bcmgenet.c 97.9 KB
Newer Older
1 2 3
/*
 * Broadcom GENET (Gigabit Ethernet) controller driver
 *
4
 * Copyright (c) 2014-2017 Broadcom
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#define pr_fmt(fmt)				"bcmgenet: " fmt

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/types.h>
#include <linux/fcntl.h>
#include <linux/interrupt.h>
#include <linux/string.h>
#include <linux/if_ether.h>
#include <linux/init.h>
#include <linux/errno.h>
#include <linux/delay.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
#include <linux/pm.h>
#include <linux/clk.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/of_net.h>
#include <linux/of_platform.h>
#include <net/arp.h>

#include <linux/mii.h>
#include <linux/ethtool.h>
#include <linux/netdevice.h>
#include <linux/inetdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/in.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <linux/phy.h>
45
#include <linux/platform_data/bcmgenet.h>
46 47 48 49 50 51 52 53 54 55 56

#include <asm/unaligned.h>

#include "bcmgenet.h"

/* Maximum number of hardware queues, downsized if needed */
#define GENET_MAX_MQ_CNT	4

/* Default highest priority queue for multi queue support */
#define GENET_Q0_PRIORITY	0

57 58
#define GENET_Q16_RX_BD_CNT	\
	(TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q)
59 60
#define GENET_Q16_TX_BD_CNT	\
	(TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q)
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75

#define RX_BUF_LENGTH		2048
#define SKB_ALIGNMENT		32

/* Tx/Rx DMA register offset, skip 256 descriptors */
#define WORDS_PER_BD(p)		(p->hw_params->words_per_bd)
#define DMA_DESC_SIZE		(WORDS_PER_BD(priv) * sizeof(u32))

#define GENET_TDMA_REG_OFF	(priv->hw_params->tdma_offset + \
				TOTAL_DESC * DMA_DESC_SIZE)

#define GENET_RDMA_REG_OFF	(priv->hw_params->rdma_offset + \
				TOTAL_DESC * DMA_DESC_SIZE)

static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv,
76
					     void __iomem *d, u32 value)
77 78 79 80 81
{
	__raw_writel(value, d + DMA_DESC_LENGTH_STATUS);
}

static inline u32 dmadesc_get_length_status(struct bcmgenet_priv *priv,
82
					    void __iomem *d)
83 84 85 86 87 88 89 90 91 92 93 94
{
	return __raw_readl(d + DMA_DESC_LENGTH_STATUS);
}

static inline void dmadesc_set_addr(struct bcmgenet_priv *priv,
				    void __iomem *d,
				    dma_addr_t addr)
{
	__raw_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO);

	/* Register writes to GISB bus can take couple hundred nanoseconds
	 * and are done for each packet, save these expensive writes unless
B
Brian Norris 已提交
95
	 * the platform is explicitly configured for 64-bits/LPAE.
96 97 98 99 100 101 102 103 104
	 */
#ifdef CONFIG_PHYS_ADDR_T_64BIT
	if (priv->hw_params->flags & GENET_HAS_40BITS)
		__raw_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI);
#endif
}

/* Combined address + length/status setter */
static inline void dmadesc_set(struct bcmgenet_priv *priv,
105
			       void __iomem *d, dma_addr_t addr, u32 val)
106 107
{
	dmadesc_set_addr(priv, d, addr);
108
	dmadesc_set_length_status(priv, d, val);
109 110 111 112 113 114 115 116 117 118 119
}

static inline dma_addr_t dmadesc_get_addr(struct bcmgenet_priv *priv,
					  void __iomem *d)
{
	dma_addr_t addr;

	addr = __raw_readl(d + DMA_DESC_ADDRESS_LO);

	/* Register writes to GISB bus can take couple hundred nanoseconds
	 * and are done for each packet, save these expensive writes unless
B
Brian Norris 已提交
120
	 * the platform is explicitly configured for 64-bits/LPAE.
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
	 */
#ifdef CONFIG_PHYS_ADDR_T_64BIT
	if (priv->hw_params->flags & GENET_HAS_40BITS)
		addr |= (u64)__raw_readl(d + DMA_DESC_ADDRESS_HI) << 32;
#endif
	return addr;
}

#define GENET_VER_FMT	"%1d.%1d EPHY: 0x%04x"

#define GENET_MSG_DEFAULT	(NETIF_MSG_DRV | NETIF_MSG_PROBE | \
				NETIF_MSG_LINK)

static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv)
{
	if (GENET_IS_V1(priv))
		return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1);
	else
		return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL);
}

static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
{
	if (GENET_IS_V1(priv))
		bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1);
	else
		bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL);
}

/* These macros are defined to deal with register map change
 * between GENET1.1 and GENET2. Only those currently being used
 * by driver are defined.
 */
static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv)
{
	if (GENET_IS_V1(priv))
		return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1);
	else
		return __raw_readl(priv->base +
				priv->hw_params->tbuf_offset + TBUF_CTRL);
}

static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
{
	if (GENET_IS_V1(priv))
		bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1);
	else
		__raw_writel(val, priv->base +
				priv->hw_params->tbuf_offset + TBUF_CTRL);
}

static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv)
{
	if (GENET_IS_V1(priv))
		return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1);
	else
		return __raw_readl(priv->base +
				priv->hw_params->tbuf_offset + TBUF_BP_MC);
}

static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val)
{
	if (GENET_IS_V1(priv))
		bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1);
	else
		__raw_writel(val, priv->base +
				priv->hw_params->tbuf_offset + TBUF_BP_MC);
}

/* RX/TX DMA register accessors */
enum dma_reg {
	DMA_RING_CFG = 0,
	DMA_CTRL,
	DMA_STATUS,
	DMA_SCB_BURST_SIZE,
	DMA_ARB_CTRL,
197 198 199
	DMA_PRIORITY_0,
	DMA_PRIORITY_1,
	DMA_PRIORITY_2,
200 201 202 203 204 205 206 207
	DMA_INDEX2RING_0,
	DMA_INDEX2RING_1,
	DMA_INDEX2RING_2,
	DMA_INDEX2RING_3,
	DMA_INDEX2RING_4,
	DMA_INDEX2RING_5,
	DMA_INDEX2RING_6,
	DMA_INDEX2RING_7,
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
	DMA_RING0_TIMEOUT,
	DMA_RING1_TIMEOUT,
	DMA_RING2_TIMEOUT,
	DMA_RING3_TIMEOUT,
	DMA_RING4_TIMEOUT,
	DMA_RING5_TIMEOUT,
	DMA_RING6_TIMEOUT,
	DMA_RING7_TIMEOUT,
	DMA_RING8_TIMEOUT,
	DMA_RING9_TIMEOUT,
	DMA_RING10_TIMEOUT,
	DMA_RING11_TIMEOUT,
	DMA_RING12_TIMEOUT,
	DMA_RING13_TIMEOUT,
	DMA_RING14_TIMEOUT,
	DMA_RING15_TIMEOUT,
	DMA_RING16_TIMEOUT,
225 226 227 228 229 230 231 232
};

static const u8 bcmgenet_dma_regs_v3plus[] = {
	[DMA_RING_CFG]		= 0x00,
	[DMA_CTRL]		= 0x04,
	[DMA_STATUS]		= 0x08,
	[DMA_SCB_BURST_SIZE]	= 0x0C,
	[DMA_ARB_CTRL]		= 0x2C,
233 234 235
	[DMA_PRIORITY_0]	= 0x30,
	[DMA_PRIORITY_1]	= 0x34,
	[DMA_PRIORITY_2]	= 0x38,
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
	[DMA_RING0_TIMEOUT]	= 0x2C,
	[DMA_RING1_TIMEOUT]	= 0x30,
	[DMA_RING2_TIMEOUT]	= 0x34,
	[DMA_RING3_TIMEOUT]	= 0x38,
	[DMA_RING4_TIMEOUT]	= 0x3c,
	[DMA_RING5_TIMEOUT]	= 0x40,
	[DMA_RING6_TIMEOUT]	= 0x44,
	[DMA_RING7_TIMEOUT]	= 0x48,
	[DMA_RING8_TIMEOUT]	= 0x4c,
	[DMA_RING9_TIMEOUT]	= 0x50,
	[DMA_RING10_TIMEOUT]	= 0x54,
	[DMA_RING11_TIMEOUT]	= 0x58,
	[DMA_RING12_TIMEOUT]	= 0x5c,
	[DMA_RING13_TIMEOUT]	= 0x60,
	[DMA_RING14_TIMEOUT]	= 0x64,
	[DMA_RING15_TIMEOUT]	= 0x68,
	[DMA_RING16_TIMEOUT]	= 0x6C,
253 254 255 256 257 258 259 260
	[DMA_INDEX2RING_0]	= 0x70,
	[DMA_INDEX2RING_1]	= 0x74,
	[DMA_INDEX2RING_2]	= 0x78,
	[DMA_INDEX2RING_3]	= 0x7C,
	[DMA_INDEX2RING_4]	= 0x80,
	[DMA_INDEX2RING_5]	= 0x84,
	[DMA_INDEX2RING_6]	= 0x88,
	[DMA_INDEX2RING_7]	= 0x8C,
261 262 263 264 265 266 267 268
};

static const u8 bcmgenet_dma_regs_v2[] = {
	[DMA_RING_CFG]		= 0x00,
	[DMA_CTRL]		= 0x04,
	[DMA_STATUS]		= 0x08,
	[DMA_SCB_BURST_SIZE]	= 0x0C,
	[DMA_ARB_CTRL]		= 0x30,
269 270 271
	[DMA_PRIORITY_0]	= 0x34,
	[DMA_PRIORITY_1]	= 0x38,
	[DMA_PRIORITY_2]	= 0x3C,
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
	[DMA_RING0_TIMEOUT]	= 0x2C,
	[DMA_RING1_TIMEOUT]	= 0x30,
	[DMA_RING2_TIMEOUT]	= 0x34,
	[DMA_RING3_TIMEOUT]	= 0x38,
	[DMA_RING4_TIMEOUT]	= 0x3c,
	[DMA_RING5_TIMEOUT]	= 0x40,
	[DMA_RING6_TIMEOUT]	= 0x44,
	[DMA_RING7_TIMEOUT]	= 0x48,
	[DMA_RING8_TIMEOUT]	= 0x4c,
	[DMA_RING9_TIMEOUT]	= 0x50,
	[DMA_RING10_TIMEOUT]	= 0x54,
	[DMA_RING11_TIMEOUT]	= 0x58,
	[DMA_RING12_TIMEOUT]	= 0x5c,
	[DMA_RING13_TIMEOUT]	= 0x60,
	[DMA_RING14_TIMEOUT]	= 0x64,
	[DMA_RING15_TIMEOUT]	= 0x68,
	[DMA_RING16_TIMEOUT]	= 0x6C,
289 290 291 292 293 294 295
};

static const u8 bcmgenet_dma_regs_v1[] = {
	[DMA_CTRL]		= 0x00,
	[DMA_STATUS]		= 0x04,
	[DMA_SCB_BURST_SIZE]	= 0x0C,
	[DMA_ARB_CTRL]		= 0x30,
296 297 298
	[DMA_PRIORITY_0]	= 0x34,
	[DMA_PRIORITY_1]	= 0x38,
	[DMA_PRIORITY_2]	= 0x3C,
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
	[DMA_RING0_TIMEOUT]	= 0x2C,
	[DMA_RING1_TIMEOUT]	= 0x30,
	[DMA_RING2_TIMEOUT]	= 0x34,
	[DMA_RING3_TIMEOUT]	= 0x38,
	[DMA_RING4_TIMEOUT]	= 0x3c,
	[DMA_RING5_TIMEOUT]	= 0x40,
	[DMA_RING6_TIMEOUT]	= 0x44,
	[DMA_RING7_TIMEOUT]	= 0x48,
	[DMA_RING8_TIMEOUT]	= 0x4c,
	[DMA_RING9_TIMEOUT]	= 0x50,
	[DMA_RING10_TIMEOUT]	= 0x54,
	[DMA_RING11_TIMEOUT]	= 0x58,
	[DMA_RING12_TIMEOUT]	= 0x5c,
	[DMA_RING13_TIMEOUT]	= 0x60,
	[DMA_RING14_TIMEOUT]	= 0x64,
	[DMA_RING15_TIMEOUT]	= 0x68,
	[DMA_RING16_TIMEOUT]	= 0x6C,
316 317 318 319 320 321 322 323 324 325 326
};

/* Set at runtime once bcmgenet version is known */
static const u8 *bcmgenet_dma_regs;

static inline struct bcmgenet_priv *dev_to_priv(struct device *dev)
{
	return netdev_priv(dev_get_drvdata(dev));
}

static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv,
327
				      enum dma_reg r)
328 329 330 331 332 333 334 335 336 337 338 339 340
{
	return __raw_readl(priv->base + GENET_TDMA_REG_OFF +
			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
}

static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv,
					u32 val, enum dma_reg r)
{
	__raw_writel(val, priv->base + GENET_TDMA_REG_OFF +
			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
}

static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv,
341
				      enum dma_reg r)
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
{
	return __raw_readl(priv->base + GENET_RDMA_REG_OFF +
			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
}

static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv,
					u32 val, enum dma_reg r)
{
	__raw_writel(val, priv->base + GENET_RDMA_REG_OFF +
			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
}

/* RDMA/TDMA ring registers and accessors
 * we merge the common fields and just prefix with T/D the registers
 * having different meaning depending on the direction
 */
enum dma_ring_reg {
	TDMA_READ_PTR = 0,
	RDMA_WRITE_PTR = TDMA_READ_PTR,
	TDMA_READ_PTR_HI,
	RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI,
	TDMA_CONS_INDEX,
	RDMA_PROD_INDEX = TDMA_CONS_INDEX,
	TDMA_PROD_INDEX,
	RDMA_CONS_INDEX = TDMA_PROD_INDEX,
	DMA_RING_BUF_SIZE,
	DMA_START_ADDR,
	DMA_START_ADDR_HI,
	DMA_END_ADDR,
	DMA_END_ADDR_HI,
	DMA_MBUF_DONE_THRESH,
	TDMA_FLOW_PERIOD,
	RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD,
	TDMA_WRITE_PTR,
	RDMA_READ_PTR = TDMA_WRITE_PTR,
	TDMA_WRITE_PTR_HI,
	RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI
};

/* GENET v4 supports 40-bits pointer addressing
 * for obvious reasons the LO and HI word parts
 * are contiguous, but this offsets the other
 * registers.
 */
static const u8 genet_dma_ring_regs_v4[] = {
	[TDMA_READ_PTR]			= 0x00,
	[TDMA_READ_PTR_HI]		= 0x04,
	[TDMA_CONS_INDEX]		= 0x08,
	[TDMA_PROD_INDEX]		= 0x0C,
	[DMA_RING_BUF_SIZE]		= 0x10,
	[DMA_START_ADDR]		= 0x14,
	[DMA_START_ADDR_HI]		= 0x18,
	[DMA_END_ADDR]			= 0x1C,
	[DMA_END_ADDR_HI]		= 0x20,
	[DMA_MBUF_DONE_THRESH]		= 0x24,
	[TDMA_FLOW_PERIOD]		= 0x28,
	[TDMA_WRITE_PTR]		= 0x2C,
	[TDMA_WRITE_PTR_HI]		= 0x30,
};

static const u8 genet_dma_ring_regs_v123[] = {
	[TDMA_READ_PTR]			= 0x00,
	[TDMA_CONS_INDEX]		= 0x04,
	[TDMA_PROD_INDEX]		= 0x08,
	[DMA_RING_BUF_SIZE]		= 0x0C,
	[DMA_START_ADDR]		= 0x10,
	[DMA_END_ADDR]			= 0x14,
	[DMA_MBUF_DONE_THRESH]		= 0x18,
	[TDMA_FLOW_PERIOD]		= 0x1C,
	[TDMA_WRITE_PTR]		= 0x20,
};

