv->hw_params->rx_bds_per_q,
					    (i + 1) *
					    priv->hw_params->rx_bds_per_q);
		if (ret)
			return ret;

		ring_cfg |= (1 << i);
		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
	}

	/* Initialize Rx default queue 16 */
	ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, GENET_Q16_RX_BD_CNT,
				    priv->hw_params->rx_queues *
				    priv->hw_params->rx_bds_per_q,
				    TOTAL_DESC);
	if (ret)
		return ret;

	ring_cfg |= (1 << DESC_INDEX);
	dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));

	/* Enable rings */
	bcmgenet_rdma_writel(priv, ring_cfg, DMA_RING_CFG);

	/* Configure ring as descriptor ring and re-enable DMA if enabled */
	if (dma_enable)
		dma_ctrl |= DMA_EN;
	bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);

	return 0;
}

2359 2360 2361 2362 2363
static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv)
{
	int ret = 0;
	int timeout = 0;
	u32 reg;
2364 2365
	u32 dma_ctrl;
	int i;
2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408

	/* Disable TDMA to stop add more frames in TX DMA */
	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
	reg &= ~DMA_EN;
	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);

	/* Check TDMA status register to confirm TDMA is disabled */
	while (timeout++ < DMA_TIMEOUT_VAL) {
		reg = bcmgenet_tdma_readl(priv, DMA_STATUS);
		if (reg & DMA_DISABLED)
			break;

		udelay(1);
	}

	if (timeout == DMA_TIMEOUT_VAL) {
		netdev_warn(priv->dev, "Timed out while disabling TX DMA\n");
		ret = -ETIMEDOUT;
	}

	/* Wait 10ms for packet drain in both tx and rx dma */
	usleep_range(10000, 20000);

	/* Disable RDMA */
	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
	reg &= ~DMA_EN;
	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);

	timeout = 0;
	/* Check RDMA status register to confirm RDMA is disabled */
	while (timeout++ < DMA_TIMEOUT_VAL) {
		reg = bcmgenet_rdma_readl(priv, DMA_STATUS);
		if (reg & DMA_DISABLED)
			break;

		udelay(1);
	}

	if (timeout == DMA_TIMEOUT_VAL) {
		netdev_warn(priv->dev, "Timed out while disabling RX DMA\n");
		ret = -ETIMEDOUT;
	}

2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422
	dma_ctrl = 0;
	for (i = 0; i < priv->hw_params->rx_queues; i++)
		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
	reg &= ~dma_ctrl;
	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);

	dma_ctrl = 0;
	for (i = 0; i < priv->hw_params->tx_queues; i++)
		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
	reg &= ~dma_ctrl;
	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);

2423 2424 2425
	return ret;
}

2426
static void bcmgenet_fini_dma(struct bcmgenet_priv *priv)
2427
{
P
Petri Gynther 已提交
2428
	struct netdev_queue *txq;
2429 2430 2431
	struct sk_buff *skb;
	struct enet_cb *cb;
	int i;
2432

2433 2434 2435
	bcmgenet_fini_rx_napi(priv);
	bcmgenet_fini_tx_napi(priv);

2436
	for (i = 0; i < priv->num_tx_bds; i++) {
2437 2438 2439 2440
		cb = priv->tx_cbs + i;
		skb = bcmgenet_free_tx_cb(&priv->pdev->dev, cb);
		if (skb)
			dev_kfree_skb(skb);
2441 2442
	}

P
Petri Gynther 已提交
2443 2444 2445 2446 2447 2448 2449 2450
	for (i = 0; i < priv->hw_params->tx_queues; i++) {
		txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[i].queue);
		netdev_tx_reset_queue(txq);
	}

	txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[DESC_INDEX].queue);
	netdev_tx_reset_queue(txq);

2451 2452 2453 2454 2455 2456 2457 2458 2459
	bcmgenet_free_rx_buffers(priv);
	kfree(priv->rx_cbs);
	kfree(priv->tx_cbs);
}

/* init_edma: Initialize DMA control register */
static int bcmgenet_init_dma(struct bcmgenet_priv *priv)
{
	int ret;
2460 2461
	unsigned int i;
	struct enet_cb *cb;
2462

2463
	netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
2464

2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477
	/* Initialize common Rx ring structures */
	priv->rx_bds = priv->base + priv->hw_params->rdma_offset;
	priv->num_rx_bds = TOTAL_DESC;
	priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb),
			       GFP_KERNEL);
	if (!priv->rx_cbs)
		return -ENOMEM;

	for (i = 0; i < priv->num_rx_bds; i++) {
		cb = priv->rx_cbs + i;
		cb->bd_addr = priv->rx_bds + i * DMA_DESC_SIZE;
	}

B
Brian Norris 已提交
2478
	/* Initialize common TX ring structures */
2479 2480
	priv->tx_bds = priv->base + priv->hw_params->tdma_offset;
	priv->num_tx_bds = TOTAL_DESC;
2481
	priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb),
2482
			       GFP_KERNEL);
2483
	if (!priv->tx_cbs) {
2484
		kfree(priv->rx_cbs);
2485 2486 2487
		return -ENOMEM;
	}

2488 2489 2490 2491 2492
	for (i = 0; i < priv->num_tx_bds; i++) {
		cb = priv->tx_cbs + i;
		cb->bd_addr = priv->tx_bds + i * DMA_DESC_SIZE;
	}

2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508
	/* Init rDma */
	bcmgenet_rdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);

	/* Initialize Rx queues */
	ret = bcmgenet_init_rx_queues(priv->dev);
	if (ret) {
		netdev_err(priv->dev, "failed to initialize Rx queues\n");
		bcmgenet_free_rx_buffers(priv);
		kfree(priv->rx_cbs);
		kfree(priv->tx_cbs);
		return ret;
	}

	/* Init tDma */
	bcmgenet_tdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);

