bcmgenet.c 97.9 KB
Newer Older
1 2 3
/*
 * Broadcom GENET (Gigabit Ethernet) controller driver
 *
4
 * Copyright (c) 2014-2017 Broadcom
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#define pr_fmt(fmt)				"bcmgenet: " fmt

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/types.h>
#include <linux/fcntl.h>
#include <linux/interrupt.h>
#include <linux/string.h>
#include <linux/if_ether.h>
#include <linux/init.h>
#include <linux/errno.h>
#include <linux/delay.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
#include <linux/pm.h>
#include <linux/clk.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/of_net.h>
#include <linux/of_platform.h>
#include <net/arp.h>

#include <linux/mii.h>
#include <linux/ethtool.h>
#include <linux/netdevice.h>
#include <linux/inetdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/in.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <linux/phy.h>
45
#include <linux/platform_data/bcmgenet.h>
46 47 48 49 50 51 52 53 54 55 56

#include <asm/unaligned.h>

#include "bcmgenet.h"

/* Maximum number of hardware queues, downsized if needed */
#define GENET_MAX_MQ_CNT	4

/* Default highest priority queue for multi queue support */
#define GENET_Q0_PRIORITY	0

57 58
#define GENET_Q16_RX_BD_CNT	\
	(TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q)
59 60
#define GENET_Q16_TX_BD_CNT	\
	(TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q)
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75

#define RX_BUF_LENGTH		2048
#define SKB_ALIGNMENT		32

/* Tx/Rx DMA register offset, skip 256 descriptors */
#define WORDS_PER_BD(p)		(p->hw_params->words_per_bd)
#define DMA_DESC_SIZE		(WORDS_PER_BD(priv) * sizeof(u32))

#define GENET_TDMA_REG_OFF	(priv->hw_params->tdma_offset + \
				TOTAL_DESC * DMA_DESC_SIZE)

#define GENET_RDMA_REG_OFF	(priv->hw_params->rdma_offset + \
				TOTAL_DESC * DMA_DESC_SIZE)

static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv,
76
					     void __iomem *d, u32 value)
77 78 79 80 81
{
	__raw_writel(value, d + DMA_DESC_LENGTH_STATUS);
}

static inline u32 dmadesc_get_length_status(struct bcmgenet_priv *priv,
82
					    void __iomem *d)
83 84 85 86 87 88 89 90 91 92 93 94
{
	return __raw_readl(d + DMA_DESC_LENGTH_STATUS);
}

static inline void dmadesc_set_addr(struct bcmgenet_priv *priv,
				    void __iomem *d,
				    dma_addr_t addr)
{
	__raw_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO);

	/* Register writes to GISB bus can take couple hundred nanoseconds
	 * and are done for each packet, save these expensive writes unless
B
Brian Norris 已提交
95
	 * the platform is explicitly configured for 64-bits/LPAE.
96 97 98 99 100 101 102 103 104
	 */
#ifdef CONFIG_PHYS_ADDR_T_64BIT
	if (priv->hw_params->flags & GENET_HAS_40BITS)
		__raw_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI);
#endif
}

/* Combined address + length/status setter */
static inline void dmadesc_set(struct bcmgenet_priv *priv,
105
			       void __iomem *d, dma_addr_t addr, u32 val)
106 107
{
	dmadesc_set_addr(priv, d, addr);
108
	dmadesc_set_length_status(priv, d, val);
109 110 111 112 113 114 115 116 117 118 119
}

static inline dma_addr_t dmadesc_get_addr(struct bcmgenet_priv *priv,
					  void __iomem *d)
{
	dma_addr_t addr;

	addr = __raw_readl(d + DMA_DESC_ADDRESS_LO);

	/* Register writes to GISB bus can take couple hundred nanoseconds
	 * and are done for each packet, save these expensive writes unless
B
Brian Norris 已提交
120
	 * the platform is explicitly configured for 64-bits/LPAE.
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
	 */
#ifdef CONFIG_PHYS_ADDR_T_64BIT
	if (priv->hw_params->flags & GENET_HAS_40BITS)
		addr |= (u64)__raw_readl(d + DMA_DESC_ADDRESS_HI) << 32;
#endif
	return addr;
}

#define GENET_VER_FMT	"%1d.%1d EPHY: 0x%04x"

#define GENET_MSG_DEFAULT	(NETIF_MSG_DRV | NETIF_MSG_PROBE | \
				NETIF_MSG_LINK)

static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv)
{
	if (GENET_IS_V1(priv))
		return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1);
	else
		return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL);
}

static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
{
	if (GENET_IS_V1(priv))
		bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1);
	else
		bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL);
}

/* These macros are defined to deal with register map change
 * between GENET1.1 and GENET2. Only those currently being used
 * by driver are defined.
 */
static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv)
{
	if (GENET_IS_V1(priv))
		return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1);
	else
		return __raw_readl(priv->base +
				priv->hw_params->tbuf_offset + TBUF_CTRL);
}

static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
{
	if (GENET_IS_V1(priv))
		bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1);
	else
		__raw_writel(val, priv->base +
				priv->hw_params->tbuf_offset + TBUF_CTRL);
}

static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv)
{
	if (GENET_IS_V1(priv))
		return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1);
	else
		return __raw_readl(priv->base +
				priv->hw_params->tbuf_offset + TBUF_BP_MC);
}

static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val)
{
	if (GENET_IS_V1(priv))
		bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1);
	else
		__raw_writel(val, priv->base +
				priv->hw_params->tbuf_offset + TBUF_BP_MC);
}

/* RX/TX DMA register accessors */
enum dma_reg {
	DMA_RING_CFG = 0,
	DMA_CTRL,
	DMA_STATUS,
	DMA_SCB_BURST_SIZE,
	DMA_ARB_CTRL,
197 198 199
	DMA_PRIORITY_0,
	DMA_PRIORITY_1,
	DMA_PRIORITY_2,
200 201 202 203 204 205 206 207
	DMA_INDEX2RING_0,
	DMA_INDEX2RING_1,
	DMA_INDEX2RING_2,
	DMA_INDEX2RING_3,
	DMA_INDEX2RING_4,
	DMA_INDEX2RING_5,
	DMA_INDEX2RING_6,
	DMA_INDEX2RING_7,
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
	DMA_RING0_TIMEOUT,
	DMA_RING1_TIMEOUT,
	DMA_RING2_TIMEOUT,
	DMA_RING3_TIMEOUT,
	DMA_RING4_TIMEOUT,
	DMA_RING5_TIMEOUT,
	DMA_RING6_TIMEOUT,
	DMA_RING7_TIMEOUT,
	DMA_RING8_TIMEOUT,
	DMA_RING9_TIMEOUT,
	DMA_RING10_TIMEOUT,
	DMA_RING11_TIMEOUT,
	DMA_RING12_TIMEOUT,
	DMA_RING13_TIMEOUT,
	DMA_RING14_TIMEOUT,
	DMA_RING15_TIMEOUT,
	DMA_RING16_TIMEOUT,
225 226 227 228 229 230 231 232
};

static const u8 bcmgenet_dma_regs_v3plus[] = {
	[DMA_RING_CFG]		= 0x00,
	[DMA_CTRL]		= 0x04,
	[DMA_STATUS]		= 0x08,
	[DMA_SCB_BURST_SIZE]	= 0x0C,
	[DMA_ARB_CTRL]		= 0x2C,
233 234 235
	[DMA_PRIORITY_0]	= 0x30,
	[DMA_PRIORITY_1]	= 0x34,
	[DMA_PRIORITY_2]	= 0x38,
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
	[DMA_RING0_TIMEOUT]	= 0x2C,
	[DMA_RING1_TIMEOUT]	= 0x30,
	[DMA_RING2_TIMEOUT]	= 0x34,
	[DMA_RING3_TIMEOUT]	= 0x38,
	[DMA_RING4_TIMEOUT]	= 0x3c,
	[DMA_RING5_TIMEOUT]	= 0x40,
	[DMA_RING6_TIMEOUT]	= 0x44,
	[DMA_RING7_TIMEOUT]	= 0x48,
	[DMA_RING8_TIMEOUT]	= 0x4c,
	[DMA_RING9_TIMEOUT]	= 0x50,
	[DMA_RING10_TIMEOUT]	= 0x54,
	[DMA_RING11_TIMEOUT]	= 0x58,
	[DMA_RING12_TIMEOUT]	= 0x5c,
	[DMA_RING13_TIMEOUT]	= 0x60,
	[DMA_RING14_TIMEOUT]	= 0x64,
	[DMA_RING15_TIMEOUT]	= 0x68,
	[DMA_RING16_TIMEOUT]	= 0x6C,
253 254 255 256 257 258 259 260
	[DMA_INDEX2RING_0]	= 0x70,
	[DMA_INDEX2RING_1]	= 0x74,
	[DMA_INDEX2RING_2]	= 0x78,
	[DMA_INDEX2RING_3]	= 0x7C,
	[DMA_INDEX2RING_4]	= 0x80,
	[DMA_INDEX2RING_5]	= 0x84,
	[DMA_INDEX2RING_6]	= 0x88,
	[DMA_INDEX2RING_7]	= 0x8C,
261 262 263 264 265 266 267 268
};

static const u8 bcmgenet_dma_regs_v2[] = {
	[DMA_RING_CFG]		= 0x00,
	[DMA_CTRL]		= 0x04,
	[DMA_STATUS]		= 0x08,
	[DMA_SCB_BURST_SIZE]	= 0x0C,
	[DMA_ARB_CTRL]		= 0x30,
269 270 271
	[DMA_PRIORITY_0]	= 0x34,
	[DMA_PRIORITY_1]	= 0x38,
	[DMA_PRIORITY_2]	= 0x3C,
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
	[DMA_RING0_TIMEOUT]	= 0x2C,
	[DMA_RING1_TIMEOUT]	= 0x30,
	[DMA_RING2_TIMEOUT]	= 0x34,
	[DMA_RING3_TIMEOUT]	= 0x38,
	[DMA_RING4_TIMEOUT]	= 0x3c,
	[DMA_RING5_TIMEOUT]	= 0x40,
	[DMA_RING6_TIMEOUT]	= 0x44,
	[DMA_RING7_TIMEOUT]	= 0x48,
	[DMA_RING8_TIMEOUT]	= 0x4c,
	[DMA_RING9_TIMEOUT]	= 0x50,
	[DMA_RING10_TIMEOUT]	= 0x54,
	[DMA_RING11_TIMEOUT]	= 0x58,
	[DMA_RING12_TIMEOUT]	= 0x5c,
	[DMA_RING13_TIMEOUT]	= 0x60,
	[DMA_RING14_TIMEOUT]	= 0x64,
	[DMA_RING15_TIMEOUT]	= 0x68,
	[DMA_RING16_TIMEOUT]	= 0x6C,
289 290 291 292 293 294 295
};

static const u8 bcmgenet_dma_regs_v1[] = {
	[DMA_CTRL]		= 0x00,
	[DMA_STATUS]		= 0x04,
	[DMA_SCB_BURST_SIZE]	= 0x0C,
	[DMA_ARB_CTRL]		= 0x30,
296 297 298
	[DMA_PRIORITY_0]	= 0x34,
	[DMA_PRIORITY_1]	= 0x38,
	[DMA_PRIORITY_2]	= 0x3C,
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
	[DMA_RING0_TIMEOUT]	= 0x2C,
	[DMA_RING1_TIMEOUT]	= 0x30,
	[DMA_RING2_TIMEOUT]	= 0x34,
	[DMA_RING3_TIMEOUT]	= 0x38,
	[DMA_RING4_TIMEOUT]	= 0x3c,
	[DMA_RING5_TIMEOUT]	= 0x40,
	[DMA_RING6_TIMEOUT]	= 0x44,
	[DMA_RING7_TIMEOUT]	= 0x48,
	[DMA_RING8_TIMEOUT]	= 0x4c,
	[DMA_RING9_TIMEOUT]	= 0x50,
	[DMA_RING10_TIMEOUT]	= 0x54,
	[DMA_RING11_TIMEOUT]	= 0x58,
	[DMA_RING12_TIMEOUT]	= 0x5c,
	[DMA_RING13_TIMEOUT]	= 0x60,
	[DMA_RING14_TIMEOUT]	= 0x64,
	[DMA_RING15_TIMEOUT]	= 0x68,
	[DMA_RING16_TIMEOUT]	= 0x6C,
316 317 318 319 320 321 322 323 324 325 326
};