/* Set at runtime once GENET version is known */
static const u8 *genet_dma_ring_regs;

static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv,
418 419
					   unsigned int ring,
					   enum dma_ring_reg r)
420 421 422 423 424 425 426
{
	return __raw_readl(priv->base + GENET_TDMA_REG_OFF +
			(DMA_RING_SIZE * ring) +
			genet_dma_ring_regs[r]);
}

static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv,
427 428
					     unsigned int ring, u32 val,
					     enum dma_ring_reg r)
429 430 431 432 433 434 435
{
	__raw_writel(val, priv->base + GENET_TDMA_REG_OFF +
			(DMA_RING_SIZE * ring) +
			genet_dma_ring_regs[r]);
}

static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv,
436 437
					   unsigned int ring,
					   enum dma_ring_reg r)
438 439 440 441 442 443 444
{
	return __raw_readl(priv->base + GENET_RDMA_REG_OFF +
			(DMA_RING_SIZE * ring) +
			genet_dma_ring_regs[r]);
}

static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv,
445 446
					     unsigned int ring, u32 val,
					     enum dma_ring_reg r)
447 448 449 450 451 452
{
	__raw_writel(val, priv->base + GENET_RDMA_REG_OFF +
			(DMA_RING_SIZE * ring) +
			genet_dma_ring_regs[r]);
}

453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
static int bcmgenet_begin(struct net_device *dev)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);

	/* Turn on the clock */
	return clk_prepare_enable(priv->clk);
}

static void bcmgenet_complete(struct net_device *dev)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);

	/* Turn off the clock */
	clk_disable_unprepare(priv->clk);
}

469 470
static int bcmgenet_get_link_ksettings(struct net_device *dev,
				       struct ethtool_link_ksettings *cmd)
471
{
472 473
	struct bcmgenet_priv *priv = netdev_priv(dev);

474 475 476
	if (!netif_running(dev))
		return -EINVAL;

477
	if (!priv->phydev)
478 479
		return -ENODEV;

480
	return phy_ethtool_ksettings_get(priv->phydev, cmd);
481 482
}

483 484
static int bcmgenet_set_link_ksettings(struct net_device *dev,
				       const struct ethtool_link_ksettings *cmd)
485
{
486 487
	struct bcmgenet_priv *priv = netdev_priv(dev);

488 489 490
	if (!netif_running(dev))
		return -EINVAL;

491
	if (!priv->phydev)
492 493
		return -ENODEV;

494
	return phy_ethtool_ksettings_set(priv->phydev, cmd);
495 496
}

497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
static int bcmgenet_set_rx_csum(struct net_device *dev,
				netdev_features_t wanted)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
	u32 rbuf_chk_ctrl;
	bool rx_csum_en;

	rx_csum_en = !!(wanted & NETIF_F_RXCSUM);

	rbuf_chk_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL);

	/* enable rx checksumming */
	if (rx_csum_en)
		rbuf_chk_ctrl |= RBUF_RXCHK_EN;
	else
		rbuf_chk_ctrl &= ~RBUF_RXCHK_EN;
	priv->desc_rxchk_en = rx_csum_en;
514 515 516 517 518 519 520 521 522

	/* If UniMAC forwards CRC, we need to skip over it to get
	 * a valid CHK bit to be set in the per-packet status word
	*/
	if (rx_csum_en && priv->crc_fwd_en)
		rbuf_chk_ctrl |= RBUF_SKIP_FCS;
	else
		rbuf_chk_ctrl &= ~RBUF_SKIP_FCS;

523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
	bcmgenet_rbuf_writel(priv, rbuf_chk_ctrl, RBUF_CHK_CTRL);

	return 0;
}

static int bcmgenet_set_tx_csum(struct net_device *dev,
				netdev_features_t wanted)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
	bool desc_64b_en;
	u32 tbuf_ctrl, rbuf_ctrl;

	tbuf_ctrl = bcmgenet_tbuf_ctrl_get(priv);
	rbuf_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CTRL);

	desc_64b_en = !!(wanted & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM));

	/* enable 64 bytes descriptor in both directions (RBUF and TBUF) */
	if (desc_64b_en) {
		tbuf_ctrl |= RBUF_64B_EN;
		rbuf_ctrl |= RBUF_64B_EN;
	} else {
		tbuf_ctrl &= ~RBUF_64B_EN;
		rbuf_ctrl &= ~RBUF_64B_EN;
	}
	priv->desc_64b_en = desc_64b_en;

	bcmgenet_tbuf_ctrl_set(priv, tbuf_ctrl);
	bcmgenet_rbuf_writel(priv, rbuf_ctrl, RBUF_CTRL);

	return 0;
}

static int bcmgenet_set_features(struct net_device *dev,
557
				 netdev_features_t features)
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
{
	netdev_features_t changed = features ^ dev->features;
	netdev_features_t wanted = dev->wanted_features;
	int ret = 0;

	if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))
		ret = bcmgenet_set_tx_csum(dev, wanted);
	if (changed & (NETIF_F_RXCSUM))
		ret = bcmgenet_set_rx_csum(dev, wanted);

	return ret;
}

static u32 bcmgenet_get_msglevel(struct net_device *dev)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);

	return priv->msg_enable;
}

static void bcmgenet_set_msglevel(struct net_device *dev, u32 level)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);

	priv->msg_enable = level;
}

585 586 587 588 589 590 591 592
static int bcmgenet_get_coalesce(struct net_device *dev,
				 struct ethtool_coalesce *ec)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);

	ec->tx_max_coalesced_frames =
		bcmgenet_tdma_ring_readl(priv, DESC_INDEX,
					 DMA_MBUF_DONE_THRESH);
593 594 595 596 597
	ec->rx_max_coalesced_frames =
		bcmgenet_rdma_ring_readl(priv, DESC_INDEX,
					 DMA_MBUF_DONE_THRESH);
	ec->rx_coalesce_usecs =
		bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT) * 8192 / 1000;
598 599 600 601 602 603 604 605 606

	return 0;
}

static int bcmgenet_set_coalesce(struct net_device *dev,
				 struct ethtool_coalesce *ec)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
	unsigned int i;
607
	u32 reg;
608

609 610 611 612
	/* Base system clock is 125Mhz, DMA timeout is this reference clock
	 * divided by 1024, which yields roughly 8.192us, our maximum value
	 * has to fit in the DMA_TIMEOUT_MASK (16 bits)
	 */
613
	if (ec->tx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
614 615 616 617 618 619
	    ec->tx_max_coalesced_frames == 0 ||
	    ec->rx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
	    ec->rx_coalesce_usecs > (DMA_TIMEOUT_MASK * 8) + 1)
		return -EINVAL;

	if (ec->rx_coalesce_usecs == 0 && ec->rx_max_coalesced_frames == 0)
620 621 622 623
		return -EINVAL;

	/* GENET TDMA hardware does not support a configurable timeout, but will
	 * always generate an interrupt either after MBDONE packets have been
624
	 * transmitted, or when the ring is empty.
625 626
	 */
	if (ec->tx_coalesce_usecs || ec->tx_coalesce_usecs_high ||
627
	    ec->tx_coalesce_usecs_irq || ec->tx_coalesce_usecs_low)
628 629 630 631 632 633 634 635 636 637 638 639 640
		return -EOPNOTSUPP;

	/* Program all TX queues with the same values, as there is no
	 * ethtool knob to do coalescing on a per-queue basis
	 */
	for (i = 0; i < priv->hw_params->tx_queues; i++)
		bcmgenet_tdma_ring_writel(priv, i,
					  ec->tx_max_coalesced_frames,
					  DMA_MBUF_DONE_THRESH);
	bcmgenet_tdma_ring_writel(priv, DESC_INDEX,
				  ec->tx_max_coalesced_frames,
				  DMA_MBUF_DONE_THRESH);

641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
	for (i = 0; i < priv->hw_params->rx_queues; i++) {
		bcmgenet_rdma_ring_writel(priv, i,
					  ec->rx_max_coalesced_frames,
					  DMA_MBUF_DONE_THRESH);

		reg = bcmgenet_rdma_readl(priv, DMA_RING0_TIMEOUT + i);
		reg &= ~DMA_TIMEOUT_MASK;
		reg |= DIV_ROUND_UP(ec->rx_coalesce_usecs * 1000, 8192);
		bcmgenet_rdma_writel(priv, reg, DMA_RING0_TIMEOUT + i);
	}

	bcmgenet_rdma_ring_writel(priv, DESC_INDEX,
				  ec->rx_max_coalesced_frames,
				  DMA_MBUF_DONE_THRESH);

	reg = bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT);
	reg &= ~DMA_TIMEOUT_MASK;
	reg |= DIV_ROUND_UP(ec->rx_coalesce_usecs * 1000, 8192);
	bcmgenet_rdma_writel(priv, reg, DMA_RING16_TIMEOUT);

661 662 663
	return 0;
}

664 665 666 667 668 669 670
/* standard ethtool support functions. */
enum bcmgenet_stat_type {
	BCMGENET_STAT_NETDEV = -1,
	BCMGENET_STAT_MIB_RX,
	BCMGENET_STAT_MIB_TX,
	BCMGENET_STAT_RUNT,
	BCMGENET_STAT_MISC,
671
	BCMGENET_STAT_SOFT,
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
};

struct bcmgenet_stats {
	char stat_string[ETH_GSTRING_LEN];
	int stat_sizeof;
	int stat_offset;
	enum bcmgenet_stat_type type;
	/* reg offset from UMAC base for misc counters */
	u16 reg_offset;
};

#define STAT_NETDEV(m) { \
	.stat_string = __stringify(m), \
	.stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \
	.stat_offset = offsetof(struct net_device_stats, m), \
	.type = BCMGENET_STAT_NETDEV, \
}

#define STAT_GENET_MIB(str, m, _type) { \
	.stat_string = str, \
	.stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
	.stat_offset = offsetof(struct bcmgenet_priv, m), \
	.type = _type, \
}

#define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX)
#define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX)
#define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT)
700
#define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT)
701 702 703 704 705 706 707 708 709

#define STAT_GENET_MISC(str, m, offset) { \
	.stat_string = str, \
	.stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
	.stat_offset = offsetof(struct bcmgenet_priv, m), \
	.type = BCMGENET_STAT_MISC, \
	.reg_offset = offset, \
}

710 711 712 713 714 715 716 717 718 719 720 721 722
#define STAT_GENET_Q(num) \
	STAT_GENET_SOFT_MIB("txq" __stringify(num) "_packets", \
			tx_rings[num].packets), \
	STAT_GENET_SOFT_MIB("txq" __stringify(num) "_bytes", \
			tx_rings[num].bytes), \
	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_bytes", \
			rx_rings[num].bytes),	 \
	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_packets", \
			rx_rings[num].packets), \
	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_errors", \
			rx_rings[num].errors), \
	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_dropped", \
			rx_rings[num].dropped)
723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809

/* There is a 0xC gap between the end of RX and beginning of TX stats and then
 * between the end of TX stats and the beginning of the RX RUNT
 */
#define BCMGENET_STAT_OFFSET	0xc

/* Hardware counters must be kept in sync because the order/offset
 * is important here (order in structure declaration = order in hardware)
 */
static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = {
	/* general stats */
	STAT_NETDEV(rx_packets),
	STAT_NETDEV(tx_packets),
	STAT_NETDEV(rx_bytes),
	STAT_NETDEV(tx_bytes),
	STAT_NETDEV(rx_errors),
	STAT_NETDEV(tx_errors),
	STAT_NETDEV(rx_dropped),
	STAT_NETDEV(tx_dropped),
	STAT_NETDEV(multicast),
	/* UniMAC RSV counters */
	STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
	STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
	STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
	STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
	STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
	STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
	STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
	STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
	STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
	STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
	STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt),
	STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes),
	STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca),
	STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca),
	STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs),
	STAT_GENET_MIB_RX("rx_control", mib.rx.cf),
	STAT_GENET_MIB_RX("rx_pause", mib.rx.pf),
	STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo),
	STAT_GENET_MIB_RX("rx_align", mib.rx.aln),
	STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr),
	STAT_GENET_MIB_RX("rx_code", mib.rx.cde),
	STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr),
	STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr),
	STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr),
	STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue),
	STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok),
	STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc),
	STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp),
	STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc),
	/* UniMAC TSV counters */
	STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
	STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
	STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
	STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
	STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
	STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
	STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
	STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
	STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
	STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
	STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts),
	STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca),
	STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca),
	STAT_GENET_MIB_TX("tx_pause", mib.tx.pf),
	STAT_GENET_MIB_TX("tx_control", mib.tx.cf),
	STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs),
	STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr),
	STAT_GENET_MIB_TX("tx_defer", mib.tx.drf),
	STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf),
	STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl),
	STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl),
	STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl),
	STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl),
	STAT_GENET_MIB_TX("tx_frags", mib.tx.frg),
	STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl),
	STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr),
	STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes),
	STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok),
	STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc),
	/* UniMAC RUNT counters */
	STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
	STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
	STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
	STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
	/* Misc UniMAC counters */
	STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt,
810 811 812
			UMAC_RBUF_OVFL_CNT_V1),
	STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt,
			UMAC_RBUF_ERR_CNT_V1),
813
	STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT),
814 815 816
	STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed),
	STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed),
	STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed),
817 818 819 820 821 822
	/* Per TX queues */
	STAT_GENET_Q(0),
	STAT_GENET_Q(1),
	STAT_GENET_Q(2),
	STAT_GENET_Q(3),
	STAT_GENET_Q(16),
823 824 825 826 827
};

#define BCMGENET_STATS_LEN	ARRAY_SIZE(bcmgenet_gstrings_stats)

static void bcmgenet_get_drvinfo(struct net_device *dev,
828
				 struct ethtool_drvinfo *info)
829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
{
	strlcpy(info->driver, "bcmgenet", sizeof(info->driver));
	strlcpy(info->version, "v2.0", sizeof(info->version));
}

static int bcmgenet_get_sset_count(struct net_device *dev, int string_set)
{
	switch (string_set) {
	case ETH_SS_STATS:
		return BCMGENET_STATS_LEN;
	default:
		return -EOPNOTSUPP;
	}
}

844 845
static void bcmgenet_get_strings(struct net_device *dev, u32 stringset,
				 u8 *data)
846 847 848 849 850 851 852
{
	int i;

	switch (stringset) {
	case ETH_SS_STATS:
		for (i = 0; i < BCMGENET_STATS_LEN; i++) {
			memcpy(data + i * ETH_GSTRING_LEN,
853 854
			       bcmgenet_gstrings_stats[i].stat_string,
			       ETH_GSTRING_LEN);
855 856 857 858 859
		}
		break;
	}
}

860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898
static u32 bcmgenet_update_stat_misc(struct bcmgenet_priv *priv, u16 offset)
{
	u16 new_offset;
	u32 val;

	switch (offset) {
	case UMAC_RBUF_OVFL_CNT_V1:
		if (GENET_IS_V2(priv))
			new_offset = RBUF_OVFL_CNT_V2;
		else
			new_offset = RBUF_OVFL_CNT_V3PLUS;

		val = bcmgenet_rbuf_readl(priv,	new_offset);
		/* clear if overflowed */
		if (val == ~0)
			bcmgenet_rbuf_writel(priv, 0, new_offset);
		break;
	case UMAC_RBUF_ERR_CNT_V1:
		if (GENET_IS_V2(priv))
			new_offset = RBUF_ERR_CNT_V2;
		else
			new_offset = RBUF_ERR_CNT_V3PLUS;

		val = bcmgenet_rbuf_readl(priv,	new_offset);
		/* clear if overflowed */
		if (val == ~0)
			bcmgenet_rbuf_writel(priv, 0, new_offset);
		break;
	default:
		val = bcmgenet_umac_readl(priv, offset);
		/* clear if overflowed */
		if (val == ~0)
			bcmgenet_umac_writel(priv, 0, offset);
		break;
	}

	return val;
}

899 900 901 902 903 904 905 906 907 908 909 910 911
static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv)
{
	int i, j = 0;

	for (i = 0; i < BCMGENET_STATS_LEN; i++) {
		const struct bcmgenet_stats *s;
		u8 offset = 0;
		u32 val = 0;
		char *p;

		s = &bcmgenet_gstrings_stats[i];
		switch (s->type) {
		case BCMGENET_STAT_NETDEV:
912
		case BCMGENET_STAT_SOFT:
913 914
			continue;
		case BCMGENET_STAT_RUNT:
915 916 917 918 919 920
			offset += BCMGENET_STAT_OFFSET;
			/* fall through */
		case BCMGENET_STAT_MIB_TX:
			offset += BCMGENET_STAT_OFFSET;
			/* fall through */
		case BCMGENET_STAT_MIB_RX:
921 922
			val = bcmgenet_umac_readl(priv,
						  UMAC_MIB_START + j + offset);
923
			offset = 0;	/* Reset Offset */
924 925
			break;
		case BCMGENET_STAT_MISC:
926 927 928 929 930 931 932 933 934 935
			if (GENET_IS_V1(priv)) {
				val = bcmgenet_umac_readl(priv, s->reg_offset);
				/* clear if overflowed */
				if (val == ~0)
					bcmgenet_umac_writel(priv, 0,
							     s->reg_offset);
			} else {
				val = bcmgenet_update_stat_misc(priv,
								s->reg_offset);
			}
936 937 938 939 940 941 942 943 944 945
			break;
		}

		j += s->stat_sizeof;
		p = (char *)priv + s->stat_offset;
		*(u32 *)p = val;
	}
}

static void bcmgenet_get_ethtool_stats(struct net_device *dev,
946 947
				       struct ethtool_stats *stats,
				       u64 *data)
948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
	int i;

	if (netif_running(dev))
		bcmgenet_update_mib_counters(priv);

	for (i = 0; i < BCMGENET_STATS_LEN; i++) {
		const struct bcmgenet_stats *s;
		char *p;

		s = &bcmgenet_gstrings_stats[i];
		if (s->type == BCMGENET_STAT_NETDEV)
			p = (char *)&dev->stats;
		else
			p = (char *)priv;
		p += s->stat_offset;
965 966 967 968 969
		if (sizeof(unsigned long) != sizeof(u32) &&
		    s->stat_sizeof == sizeof(unsigned long))
			data[i] = *(unsigned long *)p;
		else
			data[i] = *(u32 *)p;
970 971 972
	}
}