2509 2510
	/* Initialize Tx queues */
	bcmgenet_init_tx_queues(priv->dev);
2511 2512 2513 2514 2515 2516 2517

	return 0;
}

/* Interrupt bottom half */
static void bcmgenet_irq_task(struct work_struct *work)
{
2518
	unsigned int status;
2519 2520 2521 2522 2523
	struct bcmgenet_priv *priv = container_of(
			work, struct bcmgenet_priv, bcmgenet_irq_work);

	netif_dbg(priv, intr, priv->dev, "%s\n", __func__);

2524
	spin_lock_irq(&priv->lock);
2525 2526
	status = priv->irq0_stat;
	priv->irq0_stat = 0;
2527
	spin_unlock_irq(&priv->lock);
2528

2529
	/* Link UP/DOWN event */
2530 2531 2532 2533
	if (status & UMAC_IRQ_LINK_EVENT) {
		priv->dev->phydev->link = !!(status & UMAC_IRQ_LINK_UP);
		phy_mac_interrupt(priv->dev->phydev);
	}
2534 2535
}

2536
/* bcmgenet_isr1: handle Rx and Tx priority queues */
2537 2538 2539
static irqreturn_t bcmgenet_isr1(int irq, void *dev_id)
{
	struct bcmgenet_priv *priv = dev_id;
2540 2541
	struct bcmgenet_rx_ring *rx_ring;
	struct bcmgenet_tx_ring *tx_ring;
2542
	unsigned int index, status;
2543

2544 2545
	/* Read irq status */
	status = bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) &
2546
		~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
2547

B
Brian Norris 已提交
2548
	/* clear interrupts */
2549
	bcmgenet_intrl2_1_writel(priv, status, INTRL2_CPU_CLEAR);
2550 2551

	netif_dbg(priv, intr, priv->dev,
2552
		  "%s: IRQ=0x%x\n", __func__, status);
2553

2554 2555
	/* Check Rx priority queue interrupts */
	for (index = 0; index < priv->hw_params->rx_queues; index++) {
2556
		if (!(status & BIT(UMAC_IRQ1_RX_INTR_SHIFT + index)))
2557 2558 2559 2560 2561 2562
			continue;

		rx_ring = &priv->rx_rings[index];

		if (likely(napi_schedule_prep(&rx_ring->napi))) {
			rx_ring->int_disable(rx_ring);
2563
			__napi_schedule_irqoff(&rx_ring->napi);
2564 2565 2566 2567
		}
	}

	/* Check Tx priority queue interrupts */
2568
	for (index = 0; index < priv->hw_params->tx_queues; index++) {
2569
		if (!(status & BIT(index)))
2570 2571
			continue;

2572
		tx_ring = &priv->tx_rings[index];
2573

2574 2575
		if (likely(napi_schedule_prep(&tx_ring->napi))) {
			tx_ring->int_disable(tx_ring);
2576
			__napi_schedule_irqoff(&tx_ring->napi);
2577 2578
		}
	}
2579

2580 2581 2582
	return IRQ_HANDLED;
}

2583
/* bcmgenet_isr0: handle Rx and Tx default queues + other stuff */
2584 2585 2586
static irqreturn_t bcmgenet_isr0(int irq, void *dev_id)
{
	struct bcmgenet_priv *priv = dev_id;
2587 2588
	struct bcmgenet_rx_ring *rx_ring;
	struct bcmgenet_tx_ring *tx_ring;
2589 2590
	unsigned int status;
	unsigned long flags;
2591

2592 2593
	/* Read irq status */
	status = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) &
2594
		~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
2595

B
Brian Norris 已提交
2596
	/* clear interrupts */
2597
	bcmgenet_intrl2_0_writel(priv, status, INTRL2_CPU_CLEAR);
2598 2599

	netif_dbg(priv, intr, priv->dev,
2600
		  "IRQ=0x%x\n", status);
2601

2602
	if (status & UMAC_IRQ_RXDMA_DONE) {
2603 2604 2605 2606
		rx_ring = &priv->rx_rings[DESC_INDEX];

		if (likely(napi_schedule_prep(&rx_ring->napi))) {
			rx_ring->int_disable(rx_ring);
2607
			__napi_schedule_irqoff(&rx_ring->napi);
2608 2609
		}
	}
2610

2611
	if (status & UMAC_IRQ_TXDMA_DONE) {
2612 2613 2614 2615
		tx_ring = &priv->tx_rings[DESC_INDEX];

		if (likely(napi_schedule_prep(&tx_ring->napi))) {
			tx_ring->int_disable(tx_ring);
2616
			__napi_schedule_irqoff(&tx_ring->napi);
2617
		}
2618
	}
2619

2620
	if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
2621
		status & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) {
2622 2623 2624
		wake_up(&priv->wq);
	}

2625
	/* all other interested interrupts handled in bottom half */
D
Doug Berger 已提交
2626
	status &= UMAC_IRQ_LINK_EVENT;
2627 2628 2629 2630 2631 2632 2633 2634 2635
	if (status) {
		/* Save irq status for bottom-half processing. */
		spin_lock_irqsave(&priv->lock, flags);
		priv->irq0_stat |= status;
		spin_unlock_irqrestore(&priv->lock, flags);

		schedule_work(&priv->bcmgenet_irq_work);
	}

2636 2637 2638
	return IRQ_HANDLED;
}

2639 2640 2641 2642 2643 2644 2645 2646 2647
static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id)
{
	struct bcmgenet_priv *priv = dev_id;

	pm_wakeup_event(&priv->pdev->dev, 0);

	return IRQ_HANDLED;
}

2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664
#ifdef CONFIG_NET_POLL_CONTROLLER
static void bcmgenet_poll_controller(struct net_device *dev)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);

	/* Invoke the main RX/TX interrupt handler */
	disable_irq(priv->irq0);
	bcmgenet_isr0(priv->irq0, priv);
	enable_irq(priv->irq0);