/* Set at runtime once bcmgenet version is known */
static const u8 *bcmgenet_dma_regs;

static inline struct bcmgenet_priv *dev_to_priv(struct device *dev)
{
	return netdev_priv(dev_get_drvdata(dev));
}

static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv,
327
				      enum dma_reg r)
328 329 330 331 332 333 334 335 336 337 338 339 340
{
	return __raw_readl(priv->base + GENET_TDMA_REG_OFF +
			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
}

static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv,
					u32 val, enum dma_reg r)
{
	__raw_writel(val, priv->base + GENET_TDMA_REG_OFF +
			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
}

static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv,
341
				      enum dma_reg r)
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
{
	return __raw_readl(priv->base + GENET_RDMA_REG_OFF +
			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
}

static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv,
					u32 val, enum dma_reg r)
{
	__raw_writel(val, priv->base + GENET_RDMA_REG_OFF +
			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
}

/* RDMA/TDMA ring registers and accessors
 * we merge the common fields and just prefix with T/D the registers
 * having different meaning depending on the direction
 */
enum dma_ring_reg {
	TDMA_READ_PTR = 0,
	RDMA_WRITE_PTR = TDMA_READ_PTR,
	TDMA_READ_PTR_HI,
	RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI,
	TDMA_CONS_INDEX,
	RDMA_PROD_INDEX = TDMA_CONS_INDEX,
	TDMA_PROD_INDEX,
	RDMA_CONS_INDEX = TDMA_PROD_INDEX,
	DMA_RING_BUF_SIZE,
	DMA_START_ADDR,
	DMA_START_ADDR_HI,
	DMA_END_ADDR,
	DMA_END_ADDR_HI,
	DMA_MBUF_DONE_THRESH,
	TDMA_FLOW_PERIOD,
	RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD,
	TDMA_WRITE_PTR,
	RDMA_READ_PTR = TDMA_WRITE_PTR,
	TDMA_WRITE_PTR_HI,
	RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI
};

/* GENET v4 supports 40-bits pointer addressing
 * for obvious reasons the LO and HI word parts
 * are contiguous, but this offsets the other
 * registers.
 */
static const u8 genet_dma_ring_regs_v4[] = {
	[TDMA_READ_PTR]			= 0x00,
	[TDMA_READ_PTR_HI]		= 0x04,
	[TDMA_CONS_INDEX]		= 0x08,
	[TDMA_PROD_INDEX]		= 0x0C,
	[DMA_RING_BUF_SIZE]		= 0x10,
	[DMA_START_ADDR]		= 0x14,
	[DMA_START_ADDR_HI]		= 0x18,
	[DMA_END_ADDR]			= 0x1C,
	[DMA_END_ADDR_HI]		= 0x20,
	[DMA_MBUF_DONE_THRESH]		= 0x24,
	[TDMA_FLOW_PERIOD]		= 0x28,
	[TDMA_WRITE_PTR]		= 0x2C,
	[TDMA_WRITE_PTR_HI]		= 0x30,
};

static const u8 genet_dma_ring_regs_v123[] = {
	[TDMA_READ_PTR]			= 0x00,
	[TDMA_CONS_INDEX]		= 0x04,
	[TDMA_PROD_INDEX]		= 0x08,
	[DMA_RING_BUF_SIZE]		= 0x0C,
	[DMA_START_ADDR]		= 0x10,
	[DMA_END_ADDR]			= 0x14,
	[DMA_MBUF_DONE_THRESH]		= 0x18,
	[TDMA_FLOW_PERIOD]		= 0x1C,
	[TDMA_WRITE_PTR]		= 0x20,
};

/* Set at runtime once GENET version is known */
static const u8 *genet_dma_ring_regs;

static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv,
418 419
					   unsigned int ring,
					   enum dma_ring_reg r)
420 421 422 423 424 425 426
{
	return __raw_readl(priv->base + GENET_TDMA_REG_OFF +
			(DMA_RING_SIZE * ring) +
			genet_dma_ring_regs[r]);
}

static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv,
427 428
					     unsigned int ring, u32 val,
					     enum dma_ring_reg r)
429 430 431 432 433 434 435
{
	__raw_writel(val, priv->base + GENET_TDMA_REG_OFF +
			(DMA_RING_SIZE * ring) +
			genet_dma_ring_regs[r]);
}

static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv,
436 437
					   unsigned int ring,
					   enum dma_ring_reg r)
438 439 440 441 442 443 444
{
	return __raw_readl(priv->base + GENET_RDMA_REG_OFF +
			(DMA_RING_SIZE * ring) +
			genet_dma_ring_regs[r]);
}

static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv,
445 446
					     unsigned int ring, u32 val,
					     enum dma_ring_reg r)
447 448 449 450 451 452
{
	__raw_writel(val, priv->base + GENET_RDMA_REG_OFF +
			(DMA_RING_SIZE * ring) +
			genet_dma_ring_regs[r]);
}

453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
static int bcmgenet_begin(struct net_device *dev)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);

	/* Turn on the clock */
	return clk_prepare_enable(priv->clk);
}

static void bcmgenet_complete(struct net_device *dev)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);

	/* Turn off the clock */
	clk_disable_unprepare(priv->clk);
}

469 470
static int bcmgenet_get_link_ksettings(struct net_device *dev,
				       struct ethtool_link_ksettings *cmd)
471
{
472 473
	struct bcmgenet_priv *priv = netdev_priv(dev);

474 475 476
	if (!netif_running(dev))
		return -EINVAL;

477
	if (!priv->phydev)
478 479
		return -ENODEV;

480 481 482
	phy_ethtool_ksettings_get(priv->phydev, cmd);

	return 0;
483 484
}

485 486
static int bcmgenet_set_link_ksettings(struct net_device *dev,
				       const struct ethtool_link_ksettings *cmd)
487
{
488 489
	struct bcmgenet_priv *priv = netdev_priv(dev);

490 491 492
	if (!netif_running(dev))
		return -EINVAL;

493
	if (!priv->phydev)
494 495
		return -ENODEV;

496
	return phy_ethtool_ksettings_set(priv->phydev, cmd);
497 498
}

499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
static int bcmgenet_set_rx_csum(struct net_device *dev,
				netdev_features_t wanted)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
	u32 rbuf_chk_ctrl;
	bool rx_csum_en;

	rx_csum_en = !!(wanted & NETIF_F_RXCSUM);

	rbuf_chk_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL);

	/* enable rx checksumming */
	if (rx_csum_en)
		rbuf_chk_ctrl |= RBUF_RXCHK_EN;
	else
		rbuf_chk_ctrl &= ~RBUF_RXCHK_EN;
	priv->desc_rxchk_en = rx_csum_en;
516 517 518 519 520 521 522 523 524

	/* If UniMAC forwards CRC, we need to skip over it to get
	 * a valid CHK bit to be set in the per-packet status word
	*/
	if (rx_csum_en && priv->crc_fwd_en)
		rbuf_chk_ctrl |= RBUF_SKIP_FCS;
	else
		rbuf_chk_ctrl &= ~RBUF_SKIP_FCS;

525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
	bcmgenet_rbuf_writel(priv, rbuf_chk_ctrl, RBUF_CHK_CTRL);

	return 0;
}

static int bcmgenet_set_tx_csum(struct net_device *dev,
				netdev_features_t wanted)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
	bool desc_64b_en;
	u32 tbuf_ctrl, rbuf_ctrl;

	tbuf_ctrl = bcmgenet_tbuf_ctrl_get(priv);
	rbuf_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CTRL);

	desc_64b_en = !!(wanted & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM));

	/* enable 64 bytes descriptor in both directions (RBUF and TBUF) */
	if (desc_64b_en) {
		tbuf_ctrl |= RBUF_64B_EN;
		rbuf_ctrl |= RBUF_64B_EN;
	} else {
		tbuf_ctrl &= ~RBUF_64B_EN;
		rbuf_ctrl &= ~RBUF_64B_EN;
	}
	priv->desc_64b_en = desc_64b_en;

	bcmgenet_tbuf_ctrl_set(priv, tbuf_ctrl);
	bcmgenet_rbuf_writel(priv, rbuf_ctrl, RBUF_CTRL);

	return 0;
}

static int bcmgenet_set_features(struct net_device *dev,
559
				 netdev_features_t features)
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
{
	netdev_features_t changed = features ^ dev->features;
	netdev_features_t wanted = dev->wanted_features;
	int ret = 0;

	if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))
		ret = bcmgenet_set_tx_csum(dev, wanted);
	if (changed & (NETIF_F_RXCSUM))
		ret = bcmgenet_set_rx_csum(dev, wanted);

	return ret;
}

static u32 bcmgenet_get_msglevel(struct net_device *dev)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);

	return priv->msg_enable;
}

static void bcmgenet_set_msglevel(struct net_device *dev, u32 level)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);

	priv->msg_enable = level;
}

587 588 589 590 591 592 593 594
static int bcmgenet_get_coalesce(struct net_device *dev,
				 struct ethtool_coalesce *ec)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);

	ec->tx_max_coalesced_frames =
		bcmgenet_tdma_ring_readl(priv, DESC_INDEX,
					 DMA_MBUF_DONE_THRESH);
595 596 597 598 599
	ec->rx_max_coalesced_frames =
		bcmgenet_rdma_ring_readl(priv, DESC_INDEX,
					 DMA_MBUF_DONE_THRESH);
	ec->rx_coalesce_usecs =
		bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT) * 8192 / 1000;
600 601 602 603 604 605 606 607 608

	return 0;
}

static int bcmgenet_set_coalesce(struct net_device *dev,
				 struct ethtool_coalesce *ec)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
	unsigned int i;
609
	u32 reg;
610

611 612 613 614
	/* Base system clock is 125Mhz, DMA timeout is this reference clock
	 * divided by 1024, which yields roughly 8.192us, our maximum value
	 * has to fit in the DMA_TIMEOUT_MASK (16 bits)
	 */
615
	if (ec->tx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
616 617 618 619 620 621
	    ec->tx_max_coalesced_frames == 0 ||
	    ec->rx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
	    ec->rx_coalesce_usecs > (DMA_TIMEOUT_MASK * 8) + 1)
		return -EINVAL;

	if (ec->rx_coalesce_usecs == 0 && ec->rx_max_coalesced_frames == 0)
622 623 624 625
		return -EINVAL;

	/* GENET TDMA hardware does not support a configurable timeout, but will
	 * always generate an interrupt either after MBDONE packets have been
626
	 * transmitted, or when the ring is empty.
627 628
	 */
	if (ec->tx_coalesce_usecs || ec->tx_coalesce_usecs_high ||
629
	    ec->tx_coalesce_usecs_irq || ec->tx_coalesce_usecs_low)
630 631 632 633 634 635 636 637 638 639 640 641 642
		return -EOPNOTSUPP;

	/* Program all TX queues with the same values, as there is no
	 * ethtool knob to do coalescing on a per-queue basis
	 */
	for (i = 0; i < priv->hw_params->tx_queues; i++)
		bcmgenet_tdma_ring_writel(priv, i,
					  ec->tx_max_coalesced_frames,
					  DMA_MBUF_DONE_THRESH);
	bcmgenet_tdma_ring_writel(priv, DESC_INDEX,
				  ec->tx_max_coalesced_frames,
				  DMA_MBUF_DONE_THRESH);

643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
	for (i = 0; i < priv->hw_params->rx_queues; i++) {
		bcmgenet_rdma_ring_writel(priv, i,
					  ec->rx_max_coalesced_frames,
					  DMA_MBUF_DONE_THRESH);

		reg = bcmgenet_rdma_readl(priv, DMA_RING0_TIMEOUT + i);
		reg &= ~DMA_TIMEOUT_MASK;
		reg |= DIV_ROUND_UP(ec->rx_coalesce_usecs * 1000, 8192);
		bcmgenet_rdma_writel(priv, reg, DMA_RING0_TIMEOUT + i);
	}

	bcmgenet_rdma_ring_writel(priv, DESC_INDEX,
				  ec->rx_max_coalesced_frames,
				  DMA_MBUF_DONE_THRESH);

	reg = bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT);
	reg &= ~DMA_TIMEOUT_MASK;
	reg |= DIV_ROUND_UP(ec->rx_coalesce_usecs * 1000, 8192);
	bcmgenet_rdma_writel(priv, reg, DMA_RING16_TIMEOUT);