F
Florian Fainelli 已提交
973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
static void bcmgenet_eee_enable_set(struct net_device *dev, bool enable)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
	u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL;
	u32 reg;

	if (enable && !priv->clk_eee_enabled) {
		clk_prepare_enable(priv->clk_eee);
		priv->clk_eee_enabled = true;
	}

	reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL);
	if (enable)
		reg |= EEE_EN;
	else
		reg &= ~EEE_EN;
	bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL);

	/* Enable EEE and switch to a 27Mhz clock automatically */
	reg = __raw_readl(priv->base + off);
	if (enable)
		reg |= TBUF_EEE_EN | TBUF_PM_EN;
	else
		reg &= ~(TBUF_EEE_EN | TBUF_PM_EN);
	__raw_writel(reg, priv->base + off);

	/* Do the same for thing for RBUF */
	reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL);
	if (enable)
		reg |= RBUF_EEE_EN | RBUF_PM_EN;
	else
		reg &= ~(RBUF_EEE_EN | RBUF_PM_EN);
	bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL);

	if (!enable && priv->clk_eee_enabled) {
		clk_disable_unprepare(priv->clk_eee);
		priv->clk_eee_enabled = false;
	}

	priv->eee.eee_enabled = enable;
	priv->eee.eee_active = enable;
}

static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
	struct ethtool_eee *p = &priv->eee;

	if (GENET_IS_V1(priv))
		return -EOPNOTSUPP;

	e->eee_enabled = p->eee_enabled;
	e->eee_active = p->eee_active;
	e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER);

1028
	return phy_ethtool_get_eee(priv->phydev, e);
F
Florian Fainelli 已提交
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
}

static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
	struct ethtool_eee *p = &priv->eee;
	int ret = 0;

	if (GENET_IS_V1(priv))
		return -EOPNOTSUPP;

	p->eee_enabled = e->eee_enabled;

	if (!p->eee_enabled) {
		bcmgenet_eee_enable_set(dev, false);
	} else {
1045
		ret = phy_init_eee(priv->phydev, 0);
F
Florian Fainelli 已提交
1046 1047 1048 1049 1050 1051 1052 1053 1054
		if (ret) {
			netif_err(priv, hw, dev, "EEE initialization failed\n");
			return ret;
		}

		bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER);
		bcmgenet_eee_enable_set(dev, true);
	}

1055
	return phy_ethtool_set_eee(priv->phydev, e);
F
Florian Fainelli 已提交
1056 1057
}

1058
/* standard ethtool support functions. */
1059
static const struct ethtool_ops bcmgenet_ethtool_ops = {
1060 1061
	.begin			= bcmgenet_begin,
	.complete		= bcmgenet_complete,
1062 1063 1064 1065 1066 1067 1068
	.get_strings		= bcmgenet_get_strings,
	.get_sset_count		= bcmgenet_get_sset_count,
	.get_ethtool_stats	= bcmgenet_get_ethtool_stats,
	.get_drvinfo		= bcmgenet_get_drvinfo,
	.get_link		= ethtool_op_get_link,
	.get_msglevel		= bcmgenet_get_msglevel,
	.set_msglevel		= bcmgenet_set_msglevel,
1069 1070
	.get_wol		= bcmgenet_get_wol,
	.set_wol		= bcmgenet_set_wol,
F
Florian Fainelli 已提交
1071 1072
	.get_eee		= bcmgenet_get_eee,
	.set_eee		= bcmgenet_set_eee,
1073
	.nway_reset		= phy_ethtool_nway_reset,
1074 1075
	.get_coalesce		= bcmgenet_get_coalesce,
	.set_coalesce		= bcmgenet_set_coalesce,
1076 1077
	.get_link_ksettings	= bcmgenet_get_link_ksettings,
	.set_link_ksettings	= bcmgenet_set_link_ksettings,
1078 1079 1080
};

/* Power down the unimac, based on mode. */
1081
static int bcmgenet_power_down(struct bcmgenet_priv *priv,
1082 1083
				enum bcmgenet_power_mode mode)
{
1084
	int ret = 0;
1085 1086 1087 1088
	u32 reg;

	switch (mode) {
	case GENET_POWER_CABLE_SENSE:
1089
		phy_detach(priv->phydev);
1090 1091
		break;

1092
	case GENET_POWER_WOL_MAGIC:
1093
		ret = bcmgenet_wol_power_down_cfg(priv, mode);
1094 1095
		break;

1096 1097 1098 1099
	case GENET_POWER_PASSIVE:
		/* Power down LED */
		if (priv->hw_params->flags & GENET_HAS_EXT) {
			reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
			if (GENET_IS_V5(priv))
				reg |= EXT_PWR_DOWN_PHY_EN |
				       EXT_PWR_DOWN_PHY_RD |
				       EXT_PWR_DOWN_PHY_SD |
				       EXT_PWR_DOWN_PHY_RX |
				       EXT_PWR_DOWN_PHY_TX |
				       EXT_IDDQ_GLBL_PWR;
			else
				reg |= EXT_PWR_DOWN_PHY;

			reg |= (EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1111
			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1112 1113

			bcmgenet_phy_power_set(priv->dev, false);
1114 1115 1116 1117 1118
		}
		break;
	default:
		break;
	}
1119 1120

	return 0;
1121 1122 1123
}

static void bcmgenet_power_up(struct bcmgenet_priv *priv,
1124
			      enum bcmgenet_power_mode mode)
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
{
	u32 reg;

	if (!(priv->hw_params->flags & GENET_HAS_EXT))
		return;

	reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);

	switch (mode) {
	case GENET_POWER_PASSIVE:
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
		reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
		if (GENET_IS_V5(priv)) {
			reg &= ~(EXT_PWR_DOWN_PHY_EN |
				 EXT_PWR_DOWN_PHY_RD |
				 EXT_PWR_DOWN_PHY_SD |
				 EXT_PWR_DOWN_PHY_RX |
				 EXT_PWR_DOWN_PHY_TX |
				 EXT_IDDQ_GLBL_PWR);
			reg |=   EXT_PHY_RESET;
			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
			mdelay(1);

			reg &=  ~EXT_PHY_RESET;
		} else {
			reg &= ~EXT_PWR_DOWN_PHY;
			reg |= EXT_PWR_DN_EN_LD;
		}
		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
		bcmgenet_phy_power_set(priv->dev, true);
		bcmgenet_mii_reset(priv->dev);
		break;

1157 1158
	case GENET_POWER_CABLE_SENSE:
		/* enable APD */
1159 1160 1161 1162
		if (!GENET_IS_V5(priv)) {
			reg |= EXT_PWR_DN_EN_LD;
			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
		}
1163
		break;
1164 1165 1166
	case GENET_POWER_WOL_MAGIC:
		bcmgenet_wol_power_up_cfg(priv, mode);
		return;
1167 1168 1169 1170 1171 1172 1173 1174
	default:
		break;
	}
}

/* ioctl handle special commands that are not present in ethtool. */
static int bcmgenet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
1175
	struct bcmgenet_priv *priv = netdev_priv(dev);
1176 1177 1178 1179

	if (!netif_running(dev))
		return -EINVAL;

1180 1181
	if (!priv->phydev)
		return -ENODEV;
1182

1183
	return phy_mii_ioctl(priv->phydev, rq, cmd);
1184 1185 1186 1187 1188 1189 1190 1191 1192
}

static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv,
					 struct bcmgenet_tx_ring *ring)
{
	struct enet_cb *tx_cb_ptr;

	tx_cb_ptr = ring->cbs;
	tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1193

1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
	/* Advancing local write pointer */
	if (ring->write_ptr == ring->end_ptr)
		ring->write_ptr = ring->cb_ptr;
	else
		ring->write_ptr++;

	return tx_cb_ptr;
}

/* Simple helper to free a control block's resources */
static void bcmgenet_free_cb(struct enet_cb *cb)
{
	dev_kfree_skb_any(cb->skb);
	cb->skb = NULL;
	dma_unmap_addr_set(cb, dma_addr, 0);
}

1211 1212
static inline void bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring *ring)
{
1213
	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1214 1215 1216 1217 1218
				 INTRL2_CPU_MASK_SET);
}

static inline void bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring *ring)
{
1219
	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
				 INTRL2_CPU_MASK_CLEAR);
}

static inline void bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring *ring)
{
	bcmgenet_intrl2_1_writel(ring->priv,
				 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
				 INTRL2_CPU_MASK_SET);
}

static inline void bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring *ring)
{
	bcmgenet_intrl2_1_writel(ring->priv,
				 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
				 INTRL2_CPU_MASK_CLEAR);
}

1237
static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring *ring)
1238
{
1239
	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1240
				 INTRL2_CPU_MASK_SET);
1241 1242
}

1243
static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring *ring)
1244
{
1245
	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1246
				 INTRL2_CPU_MASK_CLEAR);
1247 1248
}

1249
static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring *ring)
1250
{
1251
	bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1252
				 INTRL2_CPU_MASK_CLEAR);
1253 1254
}

1255
static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring *ring)
1256
{
1257
	bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1258
				 INTRL2_CPU_MASK_SET);
1259 1260 1261
}

/* Unlocked version of the reclaim routine */
1262 1263
static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev,
					  struct bcmgenet_tx_ring *ring)
1264 1265
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
1266
	struct device *kdev = &priv->pdev->dev;
1267
	struct enet_cb *tx_cb_ptr;
1268
	unsigned int pkts_compl = 0;
1269
	unsigned int bytes_compl = 0;
1270
	unsigned int c_index;
1271 1272
	unsigned int txbds_ready;
	unsigned int txbds_processed = 0;
1273

1274 1275 1276 1277 1278 1279 1280 1281
	/* Clear status before servicing to reduce spurious interrupts */
	if (ring->index == DESC_INDEX)
		bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_TXDMA_DONE,
					 INTRL2_CPU_CLEAR);
	else
		bcmgenet_intrl2_1_writel(priv, (1 << ring->index),
					 INTRL2_CPU_CLEAR);

B
Brian Norris 已提交
1282
	/* Compute how many buffers are transmitted since last xmit call */
1283 1284 1285
	c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX)
		& DMA_C_INDEX_MASK;
	txbds_ready = (c_index - ring->c_index) & DMA_C_INDEX_MASK;
1286 1287

	netif_dbg(priv, tx_done, dev,
1288 1289
		  "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n",
		  __func__, ring->index, ring->c_index, c_index, txbds_ready);
1290 1291

	/* Reclaim transmitted buffers */
1292 1293
	while (txbds_processed < txbds_ready) {
		tx_cb_ptr = &priv->tx_cbs[ring->clean_ptr];
1294
		if (tx_cb_ptr->skb) {
1295
			pkts_compl++;
1296
			bytes_compl += GENET_CB(tx_cb_ptr->skb)->bytes_sent;
1297
			dma_unmap_single(kdev,
1298
					 dma_unmap_addr(tx_cb_ptr, dma_addr),
1299
					 dma_unmap_len(tx_cb_ptr, dma_len),
1300
					 DMA_TO_DEVICE);
1301 1302
			bcmgenet_free_cb(tx_cb_ptr);
		} else if (dma_unmap_addr(tx_cb_ptr, dma_addr)) {
1303
			dma_unmap_page(kdev,
1304 1305 1306
				       dma_unmap_addr(tx_cb_ptr, dma_addr),
				       dma_unmap_len(tx_cb_ptr, dma_len),
				       DMA_TO_DEVICE);
1307 1308 1309
			dma_unmap_addr_set(tx_cb_ptr, dma_addr, 0);
		}

1310 1311 1312 1313 1314
		txbds_processed++;
		if (likely(ring->clean_ptr < ring->end_ptr))
			ring->clean_ptr++;
		else
			ring->clean_ptr = ring->cb_ptr;
1315 1316
	}

1317
	ring->free_bds += txbds_processed;
1318
	ring->c_index = c_index;
1319

1320 1321
	ring->packets += pkts_compl;
	ring->bytes += bytes_compl;
1322

1323 1324
	netdev_tx_completed_queue(netdev_get_tx_queue(dev, ring->queue),
				  pkts_compl, bytes_compl);
1325

1326
	return txbds_processed;
1327 1328
}

1329
static unsigned int bcmgenet_tx_reclaim(struct net_device *dev,
1330
				struct bcmgenet_tx_ring *ring)
1331
{
1332
	unsigned int released;
1333 1334 1335
	unsigned long flags;

	spin_lock_irqsave(&ring->lock, flags);
1336
	released = __bcmgenet_tx_reclaim(dev, ring);
1337
	spin_unlock_irqrestore(&ring->lock, flags);
1338 1339 1340 1341 1342 1343 1344 1345 1346

	return released;
}

static int bcmgenet_tx_poll(struct napi_struct *napi, int budget)
{
	struct bcmgenet_tx_ring *ring =
		container_of(napi, struct bcmgenet_tx_ring, napi);
	unsigned int work_done = 0;
1347 1348
	struct netdev_queue *txq;
	unsigned long flags;
1349

1350 1351 1352 1353 1354 1355 1356
	spin_lock_irqsave(&ring->lock, flags);
	work_done = __bcmgenet_tx_reclaim(ring->priv->dev, ring);
	if (ring->free_bds > (MAX_SKB_FRAGS + 1)) {
		txq = netdev_get_tx_queue(ring->priv->dev, ring->queue);
		netif_tx_wake_queue(txq);
	}
	spin_unlock_irqrestore(&ring->lock, flags);
1357 1358 1359

	if (work_done == 0) {
		napi_complete(napi);
1360
		ring->int_enable(ring);
1361 1362 1363 1364 1365

		return 0;
	}

	return budget;
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
}

static void bcmgenet_tx_reclaim_all(struct net_device *dev)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
	int i;

	if (netif_is_multiqueue(dev)) {
		for (i = 0; i < priv->hw_params->tx_queues; i++)
			bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]);
	}

	bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]);
}

/* Transmits a single SKB (either head of a fragment or a single SKB)
 * caller must hold priv->lock
 */
static int bcmgenet_xmit_single(struct net_device *dev,
				struct sk_buff *skb,
				u16 dma_desc_flags,
				struct bcmgenet_tx_ring *ring)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
	struct device *kdev = &priv->pdev->dev;
	struct enet_cb *tx_cb_ptr;
	unsigned int skb_len;
	dma_addr_t mapping;
	u32 length_status;
	int ret;

	tx_cb_ptr = bcmgenet_get_txcb(priv, ring);

	if (unlikely(!tx_cb_ptr))
		BUG();

	tx_cb_ptr->skb = skb;