	/* And the interrupt handler for RX/TX priority queues */
	disable_irq(priv->irq1);
	bcmgenet_isr1(priv->irq1, priv);
	enable_irq(priv->irq1);
}
#endif

2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679
static void bcmgenet_umac_reset(struct bcmgenet_priv *priv)
{
	u32 reg;

	reg = bcmgenet_rbuf_ctrl_get(priv);
	reg |= BIT(1);
	bcmgenet_rbuf_ctrl_set(priv, reg);
	udelay(10);

	reg &= ~BIT(1);
	bcmgenet_rbuf_ctrl_set(priv, reg);
	udelay(10);
}

static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv,
2680
				 unsigned char *addr)
2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722
{
	bcmgenet_umac_writel(priv, (addr[0] << 24) | (addr[1] << 16) |
			(addr[2] << 8) | addr[3], UMAC_MAC0);
	bcmgenet_umac_writel(priv, (addr[4] << 8) | addr[5], UMAC_MAC1);
}

/* Returns a reusable dma control register value */
static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv)
{
	u32 reg;
	u32 dma_ctrl;

	/* disable DMA */
	dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
	reg &= ~dma_ctrl;
	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);

	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
	reg &= ~dma_ctrl;
	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);

	bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH);
	udelay(10);
	bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH);

	return dma_ctrl;
}

static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl)
{
	u32 reg;

	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
	reg |= dma_ctrl;
	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);

	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
	reg |= dma_ctrl;
	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
}

2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754
/* bcmgenet_hfb_clear
 *
 * Clear Hardware Filter Block and disable all filtering.
 */
static void bcmgenet_hfb_clear(struct bcmgenet_priv *priv)
{
	u32 i;

	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_CTRL);
	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS);
	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS + 4);

	for (i = DMA_INDEX2RING_0; i <= DMA_INDEX2RING_7; i++)
		bcmgenet_rdma_writel(priv, 0x0, i);

	for (i = 0; i < (priv->hw_params->hfb_filter_cnt / 4); i++)
		bcmgenet_hfb_reg_writel(priv, 0x0,
					HFB_FLT_LEN_V3PLUS + i * sizeof(u32));

	for (i = 0; i < priv->hw_params->hfb_filter_cnt *
			priv->hw_params->hfb_filter_size; i++)
		bcmgenet_hfb_writel(priv, 0x0, i * sizeof(u32));
}

static void bcmgenet_hfb_init(struct bcmgenet_priv *priv)
{
	if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
		return;

	bcmgenet_hfb_clear(priv);
}

2755 2756 2757 2758 2759
static void bcmgenet_netif_start(struct net_device *dev)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);

	/* Start the network engine */
2760
	bcmgenet_enable_rx_napi(priv);
2761 2762 2763 2764

	umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true);

	netif_tx_start_all_queues(dev);
2765
	bcmgenet_enable_tx_napi(priv);
2766

2767 2768 2769
	/* Monitor link interrupts now */
	bcmgenet_link_intr_enable(priv);

2770
	phy_start(dev->phydev);
2771 2772
}

2773 2774 2775 2776 2777 2778 2779 2780 2781 2782
static int bcmgenet_open(struct net_device *dev)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
	unsigned long dma_ctrl;
	u32 reg;
	int ret;

	netif_dbg(priv, ifup, dev, "bcmgenet_open\n");

	/* Turn on the clock */
2783
	clk_prepare_enable(priv->clk);
2784

2785 2786 2787
	/* If this is an internal GPHY, power it back on now, before UniMAC is
	 * brought out of reset as absolutely no UniMAC activity is allowed
	 */
2788
	if (priv->internal_phy)
2789 2790
		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);

2791 2792 2793
	/* take MAC out of reset */
	bcmgenet_umac_reset(priv);

2794
	init_umac(priv);
2795

2796 2797 2798 2799
	/* Make sure we reflect the value of CRC_CMD_FWD */
	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
	priv->crc_fwd_en = !!(reg & CMD_CRC_FWD);

2800 2801
	bcmgenet_set_hw_addr(priv, dev->dev_addr);

2802
	if (priv->internal_phy) {
2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814
		reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
		reg |= EXT_ENERGY_DET_MASK;
		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
	}

	/* Disable RX/TX DMA and flush TX queues */
	dma_ctrl = bcmgenet_dma_disable(priv);

	/* Reinitialize TDMA and RDMA and SW housekeeping */
	ret = bcmgenet_init_dma(priv);
	if (ret) {
		netdev_err(dev, "failed to initialize DMA\n");
2815
		goto err_clk_disable;
2816 2817 2818 2819 2820
	}

	/* Always enable ring 16 - descriptor ring */
	bcmgenet_enable_dma(priv, dma_ctrl);

2821 2822 2823
	/* HFB init */
	bcmgenet_hfb_init(priv);

2824
	ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED,
2825
			  dev->name, priv);
2826 2827 2828 2829 2830 2831
	if (ret < 0) {
		netdev_err(dev, "can't request IRQ %d\n", priv->irq0);
		goto err_fini_dma;
	}

	ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED,
2832
			  dev->name, priv);
2833 2834 2835 2836 2837
	if (ret < 0) {
		netdev_err(dev, "can't request IRQ %d\n", priv->irq1);
		goto err_irq0;
	}

2838 2839 2840 2841 2842
	ret = bcmgenet_mii_probe(dev);
	if (ret) {
		netdev_err(dev, "failed to connect to PHY\n");
		goto err_irq1;
	}
2843

2844
	bcmgenet_netif_start(dev);
2845 2846 2847

	return 0;

2848 2849
err_irq1:
	free_irq(priv->irq1, priv);
2850
err_irq0:
2851
	free_irq(priv->irq0, priv);
2852
err_fini_dma:
2853
	bcmgenet_dma_teardown(priv);
2854 2855
	bcmgenet_fini_dma(priv);
err_clk_disable:
2856 2857
	if (priv->internal_phy)
		bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
2858
	clk_disable_unprepare(priv->clk);
2859 2860 2861
	return ret;
}