663 664 665
	return 0;
}

666 667 668 669 670 671 672
/* standard ethtool support functions. */
enum bcmgenet_stat_type {
	BCMGENET_STAT_NETDEV = -1,
	BCMGENET_STAT_MIB_RX,
	BCMGENET_STAT_MIB_TX,
	BCMGENET_STAT_RUNT,
	BCMGENET_STAT_MISC,
673
	BCMGENET_STAT_SOFT,
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
};

struct bcmgenet_stats {
	char stat_string[ETH_GSTRING_LEN];
	int stat_sizeof;
	int stat_offset;
	enum bcmgenet_stat_type type;
	/* reg offset from UMAC base for misc counters */
	u16 reg_offset;
};

#define STAT_NETDEV(m) { \
	.stat_string = __stringify(m), \
	.stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \
	.stat_offset = offsetof(struct net_device_stats, m), \
	.type = BCMGENET_STAT_NETDEV, \
}

#define STAT_GENET_MIB(str, m, _type) { \
	.stat_string = str, \
	.stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
	.stat_offset = offsetof(struct bcmgenet_priv, m), \
	.type = _type, \
}

#define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX)
#define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX)
#define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT)
702
#define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT)
703 704 705 706 707 708 709 710 711

#define STAT_GENET_MISC(str, m, offset) { \
	.stat_string = str, \
	.stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
	.stat_offset = offsetof(struct bcmgenet_priv, m), \
	.type = BCMGENET_STAT_MISC, \
	.reg_offset = offset, \
}

712 713 714 715 716 717 718 719 720 721 722 723 724
#define STAT_GENET_Q(num) \
	STAT_GENET_SOFT_MIB("txq" __stringify(num) "_packets", \
			tx_rings[num].packets), \
	STAT_GENET_SOFT_MIB("txq" __stringify(num) "_bytes", \
			tx_rings[num].bytes), \
	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_bytes", \
			rx_rings[num].bytes),	 \
	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_packets", \
			rx_rings[num].packets), \
	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_errors", \
			rx_rings[num].errors), \
	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_dropped", \
			rx_rings[num].dropped)
725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811

/* There is a 0xC gap between the end of RX and beginning of TX stats and then
 * between the end of TX stats and the beginning of the RX RUNT
 */
#define BCMGENET_STAT_OFFSET	0xc

/* Hardware counters must be kept in sync because the order/offset
 * is important here (order in structure declaration = order in hardware)
 */
static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = {
	/* general stats */
	STAT_NETDEV(rx_packets),
	STAT_NETDEV(tx_packets),
	STAT_NETDEV(rx_bytes),
	STAT_NETDEV(tx_bytes),
	STAT_NETDEV(rx_errors),
	STAT_NETDEV(tx_errors),
	STAT_NETDEV(rx_dropped),
	STAT_NETDEV(tx_dropped),
	STAT_NETDEV(multicast),
	/* UniMAC RSV counters */
	STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
	STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
	STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
	STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
	STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
	STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
	STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
	STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
	STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
	STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
	STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt),
	STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes),
	STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca),
	STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca),
	STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs),
	STAT_GENET_MIB_RX("rx_control", mib.rx.cf),
	STAT_GENET_MIB_RX("rx_pause", mib.rx.pf),
	STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo),
	STAT_GENET_MIB_RX("rx_align", mib.rx.aln),
	STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr),
	STAT_GENET_MIB_RX("rx_code", mib.rx.cde),
	STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr),
	STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr),
	STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr),
	STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue),
	STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok),
	STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc),
	STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp),
	STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc),
	/* UniMAC TSV counters */
	STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
	STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
	STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
	STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
	STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
	STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
	STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
	STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
	STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
	STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
	STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts),
	STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca),
	STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca),
	STAT_GENET_MIB_TX("tx_pause", mib.tx.pf),
	STAT_GENET_MIB_TX("tx_control", mib.tx.cf),
	STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs),
	STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr),
	STAT_GENET_MIB_TX("tx_defer", mib.tx.drf),
	STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf),
	STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl),
	STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl),
	STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl),
	STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl),
	STAT_GENET_MIB_TX("tx_frags", mib.tx.frg),
	STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl),
	STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr),
	STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes),
	STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok),
	STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc),
	/* UniMAC RUNT counters */
	STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
	STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
	STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
	STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
	/* Misc UniMAC counters */
	STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt,
812 813 814
			UMAC_RBUF_OVFL_CNT_V1),
	STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt,
			UMAC_RBUF_ERR_CNT_V1),
815
	STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT),
816 817 818
	STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed),
	STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed),
	STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed),
819 820 821 822 823 824
	/* Per TX queues */
	STAT_GENET_Q(0),
	STAT_GENET_Q(1),
	STAT_GENET_Q(2),
	STAT_GENET_Q(3),
	STAT_GENET_Q(16),
825 826 827 828 829
};

#define BCMGENET_STATS_LEN	ARRAY_SIZE(bcmgenet_gstrings_stats)

static void bcmgenet_get_drvinfo(struct net_device *dev,
830
				 struct ethtool_drvinfo *info)
831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
{
	strlcpy(info->driver, "bcmgenet", sizeof(info->driver));
	strlcpy(info->version, "v2.0", sizeof(info->version));
}

static int bcmgenet_get_sset_count(struct net_device *dev, int string_set)
{
	switch (string_set) {
	case ETH_SS_STATS:
		return BCMGENET_STATS_LEN;
	default:
		return -EOPNOTSUPP;
	}
}

846 847
static void bcmgenet_get_strings(struct net_device *dev, u32 stringset,
				 u8 *data)
848 849 850 851 852 853 854
{
	int i;

	switch (stringset) {
	case ETH_SS_STATS:
		for (i = 0; i < BCMGENET_STATS_LEN; i++) {
			memcpy(data + i * ETH_GSTRING_LEN,
855 856
			       bcmgenet_gstrings_stats[i].stat_string,
			       ETH_GSTRING_LEN);
857 858 859 860 861
		}
		break;
	}
}

862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
static u32 bcmgenet_update_stat_misc(struct bcmgenet_priv *priv, u16 offset)
{
	u16 new_offset;
	u32 val;

	switch (offset) {
	case UMAC_RBUF_OVFL_CNT_V1:
		if (GENET_IS_V2(priv))
			new_offset = RBUF_OVFL_CNT_V2;
		else
			new_offset = RBUF_OVFL_CNT_V3PLUS;

		val = bcmgenet_rbuf_readl(priv,	new_offset);
		/* clear if overflowed */
		if (val == ~0)
			bcmgenet_rbuf_writel(priv, 0, new_offset);
		break;
	case UMAC_RBUF_ERR_CNT_V1:
		if (GENET_IS_V2(priv))
			new_offset = RBUF_ERR_CNT_V2;
		else
			new_offset = RBUF_ERR_CNT_V3PLUS;

		val = bcmgenet_rbuf_readl(priv,	new_offset);
		/* clear if overflowed */
		if (val == ~0)
			bcmgenet_rbuf_writel(priv, 0, new_offset);
		break;
	default:
		val = bcmgenet_umac_readl(priv, offset);
		/* clear if overflowed */
		if (val == ~0)
			bcmgenet_umac_writel(priv, 0, offset);
		break;
	}

	return val;
}

901 902 903 904 905 906 907 908 909 910 911 912 913
static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv)
{
	int i, j = 0;

	for (i = 0; i < BCMGENET_STATS_LEN; i++) {
		const struct bcmgenet_stats *s;
		u8 offset = 0;
		u32 val = 0;
		char *p;

		s = &bcmgenet_gstrings_stats[i];
		switch (s->type) {
		case BCMGENET_STAT_NETDEV:
914
		case BCMGENET_STAT_SOFT:
915 916
			continue;
		case BCMGENET_STAT_RUNT:
917 918 919 920 921 922
			offset += BCMGENET_STAT_OFFSET;
			/* fall through */
		case BCMGENET_STAT_MIB_TX:
			offset += BCMGENET_STAT_OFFSET;
			/* fall through */
		case BCMGENET_STAT_MIB_RX:
923 924
			val = bcmgenet_umac_readl(priv,
						  UMAC_MIB_START + j + offset);
925
			offset = 0;	/* Reset Offset */
926 927
			break;
		case BCMGENET_STAT_MISC:
928 929 930 931 932 933 934 935 936 937
			if (GENET_IS_V1(priv)) {
				val = bcmgenet_umac_readl(priv, s->reg_offset);
				/* clear if overflowed */
				if (val == ~0)
					bcmgenet_umac_writel(priv, 0,
							     s->reg_offset);
			} else {
				val = bcmgenet_update_stat_misc(priv,
								s->reg_offset);
			}
938 939 940 941 942 943 944 945 946 947
			break;
		}

		j += s->stat_sizeof;
		p = (char *)priv + s->stat_offset;
		*(u32 *)p = val;
	}
}

static void bcmgenet_get_ethtool_stats(struct net_device *dev,
948 949
				       struct ethtool_stats *stats,
				       u64 *data)
950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
	int i;

	if (netif_running(dev))
		bcmgenet_update_mib_counters(priv);

	for (i = 0; i < BCMGENET_STATS_LEN; i++) {
		const struct bcmgenet_stats *s;
		char *p;

		s = &bcmgenet_gstrings_stats[i];
		if (s->type == BCMGENET_STAT_NETDEV)
			p = (char *)&dev->stats;
		else
			p = (char *)priv;
		p += s->stat_offset;
967 968 969 970 971
		if (sizeof(unsigned long) != sizeof(u32) &&
		    s->stat_sizeof == sizeof(unsigned long))
			data[i] = *(unsigned long *)p;
		else
			data[i] = *(u32 *)p;
972 973 974
	}
}

F
Florian Fainelli 已提交
975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
static void bcmgenet_eee_enable_set(struct net_device *dev, bool enable)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
	u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL;
	u32 reg;

	if (enable && !priv->clk_eee_enabled) {
		clk_prepare_enable(priv->clk_eee);
		priv->clk_eee_enabled = true;
	}

	reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL);
	if (enable)
		reg |= EEE_EN;
	else
		reg &= ~EEE_EN;
	bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL);

	/* Enable EEE and switch to a 27Mhz clock automatically */
	reg = __raw_readl(priv->base + off);
	if (enable)
		reg |= TBUF_EEE_EN | TBUF_PM_EN;
	else
		reg &= ~(TBUF_EEE_EN | TBUF_PM_EN);
	__raw_writel(reg, priv->base + off);

	/* Do the same for thing for RBUF */
	reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL);
	if (enable)
		reg |= RBUF_EEE_EN | RBUF_PM_EN;
	else
		reg &= ~(RBUF_EEE_EN | RBUF_PM_EN);
	bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL);

	if (!enable && priv->clk_eee_enabled) {
		clk_disable_unprepare(priv->clk_eee);
		priv->clk_eee_enabled = false;
	}

	priv->eee.eee_enabled = enable;
	priv->eee.eee_active = enable;
}

static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
	struct ethtool_eee *p = &priv->eee;

	if (GENET_IS_V1(priv))
		return -EOPNOTSUPP;

	e->eee_enabled = p->eee_enabled;
	e->eee_active = p->eee_active;
	e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER);

1030
	return phy_ethtool_get_eee(priv->phydev, e);
F
Florian Fainelli 已提交
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
}

static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
	struct ethtool_eee *p = &priv->eee;
	int ret = 0;

	if (GENET_IS_V1(priv))
		return -EOPNOTSUPP;

	p->eee_enabled = e->eee_enabled;

	if (!p->eee_enabled) {
		bcmgenet_eee_enable_set(dev, false);
	} else {
1047
		ret = phy_init_eee(priv->phydev, 0);
F
Florian Fainelli 已提交
1048 1049 1050 1051 1052 1053 1054 1055 1056
		if (ret) {
			netif_err(priv, hw, dev, "EEE initialization failed\n");
			return ret;
		}

		bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER);
		bcmgenet_eee_enable_set(dev, true);
	}

1057
	return phy_ethtool_set_eee(priv->phydev, e);
F
Florian Fainelli 已提交
1058 1059
}