1404
	skb_len = skb_headlen(skb);
1405 1406 1407 1408

	mapping = dma_map_single(kdev, skb->data, skb_len, DMA_TO_DEVICE);
	ret = dma_mapping_error(kdev, mapping);
	if (ret) {
1409
		priv->mib.tx_dma_failed++;
1410 1411 1412 1413 1414 1415
		netif_err(priv, tx_err, dev, "Tx DMA map failed\n");
		dev_kfree_skb(skb);
		return ret;
	}

	dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
1416
	dma_unmap_len_set(tx_cb_ptr, dma_len, skb_len);
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
	length_status = (skb_len << DMA_BUFLENGTH_SHIFT) | dma_desc_flags |
			(priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT) |
			DMA_TX_APPEND_CRC;

	if (skb->ip_summed == CHECKSUM_PARTIAL)
		length_status |= DMA_TX_DO_CSUM;

	dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, length_status);

	return 0;
}

B
Brian Norris 已提交
1429
/* Transmit a SKB fragment */
1430
static int bcmgenet_xmit_frag(struct net_device *dev,
1431 1432 1433
			      skb_frag_t *frag,
			      u16 dma_desc_flags,
			      struct bcmgenet_tx_ring *ring)
1434 1435 1436 1437
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
	struct device *kdev = &priv->pdev->dev;
	struct enet_cb *tx_cb_ptr;
1438
	unsigned int frag_size;
1439 1440 1441 1442 1443 1444 1445
	dma_addr_t mapping;
	int ret;

	tx_cb_ptr = bcmgenet_get_txcb(priv, ring);

	if (unlikely(!tx_cb_ptr))
		BUG();
1446

1447 1448
	tx_cb_ptr->skb = NULL;

1449 1450 1451
	frag_size = skb_frag_size(frag);

	mapping = skb_frag_dma_map(kdev, frag, 0, frag_size, DMA_TO_DEVICE);
1452 1453
	ret = dma_mapping_error(kdev, mapping);
	if (ret) {
1454
		priv->mib.tx_dma_failed++;
1455
		netif_err(priv, tx_err, dev, "%s: Tx DMA map failed\n",
1456
			  __func__);
1457 1458 1459 1460
		return ret;
	}

	dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
1461
	dma_unmap_len_set(tx_cb_ptr, dma_len, frag_size);
1462 1463

	dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping,
1464
		    (frag_size << DMA_BUFLENGTH_SHIFT) | dma_desc_flags |
1465
		    (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT));
1466 1467 1468 1469 1470 1471 1472

	return 0;
}

/* Reallocate the SKB to put enough headroom in front of it and insert
 * the transmit checksum offsets in the descriptors
 */
1473 1474
static struct sk_buff *bcmgenet_put_tx_csum(struct net_device *dev,
					    struct sk_buff *skb)
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
{
	struct status_64 *status = NULL;
	struct sk_buff *new_skb;
	u16 offset;
	u8 ip_proto;
	u16 ip_ver;
	u32 tx_csum_info;

	if (unlikely(skb_headroom(skb) < sizeof(*status))) {
		/* If 64 byte status block enabled, must make sure skb has
		 * enough headroom for us to insert 64B status block.
		 */
		new_skb = skb_realloc_headroom(skb, sizeof(*status));
		dev_kfree_skb(skb);
		if (!new_skb) {
			dev->stats.tx_dropped++;
1491
			return NULL;
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
		}
		skb = new_skb;
	}

	skb_push(skb, sizeof(*status));
	status = (struct status_64 *)skb->data;

	if (skb->ip_summed  == CHECKSUM_PARTIAL) {
		ip_ver = htons(skb->protocol);
		switch (ip_ver) {
		case ETH_P_IP:
			ip_proto = ip_hdr(skb)->protocol;
			break;
		case ETH_P_IPV6:
			ip_proto = ipv6_hdr(skb)->nexthdr;
			break;
		default:
1509
			return skb;
1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
		}

		offset = skb_checksum_start_offset(skb) - sizeof(*status);
		tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) |
				(offset + skb->csum_offset);

		/* Set the length valid bit for TCP and UDP and just set
		 * the special UDP flag for IPv4, else just set to 0.
		 */
		if (ip_proto == IPPROTO_TCP || ip_proto == IPPROTO_UDP) {
			tx_csum_info |= STATUS_TX_CSUM_LV;
			if (ip_proto == IPPROTO_UDP && ip_ver == ETH_P_IP)
				tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP;
1523
		} else {
1524
			tx_csum_info = 0;
1525
		}
1526 1527 1528 1529

		status->tx_csum_info = tx_csum_info;
	}

1530
	return skb;
1531 1532 1533 1534 1535 1536
}

static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
	struct bcmgenet_tx_ring *ring = NULL;
1537
	struct netdev_queue *txq;
1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
	unsigned long flags = 0;
	int nr_frags, index;
	u16 dma_desc_flags;
	int ret;
	int i;

	index = skb_get_queue_mapping(skb);
	/* Mapping strategy:
	 * queue_mapping = 0, unclassified, packet xmited through ring16
	 * queue_mapping = 1, goes to ring 0. (highest priority queue
	 * queue_mapping = 2, goes to ring 1.
	 * queue_mapping = 3, goes to ring 2.
	 * queue_mapping = 4, goes to ring 3.
	 */
	if (index == 0)
		index = DESC_INDEX;
	else
		index -= 1;

	ring = &priv->tx_rings[index];
1558
	txq = netdev_get_tx_queue(dev, ring->queue);
1559

1560 1561
	nr_frags = skb_shinfo(skb)->nr_frags;

1562
	spin_lock_irqsave(&ring->lock, flags);
1563 1564 1565 1566 1567 1568 1569
	if (ring->free_bds <= (nr_frags + 1)) {
		if (!netif_tx_queue_stopped(txq)) {
			netif_tx_stop_queue(txq);
			netdev_err(dev,
				   "%s: tx ring %d full when queue %d awake\n",
				   __func__, index, ring->queue);
		}
1570 1571 1572 1573
		ret = NETDEV_TX_BUSY;
		goto out;
	}

1574 1575 1576 1577 1578
	if (skb_padto(skb, ETH_ZLEN)) {
		ret = NETDEV_TX_OK;
		goto out;
	}

1579 1580 1581 1582 1583
	/* Retain how many bytes will be sent on the wire, without TSB inserted
	 * by transmit checksum offload
	 */
	GENET_CB(skb)->bytes_sent = skb->len;

1584 1585
	/* set the SKB transmit checksum */
	if (priv->desc_64b_en) {
1586 1587
		skb = bcmgenet_put_tx_csum(dev, skb);
		if (!skb) {
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
			ret = NETDEV_TX_OK;
			goto out;
		}
	}

	dma_desc_flags = DMA_SOP;
	if (nr_frags == 0)
		dma_desc_flags |= DMA_EOP;

	/* Transmit single SKB or head of fragment list */
	ret = bcmgenet_xmit_single(dev, skb, dma_desc_flags, ring);
	if (ret) {
		ret = NETDEV_TX_OK;
		goto out;
	}

	/* xmit fragment */
	for (i = 0; i < nr_frags; i++) {
		ret = bcmgenet_xmit_frag(dev,
1607 1608 1609
					 &skb_shinfo(skb)->frags[i],
					 (i == nr_frags - 1) ? DMA_EOP : 0,
					 ring);
1610 1611 1612 1613 1614 1615
		if (ret) {
			ret = NETDEV_TX_OK;
			goto out;
		}
	}

1616 1617
	skb_tx_timestamp(skb);

1618 1619 1620 1621 1622
	/* Decrement total BD count and advance our write pointer */
	ring->free_bds -= nr_frags + 1;
	ring->prod_index += nr_frags + 1;
	ring->prod_index &= DMA_P_INDEX_MASK;

P
Petri Gynther 已提交
1623 1624
	netdev_tx_sent_queue(txq, GENET_CB(skb)->bytes_sent);

1625
	if (ring->free_bds <= (MAX_SKB_FRAGS + 1))
1626
		netif_tx_stop_queue(txq);
1627

1628 1629 1630 1631
	if (!skb->xmit_more || netif_xmit_stopped(txq))
		/* Packets are ready, update producer index */
		bcmgenet_tdma_ring_writel(priv, ring->index,
					  ring->prod_index, TDMA_PROD_INDEX);
1632 1633 1634 1635 1636 1637
out:
	spin_unlock_irqrestore(&ring->lock, flags);

	return ret;
}

1638 1639
static struct sk_buff *bcmgenet_rx_refill(struct bcmgenet_priv *priv,
					  struct enet_cb *cb)
1640 1641 1642
{
	struct device *kdev = &priv->pdev->dev;
	struct sk_buff *skb;
1643
	struct sk_buff *rx_skb;
1644 1645
	dma_addr_t mapping;

1646
	/* Allocate a new Rx skb */
1647
	skb = netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT);
1648 1649 1650 1651 1652 1653
	if (!skb) {
		priv->mib.alloc_rx_buff_failed++;
		netif_err(priv, rx_err, priv->dev,
			  "%s: Rx skb allocation failed\n", __func__);
		return NULL;
	}
1654

1655 1656 1657 1658
	/* DMA-map the new Rx skb */
	mapping = dma_map_single(kdev, skb->data, priv->rx_buf_len,
				 DMA_FROM_DEVICE);
	if (dma_mapping_error(kdev, mapping)) {
1659
		priv->mib.rx_dma_failed++;
1660
		dev_kfree_skb_any(skb);
1661
		netif_err(priv, rx_err, priv->dev,
1662 1663
			  "%s: Rx skb DMA mapping failed\n", __func__);
		return NULL;
1664 1665
	}

1666 1667 1668 1669 1670 1671 1672 1673
	/* Grab the current Rx skb from the ring and DMA-unmap it */
	rx_skb = cb->skb;
	if (likely(rx_skb))
		dma_unmap_single(kdev, dma_unmap_addr(cb, dma_addr),
				 priv->rx_buf_len, DMA_FROM_DEVICE);

	/* Put the new Rx skb on the ring */
	cb->skb = skb;
1674
	dma_unmap_addr_set(cb, dma_addr, mapping);
1675
	dmadesc_set_addr(priv, cb->bd_addr, mapping);
1676

1677 1678
	/* Return the current Rx skb to caller */
	return rx_skb;
1679 1680 1681 1682 1683
}

/* bcmgenet_desc_rx - descriptor based rx process.
 * this could be called from bottom half, or from NAPI polling method.
 */
1684
static unsigned int bcmgenet_desc_rx(struct bcmgenet_rx_ring *ring,
1685 1686
				     unsigned int budget)
{
1687
	struct bcmgenet_priv *priv = ring->priv;
1688 1689 1690 1691 1692
	struct net_device *dev = priv->dev;
	struct enet_cb *cb;
	struct sk_buff *skb;
	u32 dma_length_status;
	unsigned long dma_flag;
1693
	int len;
1694
	unsigned int rxpktprocessed = 0, rxpkttoprocess;
1695
	unsigned int p_index, mask;
1696
	unsigned int discards;
1697 1698
	unsigned int chksum_ok = 0;

1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
	/* Clear status before servicing to reduce spurious interrupts */
	if (ring->index == DESC_INDEX) {
		bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_RXDMA_DONE,
					 INTRL2_CPU_CLEAR);
	} else {
		mask = 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index);
		bcmgenet_intrl2_1_writel(priv,
					 mask,
					 INTRL2_CPU_CLEAR);
	}

1710
	p_index = bcmgenet_rdma_ring_readl(priv, ring->index, RDMA_PROD_INDEX);
1711 1712 1713 1714 1715

	discards = (p_index >> DMA_P_INDEX_DISCARD_CNT_SHIFT) &
		   DMA_P_INDEX_DISCARD_CNT_MASK;
	if (discards > ring->old_discards) {
		discards = discards - ring->old_discards;
1716
		ring->errors += discards;
1717 1718 1719 1720 1721
		ring->old_discards += discards;

		/* Clear HW register when we reach 75% of maximum 0xFFFF */
		if (ring->old_discards >= 0xC000) {
			ring->old_discards = 0;
1722
			bcmgenet_rdma_ring_writel(priv, ring->index, 0,
1723 1724 1725 1726
						  RDMA_PROD_INDEX);
		}
	}

1727
	p_index &= DMA_P_INDEX_MASK;
1728
	rxpkttoprocess = (p_index - ring->c_index) & DMA_C_INDEX_MASK;
1729 1730

	netif_dbg(priv, rx_status, dev,
1731
		  "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess);
1732 1733

	while ((rxpktprocessed < rxpkttoprocess) &&
1734
	       (rxpktprocessed < budget)) {
1735
		cb = &priv->rx_cbs[ring->read_ptr];
1736
		skb = bcmgenet_rx_refill(priv, cb);
1737 1738

		if (unlikely(!skb)) {
1739
			ring->dropped++;
1740
			goto next;
1741 1742
		}

1743
		if (!priv->desc_64b_en) {
1744
			dma_length_status =
1745
				dmadesc_get_length_status(priv, cb->bd_addr);
1746 1747
		} else {
			struct status_64 *status;
1748

1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
			status = (struct status_64 *)skb->data;
			dma_length_status = status->length_status;
		}

		/* DMA flags and length are still valid no matter how
		 * we got the Receive Status Vector (64B RSB or register)
		 */
		dma_flag = dma_length_status & 0xffff;
		len = dma_length_status >> DMA_BUFLENGTH_SHIFT;

		netif_dbg(priv, rx_status, dev,
1760
			  "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n",
1761 1762
			  __func__, p_index, ring->c_index,
			  ring->read_ptr, dma_length_status);
1763 1764 1765

		if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) {
			netif_err(priv, rx_status, dev,
1766
				  "dropping fragmented packet!\n");
1767
			ring->errors++;
1768 1769
			dev_kfree_skb_any(skb);
			goto next;
1770
		}
1771

1772 1773 1774 1775 1776 1777 1778
		/* report errors */
		if (unlikely(dma_flag & (DMA_RX_CRC_ERROR |
						DMA_RX_OV |
						DMA_RX_NO |
						DMA_RX_LG |
						DMA_RX_RXER))) {
			netif_err(priv, rx_status, dev, "dma_flag=0x%x\n",
1779
				  (unsigned int)dma_flag);
1780 1781 1782 1783 1784 1785 1786 1787 1788
			if (dma_flag & DMA_RX_CRC_ERROR)
				dev->stats.rx_crc_errors++;
			if (dma_flag & DMA_RX_OV)
				dev->stats.rx_over_errors++;
			if (dma_flag & DMA_RX_NO)
				dev->stats.rx_frame_errors++;
			if (dma_flag & DMA_RX_LG)
				dev->stats.rx_length_errors++;
			dev->stats.rx_errors++;
1789 1790
			dev_kfree_skb_any(skb);
			goto next;
1791 1792 1793
		} /* error packet */

		chksum_ok = (dma_flag & priv->dma_rx_chk_bit) &&
1794
			     priv->desc_rxchk_en;
1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815

		skb_put(skb, len);
		if (priv->desc_64b_en) {
			skb_pull(skb, 64);
			len -= 64;
		}

		if (likely(chksum_ok))
			skb->ip_summed = CHECKSUM_UNNECESSARY;

		/* remove hardware 2bytes added for IP alignment */
		skb_pull(skb, 2);
		len -= 2;

		if (priv->crc_fwd_en) {
			skb_trim(skb, len - ETH_FCS_LEN);
			len -= ETH_FCS_LEN;
		}

		/*Finish setting up the received SKB and send it to the kernel*/
		skb->protocol = eth_type_trans(skb, priv->dev);
1816 1817
		ring->packets++;
		ring->bytes += len;
1818 1819 1820 1821
		if (dma_flag & DMA_RX_MULT)
			dev->stats.multicast++;

		/* Notify kernel */
1822
		napi_gro_receive(&ring->napi, skb);
1823 1824
		netif_dbg(priv, rx_status, dev, "pushed up to kernel\n");

1825
next:
1826
		rxpktprocessed++;
1827 1828 1829 1830 1831 1832
		if (likely(ring->read_ptr < ring->end_ptr))
			ring->read_ptr++;
		else
			ring->read_ptr = ring->cb_ptr;

		ring->c_index = (ring->c_index + 1) & DMA_C_INDEX_MASK;
1833
		bcmgenet_rdma_ring_writel(priv, ring->index, ring->c_index, RDMA_CONS_INDEX);
1834 1835 1836 1837 1838
	}

	return rxpktprocessed;
}

1839 1840 1841
/* Rx NAPI polling method */
static int bcmgenet_rx_poll(struct napi_struct *napi, int budget)
{
1842 1843
	struct bcmgenet_rx_ring *ring = container_of(napi,
			struct bcmgenet_rx_ring, napi);
1844 1845
	unsigned int work_done;