2862 2863 2864 2865
static void bcmgenet_netif_stop(struct net_device *dev)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);

2866
	bcmgenet_disable_tx_napi(priv);
2867
	netif_tx_stop_all_queues(dev);
2868 2869 2870 2871 2872 2873 2874 2875 2876

	/* Disable MAC receive */
	umac_enable_set(priv, CMD_RX_EN, false);

	bcmgenet_dma_teardown(priv);

	/* Disable MAC transmit. TX DMA disabled must be done before this */
	umac_enable_set(priv, CMD_TX_EN, false);

2877
	phy_stop(dev->phydev);
2878
	bcmgenet_disable_rx_napi(priv);
2879
	bcmgenet_intr_disable(priv);
2880 2881 2882 2883 2884

	/* Wait for pending work items to complete. Since interrupts are
	 * disabled no new work will be scheduled.
	 */
	cancel_work_sync(&priv->bcmgenet_irq_work);
2885 2886

	priv->old_link = -1;
2887
	priv->old_speed = -1;
2888
	priv->old_duplex = -1;
2889
	priv->old_pause = -1;
2890 2891 2892 2893

	/* tx reclaim */
	bcmgenet_tx_reclaim_all(dev);
	bcmgenet_fini_dma(priv);
2894 2895
}

2896 2897 2898
static int bcmgenet_close(struct net_device *dev)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
2899
	int ret = 0;
2900 2901 2902

	netif_dbg(priv, ifdown, dev, "bcmgenet_close\n");

2903
	bcmgenet_netif_stop(dev);
2904

2905
	/* Really kill the PHY state machine and disconnect from it */
2906
	phy_disconnect(dev->phydev);
2907

2908 2909 2910
	free_irq(priv->irq0, priv);
	free_irq(priv->irq1, priv);

2911
	if (priv->internal_phy)
2912
		ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
2913

2914
	clk_disable_unprepare(priv->clk);
2915

2916
	return ret;
2917 2918
}

2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931
static void bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring *ring)
{
	struct bcmgenet_priv *priv = ring->priv;
	u32 p_index, c_index, intsts, intmsk;
	struct netdev_queue *txq;
	unsigned int free_bds;
	bool txq_stopped;

	if (!netif_msg_tx_err(priv))
		return;

	txq = netdev_get_tx_queue(priv->dev, ring->queue);

2932
	spin_lock(&ring->lock);
2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943
	if (ring->index == DESC_INDEX) {
		intsts = ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
		intmsk = UMAC_IRQ_TXDMA_DONE | UMAC_IRQ_TXDMA_MBDONE;
	} else {
		intsts = ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
		intmsk = 1 << ring->index;
	}
	c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
	p_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_PROD_INDEX);
	txq_stopped = netif_tx_queue_stopped(txq);
	free_bds = ring->free_bds;
2944
	spin_unlock(&ring->lock);
2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962

	netif_err(priv, tx_err, priv->dev, "Ring %d queue %d status summary\n"
		  "TX queue status: %s, interrupts: %s\n"
		  "(sw)free_bds: %d (sw)size: %d\n"
		  "(sw)p_index: %d (hw)p_index: %d\n"
		  "(sw)c_index: %d (hw)c_index: %d\n"
		  "(sw)clean_p: %d (sw)write_p: %d\n"
		  "(sw)cb_ptr: %d (sw)end_ptr: %d\n",
		  ring->index, ring->queue,
		  txq_stopped ? "stopped" : "active",
		  intsts & intmsk ? "enabled" : "disabled",
		  free_bds, ring->size,
		  ring->prod_index, p_index & DMA_P_INDEX_MASK,
		  ring->c_index, c_index & DMA_C_INDEX_MASK,
		  ring->clean_ptr, ring->write_ptr,
		  ring->cb_ptr, ring->end_ptr);
}

2963 2964 2965
static void bcmgenet_timeout(struct net_device *dev)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
2966 2967 2968
	u32 int0_enable = 0;
	u32 int1_enable = 0;
	unsigned int q;
2969 2970 2971

	netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n");

2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986
	for (q = 0; q < priv->hw_params->tx_queues; q++)
		bcmgenet_dump_tx_queue(&priv->tx_rings[q]);
	bcmgenet_dump_tx_queue(&priv->tx_rings[DESC_INDEX]);

	bcmgenet_tx_reclaim_all(dev);

	for (q = 0; q < priv->hw_params->tx_queues; q++)
		int1_enable |= (1 << q);

	int0_enable = UMAC_IRQ_TXDMA_DONE;

	/* Re-enable TX interrupts if disabled */
	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
	bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);

2987
	netif_trans_update(dev);
2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002

	dev->stats.tx_errors++;

	netif_tx_wake_all_queues(dev);
}

#define MAX_MC_COUNT	16

static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv,
					 unsigned char *addr,
					 int *i,
					 int *mc)
{
	u32 reg;

3003 3004 3005 3006 3007
	bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1],
			     UMAC_MDF_ADDR + (*i * 4));
	bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 |
			     addr[4] << 8 | addr[5],
			     UMAC_MDF_ADDR + ((*i + 1) * 4));
3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023
	reg = bcmgenet_umac_readl(priv, UMAC_MDF_CTRL);
	reg |= (1 << (MAX_MC_COUNT - *mc));
	bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL);
	*i += 2;
	(*mc)++;
}

static void bcmgenet_set_rx_mode(struct net_device *dev)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
	struct netdev_hw_addr *ha;
	int i, mc;
	u32 reg;

	netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags);

B
Brian Norris 已提交
3024
	/* Promiscuous mode */
3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079
	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
	if (dev->flags & IFF_PROMISC) {
		reg |= CMD_PROMISC;
		bcmgenet_umac_writel(priv, reg, UMAC_CMD);
		bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL);
		return;
	} else {
		reg &= ~CMD_PROMISC;
		bcmgenet_umac_writel(priv, reg, UMAC_CMD);
	}