1060
/* standard ethtool support functions. */
1061
static const struct ethtool_ops bcmgenet_ethtool_ops = {
1062 1063
	.begin			= bcmgenet_begin,
	.complete		= bcmgenet_complete,
1064 1065 1066 1067 1068 1069 1070
	.get_strings		= bcmgenet_get_strings,
	.get_sset_count		= bcmgenet_get_sset_count,
	.get_ethtool_stats	= bcmgenet_get_ethtool_stats,
	.get_drvinfo		= bcmgenet_get_drvinfo,
	.get_link		= ethtool_op_get_link,
	.get_msglevel		= bcmgenet_get_msglevel,
	.set_msglevel		= bcmgenet_set_msglevel,
1071 1072
	.get_wol		= bcmgenet_get_wol,
	.set_wol		= bcmgenet_set_wol,
F
Florian Fainelli 已提交
1073 1074
	.get_eee		= bcmgenet_get_eee,
	.set_eee		= bcmgenet_set_eee,
1075
	.nway_reset		= phy_ethtool_nway_reset,
1076 1077
	.get_coalesce		= bcmgenet_get_coalesce,
	.set_coalesce		= bcmgenet_set_coalesce,
1078 1079
	.get_link_ksettings	= bcmgenet_get_link_ksettings,
	.set_link_ksettings	= bcmgenet_set_link_ksettings,
1080 1081 1082
};

/* Power down the unimac, based on mode. */
1083
static int bcmgenet_power_down(struct bcmgenet_priv *priv,
1084 1085
				enum bcmgenet_power_mode mode)
{
1086
	int ret = 0;
1087 1088 1089 1090
	u32 reg;

	switch (mode) {
	case GENET_POWER_CABLE_SENSE:
1091
		phy_detach(priv->phydev);
1092 1093
		break;

1094
	case GENET_POWER_WOL_MAGIC:
1095
		ret = bcmgenet_wol_power_down_cfg(priv, mode);
1096 1097
		break;

1098 1099 1100 1101
	case GENET_POWER_PASSIVE:
		/* Power down LED */
		if (priv->hw_params->flags & GENET_HAS_EXT) {
			reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
			if (GENET_IS_V5(priv))
				reg |= EXT_PWR_DOWN_PHY_EN |
				       EXT_PWR_DOWN_PHY_RD |
				       EXT_PWR_DOWN_PHY_SD |
				       EXT_PWR_DOWN_PHY_RX |
				       EXT_PWR_DOWN_PHY_TX |
				       EXT_IDDQ_GLBL_PWR;
			else
				reg |= EXT_PWR_DOWN_PHY;

			reg |= (EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1113
			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1114 1115

			bcmgenet_phy_power_set(priv->dev, false);
1116 1117 1118 1119 1120
		}
		break;
	default:
		break;
	}
1121 1122

	return 0;
1123 1124 1125
}

static void bcmgenet_power_up(struct bcmgenet_priv *priv,
1126
			      enum bcmgenet_power_mode mode)
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
{
	u32 reg;

	if (!(priv->hw_params->flags & GENET_HAS_EXT))
		return;

	reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);

	switch (mode) {
	case GENET_POWER_PASSIVE:
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
		reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
		if (GENET_IS_V5(priv)) {
			reg &= ~(EXT_PWR_DOWN_PHY_EN |
				 EXT_PWR_DOWN_PHY_RD |
				 EXT_PWR_DOWN_PHY_SD |
				 EXT_PWR_DOWN_PHY_RX |
				 EXT_PWR_DOWN_PHY_TX |
				 EXT_IDDQ_GLBL_PWR);
			reg |=   EXT_PHY_RESET;
			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
			mdelay(1);

			reg &=  ~EXT_PHY_RESET;
		} else {
			reg &= ~EXT_PWR_DOWN_PHY;
			reg |= EXT_PWR_DN_EN_LD;
		}
		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
		bcmgenet_phy_power_set(priv->dev, true);
		bcmgenet_mii_reset(priv->dev);
		break;

1159 1160
	case GENET_POWER_CABLE_SENSE:
		/* enable APD */
1161 1162 1163 1164
		if (!GENET_IS_V5(priv)) {
			reg |= EXT_PWR_DN_EN_LD;
			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
		}
1165
		break;
1166 1167 1168
	case GENET_POWER_WOL_MAGIC:
		bcmgenet_wol_power_up_cfg(priv, mode);
		return;
1169 1170 1171 1172 1173 1174 1175 1176
	default:
		break;
	}
}

/* ioctl handle special commands that are not present in ethtool. */
static int bcmgenet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
1177
	struct bcmgenet_priv *priv = netdev_priv(dev);
1178 1179 1180 1181

	if (!netif_running(dev))
		return -EINVAL;

1182 1183
	if (!priv->phydev)
		return -ENODEV;
1184

1185
	return phy_mii_ioctl(priv->phydev, rq, cmd);
1186 1187 1188 1189 1190 1191 1192 1193 1194
}

static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv,
					 struct bcmgenet_tx_ring *ring)
{
	struct enet_cb *tx_cb_ptr;

	tx_cb_ptr = ring->cbs;
	tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1195

1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
	/* Advancing local write pointer */
	if (ring->write_ptr == ring->end_ptr)
		ring->write_ptr = ring->cb_ptr;
	else
		ring->write_ptr++;

	return tx_cb_ptr;
}

/* Simple helper to free a control block's resources */
static void bcmgenet_free_cb(struct enet_cb *cb)
{
	dev_kfree_skb_any(cb->skb);
	cb->skb = NULL;
	dma_unmap_addr_set(cb, dma_addr, 0);
}

1213 1214
static inline void bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring *ring)
{
1215
	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1216 1217 1218 1219 1220
				 INTRL2_CPU_MASK_SET);
}

static inline void bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring *ring)
{
1221
	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
				 INTRL2_CPU_MASK_CLEAR);
}

static inline void bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring *ring)
{
	bcmgenet_intrl2_1_writel(ring->priv,
				 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
				 INTRL2_CPU_MASK_SET);
}

static inline void bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring *ring)
{
	bcmgenet_intrl2_1_writel(ring->priv,
				 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
				 INTRL2_CPU_MASK_CLEAR);
}

1239
static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring *ring)
1240
{
1241
	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1242
				 INTRL2_CPU_MASK_SET);
1243 1244
}

1245
static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring *ring)
1246
{
1247
	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1248
				 INTRL2_CPU_MASK_CLEAR);
1249 1250
}

1251
static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring *ring)
1252
{
1253
	bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1254
				 INTRL2_CPU_MASK_CLEAR);
1255 1256
}

1257
static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring *ring)
1258
{
1259
	bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1260
				 INTRL2_CPU_MASK_SET);
1261 1262 1263
}

/* Unlocked version of the reclaim routine */
1264 1265
static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev,
					  struct bcmgenet_tx_ring *ring)
1266 1267
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
1268
	struct device *kdev = &priv->pdev->dev;
1269
	struct enet_cb *tx_cb_ptr;
1270
	unsigned int pkts_compl = 0;
1271
	unsigned int bytes_compl = 0;
1272
	unsigned int c_index;
1273 1274
	unsigned int txbds_ready;
	unsigned int txbds_processed = 0;
1275

1276 1277 1278 1279 1280 1281 1282 1283
	/* Clear status before servicing to reduce spurious interrupts */
	if (ring->index == DESC_INDEX)
		bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_TXDMA_DONE,
					 INTRL2_CPU_CLEAR);
	else
		bcmgenet_intrl2_1_writel(priv, (1 << ring->index),
					 INTRL2_CPU_CLEAR);

B
Brian Norris 已提交
1284
	/* Compute how many buffers are transmitted since last xmit call */
1285 1286 1287
	c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX)
		& DMA_C_INDEX_MASK;
	txbds_ready = (c_index - ring->c_index) & DMA_C_INDEX_MASK;
1288 1289

	netif_dbg(priv, tx_done, dev,
1290 1291
		  "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n",
		  __func__, ring->index, ring->c_index, c_index, txbds_ready);
1292 1293

	/* Reclaim transmitted buffers */
1294 1295
	while (txbds_processed < txbds_ready) {
		tx_cb_ptr = &priv->tx_cbs[ring->clean_ptr];
1296
		if (tx_cb_ptr->skb) {
1297
			pkts_compl++;
1298
			bytes_compl += GENET_CB(tx_cb_ptr->skb)->bytes_sent;
1299
			dma_unmap_single(kdev,
1300
					 dma_unmap_addr(tx_cb_ptr, dma_addr),
1301
					 dma_unmap_len(tx_cb_ptr, dma_len),
1302
					 DMA_TO_DEVICE);
1303 1304
			bcmgenet_free_cb(tx_cb_ptr);
		} else if (dma_unmap_addr(tx_cb_ptr, dma_addr)) {
1305
			dma_unmap_page(kdev,
1306 1307 1308
				       dma_unmap_addr(tx_cb_ptr, dma_addr),
				       dma_unmap_len(tx_cb_ptr, dma_len),
				       DMA_TO_DEVICE);
1309 1310 1311
			dma_unmap_addr_set(tx_cb_ptr, dma_addr, 0);
		}

1312 1313 1314 1315 1316
		txbds_processed++;
		if (likely(ring->clean_ptr < ring->end_ptr))
			ring->clean_ptr++;
		else
			ring->clean_ptr = ring->cb_ptr;
1317 1318
	}

1319
	ring->free_bds += txbds_processed;
1320
	ring->c_index = c_index;
1321

1322 1323
	ring->packets += pkts_compl;
	ring->bytes += bytes_compl;
1324

1325 1326
	netdev_tx_completed_queue(netdev_get_tx_queue(dev, ring->queue),
				  pkts_compl, bytes_compl);
1327

1328
	return txbds_processed;
1329 1330
}

1331
static unsigned int bcmgenet_tx_reclaim(struct net_device *dev,
1332
				struct bcmgenet_tx_ring *ring)
1333
{
1334
	unsigned int released;
1335 1336 1337
	unsigned long flags;

	spin_lock_irqsave(&ring->lock, flags);
1338
	released = __bcmgenet_tx_reclaim(dev, ring);
1339
	spin_unlock_irqrestore(&ring->lock, flags);
1340 1341 1342 1343 1344 1345 1346 1347 1348

	return released;
}

static int bcmgenet_tx_poll(struct napi_struct *napi, int budget)
{
	struct bcmgenet_tx_ring *ring =
		container_of(napi, struct bcmgenet_tx_ring, napi);
	unsigned int work_done = 0;
1349 1350
	struct netdev_queue *txq;
	unsigned long flags;
1351

1352 1353 1354 1355 1356 1357 1358
	spin_lock_irqsave(&ring->lock, flags);
	work_done = __bcmgenet_tx_reclaim(ring->priv->dev, ring);
	if (ring->free_bds > (MAX_SKB_FRAGS + 1)) {
		txq = netdev_get_tx_queue(ring->priv->dev, ring->queue);
		netif_tx_wake_queue(txq);
	}
	spin_unlock_irqrestore(&ring->lock, flags);
1359 1360 1361

	if (work_done == 0) {
		napi_complete(napi);
1362
		ring->int_enable(ring);
1363 1364 1365 1366 1367

		return 0;
	}

	return budget;
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
}

static void bcmgenet_tx_reclaim_all(struct net_device *dev)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
	int i;

	if (netif_is_multiqueue(dev)) {
		for (i = 0; i < priv->hw_params->tx_queues; i++)
			bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]);
	}

	bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]);
}

/* Transmits a single SKB (either head of a fragment or a single SKB)
 * caller must hold priv->lock
 */
static int bcmgenet_xmit_single(struct net_device *dev,
				struct sk_buff *skb,
				u16 dma_desc_flags,
				struct bcmgenet_tx_ring *ring)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
	struct device *kdev = &priv->pdev->dev;
	struct enet_cb *tx_cb_ptr;
	unsigned int skb_len;
	dma_addr_t mapping;
	u32 length_status;
	int ret;

	tx_cb_ptr = bcmgenet_get_txcb(priv, ring);

	if (unlikely(!tx_cb_ptr))
		BUG();

	tx_cb_ptr->skb = skb;