1846
	work_done = bcmgenet_desc_rx(ring, budget);
1847 1848

	if (work_done < budget) {
1849
		napi_complete_done(napi, work_done);
1850
		ring->int_enable(ring);
1851 1852 1853 1854 1855
	}

	return work_done;
}

1856
/* Assign skb to RX DMA descriptor. */
1857 1858
static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv,
				     struct bcmgenet_rx_ring *ring)
1859 1860
{
	struct enet_cb *cb;
1861
	struct sk_buff *skb;
1862 1863
	int i;

1864
	netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
1865 1866

	/* loop here for each buffer needing assign */
1867 1868
	for (i = 0; i < ring->size; i++) {
		cb = ring->cbs + i;
1869 1870 1871 1872 1873
		skb = bcmgenet_rx_refill(priv, cb);
		if (skb)
			dev_kfree_skb_any(skb);
		if (!cb->skb)
			return -ENOMEM;
1874 1875
	}

1876
	return 0;
1877 1878 1879 1880
}

static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv)
{
1881
	struct device *kdev = &priv->pdev->dev;
1882 1883 1884 1885 1886 1887 1888
	struct enet_cb *cb;
	int i;

	for (i = 0; i < priv->num_rx_bds; i++) {
		cb = &priv->rx_cbs[i];

		if (dma_unmap_addr(cb, dma_addr)) {
1889
			dma_unmap_single(kdev,
1890 1891
					 dma_unmap_addr(cb, dma_addr),
					 priv->rx_buf_len, DMA_FROM_DEVICE);
1892 1893 1894 1895 1896 1897 1898 1899
			dma_unmap_addr_set(cb, dma_addr, 0);
		}

		if (cb->skb)
			bcmgenet_free_cb(cb);
	}
}

1900
static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable)
1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
{
	u32 reg;

	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
	if (enable)
		reg |= mask;
	else
		reg &= ~mask;
	bcmgenet_umac_writel(priv, reg, UMAC_CMD);

	/* UniMAC stops on a packet boundary, wait for a full-size packet
	 * to be processed
	 */
	if (enable == 0)
		usleep_range(1000, 2000);
}

1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942
static int reset_umac(struct bcmgenet_priv *priv)
{
	struct device *kdev = &priv->pdev->dev;
	unsigned int timeout = 0;
	u32 reg;

	/* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */
	bcmgenet_rbuf_ctrl_set(priv, 0);
	udelay(10);

	/* disable MAC while updating its registers */
	bcmgenet_umac_writel(priv, 0, UMAC_CMD);

	/* issue soft reset, wait for it to complete */
	bcmgenet_umac_writel(priv, CMD_SW_RESET, UMAC_CMD);
	while (timeout++ < 1000) {
		reg = bcmgenet_umac_readl(priv, UMAC_CMD);
		if (!(reg & CMD_SW_RESET))
			return 0;

		udelay(1);
	}

	if (timeout == 1000) {
		dev_err(kdev,
B
Brian Norris 已提交
1943
			"timeout waiting for MAC to come out of reset\n");
1944 1945 1946 1947 1948 1949
		return -ETIMEDOUT;
	}

	return 0;
}

1950 1951 1952 1953 1954 1955 1956 1957 1958
static void bcmgenet_intr_disable(struct bcmgenet_priv *priv)
{
	/* Mask all interrupts.*/
	bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
	bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
	bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
	bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
}

1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976
static void bcmgenet_link_intr_enable(struct bcmgenet_priv *priv)
{
	u32 int0_enable = 0;

	/* Monitor cable plug/unplugged event for internal PHY, external PHY
	 * and MoCA PHY
	 */
	if (priv->internal_phy) {
		int0_enable |= UMAC_IRQ_LINK_EVENT;
	} else if (priv->ext_phy) {
		int0_enable |= UMAC_IRQ_LINK_EVENT;
	} else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
		if (priv->hw_params->flags & GENET_HAS_MOCA_LINK_DET)
			int0_enable |= UMAC_IRQ_LINK_EVENT;
	}
	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
}

1977 1978 1979 1980
static int init_umac(struct bcmgenet_priv *priv)
{
	struct device *kdev = &priv->pdev->dev;
	int ret;
P
Petri Gynther 已提交
1981 1982
	u32 reg;
	u32 int0_enable = 0;
1983 1984 1985 1986 1987 1988 1989 1990 1991 1992

	dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n");

	ret = reset_umac(priv);
	if (ret)
		return ret;

	bcmgenet_umac_writel(priv, 0, UMAC_CMD);
	/* clear tx/rx counter */
	bcmgenet_umac_writel(priv,
1993 1994
			     MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT,
			     UMAC_MIB_CTRL);
1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
	bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL);

	bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);

	/* init rx registers, enable ip header optimization */
	reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
	reg |= RBUF_ALIGN_2B;
	bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL);

	if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv))
		bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL);

2007
	bcmgenet_intr_disable(priv);
2008

2009 2010
	/* Configure backpressure vectors for MoCA */
	if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
		reg = bcmgenet_bp_mc_get(priv);
		reg |= BIT(priv->hw_params->bp_in_en_shift);

		/* bp_mask: back pressure mask */
		if (netif_is_multiqueue(priv->dev))
			reg |= priv->hw_params->bp_in_mask;
		else
			reg &= ~priv->hw_params->bp_in_mask;
		bcmgenet_bp_mc_set(priv, reg);
	}

	/* Enable MDIO interrupts on GENET v3+ */
	if (priv->hw_params->flags & GENET_HAS_MDIO_INTR)
P
Petri Gynther 已提交
2024
		int0_enable |= (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
2025

P
Petri Gynther 已提交
2026
	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2027

2028 2029 2030 2031 2032
	dev_dbg(kdev, "done init umac\n");

	return 0;
}

2033
/* Initialize a Tx ring along with corresponding hardware registers */
2034 2035
static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv,
				  unsigned int index, unsigned int size,
2036
				  unsigned int start_ptr, unsigned int end_ptr)
2037 2038 2039 2040 2041 2042
{
	struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
	u32 words_per_bd = WORDS_PER_BD(priv);
	u32 flow_period_val = 0;

	spin_lock_init(&ring->lock);
2043
	ring->priv = priv;
2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
	ring->index = index;
	if (index == DESC_INDEX) {
		ring->queue = 0;
		ring->int_enable = bcmgenet_tx_ring16_int_enable;
		ring->int_disable = bcmgenet_tx_ring16_int_disable;
	} else {
		ring->queue = index + 1;
		ring->int_enable = bcmgenet_tx_ring_int_enable;
		ring->int_disable = bcmgenet_tx_ring_int_disable;
	}
2054
	ring->cbs = priv->tx_cbs + start_ptr;
2055
	ring->size = size;
2056
	ring->clean_ptr = start_ptr;
2057 2058
	ring->c_index = 0;
	ring->free_bds = size;
2059 2060
	ring->write_ptr = start_ptr;
	ring->cb_ptr = start_ptr;
2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072
	ring->end_ptr = end_ptr - 1;
	ring->prod_index = 0;

	/* Set flow period for ring != 16 */
	if (index != DESC_INDEX)
		flow_period_val = ENET_MAX_MTU_SIZE << 16;

	bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX);
	bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX);
	bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
	/* Disable rate control for now */
	bcmgenet_tdma_ring_writel(priv, index, flow_period_val,
2073
				  TDMA_FLOW_PERIOD);
2074
	bcmgenet_tdma_ring_writel(priv, index,
2075 2076
				  ((size << DMA_RING_SIZE_SHIFT) |
				   RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2077 2078

	/* Set start and end address, read and write pointers */
2079
	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2080
				  DMA_START_ADDR);
2081
	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2082
				  TDMA_READ_PTR);
2083
	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2084
				  TDMA_WRITE_PTR);
2085
	bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2086
				  DMA_END_ADDR);
2087 2088 2089 2090
}

/* Initialize a RDMA ring */
static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv,
2091 2092
				 unsigned int index, unsigned int size,
				 unsigned int start_ptr, unsigned int end_ptr)
2093
{
2094
	struct bcmgenet_rx_ring *ring = &priv->rx_rings[index];
2095 2096 2097
	u32 words_per_bd = WORDS_PER_BD(priv);
	int ret;

2098
	ring->priv = priv;
2099
	ring->index = index;
2100 2101 2102 2103 2104 2105 2106
	if (index == DESC_INDEX) {
		ring->int_enable = bcmgenet_rx_ring16_int_enable;
		ring->int_disable = bcmgenet_rx_ring16_int_disable;
	} else {
		ring->int_enable = bcmgenet_rx_ring_int_enable;
		ring->int_disable = bcmgenet_rx_ring_int_disable;
	}
2107 2108 2109 2110 2111 2112
	ring->cbs = priv->rx_cbs + start_ptr;
	ring->size = size;
	ring->c_index = 0;
	ring->read_ptr = start_ptr;
	ring->cb_ptr = start_ptr;
	ring->end_ptr = end_ptr - 1;
2113

2114 2115
	ret = bcmgenet_alloc_rx_buffers(priv, ring);
	if (ret)
2116 2117 2118 2119
		return ret;

	bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX);
	bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX);
2120
	bcmgenet_rdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
2121
	bcmgenet_rdma_ring_writel(priv, index,
2122 2123
				  ((size << DMA_RING_SIZE_SHIFT) |
				   RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2124
	bcmgenet_rdma_ring_writel(priv, index,
2125 2126 2127
				  (DMA_FC_THRESH_LO <<
				   DMA_XOFF_THRESHOLD_SHIFT) |
				   DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH);
2128 2129

	/* Set start and end address, read and write pointers */
2130 2131 2132 2133 2134 2135 2136
	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
				  DMA_START_ADDR);
	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
				  RDMA_READ_PTR);
	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
				  RDMA_WRITE_PTR);
	bcmgenet_rdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2137
				  DMA_END_ADDR);
2138 2139 2140 2141

	return ret;
}

2142 2143 2144 2145 2146 2147 2148
static void bcmgenet_init_tx_napi(struct bcmgenet_priv *priv)
{
	unsigned int i;
	struct bcmgenet_tx_ring *ring;

	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
		ring = &priv->tx_rings[i];
E
Eric Dumazet 已提交
2149
		netif_tx_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll, 64);
2150 2151 2152
	}

	ring = &priv->tx_rings[DESC_INDEX];
E
Eric Dumazet 已提交
2153
	netif_tx_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll, 64);
2154 2155 2156 2157 2158
}

static void bcmgenet_enable_tx_napi(struct bcmgenet_priv *priv)
{
	unsigned int i;
2159 2160
	u32 int0_enable = UMAC_IRQ_TXDMA_DONE;
	u32 int1_enable = 0;
2161 2162 2163 2164 2165
	struct bcmgenet_tx_ring *ring;

	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
		ring = &priv->tx_rings[i];
		napi_enable(&ring->napi);
2166
		int1_enable |= (1 << i);
2167 2168 2169 2170
	}

	ring = &priv->tx_rings[DESC_INDEX];
	napi_enable(&ring->napi);
2171 2172 2173

	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
	bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
2174 2175 2176 2177 2178
}

static void bcmgenet_disable_tx_napi(struct bcmgenet_priv *priv)
{
	unsigned int i;
2179 2180
	u32 int0_disable = UMAC_IRQ_TXDMA_DONE;
	u32 int1_disable = 0xffff;
2181 2182
	struct bcmgenet_tx_ring *ring;

2183 2184 2185
	bcmgenet_intrl2_0_writel(priv, int0_disable, INTRL2_CPU_MASK_SET);
	bcmgenet_intrl2_1_writel(priv, int1_disable, INTRL2_CPU_MASK_SET);

2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208
	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
		ring = &priv->tx_rings[i];
		napi_disable(&ring->napi);
	}

	ring = &priv->tx_rings[DESC_INDEX];
	napi_disable(&ring->napi);
}

static void bcmgenet_fini_tx_napi(struct bcmgenet_priv *priv)
{
	unsigned int i;
	struct bcmgenet_tx_ring *ring;

	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
		ring = &priv->tx_rings[i];
		netif_napi_del(&ring->napi);
	}

	ring = &priv->tx_rings[DESC_INDEX];
	netif_napi_del(&ring->napi);
}

2209
/* Initialize Tx queues
2210
 *
2211
 * Queues 0-3 are priority-based, each one has 32 descriptors,
2212 2213
 * with queue 0 being the highest priority queue.
 *
2214
 * Queue 16 is the default Tx queue with
2215
 * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors.
2216
 *
2217 2218 2219 2220 2221 2222
 * The transmit control block pool is then partitioned as follows:
 * - Tx queue 0 uses tx_cbs[0..31]
 * - Tx queue 1 uses tx_cbs[32..63]
 * - Tx queue 2 uses tx_cbs[64..95]
 * - Tx queue 3 uses tx_cbs[96..127]
 * - Tx queue 16 uses tx_cbs[128..255]
2223
 */
2224
static void bcmgenet_init_tx_queues(struct net_device *dev)
2225 2226
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
2227 2228
	u32 i, dma_enable;
	u32 dma_ctrl, ring_cfg;
2229
	u32 dma_priority[3] = {0, 0, 0};
2230 2231 2232 2233 2234 2235

	dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL);
	dma_enable = dma_ctrl & DMA_EN;
	dma_ctrl &= ~DMA_EN;
	bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);

2236 2237 2238
	dma_ctrl = 0;
	ring_cfg = 0;

2239 2240 2241
	/* Enable strict priority arbiter mode */
	bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL);

2242
	/* Initialize Tx priority queues */
2243
	for (i = 0; i < priv->hw_params->tx_queues; i++) {
2244 2245 2246
		bcmgenet_init_tx_ring(priv, i, priv->hw_params->tx_bds_per_q,
				      i * priv->hw_params->tx_bds_per_q,
				      (i + 1) * priv->hw_params->tx_bds_per_q);
2247 2248
		ring_cfg |= (1 << i);
		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2249 2250
		dma_priority[DMA_PRIO_REG_INDEX(i)] |=
			((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i));
2251 2252
	}

2253
	/* Initialize Tx default queue 16 */
2254
	bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_Q16_TX_BD_CNT,
2255
			      priv->hw_params->tx_queues *
2256
			      priv->hw_params->tx_bds_per_q,
2257 2258 2259
			      TOTAL_DESC);
	ring_cfg |= (1 << DESC_INDEX);
	dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2260 2261 2262
	dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |=
		((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) <<
		 DMA_PRIO_REG_SHIFT(DESC_INDEX));
2263 2264

	/* Set Tx queue priorities */
2265 2266 2267 2268
	bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0);
	bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1);
	bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2);

2269 2270 2271
	/* Initialize Tx NAPI */
	bcmgenet_init_tx_napi(priv);

2272 2273
	/* Enable Tx queues */
	bcmgenet_tdma_writel(priv, ring_cfg, DMA_RING_CFG);
2274

2275
	/* Enable Tx DMA */
2276
	if (dma_enable)
2277 2278
		dma_ctrl |= DMA_EN;
	bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2279 2280
}

2281 2282
static void bcmgenet_init_rx_napi(struct bcmgenet_priv *priv)
{
2283 2284 2285 2286 2287 2288 2289 2290 2291 2292
	unsigned int i;
	struct bcmgenet_rx_ring *ring;

	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
		ring = &priv->rx_rings[i];
		netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll, 64);
	}

	ring = &priv->rx_rings[DESC_INDEX];
	netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll, 64);
2293 2294 2295 2296
}

static void bcmgenet_enable_rx_napi(struct bcmgenet_priv *priv)
{
2297
	unsigned int i;
2298 2299
	u32 int0_enable = UMAC_IRQ_RXDMA_DONE;
	u32 int1_enable = 0;
2300 2301 2302 2303 2304
	struct bcmgenet_rx_ring *ring;

	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
		ring = &priv->rx_rings[i];
		napi_enable(&ring->napi);
2305
		int1_enable |= (1 << (UMAC_IRQ1_RX_INTR_SHIFT + i));
2306 2307 2308 2309
	}

	ring = &priv->rx_rings[DESC_INDEX];
	napi_enable(&ring->napi);
2310 2311 2312

	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
	bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
2313 2314 2315 2316
}

static void bcmgenet_disable_rx_napi(struct bcmgenet_priv *priv)
{
2317
	unsigned int i;
2318 2319
	u32 int0_disable = UMAC_IRQ_RXDMA_DONE;
	u32 int1_disable = 0xffff << UMAC_IRQ1_RX_INTR_SHIFT;
2320 2321
	struct bcmgenet_rx_ring *ring;