	/* UniMac doesn't support ALLMULTI */
	if (dev->flags & IFF_ALLMULTI) {
		netdev_warn(dev, "ALLMULTI is not supported\n");
		return;
	}

	/* update MDF filter */
	i = 0;
	mc = 0;
	/* Broadcast */
	bcmgenet_set_mdf_addr(priv, dev->broadcast, &i, &mc);
	/* my own address.*/
	bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i, &mc);
	/* Unicast list*/
	if (netdev_uc_count(dev) > (MAX_MC_COUNT - mc))
		return;

	if (!netdev_uc_empty(dev))
		netdev_for_each_uc_addr(ha, dev)
			bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc);
	/* Multicast */
	if (netdev_mc_empty(dev) || netdev_mc_count(dev) >= (MAX_MC_COUNT - mc))
		return;

	netdev_for_each_mc_addr(ha, dev)
		bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc);
}

/* Set the hardware MAC address. */
static int bcmgenet_set_mac_addr(struct net_device *dev, void *p)
{
	struct sockaddr *addr = p;

	/* Setting the MAC address at the hardware level is not possible
	 * without disabling the UniMAC RX/TX enable bits.
	 */
	if (netif_running(dev))
		return -EBUSY;

	ether_addr_copy(dev->dev_addr, addr->sa_data);

	return 0;
}

3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121
static struct net_device_stats *bcmgenet_get_stats(struct net_device *dev)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
	unsigned long tx_bytes = 0, tx_packets = 0;
	unsigned long rx_bytes = 0, rx_packets = 0;
	unsigned long rx_errors = 0, rx_dropped = 0;
	struct bcmgenet_tx_ring *tx_ring;
	struct bcmgenet_rx_ring *rx_ring;
	unsigned int q;

	for (q = 0; q < priv->hw_params->tx_queues; q++) {
		tx_ring = &priv->tx_rings[q];
		tx_bytes += tx_ring->bytes;
		tx_packets += tx_ring->packets;
	}
	tx_ring = &priv->tx_rings[DESC_INDEX];
	tx_bytes += tx_ring->bytes;
	tx_packets += tx_ring->packets;

	for (q = 0; q < priv->hw_params->rx_queues; q++) {
		rx_ring = &priv->rx_rings[q];

		rx_bytes += rx_ring->bytes;
		rx_packets += rx_ring->packets;
		rx_errors += rx_ring->errors;
		rx_dropped += rx_ring->dropped;
	}
	rx_ring = &priv->rx_rings[DESC_INDEX];
	rx_bytes += rx_ring->bytes;
	rx_packets += rx_ring->packets;
	rx_errors += rx_ring->errors;
	rx_dropped += rx_ring->dropped;

	dev->stats.tx_bytes = tx_bytes;
	dev->stats.tx_packets = tx_packets;
	dev->stats.rx_bytes = rx_bytes;
	dev->stats.rx_packets = rx_packets;
	dev->stats.rx_errors = rx_errors;
	dev->stats.rx_missed_errors = rx_errors;
	return &dev->stats;
}

3122 3123 3124 3125 3126 3127 3128 3129 3130
static const struct net_device_ops bcmgenet_netdev_ops = {
	.ndo_open		= bcmgenet_open,
	.ndo_stop		= bcmgenet_close,
	.ndo_start_xmit		= bcmgenet_xmit,
	.ndo_tx_timeout		= bcmgenet_timeout,
	.ndo_set_rx_mode	= bcmgenet_set_rx_mode,
	.ndo_set_mac_address	= bcmgenet_set_mac_addr,
	.ndo_do_ioctl		= bcmgenet_ioctl,
	.ndo_set_features	= bcmgenet_set_features,
3131 3132 3133
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller	= bcmgenet_poll_controller,
#endif
3134
	.ndo_get_stats		= bcmgenet_get_stats,
3135 3136 3137 3138 3139 3140
};