1406
	skb_len = skb_headlen(skb);
1407 1408 1409 1410

	mapping = dma_map_single(kdev, skb->data, skb_len, DMA_TO_DEVICE);
	ret = dma_mapping_error(kdev, mapping);
	if (ret) {
1411
		priv->mib.tx_dma_failed++;
1412 1413 1414 1415 1416 1417
		netif_err(priv, tx_err, dev, "Tx DMA map failed\n");
		dev_kfree_skb(skb);
		return ret;
	}

	dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
1418
	dma_unmap_len_set(tx_cb_ptr, dma_len, skb_len);
1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
	length_status = (skb_len << DMA_BUFLENGTH_SHIFT) | dma_desc_flags |
			(priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT) |
			DMA_TX_APPEND_CRC;

	if (skb->ip_summed == CHECKSUM_PARTIAL)
		length_status |= DMA_TX_DO_CSUM;

	dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, length_status);

	return 0;
}

B
Brian Norris 已提交
1431
/* Transmit a SKB fragment */
1432
static int bcmgenet_xmit_frag(struct net_device *dev,
1433 1434 1435
			      skb_frag_t *frag,
			      u16 dma_desc_flags,
			      struct bcmgenet_tx_ring *ring)
1436 1437 1438 1439
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
	struct device *kdev = &priv->pdev->dev;
	struct enet_cb *tx_cb_ptr;
1440
	unsigned int frag_size;
1441 1442 1443 1444 1445 1446 1447
	dma_addr_t mapping;
	int ret;

	tx_cb_ptr = bcmgenet_get_txcb(priv, ring);

	if (unlikely(!tx_cb_ptr))
		BUG();
1448

1449 1450
	tx_cb_ptr->skb = NULL;

1451 1452 1453
	frag_size = skb_frag_size(frag);

	mapping = skb_frag_dma_map(kdev, frag, 0, frag_size, DMA_TO_DEVICE);
1454 1455
	ret = dma_mapping_error(kdev, mapping);
	if (ret) {
1456
		priv->mib.tx_dma_failed++;
1457
		netif_err(priv, tx_err, dev, "%s: Tx DMA map failed\n",
1458
			  __func__);
1459 1460 1461 1462
		return ret;
	}

	dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
1463
	dma_unmap_len_set(tx_cb_ptr, dma_len, frag_size);
1464 1465

	dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping,
1466
		    (frag_size << DMA_BUFLENGTH_SHIFT) | dma_desc_flags |
1467
		    (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT));
1468 1469 1470 1471 1472 1473 1474

	return 0;
}

/* Reallocate the SKB to put enough headroom in front of it and insert
 * the transmit checksum offsets in the descriptors
 */
1475 1476
static struct sk_buff *bcmgenet_put_tx_csum(struct net_device *dev,
					    struct sk_buff *skb)
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
{
	struct status_64 *status = NULL;
	struct sk_buff *new_skb;
	u16 offset;
	u8 ip_proto;
	u16 ip_ver;
	u32 tx_csum_info;

	if (unlikely(skb_headroom(skb) < sizeof(*status))) {
		/* If 64 byte status block enabled, must make sure skb has
		 * enough headroom for us to insert 64B status block.
		 */
		new_skb = skb_realloc_headroom(skb, sizeof(*status));
		dev_kfree_skb(skb);
		if (!new_skb) {
			dev->stats.tx_dropped++;
1493
			return NULL;
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
		}
		skb = new_skb;
	}

	skb_push(skb, sizeof(*status));
	status = (struct status_64 *)skb->data;

	if (skb->ip_summed  == CHECKSUM_PARTIAL) {
		ip_ver = htons(skb->protocol);
		switch (ip_ver) {
		case ETH_P_IP:
			ip_proto = ip_hdr(skb)->protocol;
			break;
		case ETH_P_IPV6:
			ip_proto = ipv6_hdr(skb)->nexthdr;
			break;
		default:
1511
			return skb;
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
		}

		offset = skb_checksum_start_offset(skb) - sizeof(*status);
		tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) |
				(offset + skb->csum_offset);

		/* Set the length valid bit for TCP and UDP and just set
		 * the special UDP flag for IPv4, else just set to 0.
		 */
		if (ip_proto == IPPROTO_TCP || ip_proto == IPPROTO_UDP) {
			tx_csum_info |= STATUS_TX_CSUM_LV;
			if (ip_proto == IPPROTO_UDP && ip_ver == ETH_P_IP)
				tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP;
1525
		} else {
1526
			tx_csum_info = 0;
1527
		}
1528 1529 1530 1531

		status->tx_csum_info = tx_csum_info;
	}

1532
	return skb;
1533 1534 1535 1536 1537 1538
}

static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
	struct bcmgenet_tx_ring *ring = NULL;
1539
	struct netdev_queue *txq;
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
	unsigned long flags = 0;
	int nr_frags, index;
	u16 dma_desc_flags;
	int ret;
	int i;

	index = skb_get_queue_mapping(skb);
	/* Mapping strategy:
	 * queue_mapping = 0, unclassified, packet xmited through ring16
	 * queue_mapping = 1, goes to ring 0. (highest priority queue
	 * queue_mapping = 2, goes to ring 1.
	 * queue_mapping = 3, goes to ring 2.
	 * queue_mapping = 4, goes to ring 3.
	 */
	if (index == 0)
		index = DESC_INDEX;
	else
		index -= 1;

	ring = &priv->tx_rings[index];
1560
	txq = netdev_get_tx_queue(dev, ring->queue);
1561

1562 1563
	nr_frags = skb_shinfo(skb)->nr_frags;

1564
	spin_lock_irqsave(&ring->lock, flags);
1565 1566 1567 1568 1569 1570 1571
	if (ring->free_bds <= (nr_frags + 1)) {
		if (!netif_tx_queue_stopped(txq)) {
			netif_tx_stop_queue(txq);
			netdev_err(dev,
				   "%s: tx ring %d full when queue %d awake\n",
				   __func__, index, ring->queue);
		}
1572 1573 1574 1575
		ret = NETDEV_TX_BUSY;
		goto out;
	}

1576 1577 1578 1579 1580
	if (skb_padto(skb, ETH_ZLEN)) {
		ret = NETDEV_TX_OK;
		goto out;
	}

1581 1582 1583 1584 1585
	/* Retain how many bytes will be sent on the wire, without TSB inserted
	 * by transmit checksum offload
	 */
	GENET_CB(skb)->bytes_sent = skb->len;

1586 1587
	/* set the SKB transmit checksum */
	if (priv->desc_64b_en) {
1588 1589
		skb = bcmgenet_put_tx_csum(dev, skb);
		if (!skb) {
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
			ret = NETDEV_TX_OK;
			goto out;
		}
	}

	dma_desc_flags = DMA_SOP;
	if (nr_frags == 0)
		dma_desc_flags |= DMA_EOP;

	/* Transmit single SKB or head of fragment list */
	ret = bcmgenet_xmit_single(dev, skb, dma_desc_flags, ring);
	if (ret) {
		ret = NETDEV_TX_OK;
		goto out;
	}

	/* xmit fragment */
	for (i = 0; i < nr_frags; i++) {
		ret = bcmgenet_xmit_frag(dev,
1609 1610 1611
					 &skb_shinfo(skb)->frags[i],
					 (i == nr_frags - 1) ? DMA_EOP : 0,
					 ring);
1612 1613 1614 1615 1616 1617
		if (ret) {
			ret = NETDEV_TX_OK;
			goto out;
		}
	}

1618 1619
	skb_tx_timestamp(skb);

1620 1621 1622 1623 1624
	/* Decrement total BD count and advance our write pointer */
	ring->free_bds -= nr_frags + 1;
	ring->prod_index += nr_frags + 1;
	ring->prod_index &= DMA_P_INDEX_MASK;

P
Petri Gynther 已提交
1625 1626
	netdev_tx_sent_queue(txq, GENET_CB(skb)->bytes_sent);

1627
	if (ring->free_bds <= (MAX_SKB_FRAGS + 1))
1628
		netif_tx_stop_queue(txq);
1629

1630 1631 1632 1633
	if (!skb->xmit_more || netif_xmit_stopped(txq))
		/* Packets are ready, update producer index */
		bcmgenet_tdma_ring_writel(priv, ring->index,
					  ring->prod_index, TDMA_PROD_INDEX);
1634 1635 1636 1637 1638 1639
out:
	spin_unlock_irqrestore(&ring->lock, flags);

	return ret;
}

1640 1641
static struct sk_buff *bcmgenet_rx_refill(struct bcmgenet_priv *priv,
					  struct enet_cb *cb)
1642 1643 1644
{
	struct device *kdev = &priv->pdev->dev;
	struct sk_buff *skb;
1645
	struct sk_buff *rx_skb;
1646 1647
	dma_addr_t mapping;

1648
	/* Allocate a new Rx skb */
1649
	skb = netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT);
1650 1651 1652 1653 1654 1655
	if (!skb) {
		priv->mib.alloc_rx_buff_failed++;
		netif_err(priv, rx_err, priv->dev,
			  "%s: Rx skb allocation failed\n", __func__);
		return NULL;
	}
1656

1657 1658 1659 1660
	/* DMA-map the new Rx skb */
	mapping = dma_map_single(kdev, skb->data, priv->rx_buf_len,
				 DMA_FROM_DEVICE);
	if (dma_mapping_error(kdev, mapping)) {
1661
		priv->mib.rx_dma_failed++;
1662
		dev_kfree_skb_any(skb);
1663
		netif_err(priv, rx_err, priv->dev,
1664 1665
			  "%s: Rx skb DMA mapping failed\n", __func__);
		return NULL;
1666 1667
	}

1668 1669 1670 1671 1672 1673 1674 1675
	/* Grab the current Rx skb from the ring and DMA-unmap it */
	rx_skb = cb->skb;
	if (likely(rx_skb))
		dma_unmap_single(kdev, dma_unmap_addr(cb, dma_addr),
				 priv->rx_buf_len, DMA_FROM_DEVICE);

	/* Put the new Rx skb on the ring */
	cb->skb = skb;
1676
	dma_unmap_addr_set(cb, dma_addr, mapping);
1677
	dmadesc_set_addr(priv, cb->bd_addr, mapping);
1678

1679 1680
	/* Return the current Rx skb to caller */
	return rx_skb;
1681 1682 1683 1684 1685
}

/* bcmgenet_desc_rx - descriptor based rx process.
 * this could be called from bottom half, or from NAPI polling method.
 */
1686
static unsigned int bcmgenet_desc_rx(struct bcmgenet_rx_ring *ring,
1687 1688
				     unsigned int budget)
{
1689
	struct bcmgenet_priv *priv = ring->priv;
1690 1691 1692 1693 1694
	struct net_device *dev = priv->dev;
	struct enet_cb *cb;
	struct sk_buff *skb;
	u32 dma_length_status;
	unsigned long dma_flag;
1695
	int len;
1696
	unsigned int rxpktprocessed = 0, rxpkttoprocess;
1697
	unsigned int p_index, mask;
1698
	unsigned int discards;
1699 1700
	unsigned int chksum_ok = 0;

1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
	/* Clear status before servicing to reduce spurious interrupts */
	if (ring->index == DESC_INDEX) {
		bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_RXDMA_DONE,
					 INTRL2_CPU_CLEAR);
	} else {
		mask = 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index);
		bcmgenet_intrl2_1_writel(priv,
					 mask,
					 INTRL2_CPU_CLEAR);
	}

1712
	p_index = bcmgenet_rdma_ring_readl(priv, ring->index, RDMA_PROD_INDEX);
1713 1714 1715 1716 1717

	discards = (p_index >> DMA_P_INDEX_DISCARD_CNT_SHIFT) &
		   DMA_P_INDEX_DISCARD_CNT_MASK;
	if (discards > ring->old_discards) {
		discards = discards - ring->old_discards;
1718
		ring->errors += discards;
1719 1720 1721 1722 1723
		ring->old_discards += discards;

		/* Clear HW register when we reach 75% of maximum 0xFFFF */
		if (ring->old_discards >= 0xC000) {
			ring->old_discards = 0;
1724
			bcmgenet_rdma_ring_writel(priv, ring->index, 0,
1725 1726 1727 1728
						  RDMA_PROD_INDEX);
		}
	}

1729
	p_index &= DMA_P_INDEX_MASK;
1730
	rxpkttoprocess = (p_index - ring->c_index) & DMA_C_INDEX_MASK;
1731 1732

	netif_dbg(priv, rx_status, dev,
1733
		  "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess);
1734 1735

	while ((rxpktprocessed < rxpkttoprocess) &&
1736
	       (rxpktprocessed < budget)) {
1737
		cb = &priv->rx_cbs[ring->read_ptr];
1738
		skb = bcmgenet_rx_refill(priv, cb);
1739 1740

		if (unlikely(!skb)) {
1741
			ring->dropped++;
1742
			goto next;
1743 1744
		}

1745
		if (!priv->desc_64b_en) {
1746
			dma_length_status =
1747
				dmadesc_get_length_status(priv, cb->bd_addr);
1748 1749
		} else {
			struct status_64 *status;
1750