2322 2323 2324
	bcmgenet_intrl2_0_writel(priv, int0_disable, INTRL2_CPU_MASK_SET);
	bcmgenet_intrl2_1_writel(priv, int1_disable, INTRL2_CPU_MASK_SET);

2325 2326 2327 2328 2329 2330 2331
	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
		ring = &priv->rx_rings[i];
		napi_disable(&ring->napi);
	}

	ring = &priv->rx_rings[DESC_INDEX];
	napi_disable(&ring->napi);
2332 2333 2334 2335
}

static void bcmgenet_fini_rx_napi(struct bcmgenet_priv *priv)
{
2336 2337 2338 2339 2340 2341 2342 2343 2344 2345
	unsigned int i;
	struct bcmgenet_rx_ring *ring;

	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
		ring = &priv->rx_rings[i];
		netif_napi_del(&ring->napi);
	}

	ring = &priv->rx_rings[DESC_INDEX];
	netif_napi_del(&ring->napi);
2346 2347
}

2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396
/* Initialize Rx queues
 *
 * Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be
 * used to direct traffic to these queues.
 *
 * Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors.
 */
static int bcmgenet_init_rx_queues(struct net_device *dev)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
	u32 i;
	u32 dma_enable;
	u32 dma_ctrl;
	u32 ring_cfg;
	int ret;

	dma_ctrl = bcmgenet_rdma_readl(priv, DMA_CTRL);
	dma_enable = dma_ctrl & DMA_EN;
	dma_ctrl &= ~DMA_EN;
	bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);

	dma_ctrl = 0;
	ring_cfg = 0;

	/* Initialize Rx priority queues */
	for (i = 0; i < priv->hw_params->rx_queues; i++) {
		ret = bcmgenet_init_rx_ring(priv, i,
					    priv->hw_params->rx_bds_per_q,
					    i * priv->hw_params->rx_bds_per_q,
					    (i + 1) *
					    priv->hw_params->rx_bds_per_q);
		if (ret)
			return ret;

		ring_cfg |= (1 << i);
		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
	}

	/* Initialize Rx default queue 16 */
	ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, GENET_Q16_RX_BD_CNT,
				    priv->hw_params->rx_queues *
				    priv->hw_params->rx_bds_per_q,
				    TOTAL_DESC);
	if (ret)
		return ret;

	ring_cfg |= (1 << DESC_INDEX);
	dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));

2397 2398 2399
	/* Initialize Rx NAPI */
	bcmgenet_init_rx_napi(priv);

2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410
	/* Enable rings */
	bcmgenet_rdma_writel(priv, ring_cfg, DMA_RING_CFG);

	/* Configure ring as descriptor ring and re-enable DMA if enabled */
	if (dma_enable)
		dma_ctrl |= DMA_EN;
	bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);

	return 0;
}

2411 2412 2413 2414 2415
static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv)
{
	int ret = 0;
	int timeout = 0;
	u32 reg;
2416 2417
	u32 dma_ctrl;
	int i;
2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460

	/* Disable TDMA to stop add more frames in TX DMA */
	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
	reg &= ~DMA_EN;
	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);

	/* Check TDMA status register to confirm TDMA is disabled */
	while (timeout++ < DMA_TIMEOUT_VAL) {
		reg = bcmgenet_tdma_readl(priv, DMA_STATUS);
		if (reg & DMA_DISABLED)
			break;

		udelay(1);
	}

	if (timeout == DMA_TIMEOUT_VAL) {
		netdev_warn(priv->dev, "Timed out while disabling TX DMA\n");
		ret = -ETIMEDOUT;
	}

	/* Wait 10ms for packet drain in both tx and rx dma */
	usleep_range(10000, 20000);

	/* Disable RDMA */
	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
	reg &= ~DMA_EN;
	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);

	timeout = 0;
	/* Check RDMA status register to confirm RDMA is disabled */
	while (timeout++ < DMA_TIMEOUT_VAL) {
		reg = bcmgenet_rdma_readl(priv, DMA_STATUS);
		if (reg & DMA_DISABLED)
			break;

		udelay(1);
	}

	if (timeout == DMA_TIMEOUT_VAL) {
		netdev_warn(priv->dev, "Timed out while disabling RX DMA\n");
		ret = -ETIMEDOUT;
	}

2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474
	dma_ctrl = 0;
	for (i = 0; i < priv->hw_params->rx_queues; i++)
		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
	reg &= ~dma_ctrl;
	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);

	dma_ctrl = 0;
	for (i = 0; i < priv->hw_params->tx_queues; i++)
		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
	reg &= ~dma_ctrl;
	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);

2475 2476 2477
	return ret;
}

2478
static void bcmgenet_fini_dma(struct bcmgenet_priv *priv)
2479 2480
{
	int i;
P
Petri Gynther 已提交
2481
	struct netdev_queue *txq;
2482

2483 2484 2485
	bcmgenet_fini_rx_napi(priv);
	bcmgenet_fini_tx_napi(priv);

2486
	/* disable DMA */
2487
	bcmgenet_dma_teardown(priv);
2488 2489 2490 2491 2492 2493 2494 2495

	for (i = 0; i < priv->num_tx_bds; i++) {
		if (priv->tx_cbs[i].skb != NULL) {
			dev_kfree_skb(priv->tx_cbs[i].skb);
			priv->tx_cbs[i].skb = NULL;
		}
	}

P
Petri Gynther 已提交
2496 2497 2498 2499 2500 2501 2502 2503
	for (i = 0; i < priv->hw_params->tx_queues; i++) {
		txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[i].queue);
		netdev_tx_reset_queue(txq);
	}

	txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[DESC_INDEX].queue);
	netdev_tx_reset_queue(txq);

2504 2505 2506 2507 2508 2509 2510 2511 2512
	bcmgenet_free_rx_buffers(priv);
	kfree(priv->rx_cbs);
	kfree(priv->tx_cbs);
}

/* init_edma: Initialize DMA control register */
static int bcmgenet_init_dma(struct bcmgenet_priv *priv)
{
	int ret;
2513 2514
	unsigned int i;
	struct enet_cb *cb;
2515

2516
	netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
2517

2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530
	/* Initialize common Rx ring structures */
	priv->rx_bds = priv->base + priv->hw_params->rdma_offset;
	priv->num_rx_bds = TOTAL_DESC;
	priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb),
			       GFP_KERNEL);
	if (!priv->rx_cbs)
		return -ENOMEM;

	for (i = 0; i < priv->num_rx_bds; i++) {
		cb = priv->rx_cbs + i;
		cb->bd_addr = priv->rx_bds + i * DMA_DESC_SIZE;
	}

B
Brian Norris 已提交
2531
	/* Initialize common TX ring structures */
2532 2533
	priv->tx_bds = priv->base + priv->hw_params->tdma_offset;
	priv->num_tx_bds = TOTAL_DESC;
2534
	priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb),
2535
			       GFP_KERNEL);
2536
	if (!priv->tx_cbs) {
2537
		kfree(priv->rx_cbs);
2538 2539 2540
		return -ENOMEM;
	}

2541 2542 2543 2544 2545
	for (i = 0; i < priv->num_tx_bds; i++) {
		cb = priv->tx_cbs + i;
		cb->bd_addr = priv->tx_bds + i * DMA_DESC_SIZE;
	}

2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561
	/* Init rDma */
	bcmgenet_rdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);

	/* Initialize Rx queues */
	ret = bcmgenet_init_rx_queues(priv->dev);
	if (ret) {
		netdev_err(priv->dev, "failed to initialize Rx queues\n");
		bcmgenet_free_rx_buffers(priv);
		kfree(priv->rx_cbs);
		kfree(priv->tx_cbs);
		return ret;
	}

	/* Init tDma */
	bcmgenet_tdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);

2562 2563
	/* Initialize Tx queues */
	bcmgenet_init_tx_queues(priv->dev);
2564 2565 2566 2567 2568 2569 2570

	return 0;
}

/* Interrupt bottom half */
static void bcmgenet_irq_task(struct work_struct *work)
{
2571 2572
	unsigned long flags;
	unsigned int status;
2573 2574 2575 2576 2577
	struct bcmgenet_priv *priv = container_of(
			work, struct bcmgenet_priv, bcmgenet_irq_work);

	netif_dbg(priv, intr, priv->dev, "%s\n", __func__);

2578 2579 2580 2581 2582 2583
	spin_lock_irqsave(&priv->lock, flags);
	status = priv->irq0_stat;
	priv->irq0_stat = 0;
	spin_unlock_irqrestore(&priv->lock, flags);

	if (status & UMAC_IRQ_MPD_R) {
2584 2585 2586 2587 2588
		netif_dbg(priv, wol, priv->dev,
			  "magic packet detected, waking up\n");
		bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
	}

2589
	/* Link UP/DOWN event */
2590
	if (status & UMAC_IRQ_LINK_EVENT)
2591
		phy_mac_interrupt(priv->phydev,
2592
				  !!(status & UMAC_IRQ_LINK_UP));
2593 2594
}

2595
/* bcmgenet_isr1: handle Rx and Tx priority queues */
2596 2597 2598
static irqreturn_t bcmgenet_isr1(int irq, void *dev_id)
{
	struct bcmgenet_priv *priv = dev_id;
2599 2600
	struct bcmgenet_rx_ring *rx_ring;
	struct bcmgenet_tx_ring *tx_ring;
2601
	unsigned int index, status;
2602

2603 2604
	/* Read irq status */
	status = bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) &
2605
		~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
2606

B
Brian Norris 已提交
2607
	/* clear interrupts */
2608
	bcmgenet_intrl2_1_writel(priv, status, INTRL2_CPU_CLEAR);
2609 2610

	netif_dbg(priv, intr, priv->dev,
2611
		  "%s: IRQ=0x%x\n", __func__, status);
2612

2613 2614
	/* Check Rx priority queue interrupts */
	for (index = 0; index < priv->hw_params->rx_queues; index++) {
2615
		if (!(status & BIT(UMAC_IRQ1_RX_INTR_SHIFT + index)))
2616 2617 2618 2619 2620 2621
			continue;

		rx_ring = &priv->rx_rings[index];

		if (likely(napi_schedule_prep(&rx_ring->napi))) {
			rx_ring->int_disable(rx_ring);
2622
			__napi_schedule_irqoff(&rx_ring->napi);
2623 2624 2625 2626
		}
	}

	/* Check Tx priority queue interrupts */
2627
	for (index = 0; index < priv->hw_params->tx_queues; index++) {
2628
		if (!(status & BIT(index)))
2629 2630
			continue;

2631
		tx_ring = &priv->tx_rings[index];
2632

2633 2634
		if (likely(napi_schedule_prep(&tx_ring->napi))) {
			tx_ring->int_disable(tx_ring);
2635
			__napi_schedule_irqoff(&tx_ring->napi);
2636 2637
		}
	}
2638

2639 2640 2641
	return IRQ_HANDLED;
}

2642
/* bcmgenet_isr0: handle Rx and Tx default queues + other stuff */
2643 2644 2645
static irqreturn_t bcmgenet_isr0(int irq, void *dev_id)
{
	struct bcmgenet_priv *priv = dev_id;
2646 2647
	struct bcmgenet_rx_ring *rx_ring;
	struct bcmgenet_tx_ring *tx_ring;
2648 2649
	unsigned int status;
	unsigned long flags;
2650

2651 2652
	/* Read irq status */
	status = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) &
2653
		~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
2654

B
Brian Norris 已提交
2655
	/* clear interrupts */
2656
	bcmgenet_intrl2_0_writel(priv, status, INTRL2_CPU_CLEAR);
2657 2658

	netif_dbg(priv, intr, priv->dev,
2659
		  "IRQ=0x%x\n", status);
2660

2661
	if (status & UMAC_IRQ_RXDMA_DONE) {
2662 2663 2664 2665
		rx_ring = &priv->rx_rings[DESC_INDEX];

		if (likely(napi_schedule_prep(&rx_ring->napi))) {
			rx_ring->int_disable(rx_ring);
2666
			__napi_schedule_irqoff(&rx_ring->napi);
2667 2668
		}
	}
2669

2670
	if (status & UMAC_IRQ_TXDMA_DONE) {
2671 2672 2673 2674
		tx_ring = &priv->tx_rings[DESC_INDEX];

		if (likely(napi_schedule_prep(&tx_ring->napi))) {
			tx_ring->int_disable(tx_ring);
2675
			__napi_schedule_irqoff(&tx_ring->napi);
2676
		}
2677
	}
2678

2679 2680
	if (priv->irq0_stat & (UMAC_IRQ_PHY_DET_R |
				UMAC_IRQ_PHY_DET_F |
2681
				UMAC_IRQ_LINK_EVENT |
2682
				UMAC_IRQ_HFB_SM |
2683
				UMAC_IRQ_HFB_MM)) {
2684 2685 2686 2687 2688
		/* all other interested interrupts handled in bottom half */
		schedule_work(&priv->bcmgenet_irq_work);
	}

	if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
2689
		status & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) {
2690 2691 2692
		wake_up(&priv->wq);
	}

2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704
	/* all other interested interrupts handled in bottom half */
	status &= (UMAC_IRQ_LINK_EVENT |
		   UMAC_IRQ_MPD_R);
	if (status) {
		/* Save irq status for bottom-half processing. */
		spin_lock_irqsave(&priv->lock, flags);
		priv->irq0_stat |= status;
		spin_unlock_irqrestore(&priv->lock, flags);

		schedule_work(&priv->bcmgenet_irq_work);
	}

2705 2706 2707
	return IRQ_HANDLED;
}

2708 2709 2710 2711 2712 2713 2714 2715 2716
static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id)
{
	struct bcmgenet_priv *priv = dev_id;

	pm_wakeup_event(&priv->pdev->dev, 0);

	return IRQ_HANDLED;
}

2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733
#ifdef CONFIG_NET_POLL_CONTROLLER
static void bcmgenet_poll_controller(struct net_device *dev)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);

	/* Invoke the main RX/TX interrupt handler */
	disable_irq(priv->irq0);
	bcmgenet_isr0(priv->irq0, priv);
	enable_irq(priv->irq0);

	/* And the interrupt handler for RX/TX priority queues */
	disable_irq(priv->irq1);
	bcmgenet_isr1(priv->irq1, priv);
	enable_irq(priv->irq1);
}
#endif

2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748
static void bcmgenet_umac_reset(struct bcmgenet_priv *priv)
{
	u32 reg;

	reg = bcmgenet_rbuf_ctrl_get(priv);
	reg |= BIT(1);
	bcmgenet_rbuf_ctrl_set(priv, reg);
	udelay(10);

	reg &= ~BIT(1);
	bcmgenet_rbuf_ctrl_set(priv, reg);
	udelay(10);
}

static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv,
2749
				 unsigned char *addr)
2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791
{
	bcmgenet_umac_writel(priv, (addr[0] << 24) | (addr[1] << 16) |
			(addr[2] << 8) | addr[3], UMAC_MAC0);
	bcmgenet_umac_writel(priv, (addr[4] << 8) | addr[5], UMAC_MAC1);
}

/* Returns a reusable dma control register value */
static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv)
{
	u32 reg;
	u32 dma_ctrl;

	/* disable DMA */
	dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
	reg &= ~dma_ctrl;
	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);

	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
	reg &= ~dma_ctrl;
	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);

	bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH);
	udelay(10);
	bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH);

	return dma_ctrl;
}

static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl)
{
	u32 reg;

	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
	reg |= dma_ctrl;
	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);

	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
	reg |= dma_ctrl;
	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
}

2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823
/* bcmgenet_hfb_clear
 *
 * Clear Hardware Filter Block and disable all filtering.
 */
static void bcmgenet_hfb_clear(struct bcmgenet_priv *priv)
{
	u32 i;

	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_CTRL);
	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS);
	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS + 4);

	for (i = DMA_INDEX2RING_0; i <= DMA_INDEX2RING_7; i++)
		bcmgenet_rdma_writel(priv, 0x0, i);

	for (i = 0; i < (priv->hw_params->hfb_filter_cnt / 4); i++)
		bcmgenet_hfb_reg_writel(priv, 0x0,
					HFB_FLT_LEN_V3PLUS + i * sizeof(u32));

	for (i = 0; i < priv->hw_params->hfb_filter_cnt *
			priv->hw_params->hfb_filter_size; i++)
		bcmgenet_hfb_writel(priv, 0x0, i * sizeof(u32));
}

static void bcmgenet_hfb_init(struct bcmgenet_priv *priv)
{
	if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
		return;

	bcmgenet_hfb_clear(priv);
}

2824 2825 2826 2827 2828
static void bcmgenet_netif_start(struct net_device *dev)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);