/* Array of GENET hardware parameters/characteristics */
static struct bcmgenet_hw_params bcmgenet_hw_params[] = {
	[GENET_V1] = {
		.tx_queues = 0,
3141
		.tx_bds_per_q = 0,
3142
		.rx_queues = 0,
3143
		.rx_bds_per_q = 0,
3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154
		.bp_in_en_shift = 16,
		.bp_in_mask = 0xffff,
		.hfb_filter_cnt = 16,
		.qtag_mask = 0x1F,
		.hfb_offset = 0x1000,
		.rdma_offset = 0x2000,
		.tdma_offset = 0x3000,
		.words_per_bd = 2,
	},
	[GENET_V2] = {
		.tx_queues = 4,
3155
		.tx_bds_per_q = 32,
3156
		.rx_queues = 0,
3157
		.rx_bds_per_q = 0,
3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171
		.bp_in_en_shift = 16,
		.bp_in_mask = 0xffff,
		.hfb_filter_cnt = 16,
		.qtag_mask = 0x1F,
		.tbuf_offset = 0x0600,
		.hfb_offset = 0x1000,
		.hfb_reg_offset = 0x2000,
		.rdma_offset = 0x3000,
		.tdma_offset = 0x4000,
		.words_per_bd = 2,
		.flags = GENET_HAS_EXT,
	},
	[GENET_V3] = {
		.tx_queues = 4,
3172
		.tx_bds_per_q = 32,
3173
		.rx_queues = 0,
3174
		.rx_bds_per_q = 0,
3175 3176 3177
		.bp_in_en_shift = 17,
		.bp_in_mask = 0x1ffff,
		.hfb_filter_cnt = 48,
3178
		.hfb_filter_size = 128,
3179 3180 3181 3182 3183 3184 3185
		.qtag_mask = 0x3F,
		.tbuf_offset = 0x0600,
		.hfb_offset = 0x8000,
		.hfb_reg_offset = 0xfc00,
		.rdma_offset = 0x10000,
		.tdma_offset = 0x11000,
		.words_per_bd = 2,
3186 3187
		.flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR |
			 GENET_HAS_MOCA_LINK_DET,
3188 3189 3190
	},
	[GENET_V4] = {
		.tx_queues = 4,
3191
		.tx_bds_per_q = 32,
3192
		.rx_queues = 0,
3193
		.rx_bds_per_q = 0,
3194 3195 3196
		.bp_in_en_shift = 17,
		.bp_in_mask = 0x1ffff,
		.hfb_filter_cnt = 48,
3197
		.hfb_filter_size = 128,
3198 3199 3200 3201 3202 3203 3204
		.qtag_mask = 0x3F,
		.tbuf_offset = 0x0600,
		.hfb_offset = 0x8000,
		.hfb_reg_offset = 0xfc00,
		.rdma_offset = 0x2000,
		.tdma_offset = 0x4000,
		.words_per_bd = 3,
3205 3206
		.flags = GENET_HAS_40BITS | GENET_HAS_EXT |
			 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3207
	},
3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226
	[GENET_V5] = {
		.tx_queues = 4,
		.tx_bds_per_q = 32,
		.rx_queues = 0,
		.rx_bds_per_q = 0,
		.bp_in_en_shift = 17,
		.bp_in_mask = 0x1ffff,
		.hfb_filter_cnt = 48,
		.hfb_filter_size = 128,
		.qtag_mask = 0x3F,
		.tbuf_offset = 0x0600,
		.hfb_offset = 0x8000,
		.hfb_reg_offset = 0xfc00,
		.rdma_offset = 0x2000,
		.tdma_offset = 0x4000,
		.words_per_bd = 3,
		.flags = GENET_HAS_40BITS | GENET_HAS_EXT |
			 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
	},
3227 3228 3229 3230 3231 3232 3233 3234
};

/* Infer hardware parameters from the detected GENET version */
static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv)
{
	struct bcmgenet_hw_params *params;
	u32 reg;
	u8 major;
3235
	u16 gphy_rev;
3236

3237
	if (GENET_IS_V5(priv) || GENET_IS_V4(priv)) {
3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261
		bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
		genet_dma_ring_regs = genet_dma_ring_regs_v4;
		priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
	} else if (GENET_IS_V3(priv)) {
		bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
		genet_dma_ring_regs = genet_dma_ring_regs_v123;
		priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
	} else if (GENET_IS_V2(priv)) {
		bcmgenet_dma_regs = bcmgenet_dma_regs_v2;
		genet_dma_ring_regs = genet_dma_ring_regs_v123;
		priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
	} else if (GENET_IS_V1(priv)) {
		bcmgenet_dma_regs = bcmgenet_dma_regs_v1;
		genet_dma_ring_regs = genet_dma_ring_regs_v123;
		priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
	}

	/* enum genet_version starts at 1 */
	priv->hw_params = &bcmgenet_hw_params[priv->version];
	params = priv->hw_params;

	/* Read GENET HW version */
	reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL);
	major = (reg >> 24 & 0x0f);
3262 3263 3264
	if (major == 6)
		major = 5;
	else if (major == 5)
3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275
		major = 4;
	else if (major == 0)
		major = 1;
	if (major != priv->version) {
		dev_err(&priv->pdev->dev,
			"GENET version mismatch, got: %d, configured for: %d\n",
			major, priv->version);
	}

	/* Print the GENET core version */
	dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT,
3276
		 major, (reg >> 16) & 0x0f, reg & 0xffff);
3277

3278 3279 3280 3281
	/* Store the integrated PHY revision for the MDIO probing function
	 * to pass this information to the PHY driver. The PHY driver expects
	 * to find the PHY major revision in bits 15:8 while the GENET register
	 * stores that information in bits 7:0, account for that.
3282 3283 3284 3285 3286 3287 3288
	 *
	 * On newer chips, starting with PHY revision G0, a new scheme is
	 * deployed similar to the Starfighter 2 switch with GPHY major
	 * revision in bits 15:8 and patch level in bits 7:0. Major revision 0
	 * is reserved as well as special value 0x01ff, we have a small
	 * heuristic to check for the new GPHY revision and re-arrange things
	 * so the GPHY driver is happy.
3289
	 */
3290 3291
	gphy_rev = reg & 0xffff;

3292 3293 3294 3295 3296 3297 3298 3299
	if (GENET_IS_V5(priv)) {
		/* The EPHY revision should come from the MDIO registers of
		 * the PHY not from GENET.
		 */
		if (gphy_rev != 0) {
			pr_warn("GENET is reporting EPHY revision: 0x%04x\n",
				gphy_rev);
		}
3300
	/* This is reserved so should require special treatment */
3301
	} else if (gphy_rev == 0 || gphy_rev == 0x01ff) {
3302 3303
		pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev);
		return;
3304
	/* This is the good old scheme, just GPHY major, no minor nor patch */
3305
	} else if ((gphy_rev & 0xf0) != 0) {
3306 3307
		priv->gphy_rev = gphy_rev << 8;
	/* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */
3308
	} else if ((gphy_rev & 0xff00) != 0) {
3309 3310
		priv->gphy_rev = gphy_rev;
	}
3311