1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761
			status = (struct status_64 *)skb->data;
			dma_length_status = status->length_status;
		}

		/* DMA flags and length are still valid no matter how
		 * we got the Receive Status Vector (64B RSB or register)
		 */
		dma_flag = dma_length_status & 0xffff;
		len = dma_length_status >> DMA_BUFLENGTH_SHIFT;

		netif_dbg(priv, rx_status, dev,
1762
			  "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n",
1763 1764
			  __func__, p_index, ring->c_index,
			  ring->read_ptr, dma_length_status);
1765 1766 1767

		if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) {
			netif_err(priv, rx_status, dev,
1768
				  "dropping fragmented packet!\n");
1769
			ring->errors++;
1770 1771
			dev_kfree_skb_any(skb);
			goto next;
1772
		}
1773

1774 1775 1776 1777 1778 1779 1780
		/* report errors */
		if (unlikely(dma_flag & (DMA_RX_CRC_ERROR |
						DMA_RX_OV |
						DMA_RX_NO |
						DMA_RX_LG |
						DMA_RX_RXER))) {
			netif_err(priv, rx_status, dev, "dma_flag=0x%x\n",
1781
				  (unsigned int)dma_flag);
1782 1783 1784 1785 1786 1787 1788 1789 1790
			if (dma_flag & DMA_RX_CRC_ERROR)
				dev->stats.rx_crc_errors++;
			if (dma_flag & DMA_RX_OV)
				dev->stats.rx_over_errors++;
			if (dma_flag & DMA_RX_NO)
				dev->stats.rx_frame_errors++;
			if (dma_flag & DMA_RX_LG)
				dev->stats.rx_length_errors++;
			dev->stats.rx_errors++;
1791 1792
			dev_kfree_skb_any(skb);
			goto next;
1793 1794 1795
		} /* error packet */

		chksum_ok = (dma_flag & priv->dma_rx_chk_bit) &&
1796
			     priv->desc_rxchk_en;
1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817

		skb_put(skb, len);
		if (priv->desc_64b_en) {
			skb_pull(skb, 64);
			len -= 64;
		}

		if (likely(chksum_ok))
			skb->ip_summed = CHECKSUM_UNNECESSARY;

		/* remove hardware 2bytes added for IP alignment */
		skb_pull(skb, 2);
		len -= 2;

		if (priv->crc_fwd_en) {
			skb_trim(skb, len - ETH_FCS_LEN);
			len -= ETH_FCS_LEN;
		}

		/*Finish setting up the received SKB and send it to the kernel*/
		skb->protocol = eth_type_trans(skb, priv->dev);
1818 1819
		ring->packets++;
		ring->bytes += len;
1820 1821 1822 1823
		if (dma_flag & DMA_RX_MULT)
			dev->stats.multicast++;

		/* Notify kernel */
1824
		napi_gro_receive(&ring->napi, skb);
1825 1826
		netif_dbg(priv, rx_status, dev, "pushed up to kernel\n");

1827
next:
1828
		rxpktprocessed++;
1829 1830 1831 1832 1833 1834
		if (likely(ring->read_ptr < ring->end_ptr))
			ring->read_ptr++;
		else
			ring->read_ptr = ring->cb_ptr;

		ring->c_index = (ring->c_index + 1) & DMA_C_INDEX_MASK;
1835
		bcmgenet_rdma_ring_writel(priv, ring->index, ring->c_index, RDMA_CONS_INDEX);
1836 1837 1838 1839 1840
	}

	return rxpktprocessed;
}

1841 1842 1843
/* Rx NAPI polling method */
static int bcmgenet_rx_poll(struct napi_struct *napi, int budget)
{
1844 1845
	struct bcmgenet_rx_ring *ring = container_of(napi,
			struct bcmgenet_rx_ring, napi);
1846 1847
	unsigned int work_done;

1848
	work_done = bcmgenet_desc_rx(ring, budget);
1849 1850

	if (work_done < budget) {
1851
		napi_complete_done(napi, work_done);
1852
		ring->int_enable(ring);
1853 1854 1855 1856 1857
	}

	return work_done;
}

1858
/* Assign skb to RX DMA descriptor. */
1859 1860
static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv,
				     struct bcmgenet_rx_ring *ring)
1861 1862
{
	struct enet_cb *cb;
1863
	struct sk_buff *skb;
1864 1865
	int i;

1866
	netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
1867 1868

	/* loop here for each buffer needing assign */
1869 1870
	for (i = 0; i < ring->size; i++) {
		cb = ring->cbs + i;
1871 1872 1873 1874 1875
		skb = bcmgenet_rx_refill(priv, cb);
		if (skb)
			dev_kfree_skb_any(skb);
		if (!cb->skb)
			return -ENOMEM;
1876 1877
	}

1878
	return 0;
1879 1880 1881 1882
}

static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv)
{
1883
	struct device *kdev = &priv->pdev->dev;
1884 1885 1886 1887 1888 1889 1890
	struct enet_cb *cb;
	int i;

	for (i = 0; i < priv->num_rx_bds; i++) {
		cb = &priv->rx_cbs[i];

		if (dma_unmap_addr(cb, dma_addr)) {
1891
			dma_unmap_single(kdev,
1892 1893
					 dma_unmap_addr(cb, dma_addr),
					 priv->rx_buf_len, DMA_FROM_DEVICE);
1894 1895 1896 1897 1898 1899 1900 1901
			dma_unmap_addr_set(cb, dma_addr, 0);
		}

		if (cb->skb)
			bcmgenet_free_cb(cb);
	}
}

1902
static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable)
1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
{
	u32 reg;

	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
	if (enable)
		reg |= mask;
	else
		reg &= ~mask;
	bcmgenet_umac_writel(priv, reg, UMAC_CMD);

	/* UniMAC stops on a packet boundary, wait for a full-size packet
	 * to be processed
	 */
	if (enable == 0)
		usleep_range(1000, 2000);
}

1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
static int reset_umac(struct bcmgenet_priv *priv)
{
	struct device *kdev = &priv->pdev->dev;
	unsigned int timeout = 0;
	u32 reg;

	/* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */
	bcmgenet_rbuf_ctrl_set(priv, 0);
	udelay(10);

	/* disable MAC while updating its registers */
	bcmgenet_umac_writel(priv, 0, UMAC_CMD);

	/* issue soft reset, wait for it to complete */
	bcmgenet_umac_writel(priv, CMD_SW_RESET, UMAC_CMD);
	while (timeout++ < 1000) {
		reg = bcmgenet_umac_readl(priv, UMAC_CMD);
		if (!(reg & CMD_SW_RESET))
			return 0;

		udelay(1);
	}

	if (timeout == 1000) {
		dev_err(kdev,
B
Brian Norris 已提交
1945
			"timeout waiting for MAC to come out of reset\n");
1946 1947 1948 1949 1950 1951
		return -ETIMEDOUT;
	}

	return 0;
}

1952 1953 1954 1955 1956 1957 1958 1959 1960
static void bcmgenet_intr_disable(struct bcmgenet_priv *priv)
{
	/* Mask all interrupts.*/
	bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
	bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
	bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
	bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
}

1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978
static void bcmgenet_link_intr_enable(struct bcmgenet_priv *priv)
{
	u32 int0_enable = 0;

	/* Monitor cable plug/unplugged event for internal PHY, external PHY
	 * and MoCA PHY
	 */
	if (priv->internal_phy) {
		int0_enable |= UMAC_IRQ_LINK_EVENT;
	} else if (priv->ext_phy) {
		int0_enable |= UMAC_IRQ_LINK_EVENT;
	} else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
		if (priv->hw_params->flags & GENET_HAS_MOCA_LINK_DET)
			int0_enable |= UMAC_IRQ_LINK_EVENT;
	}
	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
}

1979 1980 1981 1982
static int init_umac(struct bcmgenet_priv *priv)
{
	struct device *kdev = &priv->pdev->dev;
	int ret;
P
Petri Gynther 已提交
1983 1984
	u32 reg;
	u32 int0_enable = 0;
1985 1986 1987 1988 1989 1990 1991 1992 1993 1994

	dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n");

	ret = reset_umac(priv);
	if (ret)
		return ret;

	bcmgenet_umac_writel(priv, 0, UMAC_CMD);
	/* clear tx/rx counter */
	bcmgenet_umac_writel(priv,
1995 1996
			     MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT,
			     UMAC_MIB_CTRL);
1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
	bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL);

	bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);

	/* init rx registers, enable ip header optimization */
	reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
	reg |= RBUF_ALIGN_2B;
	bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL);

	if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv))
		bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL);

2009
	bcmgenet_intr_disable(priv);
2010

2011 2012
	/* Configure backpressure vectors for MoCA */
	if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
		reg = bcmgenet_bp_mc_get(priv);
		reg |= BIT(priv->hw_params->bp_in_en_shift);

		/* bp_mask: back pressure mask */
		if (netif_is_multiqueue(priv->dev))
			reg |= priv->hw_params->bp_in_mask;
		else
			reg &= ~priv->hw_params->bp_in_mask;
		bcmgenet_bp_mc_set(priv, reg);
	}

	/* Enable MDIO interrupts on GENET v3+ */
	if (priv->hw_params->flags & GENET_HAS_MDIO_INTR)
P
Petri Gynther 已提交
2026
		int0_enable |= (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
2027

P
Petri Gynther 已提交
2028
	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2029

2030 2031 2032 2033 2034
	dev_dbg(kdev, "done init umac\n");

	return 0;
}

2035
/* Initialize a Tx ring along with corresponding hardware registers */
2036 2037
static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv,
				  unsigned int index, unsigned int size,
2038
				  unsigned int start_ptr, unsigned int end_ptr)
2039 2040 2041 2042 2043 2044
{
	struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
	u32 words_per_bd = WORDS_PER_BD(priv);
	u32 flow_period_val = 0;

	spin_lock_init(&ring->lock);
2045
	ring->priv = priv;
2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
	ring->index = index;
	if (index == DESC_INDEX) {
		ring->queue = 0;
		ring->int_enable = bcmgenet_tx_ring16_int_enable;
		ring->int_disable = bcmgenet_tx_ring16_int_disable;
	} else {
		ring->queue = index + 1;
		ring->int_enable = bcmgenet_tx_ring_int_enable;
		ring->int_disable = bcmgenet_tx_ring_int_disable;
	}
2056
	ring->cbs = priv->tx_cbs + start_ptr;
2057
	ring->size = size;
2058
	ring->clean_ptr = start_ptr;
2059 2060
	ring->c_index = 0;
	ring->free_bds = size;
2061 2062
	ring->write_ptr = start_ptr;
	ring->cb_ptr = start_ptr;
2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074
	ring->end_ptr = end_ptr - 1;
	ring->prod_index = 0;

	/* Set flow period for ring != 16 */
	if (index != DESC_INDEX)
		flow_period_val = ENET_MAX_MTU_SIZE << 16;

	bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX);
	bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX);
	bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
	/* Disable rate control for now */
	bcmgenet_tdma_ring_writel(priv, index, flow_period_val,
2075
				  TDMA_FLOW_PERIOD);
2076
	bcmgenet_tdma_ring_writel(priv, index,
2077 2078
				  ((size << DMA_RING_SIZE_SHIFT) |
				   RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2079 2080

	/* Set start and end address, read and write pointers */
2081
	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2082
				  DMA_START_ADDR);
2083
	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2084
				  TDMA_READ_PTR);
2085
	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2086
				  TDMA_WRITE_PTR);
2087
	bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2088
				  DMA_END_ADDR);
2089 2090 2091 2092
}

/* Initialize a RDMA ring */
static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv,
2093 2094
				 unsigned int index, unsigned int size,
				 unsigned int start_ptr, unsigned int end_ptr)
2095
{
2096
	struct bcmgenet_rx_ring *ring = &priv->rx_rings[index];
2097 2098 2099
	u32 words_per_bd = WORDS_PER_BD(priv);
	int ret;