	/* Start the network engine */
2829
	bcmgenet_enable_rx_napi(priv);
2830
	bcmgenet_enable_tx_napi(priv);
2831 2832 2833 2834 2835

	umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true);

	netif_tx_start_all_queues(dev);

2836 2837 2838
	/* Monitor link interrupts now */
	bcmgenet_link_intr_enable(priv);

2839
	phy_start(priv->phydev);
2840 2841
}

2842 2843 2844 2845 2846 2847 2848 2849 2850 2851
static int bcmgenet_open(struct net_device *dev)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
	unsigned long dma_ctrl;
	u32 reg;
	int ret;

	netif_dbg(priv, ifup, dev, "bcmgenet_open\n");

	/* Turn on the clock */
2852
	clk_prepare_enable(priv->clk);
2853

2854 2855 2856
	/* If this is an internal GPHY, power it back on now, before UniMAC is
	 * brought out of reset as absolutely no UniMAC activity is allowed
	 */
2857
	if (priv->internal_phy)
2858 2859
		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);

2860 2861 2862 2863 2864 2865 2866 2867
	/* take MAC out of reset */
	bcmgenet_umac_reset(priv);

	ret = init_umac(priv);
	if (ret)
		goto err_clk_disable;

	/* disable ethernet MAC while updating its registers */
2868
	umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, false);
2869

2870 2871 2872 2873
	/* Make sure we reflect the value of CRC_CMD_FWD */
	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
	priv->crc_fwd_en = !!(reg & CMD_CRC_FWD);

2874 2875
	bcmgenet_set_hw_addr(priv, dev->dev_addr);

2876
	if (priv->internal_phy) {
2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888
		reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
		reg |= EXT_ENERGY_DET_MASK;
		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
	}

	/* Disable RX/TX DMA and flush TX queues */
	dma_ctrl = bcmgenet_dma_disable(priv);

	/* Reinitialize TDMA and RDMA and SW housekeeping */
	ret = bcmgenet_init_dma(priv);
	if (ret) {
		netdev_err(dev, "failed to initialize DMA\n");
2889
		goto err_clk_disable;
2890 2891 2892 2893 2894
	}

	/* Always enable ring 16 - descriptor ring */
	bcmgenet_enable_dma(priv, dma_ctrl);

2895 2896 2897
	/* HFB init */
	bcmgenet_hfb_init(priv);

2898
	ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED,
2899
			  dev->name, priv);
2900 2901 2902 2903 2904 2905
	if (ret < 0) {
		netdev_err(dev, "can't request IRQ %d\n", priv->irq0);
		goto err_fini_dma;
	}

	ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED,
2906
			  dev->name, priv);
2907 2908 2909 2910 2911
	if (ret < 0) {
		netdev_err(dev, "can't request IRQ %d\n", priv->irq1);
		goto err_irq0;
	}

2912 2913 2914 2915 2916
	ret = bcmgenet_mii_probe(dev);
	if (ret) {
		netdev_err(dev, "failed to connect to PHY\n");
		goto err_irq1;
	}
2917

2918
	bcmgenet_netif_start(dev);
2919 2920 2921

	return 0;

2922 2923
err_irq1:
	free_irq(priv->irq1, priv);
2924
err_irq0:
2925
	free_irq(priv->irq0, priv);
2926 2927 2928
err_fini_dma:
	bcmgenet_fini_dma(priv);
err_clk_disable:
2929 2930
	if (priv->internal_phy)
		bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
2931
	clk_disable_unprepare(priv->clk);
2932 2933 2934
	return ret;
}

2935 2936 2937 2938 2939
static void bcmgenet_netif_stop(struct net_device *dev)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);

	netif_tx_stop_all_queues(dev);
2940
	phy_stop(priv->phydev);
2941
	bcmgenet_intr_disable(priv);
2942
	bcmgenet_disable_rx_napi(priv);
2943
	bcmgenet_disable_tx_napi(priv);
2944 2945 2946 2947 2948

	/* Wait for pending work items to complete. Since interrupts are
	 * disabled no new work will be scheduled.
	 */
	cancel_work_sync(&priv->bcmgenet_irq_work);
2949 2950

	priv->old_link = -1;
2951
	priv->old_speed = -1;
2952
	priv->old_duplex = -1;
2953
	priv->old_pause = -1;
2954 2955
}

2956 2957 2958 2959 2960 2961 2962
static int bcmgenet_close(struct net_device *dev)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
	int ret;

	netif_dbg(priv, ifdown, dev, "bcmgenet_close\n");

2963
	bcmgenet_netif_stop(dev);
2964

2965
	/* Really kill the PHY state machine and disconnect from it */
2966
	phy_disconnect(priv->phydev);
2967

2968
	/* Disable MAC receive */
2969
	umac_enable_set(priv, CMD_RX_EN, false);
2970 2971 2972 2973 2974

	ret = bcmgenet_dma_teardown(priv);
	if (ret)
		return ret;

2975
	/* Disable MAC transmit. TX DMA disabled must be done before this */
2976
	umac_enable_set(priv, CMD_TX_EN, false);
2977 2978 2979 2980 2981 2982 2983 2984

	/* tx reclaim */
	bcmgenet_tx_reclaim_all(dev);
	bcmgenet_fini_dma(priv);

	free_irq(priv->irq0, priv);
	free_irq(priv->irq1, priv);

2985
	if (priv->internal_phy)
2986
		ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
2987

2988
	clk_disable_unprepare(priv->clk);
2989

2990
	return ret;
2991 2992
}

2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037
static void bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring *ring)
{
	struct bcmgenet_priv *priv = ring->priv;
	u32 p_index, c_index, intsts, intmsk;
	struct netdev_queue *txq;
	unsigned int free_bds;
	unsigned long flags;
	bool txq_stopped;

	if (!netif_msg_tx_err(priv))
		return;

	txq = netdev_get_tx_queue(priv->dev, ring->queue);

	spin_lock_irqsave(&ring->lock, flags);
	if (ring->index == DESC_INDEX) {
		intsts = ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
		intmsk = UMAC_IRQ_TXDMA_DONE | UMAC_IRQ_TXDMA_MBDONE;
	} else {
		intsts = ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
		intmsk = 1 << ring->index;
	}
	c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
	p_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_PROD_INDEX);
	txq_stopped = netif_tx_queue_stopped(txq);
	free_bds = ring->free_bds;
	spin_unlock_irqrestore(&ring->lock, flags);

	netif_err(priv, tx_err, priv->dev, "Ring %d queue %d status summary\n"
		  "TX queue status: %s, interrupts: %s\n"
		  "(sw)free_bds: %d (sw)size: %d\n"
		  "(sw)p_index: %d (hw)p_index: %d\n"
		  "(sw)c_index: %d (hw)c_index: %d\n"
		  "(sw)clean_p: %d (sw)write_p: %d\n"
		  "(sw)cb_ptr: %d (sw)end_ptr: %d\n",
		  ring->index, ring->queue,
		  txq_stopped ? "stopped" : "active",
		  intsts & intmsk ? "enabled" : "disabled",
		  free_bds, ring->size,
		  ring->prod_index, p_index & DMA_P_INDEX_MASK,
		  ring->c_index, c_index & DMA_C_INDEX_MASK,
		  ring->clean_ptr, ring->write_ptr,
		  ring->cb_ptr, ring->end_ptr);
}

3038 3039 3040
static void bcmgenet_timeout(struct net_device *dev)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
3041 3042 3043
	u32 int0_enable = 0;
	u32 int1_enable = 0;
	unsigned int q;
3044 3045 3046

	netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n");

3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061
	for (q = 0; q < priv->hw_params->tx_queues; q++)
		bcmgenet_dump_tx_queue(&priv->tx_rings[q]);
	bcmgenet_dump_tx_queue(&priv->tx_rings[DESC_INDEX]);

	bcmgenet_tx_reclaim_all(dev);

	for (q = 0; q < priv->hw_params->tx_queues; q++)
		int1_enable |= (1 << q);

	int0_enable = UMAC_IRQ_TXDMA_DONE;

	/* Re-enable TX interrupts if disabled */
	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
	bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);

3062
	netif_trans_update(dev);
3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077

	dev->stats.tx_errors++;

	netif_tx_wake_all_queues(dev);
}

#define MAX_MC_COUNT	16

static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv,
					 unsigned char *addr,
					 int *i,
					 int *mc)
{
	u32 reg;

3078 3079 3080 3081 3082
	bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1],
			     UMAC_MDF_ADDR + (*i * 4));
	bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 |
			     addr[4] << 8 | addr[5],
			     UMAC_MDF_ADDR + ((*i + 1) * 4));
3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098
	reg = bcmgenet_umac_readl(priv, UMAC_MDF_CTRL);
	reg |= (1 << (MAX_MC_COUNT - *mc));
	bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL);
	*i += 2;
	(*mc)++;
}

static void bcmgenet_set_rx_mode(struct net_device *dev)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
	struct netdev_hw_addr *ha;
	int i, mc;
	u32 reg;

	netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags);

B
Brian Norris 已提交
3099
	/* Promiscuous mode */
3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154
	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
	if (dev->flags & IFF_PROMISC) {
		reg |= CMD_PROMISC;
		bcmgenet_umac_writel(priv, reg, UMAC_CMD);
		bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL);
		return;
	} else {
		reg &= ~CMD_PROMISC;
		bcmgenet_umac_writel(priv, reg, UMAC_CMD);
	}

	/* UniMac doesn't support ALLMULTI */
	if (dev->flags & IFF_ALLMULTI) {
		netdev_warn(dev, "ALLMULTI is not supported\n");
		return;
	}

	/* update MDF filter */
	i = 0;
	mc = 0;
	/* Broadcast */
	bcmgenet_set_mdf_addr(priv, dev->broadcast, &i, &mc);
	/* my own address.*/
	bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i, &mc);
	/* Unicast list*/
	if (netdev_uc_count(dev) > (MAX_MC_COUNT - mc))
		return;

	if (!netdev_uc_empty(dev))
		netdev_for_each_uc_addr(ha, dev)
			bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc);
	/* Multicast */
	if (netdev_mc_empty(dev) || netdev_mc_count(dev) >= (MAX_MC_COUNT - mc))
		return;

	netdev_for_each_mc_addr(ha, dev)
		bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc);
}

/* Set the hardware MAC address. */
static int bcmgenet_set_mac_addr(struct net_device *dev, void *p)
{
	struct sockaddr *addr = p;

	/* Setting the MAC address at the hardware level is not possible
	 * without disabling the UniMAC RX/TX enable bits.
	 */
	if (netif_running(dev))
		return -EBUSY;

	ether_addr_copy(dev->dev_addr, addr->sa_data);

	return 0;
}

3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196
static struct net_device_stats *bcmgenet_get_stats(struct net_device *dev)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
	unsigned long tx_bytes = 0, tx_packets = 0;
	unsigned long rx_bytes = 0, rx_packets = 0;
	unsigned long rx_errors = 0, rx_dropped = 0;
	struct bcmgenet_tx_ring *tx_ring;
	struct bcmgenet_rx_ring *rx_ring;
	unsigned int q;

	for (q = 0; q < priv->hw_params->tx_queues; q++) {
		tx_ring = &priv->tx_rings[q];
		tx_bytes += tx_ring->bytes;
		tx_packets += tx_ring->packets;
	}
	tx_ring = &priv->tx_rings[DESC_INDEX];
	tx_bytes += tx_ring->bytes;
	tx_packets += tx_ring->packets;

	for (q = 0; q < priv->hw_params->rx_queues; q++) {
		rx_ring = &priv->rx_rings[q];

		rx_bytes += rx_ring->bytes;
		rx_packets += rx_ring->packets;
		rx_errors += rx_ring->errors;
		rx_dropped += rx_ring->dropped;
	}
	rx_ring = &priv->rx_rings[DESC_INDEX];
	rx_bytes += rx_ring->bytes;
	rx_packets += rx_ring->packets;
	rx_errors += rx_ring->errors;
	rx_dropped += rx_ring->dropped;

	dev->stats.tx_bytes = tx_bytes;
	dev->stats.tx_packets = tx_packets;
	dev->stats.rx_bytes = rx_bytes;
	dev->stats.rx_packets = rx_packets;
	dev->stats.rx_errors = rx_errors;
	dev->stats.rx_missed_errors = rx_errors;
	return &dev->stats;
}

3197 3198 3199 3200 3201 3202 3203 3204 3205
static const struct net_device_ops bcmgenet_netdev_ops = {
	.ndo_open		= bcmgenet_open,
	.ndo_stop		= bcmgenet_close,
	.ndo_start_xmit		= bcmgenet_xmit,
	.ndo_tx_timeout		= bcmgenet_timeout,
	.ndo_set_rx_mode	= bcmgenet_set_rx_mode,
	.ndo_set_mac_address	= bcmgenet_set_mac_addr,
	.ndo_do_ioctl		= bcmgenet_ioctl,
	.ndo_set_features	= bcmgenet_set_features,
3206 3207 3208
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller	= bcmgenet_poll_controller,
#endif
3209
	.ndo_get_stats		= bcmgenet_get_stats,
3210 3211 3212 3213 3214 3215
};

/* Array of GENET hardware parameters/characteristics */
static struct bcmgenet_hw_params bcmgenet_hw_params[] = {
	[GENET_V1] = {
		.tx_queues = 0,
3216
		.tx_bds_per_q = 0,
3217
		.rx_queues = 0,
3218
		.rx_bds_per_q = 0,
3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229
		.bp_in_en_shift = 16,
		.bp_in_mask = 0xffff,
		.hfb_filter_cnt = 16,
		.qtag_mask = 0x1F,
		.hfb_offset = 0x1000,
		.rdma_offset = 0x2000,
		.tdma_offset = 0x3000,
		.words_per_bd = 2,
	},
	[GENET_V2] = {
		.tx_queues = 4,
3230
		.tx_bds_per_q = 32,
3231
		.rx_queues = 0,
3232
		.rx_bds_per_q = 0,
3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246
		.bp_in_en_shift = 16,
		.bp_in_mask = 0xffff,
		.hfb_filter_cnt = 16,
		.qtag_mask = 0x1F,
		.tbuf_offset = 0x0600,
		.hfb_offset = 0x1000,
		.hfb_reg_offset = 0x2000,
		.rdma_offset = 0x3000,
		.tdma_offset = 0x4000,
		.words_per_bd = 2,
		.flags = GENET_HAS_EXT,
	},
	[GENET_V3] = {
		.tx_queues = 4,
3247
		.tx_bds_per_q = 32,
3248
		.rx_queues = 0,
3249
		.rx_bds_per_q = 0,
3250 3251 3252
		.bp_in_en_shift = 17,
		.bp_in_mask = 0x1ffff,
		.hfb_filter_cnt = 48,
3253
		.hfb_filter_size = 128,
3254 3255 3256 3257 3258 3259 3260
		.qtag_mask = 0x3F,
		.tbuf_offset = 0x0600,
		.hfb_offset = 0x8000,
		.hfb_reg_offset = 0xfc00,
		.rdma_offset = 0x10000,
		.tdma_offset = 0x11000,
		.words_per_bd = 2,
3261 3262
		.flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR |
			 GENET_HAS_MOCA_LINK_DET,
3263 3264 3265
	},
	[GENET_V4] = {
		.tx_queues = 4,
3266
		.tx_bds_per_q = 32,
3267
		.rx_queues = 0,
3268
		.rx_bds_per_q = 0,
3269 3270 3271
		.bp_in_en_shift = 17,
		.bp_in_mask = 0x1ffff,
		.hfb_filter_cnt = 48,
3272
		.hfb_filter_size = 128,
3273 3274 3275 3276 3277 3278 3279
		.qtag_mask = 0x3F,
		.tbuf_offset = 0x0600,
		.hfb_offset = 0x8000,
		.hfb_reg_offset = 0xfc00,
		.rdma_offset = 0x2000,
		.tdma_offset = 0x4000,
		.words_per_bd = 3,
3280 3281
		.flags = GENET_HAS_40BITS | GENET_HAS_EXT |
			 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3282
	},
3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301
	[GENET_V5] = {
		.tx_queues = 4,
		.tx_bds_per_q = 32,
		.rx_queues = 0,
		.rx_bds_per_q = 0,
		.bp_in_en_shift = 17,
		.bp_in_mask = 0x1ffff,
		.hfb_filter_cnt = 48,
		.hfb_filter_size = 128,
		.qtag_mask = 0x3F,
		.tbuf_offset = 0x0600,
		.hfb_offset = 0x8000,
		.hfb_reg_offset = 0xfc00,
		.rdma_offset = 0x2000,
		.tdma_offset = 0x4000,
		.words_per_bd = 3,
		.flags = GENET_HAS_40BITS | GENET_HAS_EXT |
			 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
	},
3302 3303 3304 3305 3306 3307 3308 3309
};