3312 3313 3314 3315 3316 3317
#ifdef CONFIG_PHYS_ADDR_T_64BIT
	if (!(params->flags & GENET_HAS_40BITS))
		pr_warn("GENET does not support 40-bits PA\n");
#endif

	pr_debug("Configuration for version: %d\n"
3318
		"TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n"
3319 3320 3321 3322 3323 3324
		"BP << en: %2d, BP msk: 0x%05x\n"
		"HFB count: %2d, QTAQ msk: 0x%05x\n"
		"TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n"
		"RDMA: 0x%05x, TDMA: 0x%05x\n"
		"Words/BD: %d\n",
		priv->version,
3325
		params->tx_queues, params->tx_bds_per_q,
3326
		params->rx_queues, params->rx_bds_per_q,
3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339
		params->bp_in_en_shift, params->bp_in_mask,
		params->hfb_filter_cnt, params->qtag_mask,
		params->tbuf_offset, params->hfb_offset,
		params->hfb_reg_offset,
		params->rdma_offset, params->tdma_offset,
		params->words_per_bd);
}

static const struct of_device_id bcmgenet_match[] = {
	{ .compatible = "brcm,genet-v1", .data = (void *)GENET_V1 },
	{ .compatible = "brcm,genet-v2", .data = (void *)GENET_V2 },
	{ .compatible = "brcm,genet-v3", .data = (void *)GENET_V3 },
	{ .compatible = "brcm,genet-v4", .data = (void *)GENET_V4 },
3340
	{ .compatible = "brcm,genet-v5", .data = (void *)GENET_V5 },
3341 3342
	{ },
};
3343
MODULE_DEVICE_TABLE(of, bcmgenet_match);
3344 3345 3346

static int bcmgenet_probe(struct platform_device *pdev)
{
3347
	struct bcmgenet_platform_data *pd = pdev->dev.platform_data;
3348
	struct device_node *dn = pdev->dev.of_node;
3349
	const struct of_device_id *of_id = NULL;
3350 3351 3352 3353 3354
	struct bcmgenet_priv *priv;
	struct net_device *dev;
	const void *macaddr;
	struct resource *r;
	int err = -EIO;
3355
	const char *phy_mode_str;
3356

3357 3358 3359
	/* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */
	dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1,
				 GENET_MAX_MQ_CNT + 1);
3360 3361 3362 3363 3364
	if (!dev) {
		dev_err(&pdev->dev, "can't allocate net device\n");
		return -ENOMEM;
	}

3365 3366 3367 3368 3369
	if (dn) {
		of_id = of_match_node(bcmgenet_match, dn);
		if (!of_id)
			return -EINVAL;
	}
3370 3371 3372 3373

	priv = netdev_priv(dev);
	priv->irq0 = platform_get_irq(pdev, 0);
	priv->irq1 = platform_get_irq(pdev, 1);
3374
	priv->wol_irq = platform_get_irq(pdev, 2);
3375 3376 3377 3378 3379 3380
	if (!priv->irq0 || !priv->irq1) {
		dev_err(&pdev->dev, "can't find IRQs\n");
		err = -EINVAL;
		goto err;
	}

3381 3382 3383 3384 3385 3386 3387 3388 3389
	if (dn) {
		macaddr = of_get_mac_address(dn);
		if (!macaddr) {
			dev_err(&pdev->dev, "can't find MAC address\n");
			err = -EINVAL;
			goto err;
		}
	} else {
		macaddr = pd->mac_address;
3390 3391 3392
	}

	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3393 3394 3395
	priv->base = devm_ioremap_resource(&pdev->dev, r);
	if (IS_ERR(priv->base)) {
		err = PTR_ERR(priv->base);
3396 3397 3398
		goto err;
	}

3399 3400
	spin_lock_init(&priv->lock);

3401 3402 3403 3404
	SET_NETDEV_DEV(dev, &pdev->dev);
	dev_set_drvdata(&pdev->dev, dev);
	ether_addr_copy(dev->dev_addr, macaddr);
	dev->watchdog_timeo = 2 * HZ;
3405
	dev->ethtool_ops = &bcmgenet_ethtool_ops;
3406 3407 3408 3409 3410 3411 3412 3413
	dev->netdev_ops = &bcmgenet_netdev_ops;

	priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT);

	/* Set hardware features */
	dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM |
		NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;

3414 3415 3416 3417 3418 3419 3420
	/* Request the WOL interrupt and advertise suspend if available */
	priv->wol_irq_disabled = true;
	err = devm_request_irq(&pdev->dev, priv->wol_irq, bcmgenet_wol_isr, 0,
			       dev->name, priv);
	if (!err)
		device_set_wakeup_capable(&pdev->dev, 1);

3421 3422 3423 3424 3425 3426 3427 3428 3429
	/* Set the needed headroom to account for any possible
	 * features enabling/disabling at runtime
	 */
	dev->needed_headroom += 64;

	netdev_boot_setup_check(dev);

	priv->dev = dev;
	priv->pdev = pdev;
3430 3431 3432 3433
	if (of_id)
		priv->version = (enum bcmgenet_version)of_id->data;
	else
		priv->version = pd->genet_version;
3434

3435
	priv->clk = devm_clk_get(&priv->pdev->dev, "enet");
3436
	if (IS_ERR(priv->clk)) {
3437
		dev_warn(&priv->pdev->dev, "failed to get enet clock\n");
3438 3439
		priv->clk = NULL;
	}
3440

3441
	clk_prepare_enable(priv->clk);
3442

3443 3444 3445 3446 3447 3448 3449 3450 3451
	bcmgenet_set_hw_params(priv);

	/* Mii wait queue */
	init_waitqueue_head(&priv->wq);
	/* Always use RX_BUF_LENGTH (2KB) buffer for all chips */
	priv->rx_buf_len = RX_BUF_LENGTH;
	INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task);

	priv->clk_wol = devm_clk_get(&priv->pdev->dev, "enet-wol");
3452
	if (IS_ERR(priv->clk_wol)) {
3453
		dev_warn(&priv->pdev->dev, "failed to get enet-wol clock\n");
3454 3455
		priv->clk_wol = NULL;
	}
3456

F
Florian Fainelli 已提交
3457 3458 3459 3460 3461 3462
	priv->clk_eee = devm_clk_get(&priv->pdev->dev, "enet-eee");
	if (IS_ERR(priv->clk_eee)) {
		dev_warn(&priv->pdev->dev, "failed to get enet-eee clock\n");
		priv->clk_eee = NULL;
	}