2100
	ring->priv = priv;
2101
	ring->index = index;
2102 2103 2104 2105 2106 2107 2108
	if (index == DESC_INDEX) {
		ring->int_enable = bcmgenet_rx_ring16_int_enable;
		ring->int_disable = bcmgenet_rx_ring16_int_disable;
	} else {
		ring->int_enable = bcmgenet_rx_ring_int_enable;
		ring->int_disable = bcmgenet_rx_ring_int_disable;
	}
2109 2110 2111 2112 2113 2114
	ring->cbs = priv->rx_cbs + start_ptr;
	ring->size = size;
	ring->c_index = 0;
	ring->read_ptr = start_ptr;
	ring->cb_ptr = start_ptr;
	ring->end_ptr = end_ptr - 1;
2115

2116 2117
	ret = bcmgenet_alloc_rx_buffers(priv, ring);
	if (ret)
2118 2119 2120 2121
		return ret;

	bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX);
	bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX);
2122
	bcmgenet_rdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
2123
	bcmgenet_rdma_ring_writel(priv, index,
2124 2125
				  ((size << DMA_RING_SIZE_SHIFT) |
				   RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2126
	bcmgenet_rdma_ring_writel(priv, index,
2127 2128 2129
				  (DMA_FC_THRESH_LO <<
				   DMA_XOFF_THRESHOLD_SHIFT) |
				   DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH);
2130 2131

	/* Set start and end address, read and write pointers */
2132 2133 2134 2135 2136 2137 2138
	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
				  DMA_START_ADDR);
	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
				  RDMA_READ_PTR);
	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
				  RDMA_WRITE_PTR);
	bcmgenet_rdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2139
				  DMA_END_ADDR);
2140 2141 2142 2143

	return ret;
}

2144 2145 2146 2147 2148 2149 2150
static void bcmgenet_init_tx_napi(struct bcmgenet_priv *priv)
{
	unsigned int i;
	struct bcmgenet_tx_ring *ring;

	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
		ring = &priv->tx_rings[i];
E
Eric Dumazet 已提交
2151
		netif_tx_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll, 64);
2152 2153 2154
	}

	ring = &priv->tx_rings[DESC_INDEX];
E
Eric Dumazet 已提交
2155
	netif_tx_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll, 64);
2156 2157 2158 2159 2160
}

static void bcmgenet_enable_tx_napi(struct bcmgenet_priv *priv)
{
	unsigned int i;
2161 2162
	u32 int0_enable = UMAC_IRQ_TXDMA_DONE;
	u32 int1_enable = 0;
2163 2164 2165 2166 2167
	struct bcmgenet_tx_ring *ring;

	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
		ring = &priv->tx_rings[i];
		napi_enable(&ring->napi);
2168
		int1_enable |= (1 << i);
2169 2170 2171 2172
	}

	ring = &priv->tx_rings[DESC_INDEX];
	napi_enable(&ring->napi);
2173 2174 2175

	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
	bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
2176 2177 2178 2179 2180
}

static void bcmgenet_disable_tx_napi(struct bcmgenet_priv *priv)
{
	unsigned int i;
2181 2182
	u32 int0_disable = UMAC_IRQ_TXDMA_DONE;
	u32 int1_disable = 0xffff;
2183 2184
	struct bcmgenet_tx_ring *ring;

2185 2186 2187
	bcmgenet_intrl2_0_writel(priv, int0_disable, INTRL2_CPU_MASK_SET);
	bcmgenet_intrl2_1_writel(priv, int1_disable, INTRL2_CPU_MASK_SET);

2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
		ring = &priv->tx_rings[i];
		napi_disable(&ring->napi);
	}

	ring = &priv->tx_rings[DESC_INDEX];
	napi_disable(&ring->napi);
}

static void bcmgenet_fini_tx_napi(struct bcmgenet_priv *priv)
{
	unsigned int i;
	struct bcmgenet_tx_ring *ring;

	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
		ring = &priv->tx_rings[i];
		netif_napi_del(&ring->napi);
	}

	ring = &priv->tx_rings[DESC_INDEX];
	netif_napi_del(&ring->napi);
}

2211
/* Initialize Tx queues
2212
 *
2213
 * Queues 0-3 are priority-based, each one has 32 descriptors,
2214 2215
 * with queue 0 being the highest priority queue.
 *
2216
 * Queue 16 is the default Tx queue with
2217
 * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors.
2218
 *
2219 2220 2221 2222 2223 2224
 * The transmit control block pool is then partitioned as follows:
 * - Tx queue 0 uses tx_cbs[0..31]
 * - Tx queue 1 uses tx_cbs[32..63]
 * - Tx queue 2 uses tx_cbs[64..95]
 * - Tx queue 3 uses tx_cbs[96..127]
 * - Tx queue 16 uses tx_cbs[128..255]
2225
 */
2226
static void bcmgenet_init_tx_queues(struct net_device *dev)
2227 2228
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
2229 2230
	u32 i, dma_enable;
	u32 dma_ctrl, ring_cfg;
2231
	u32 dma_priority[3] = {0, 0, 0};
2232 2233 2234 2235 2236 2237

	dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL);
	dma_enable = dma_ctrl & DMA_EN;
	dma_ctrl &= ~DMA_EN;
	bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);

2238 2239 2240
	dma_ctrl = 0;
	ring_cfg = 0;

2241 2242 2243
	/* Enable strict priority arbiter mode */
	bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL);

2244
	/* Initialize Tx priority queues */
2245
	for (i = 0; i < priv->hw_params->tx_queues; i++) {
2246 2247 2248
		bcmgenet_init_tx_ring(priv, i, priv->hw_params->tx_bds_per_q,
				      i * priv->hw_params->tx_bds_per_q,
				      (i + 1) * priv->hw_params->tx_bds_per_q);
2249 2250
		ring_cfg |= (1 << i);
		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2251 2252
		dma_priority[DMA_PRIO_REG_INDEX(i)] |=
			((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i));
2253 2254
	}

2255
	/* Initialize Tx default queue 16 */
2256
	bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_Q16_TX_BD_CNT,
2257
			      priv->hw_params->tx_queues *
2258
			      priv->hw_params->tx_bds_per_q,
2259 2260 2261
			      TOTAL_DESC);
	ring_cfg |= (1 << DESC_INDEX);
	dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2262 2263 2264
	dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |=
		((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) <<
		 DMA_PRIO_REG_SHIFT(DESC_INDEX));
2265 2266

	/* Set Tx queue priorities */
2267 2268 2269 2270
	bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0);
	bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1);
	bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2);

2271 2272 2273
	/* Initialize Tx NAPI */
	bcmgenet_init_tx_napi(priv);

2274 2275
	/* Enable Tx queues */
	bcmgenet_tdma_writel(priv, ring_cfg, DMA_RING_CFG);
2276

2277
	/* Enable Tx DMA */
2278
	if (dma_enable)
2279 2280
		dma_ctrl |= DMA_EN;
	bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2281 2282
}

2283 2284
static void bcmgenet_init_rx_napi(struct bcmgenet_priv *priv)
{
2285 2286 2287 2288 2289 2290 2291 2292 2293 2294
	unsigned int i;
	struct bcmgenet_rx_ring *ring;

	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
		ring = &priv->rx_rings[i];
		netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll, 64);
	}

	ring = &priv->rx_rings[DESC_INDEX];
	netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll, 64);
2295 2296 2297 2298
}

static void bcmgenet_enable_rx_napi(struct bcmgenet_priv *priv)
{
2299
	unsigned int i;
2300 2301
	u32 int0_enable = UMAC_IRQ_RXDMA_DONE;
	u32 int1_enable = 0;
2302 2303 2304 2305 2306
	struct bcmgenet_rx_ring *ring;

	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
		ring = &priv->rx_rings[i];
		napi_enable(&ring->napi);
2307
		int1_enable |= (1 << (UMAC_IRQ1_RX_INTR_SHIFT + i));
2308 2309 2310 2311
	}

	ring = &priv->rx_rings[DESC_INDEX];
	napi_enable(&ring->napi);
2312 2313 2314

	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
	bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
2315 2316 2317 2318
}

static void bcmgenet_disable_rx_napi(struct bcmgenet_priv *priv)
{
2319
	unsigned int i;
2320 2321
	u32 int0_disable = UMAC_IRQ_RXDMA_DONE;
	u32 int1_disable = 0xffff << UMAC_IRQ1_RX_INTR_SHIFT;
2322 2323
	struct bcmgenet_rx_ring *ring;

2324 2325 2326
	bcmgenet_intrl2_0_writel(priv, int0_disable, INTRL2_CPU_MASK_SET);
	bcmgenet_intrl2_1_writel(priv, int1_disable, INTRL2_CPU_MASK_SET);

2327 2328 2329 2330 2331 2332 2333
	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
		ring = &priv->rx_rings[i];
		napi_disable(&ring->napi);
	}

	ring = &priv->rx_rings[DESC_INDEX];
	napi_disable(&ring->napi);
2334 2335 2336 2337
}

static void bcmgenet_fini_rx_napi(struct bcmgenet_priv *priv)
{
2338 2339 2340 2341 2342 2343 2344 2345 2346 2347
	unsigned int i;
	struct bcmgenet_rx_ring *ring;

	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
		ring = &priv->rx_rings[i];
		netif_napi_del(&ring->napi);
	}

	ring = &priv->rx_rings[DESC_INDEX];
	netif_napi_del(&ring->napi);
2348 2349
}

2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398
/* Initialize Rx queues
 *
 * Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be
 * used to direct traffic to these queues.
 *
 * Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors.
 */
static int bcmgenet_init_rx_queues(struct net_device *dev)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
	u32 i;
	u32 dma_enable;
	u32 dma_ctrl;
	u32 ring_cfg;
	int ret;

	dma_ctrl = bcmgenet_rdma_readl(priv, DMA_CTRL);
	dma_enable = dma_ctrl & DMA_EN;
	dma_ctrl &= ~DMA_EN;
	bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);

	dma_ctrl = 0;
	ring_cfg = 0;

	/* Initialize Rx priority queues */
	for (i = 0; i < priv->hw_params->rx_queues; i++) {
		ret = bcmgenet_init_rx_ring(priv, i,
					    priv->hw_params->rx_bds_per_q,
					    i * priv->hw_params->rx_bds_per_q,
					    (i + 1) *
					    priv->hw_params->rx_bds_per_q);
		if (ret)
			return ret;

		ring_cfg |= (1 << i);
		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
	}

	/* Initialize Rx default queue 16 */
	ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, GENET_Q16_RX_BD_CNT,
				    priv->hw_params->rx_queues *
				    priv->hw_params->rx_bds_per_q,
				    TOTAL_DESC);
	if (ret)
		return ret;

	ring_cfg |= (1 << DESC_INDEX);
	dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));

2399 2400 2401
	/* Initialize Rx NAPI */
	bcmgenet_init_rx_napi(priv);

2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412
	/* Enable rings */
	bcmgenet_rdma_writel(priv, ring_cfg, DMA_RING_CFG);

	/* Configure ring as descriptor ring and re-enable DMA if enabled */
	if (dma_enable)
		dma_ctrl |= DMA_EN;
	bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);

	return 0;
}

2413 2414 2415 2416 2417
static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv)
{
	int ret = 0;
	int timeout = 0;
	u32 reg;
2418 2419
	u32 dma_ctrl;
	int i;
2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462

	/* Disable TDMA to stop add more frames in TX DMA */
	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
	reg &= ~DMA_EN;
	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);

	/* Check TDMA status register to confirm TDMA is disabled */
	while (timeout++ < DMA_TIMEOUT_VAL) {
		reg = bcmgenet_tdma_readl(priv, DMA_STATUS);
		if (reg & DMA_DISABLED)
			break;

		udelay(1);
	}

	if (timeout == DMA_TIMEOUT_VAL) {
		netdev_warn(priv->dev, "Timed out while disabling TX DMA\n");
		ret = -ETIMEDOUT;
	}

	/* Wait 10ms for packet drain in both tx and rx dma */
	usleep_range(10000, 20000);

	/* Disable RDMA */
	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
	reg &= ~DMA_EN;
	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);

	timeout = 0;
	/* Check RDMA status register to confirm RDMA is disabled */
	while (timeout++ < DMA_TIMEOUT_VAL) {
		reg = bcmgenet_rdma_readl(priv, DMA_STATUS);
		if (reg & DMA_DISABLED)
			break;

		udelay(1);
	}

	if (timeout == DMA_TIMEOUT_VAL) {
		netdev_warn(priv->dev, "Timed out while disabling RX DMA\n");
		ret = -ETIMEDOUT;
	}