/* Infer hardware parameters from the detected GENET version */
static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv)
{
	struct bcmgenet_hw_params *params;
	u32 reg;
	u8 major;
3310
	u16 gphy_rev;
3311

3312
	if (GENET_IS_V5(priv) || GENET_IS_V4(priv)) {
3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336
		bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
		genet_dma_ring_regs = genet_dma_ring_regs_v4;
		priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
	} else if (GENET_IS_V3(priv)) {
		bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
		genet_dma_ring_regs = genet_dma_ring_regs_v123;
		priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
	} else if (GENET_IS_V2(priv)) {
		bcmgenet_dma_regs = bcmgenet_dma_regs_v2;
		genet_dma_ring_regs = genet_dma_ring_regs_v123;
		priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
	} else if (GENET_IS_V1(priv)) {
		bcmgenet_dma_regs = bcmgenet_dma_regs_v1;
		genet_dma_ring_regs = genet_dma_ring_regs_v123;
		priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
	}

	/* enum genet_version starts at 1 */
	priv->hw_params = &bcmgenet_hw_params[priv->version];
	params = priv->hw_params;

	/* Read GENET HW version */
	reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL);
	major = (reg >> 24 & 0x0f);
3337 3338 3339
	if (major == 6)
		major = 5;
	else if (major == 5)
3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350
		major = 4;
	else if (major == 0)
		major = 1;
	if (major != priv->version) {
		dev_err(&priv->pdev->dev,
			"GENET version mismatch, got: %d, configured for: %d\n",
			major, priv->version);
	}

	/* Print the GENET core version */
	dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT,
3351
		 major, (reg >> 16) & 0x0f, reg & 0xffff);
3352

3353 3354 3355 3356
	/* Store the integrated PHY revision for the MDIO probing function
	 * to pass this information to the PHY driver. The PHY driver expects
	 * to find the PHY major revision in bits 15:8 while the GENET register
	 * stores that information in bits 7:0, account for that.
3357 3358 3359 3360 3361 3362 3363
	 *
	 * On newer chips, starting with PHY revision G0, a new scheme is
	 * deployed similar to the Starfighter 2 switch with GPHY major
	 * revision in bits 15:8 and patch level in bits 7:0. Major revision 0
	 * is reserved as well as special value 0x01ff, we have a small
	 * heuristic to check for the new GPHY revision and re-arrange things
	 * so the GPHY driver is happy.
3364
	 */
3365 3366
	gphy_rev = reg & 0xffff;

3367 3368 3369 3370 3371 3372 3373 3374
	if (GENET_IS_V5(priv)) {
		/* The EPHY revision should come from the MDIO registers of
		 * the PHY not from GENET.
		 */
		if (gphy_rev != 0) {
			pr_warn("GENET is reporting EPHY revision: 0x%04x\n",
				gphy_rev);
		}
3375
	/* This is reserved so should require special treatment */
3376
	} else if (gphy_rev == 0 || gphy_rev == 0x01ff) {
3377 3378
		pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev);
		return;
3379
	/* This is the good old scheme, just GPHY major, no minor nor patch */
3380
	} else if ((gphy_rev & 0xf0) != 0) {
3381 3382
		priv->gphy_rev = gphy_rev << 8;
	/* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */
3383
	} else if ((gphy_rev & 0xff00) != 0) {
3384 3385
		priv->gphy_rev = gphy_rev;
	}
3386

3387 3388 3389 3390 3391 3392
#ifdef CONFIG_PHYS_ADDR_T_64BIT
	if (!(params->flags & GENET_HAS_40BITS))
		pr_warn("GENET does not support 40-bits PA\n");
#endif

	pr_debug("Configuration for version: %d\n"
3393
		"TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n"
3394 3395 3396 3397 3398 3399
		"BP << en: %2d, BP msk: 0x%05x\n"
		"HFB count: %2d, QTAQ msk: 0x%05x\n"
		"TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n"
		"RDMA: 0x%05x, TDMA: 0x%05x\n"
		"Words/BD: %d\n",
		priv->version,
3400
		params->tx_queues, params->tx_bds_per_q,
3401
		params->rx_queues, params->rx_bds_per_q,
3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414
		params->bp_in_en_shift, params->bp_in_mask,
		params->hfb_filter_cnt, params->qtag_mask,
		params->tbuf_offset, params->hfb_offset,
		params->hfb_reg_offset,
		params->rdma_offset, params->tdma_offset,
		params->words_per_bd);
}

static const struct of_device_id bcmgenet_match[] = {
	{ .compatible = "brcm,genet-v1", .data = (void *)GENET_V1 },
	{ .compatible = "brcm,genet-v2", .data = (void *)GENET_V2 },
	{ .compatible = "brcm,genet-v3", .data = (void *)GENET_V3 },
	{ .compatible = "brcm,genet-v4", .data = (void *)GENET_V4 },
3415
	{ .compatible = "brcm,genet-v5", .data = (void *)GENET_V5 },
3416 3417
	{ },
};
3418
MODULE_DEVICE_TABLE(of, bcmgenet_match);
3419 3420 3421

static int bcmgenet_probe(struct platform_device *pdev)
{
3422
	struct bcmgenet_platform_data *pd = pdev->dev.platform_data;
3423
	struct device_node *dn = pdev->dev.of_node;
3424
	const struct of_device_id *of_id = NULL;
3425 3426 3427 3428 3429
	struct bcmgenet_priv *priv;
	struct net_device *dev;
	const void *macaddr;
	struct resource *r;
	int err = -EIO;
3430
	const char *phy_mode_str;
3431

3432 3433 3434
	/* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */
	dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1,
				 GENET_MAX_MQ_CNT + 1);
3435 3436 3437 3438 3439
	if (!dev) {
		dev_err(&pdev->dev, "can't allocate net device\n");
		return -ENOMEM;
	}

3440 3441 3442 3443 3444
	if (dn) {
		of_id = of_match_node(bcmgenet_match, dn);
		if (!of_id)
			return -EINVAL;
	}
3445 3446 3447 3448

	priv = netdev_priv(dev);
	priv->irq0 = platform_get_irq(pdev, 0);
	priv->irq1 = platform_get_irq(pdev, 1);
3449
	priv->wol_irq = platform_get_irq(pdev, 2);
3450 3451 3452 3453 3454 3455
	if (!priv->irq0 || !priv->irq1) {
		dev_err(&pdev->dev, "can't find IRQs\n");
		err = -EINVAL;
		goto err;
	}

3456 3457 3458 3459 3460 3461 3462 3463 3464
	if (dn) {
		macaddr = of_get_mac_address(dn);
		if (!macaddr) {
			dev_err(&pdev->dev, "can't find MAC address\n");
			err = -EINVAL;
			goto err;
		}
	} else {
		macaddr = pd->mac_address;
3465 3466 3467
	}

	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3468 3469 3470
	priv->base = devm_ioremap_resource(&pdev->dev, r);
	if (IS_ERR(priv->base)) {
		err = PTR_ERR(priv->base);
3471 3472 3473
		goto err;
	}

3474 3475
	spin_lock_init(&priv->lock);

3476 3477 3478 3479
	SET_NETDEV_DEV(dev, &pdev->dev);
	dev_set_drvdata(&pdev->dev, dev);
	ether_addr_copy(dev->dev_addr, macaddr);
	dev->watchdog_timeo = 2 * HZ;
3480
	dev->ethtool_ops = &bcmgenet_ethtool_ops;
3481 3482 3483 3484 3485 3486 3487 3488
	dev->netdev_ops = &bcmgenet_netdev_ops;

	priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT);

	/* Set hardware features */
	dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM |
		NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;

3489 3490 3491 3492 3493 3494 3495
	/* Request the WOL interrupt and advertise suspend if available */
	priv->wol_irq_disabled = true;
	err = devm_request_irq(&pdev->dev, priv->wol_irq, bcmgenet_wol_isr, 0,
			       dev->name, priv);
	if (!err)
		device_set_wakeup_capable(&pdev->dev, 1);

3496 3497 3498 3499 3500 3501 3502 3503 3504
	/* Set the needed headroom to account for any possible
	 * features enabling/disabling at runtime
	 */
	dev->needed_headroom += 64;

	netdev_boot_setup_check(dev);

	priv->dev = dev;
	priv->pdev = pdev;
3505 3506 3507 3508
	if (of_id)
		priv->version = (enum bcmgenet_version)of_id->data;
	else
		priv->version = pd->genet_version;
3509

3510
	priv->clk = devm_clk_get(&priv->pdev->dev, "enet");
3511
	if (IS_ERR(priv->clk)) {
3512
		dev_warn(&priv->pdev->dev, "failed to get enet clock\n");
3513 3514
		priv->clk = NULL;
	}
3515

3516
	clk_prepare_enable(priv->clk);
3517

3518 3519 3520 3521 3522 3523 3524 3525 3526
	bcmgenet_set_hw_params(priv);

	/* Mii wait queue */
	init_waitqueue_head(&priv->wq);
	/* Always use RX_BUF_LENGTH (2KB) buffer for all chips */
	priv->rx_buf_len = RX_BUF_LENGTH;
	INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task);

	priv->clk_wol = devm_clk_get(&priv->pdev->dev, "enet-wol");
3527
	if (IS_ERR(priv->clk_wol)) {
3528
		dev_warn(&priv->pdev->dev, "failed to get enet-wol clock\n");
3529 3530
		priv->clk_wol = NULL;
	}
3531

F
Florian Fainelli 已提交
3532 3533 3534 3535 3536 3537
	priv->clk_eee = devm_clk_get(&priv->pdev->dev, "enet-eee");
	if (IS_ERR(priv->clk_eee)) {
		dev_warn(&priv->pdev->dev, "failed to get enet-eee clock\n");
		priv->clk_eee = NULL;
	}

3538 3539 3540 3541 3542 3543 3544
	/* If this is an internal GPHY, power it on now, before UniMAC is
	 * brought out of reset as absolutely no UniMAC activity is allowed
	 */
	if (dn && !of_property_read_string(dn, "phy-mode", &phy_mode_str) &&
	    !strcasecmp(phy_mode_str, "internal"))
		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);

3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558
	err = reset_umac(priv);
	if (err)
		goto err_clk_disable;

	err = bcmgenet_mii_init(dev);
	if (err)
		goto err_clk_disable;

	/* setup number of real queues  + 1 (GENET_V1 has 0 hardware queues
	 * just the ring 16 descriptor based TX
	 */
	netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1);
	netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1);

3559 3560 3561
	/* libphy will determine the link state */
	netif_carrier_off(dev);

3562
	/* Turn off the main clock, WOL clock is handled separately */
3563
	clk_disable_unprepare(priv->clk);
3564

3565 3566 3567 3568
	err = register_netdev(dev);
	if (err)
		goto err;

3569 3570 3571
	return err;

err_clk_disable:
3572
	clk_disable_unprepare(priv->clk);
3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589
err:
	free_netdev(dev);
	return err;
}

static int bcmgenet_remove(struct platform_device *pdev)
{
	struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev);

	dev_set_drvdata(&pdev->dev, NULL);
	unregister_netdev(priv->dev);
	bcmgenet_mii_exit(priv->dev);
	free_netdev(priv->dev);

	return 0;
}

3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601
#ifdef CONFIG_PM_SLEEP
static int bcmgenet_suspend(struct device *d)
{
	struct net_device *dev = dev_get_drvdata(d);
	struct bcmgenet_priv *priv = netdev_priv(dev);
	int ret;

	if (!netif_running(dev))
		return 0;

	bcmgenet_netif_stop(dev);

3602 3603
	if (!device_may_wakeup(d))
		phy_suspend(priv->phydev);
3604

3605 3606 3607 3608 3609 3610 3611 3612 3613
	netif_device_detach(dev);

	/* Disable MAC receive */
	umac_enable_set(priv, CMD_RX_EN, false);

	ret = bcmgenet_dma_teardown(priv);
	if (ret)
		return ret;

3614
	/* Disable MAC transmit. TX DMA disabled must be done before this */
3615 3616 3617 3618 3619 3620
	umac_enable_set(priv, CMD_TX_EN, false);

	/* tx reclaim */
	bcmgenet_tx_reclaim_all(dev);
	bcmgenet_fini_dma(priv);

3621 3622
	/* Prepare the device for Wake-on-LAN and switch to the slow clock */
	if (device_may_wakeup(d) && priv->wolopts) {
3623
		ret = bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC);
3624
		clk_prepare_enable(priv->clk_wol);
3625
	} else if (priv->internal_phy) {
3626
		ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3627 3628
	}

3629 3630 3631
	/* Turn off the clocks */
	clk_disable_unprepare(priv->clk);

3632
	return ret;
3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650
}

static int bcmgenet_resume(struct device *d)
{
	struct net_device *dev = dev_get_drvdata(d);
	struct bcmgenet_priv *priv = netdev_priv(dev);
	unsigned long dma_ctrl;
	int ret;
	u32 reg;

	if (!netif_running(dev))
		return 0;

	/* Turn on the clock */
	ret = clk_prepare_enable(priv->clk);
	if (ret)
		return ret;

3651 3652 3653
	/* If this is an internal GPHY, power it back on now, before UniMAC is
	 * brought out of reset as absolutely no UniMAC activity is allowed
	 */
3654
	if (priv->internal_phy)
3655 3656
		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);

3657 3658 3659 3660 3661 3662
	bcmgenet_umac_reset(priv);

	ret = init_umac(priv);
	if (ret)
		goto out_clk_disable;

3663 3664 3665 3666
	/* From WOL-enabled suspend, switch to regular clock */
	if (priv->wolopts)
		clk_disable_unprepare(priv->clk_wol);

3667
	phy_init_hw(priv->phydev);
3668
	/* Speed settings must be restored */
3669
	bcmgenet_mii_config(priv->dev);
3670

3671 3672 3673 3674 3675
	/* disable ethernet MAC while updating its registers */
	umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, false);

	bcmgenet_set_hw_addr(priv, dev->dev_addr);

3676
	if (priv->internal_phy) {
3677 3678 3679 3680 3681
		reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
		reg |= EXT_ENERGY_DET_MASK;
		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
	}

3682 3683 3684
	if (priv->wolopts)
		bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);

3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699
	/* Disable RX/TX DMA and flush TX queues */
	dma_ctrl = bcmgenet_dma_disable(priv);

	/* Reinitialize TDMA and RDMA and SW housekeeping */
	ret = bcmgenet_init_dma(priv);
	if (ret) {
		netdev_err(dev, "failed to initialize DMA\n");
		goto out_clk_disable;
	}

	/* Always enable ring 16 - descriptor ring */
	bcmgenet_enable_dma(priv, dma_ctrl);

	netif_device_attach(dev);

3700 3701
	if (!device_may_wakeup(d))
		phy_resume(priv->phydev);
3702

F
Florian Fainelli 已提交
3703 3704 3705
	if (priv->eee.eee_enabled)
		bcmgenet_eee_enable_set(dev, true);

3706 3707 3708 3709 3710
	bcmgenet_netif_start(dev);

	return 0;

out_clk_disable:
3711 3712
	if (priv->internal_phy)
		bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3713 3714 3715 3716 3717 3718 3719
	clk_disable_unprepare(priv->clk);
	return ret;
}
#endif /* CONFIG_PM_SLEEP */

static SIMPLE_DEV_PM_OPS(bcmgenet_pm_ops, bcmgenet_suspend, bcmgenet_resume);

3720 3721 3722 3723 3724 3725
static struct platform_driver bcmgenet_driver = {
	.probe	= bcmgenet_probe,
	.remove	= bcmgenet_remove,
	.driver	= {
		.name	= "bcmgenet",
		.of_match_table = bcmgenet_match,
3726
		.pm	= &bcmgenet_pm_ops,
3727 3728 3729 3730 3731 3732 3733 3734
	},
};
module_platform_driver(bcmgenet_driver);

MODULE_AUTHOR("Broadcom Corporation");
MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver");
MODULE_ALIAS("platform:bcmgenet");
MODULE_LICENSE("GPL");