3463 3464 3465 3466 3467 3468 3469
	/* If this is an internal GPHY, power it on now, before UniMAC is
	 * brought out of reset as absolutely no UniMAC activity is allowed
	 */
	if (dn && !of_property_read_string(dn, "phy-mode", &phy_mode_str) &&
	    !strcasecmp(phy_mode_str, "internal"))
		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);

3470
	reset_umac(priv);
3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481

	err = bcmgenet_mii_init(dev);
	if (err)
		goto err_clk_disable;

	/* setup number of real queues  + 1 (GENET_V1 has 0 hardware queues
	 * just the ring 16 descriptor based TX
	 */
	netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1);
	netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1);

3482 3483 3484
	/* libphy will determine the link state */
	netif_carrier_off(dev);

3485
	/* Turn off the main clock, WOL clock is handled separately */
3486
	clk_disable_unprepare(priv->clk);
3487

3488 3489 3490 3491
	err = register_netdev(dev);
	if (err)
		goto err;

3492 3493 3494
	return err;

err_clk_disable:
3495
	clk_disable_unprepare(priv->clk);
3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512
err:
	free_netdev(dev);
	return err;
}

static int bcmgenet_remove(struct platform_device *pdev)
{
	struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev);

	dev_set_drvdata(&pdev->dev, NULL);
	unregister_netdev(priv->dev);
	bcmgenet_mii_exit(priv->dev);
	free_netdev(priv->dev);

	return 0;
}

3513 3514 3515 3516 3517
#ifdef CONFIG_PM_SLEEP
static int bcmgenet_suspend(struct device *d)
{
	struct net_device *dev = dev_get_drvdata(d);
	struct bcmgenet_priv *priv = netdev_priv(dev);
3518
	int ret = 0;
3519 3520 3521 3522 3523 3524

	if (!netif_running(dev))
		return 0;

	bcmgenet_netif_stop(dev);

3525
	if (!device_may_wakeup(d))
3526
		phy_suspend(dev->phydev);
3527

3528 3529
	netif_device_detach(dev);

3530 3531
	/* Prepare the device for Wake-on-LAN and switch to the slow clock */
	if (device_may_wakeup(d) && priv->wolopts) {
3532
		ret = bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC);
3533
		clk_prepare_enable(priv->clk_wol);
3534
	} else if (priv->internal_phy) {
3535
		ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3536 3537
	}

3538 3539 3540
	/* Turn off the clocks */
	clk_disable_unprepare(priv->clk);

3541
	return ret;
3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559
}

static int bcmgenet_resume(struct device *d)
{
	struct net_device *dev = dev_get_drvdata(d);
	struct bcmgenet_priv *priv = netdev_priv(dev);
	unsigned long dma_ctrl;
	int ret;
	u32 reg;

	if (!netif_running(dev))
		return 0;

	/* Turn on the clock */
	ret = clk_prepare_enable(priv->clk);
	if (ret)
		return ret;

3560 3561 3562
	/* If this is an internal GPHY, power it back on now, before UniMAC is
	 * brought out of reset as absolutely no UniMAC activity is allowed
	 */
3563
	if (priv->internal_phy)
3564 3565
		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);

3566 3567
	bcmgenet_umac_reset(priv);

3568
	init_umac(priv);
3569

3570 3571 3572 3573
	/* From WOL-enabled suspend, switch to regular clock */
	if (priv->wolopts)
		clk_disable_unprepare(priv->clk_wol);

3574 3575
	phy_init_hw(dev->phydev);

3576
	/* Speed settings must be restored */
3577
	bcmgenet_mii_config(priv->dev, false);
3578

3579 3580
	bcmgenet_set_hw_addr(priv, dev->dev_addr);

3581
	if (priv->internal_phy) {
3582 3583 3584 3585 3586
		reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
		reg |= EXT_ENERGY_DET_MASK;
		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
	}

3587 3588 3589
	if (priv->wolopts)
		bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);

3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604
	/* Disable RX/TX DMA and flush TX queues */
	dma_ctrl = bcmgenet_dma_disable(priv);

	/* Reinitialize TDMA and RDMA and SW housekeeping */
	ret = bcmgenet_init_dma(priv);
	if (ret) {
		netdev_err(dev, "failed to initialize DMA\n");
		goto out_clk_disable;
	}

	/* Always enable ring 16 - descriptor ring */
	bcmgenet_enable_dma(priv, dma_ctrl);

	netif_device_attach(dev);

3605
	if (!device_may_wakeup(d))
3606
		phy_resume(dev->phydev);
3607

F
Florian Fainelli 已提交
3608 3609 3610
	if (priv->eee.eee_enabled)
		bcmgenet_eee_enable_set(dev, true);

3611 3612 3613 3614 3615
	bcmgenet_netif_start(dev);

	return 0;

out_clk_disable:
3616 3617
	if (priv->internal_phy)
		bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3618 3619 3620 3621 3622 3623 3624
	clk_disable_unprepare(priv->clk);
	return ret;
}
#endif /* CONFIG_PM_SLEEP */

static SIMPLE_DEV_PM_OPS(bcmgenet_pm_ops, bcmgenet_suspend, bcmgenet_resume);

3625 3626 3627 3628 3629 3630
static struct platform_driver bcmgenet_driver = {
	.probe	= bcmgenet_probe,
	.remove	= bcmgenet_remove,
	.driver	= {
		.name	= "bcmgenet",
		.of_match_table = bcmgenet_match,
3631
		.pm	= &bcmgenet_pm_ops,
3632 3633 3634 3635 3636 3637 3638 3639
	},
};
module_platform_driver(bcmgenet_driver);

MODULE_AUTHOR("Broadcom Corporation");
MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver");
MODULE_ALIAS("platform:bcmgenet");
MODULE_LICENSE("GPL");