2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476
	dma_ctrl = 0;
	for (i = 0; i < priv->hw_params->rx_queues; i++)
		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
	reg &= ~dma_ctrl;
	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);

	dma_ctrl = 0;
	for (i = 0; i < priv->hw_params->tx_queues; i++)
		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
	reg &= ~dma_ctrl;
	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);

2477 2478 2479
	return ret;
}

2480
static void bcmgenet_fini_dma(struct bcmgenet_priv *priv)
2481 2482
{
	int i;
P
Petri Gynther 已提交
2483
	struct netdev_queue *txq;
2484

2485 2486 2487
	bcmgenet_fini_rx_napi(priv);
	bcmgenet_fini_tx_napi(priv);

2488
	/* disable DMA */
2489
	bcmgenet_dma_teardown(priv);
2490 2491 2492 2493 2494 2495 2496 2497

	for (i = 0; i < priv->num_tx_bds; i++) {
		if (priv->tx_cbs[i].skb != NULL) {
			dev_kfree_skb(priv->tx_cbs[i].skb);
			priv->tx_cbs[i].skb = NULL;
		}
	}

P
Petri Gynther 已提交
2498 2499 2500 2501 2502 2503 2504 2505
	for (i = 0; i < priv->hw_params->tx_queues; i++) {
		txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[i].queue);
		netdev_tx_reset_queue(txq);
	}

	txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[DESC_INDEX].queue);
	netdev_tx_reset_queue(txq);

2506 2507 2508 2509 2510 2511 2512 2513 2514
	bcmgenet_free_rx_buffers(priv);
	kfree(priv->rx_cbs);
	kfree(priv->tx_cbs);
}

/* init_edma: Initialize DMA control register */
static int bcmgenet_init_dma(struct bcmgenet_priv *priv)
{
	int ret;
2515 2516
	unsigned int i;
	struct enet_cb *cb;
2517

2518
	netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
2519

2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532
	/* Initialize common Rx ring structures */
	priv->rx_bds = priv->base + priv->hw_params->rdma_offset;
	priv->num_rx_bds = TOTAL_DESC;
	priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb),
			       GFP_KERNEL);
	if (!priv->rx_cbs)
		return -ENOMEM;

	for (i = 0; i < priv->num_rx_bds; i++) {
		cb = priv->rx_cbs + i;
		cb->bd_addr = priv->rx_bds + i * DMA_DESC_SIZE;
	}

B
Brian Norris 已提交
2533
	/* Initialize common TX ring structures */
2534 2535
	priv->tx_bds = priv->base + priv->hw_params->tdma_offset;
	priv->num_tx_bds = TOTAL_DESC;
2536
	priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb),
2537
			       GFP_KERNEL);
2538
	if (!priv->tx_cbs) {
2539
		kfree(priv->rx_cbs);
2540 2541 2542
		return -ENOMEM;
	}

2543 2544 2545 2546 2547
	for (i = 0; i < priv->num_tx_bds; i++) {
		cb = priv->tx_cbs + i;
		cb->bd_addr = priv->tx_bds + i * DMA_DESC_SIZE;
	}

2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563
	/* Init rDma */
	bcmgenet_rdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);

	/* Initialize Rx queues */
	ret = bcmgenet_init_rx_queues(priv->dev);
	if (ret) {
		netdev_err(priv->dev, "failed to initialize Rx queues\n");
		bcmgenet_free_rx_buffers(priv);
		kfree(priv->rx_cbs);
		kfree(priv->tx_cbs);
		return ret;
	}

	/* Init tDma */
	bcmgenet_tdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);

2564 2565
	/* Initialize Tx queues */
	bcmgenet_init_tx_queues(priv->dev);
2566 2567 2568 2569 2570 2571 2572

	return 0;
}

/* Interrupt bottom half */
static void bcmgenet_irq_task(struct work_struct *work)
{
2573 2574
	unsigned long flags;
	unsigned int status;
2575 2576 2577 2578 2579
	struct bcmgenet_priv *priv = container_of(
			work, struct bcmgenet_priv, bcmgenet_irq_work);

	netif_dbg(priv, intr, priv->dev, "%s\n", __func__);

2580 2581 2582 2583 2584 2585
	spin_lock_irqsave(&priv->lock, flags);
	status = priv->irq0_stat;
	priv->irq0_stat = 0;
	spin_unlock_irqrestore(&priv->lock, flags);

	if (status & UMAC_IRQ_MPD_R) {
2586 2587 2588 2589 2590
		netif_dbg(priv, wol, priv->dev,
			  "magic packet detected, waking up\n");
		bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
	}

2591
	/* Link UP/DOWN event */
2592
	if (status & UMAC_IRQ_LINK_EVENT)
2593
		phy_mac_interrupt(priv->phydev,
2594
				  !!(status & UMAC_IRQ_LINK_UP));
2595 2596
}

2597
/* bcmgenet_isr1: handle Rx and Tx priority queues */
2598 2599 2600
static irqreturn_t bcmgenet_isr1(int irq, void *dev_id)
{
	struct bcmgenet_priv *priv = dev_id;
2601 2602
	struct bcmgenet_rx_ring *rx_ring;
	struct bcmgenet_tx_ring *tx_ring;
2603
	unsigned int index, status;
2604

2605 2606
	/* Read irq status */
	status = bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) &
2607
		~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
2608

B
Brian Norris 已提交
2609
	/* clear interrupts */
2610
	bcmgenet_intrl2_1_writel(priv, status, INTRL2_CPU_CLEAR);
2611 2612

	netif_dbg(priv, intr, priv->dev,
2613
		  "%s: IRQ=0x%x\n", __func__, status);
2614

2615 2616
	/* Check Rx priority queue interrupts */
	for (index = 0; index < priv->hw_params->rx_queues; index++) {
2617
		if (!(status & BIT(UMAC_IRQ1_RX_INTR_SHIFT + index)))
2618 2619 2620 2621 2622 2623
			continue;

		rx_ring = &priv->rx_rings[index];

		if (likely(napi_schedule_prep(&rx_ring->napi))) {
			rx_ring->int_disable(rx_ring);
2624
			__napi_schedule_irqoff(&rx_ring->napi);
2625 2626 2627 2628
		}
	}

	/* Check Tx priority queue interrupts */
2629
	for (index = 0; index < priv->hw_params->tx_queues; index++) {
2630
		if (!(status & BIT(index)))
2631 2632
			continue;

2633
		tx_ring = &priv->tx_rings[index];
2634

2635 2636
		if (likely(napi_schedule_prep(&tx_ring->napi))) {
			tx_ring->int_disable(tx_ring);
2637
			__napi_schedule_irqoff(&tx_ring->napi);
2638 2639
		}
	}
2640

2641 2642 2643
	return IRQ_HANDLED;
}

2644
/* bcmgenet_isr0: handle Rx and Tx default queues + other stuff */
2645 2646 2647
static irqreturn_t bcmgenet_isr0(int irq, void *dev_id)
{
	struct bcmgenet_priv *priv = dev_id;
2648 2649
	struct bcmgenet_rx_ring *rx_ring;
	struct bcmgenet_tx_ring *tx_ring;
2650 2651
	unsigned int status;
	unsigned long flags;
2652

2653 2654
	/* Read irq status */
	status = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) &
2655
		~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
2656

B
Brian Norris 已提交
2657
	/* clear interrupts */
2658
	bcmgenet_intrl2_0_writel(priv, status, INTRL2_CPU_CLEAR);
2659 2660

	netif_dbg(priv, intr, priv->dev,
2661
		  "IRQ=0x%x\n", status);
2662

2663
	if (status & UMAC_IRQ_RXDMA_DONE) {
2664 2665 2666 2667
		rx_ring = &priv->rx_rings[DESC_INDEX];

		if (likely(napi_schedule_prep(&rx_ring->napi))) {
			rx_ring->int_disable(rx_ring);
2668
			__napi_schedule_irqoff(&rx_ring->napi);
2669 2670
		}
	}
2671

2672
	if (status & UMAC_IRQ_TXDMA_DONE) {
2673 2674 2675 2676
		tx_ring = &priv->tx_rings[DESC_INDEX];

		if (likely(napi_schedule_prep(&tx_ring->napi))) {
			tx_ring->int_disable(tx_ring);
2677
			__napi_schedule_irqoff(&tx_ring->napi);
2678
		}
2679
	}
2680

2681 2682
	if (priv->irq0_stat & (UMAC_IRQ_PHY_DET_R |
				UMAC_IRQ_PHY_DET_F |
2683
				UMAC_IRQ_LINK_EVENT |
2684
				UMAC_IRQ_HFB_SM |
2685
				UMAC_IRQ_HFB_MM)) {
2686 2687 2688 2689 2690
		/* all other interested interrupts handled in bottom half */
		schedule_work(&priv->bcmgenet_irq_work);
	}

	if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
2691
		status & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) {
2692 2693 2694
		wake_up(&priv->wq);
	}

2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706
	/* all other interested interrupts handled in bottom half */
	status &= (UMAC_IRQ_LINK_EVENT |
		   UMAC_IRQ_MPD_R);
	if (status) {
		/* Save irq status for bottom-half processing. */
		spin_lock_irqsave(&priv->lock, flags);
		priv->irq0_stat |= status;
		spin_unlock_irqrestore(&priv->lock, flags);

		schedule_work(&priv->bcmgenet_irq_work);
	}

2707 2708 2709
	return IRQ_HANDLED;
}

2710 2711 2712 2713 2714 2715 2716 2717 2718
static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id)
{
	struct bcmgenet_priv *priv = dev_id;

	pm_wakeup_event(&priv->pdev->dev, 0);

	return IRQ_HANDLED;
}

2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
#ifdef CONFIG_NET_POLL_CONTROLLER
static void bcmgenet_poll_controller(struct net_device *dev)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);

	/* Invoke the main RX/TX interrupt handler */
	disable_irq(priv->irq0);
	bcmgenet_isr0(priv->irq0, priv);
	enable_irq(priv->irq0);

	/* And the interrupt handler for RX/TX priority queues */
	disable_irq(priv->irq1);
	bcmgenet_isr1(priv->irq1, priv);
	enable_irq(priv->irq1);
}
#endif

2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750
static void bcmgenet_umac_reset(struct bcmgenet_priv *priv)
{
	u32 reg;

	reg = bcmgenet_rbuf_ctrl_get(priv);
	reg |= BIT(1);
	bcmgenet_rbuf_ctrl_set(priv, reg);
	udelay(10);

	reg &= ~BIT(1);
	bcmgenet_rbuf_ctrl_set(priv, reg);
	udelay(10);
}

static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv,
2751
				 unsigned char *addr)
2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793
{
	bcmgenet_umac_writel(priv, (addr[0] << 24) | (addr[1] << 16) |
			(addr[2] << 8) | addr[3], UMAC_MAC0);
	bcmgenet_umac_writel(priv, (addr[4] << 8) | addr[5], UMAC_MAC1);
}

/* Returns a reusable dma control register value */
static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv)
{
	u32 reg;
	u32 dma_ctrl;

	/* disable DMA */
	dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
	reg &= ~dma_ctrl;
	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);

	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
	reg &= ~dma_ctrl;
	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);

	bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH);
	udelay(10);
	bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH);

	return dma_ctrl;
}

static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl)
{
	u32 reg;

	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
	reg |= dma_ctrl;
	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);

	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
	reg |= dma_ctrl;
	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
}

2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825
/* bcmgenet_hfb_clear
 *
 * Clear Hardware Filter Block and disable all filtering.
 */
static void bcmgenet_hfb_clear(struct bcmgenet_priv *priv)
{
	u32 i;

	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_CTRL);
	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS);
	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS + 4);

	for (i = DMA_INDEX2RING_0; i <= DMA_INDEX2RING_7; i++)
		bcmgenet_rdma_writel(priv, 0x0, i);

	for (i = 0; i < (priv->hw_params->hfb_filter_cnt / 4); i++)
		bcmgenet_hfb_reg_writel(priv, 0x0,
					HFB_FLT_LEN_V3PLUS + i * sizeof(u32));

	for (i = 0; i < priv->hw_params->hfb_filter_cnt *
			priv->hw_params->hfb_filter_size; i++)
		bcmgenet_hfb_writel(priv, 0x0, i * sizeof(u32));
}

static void bcmgenet_hfb_init(struct bcmgenet_priv *priv)
{
	if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
		return;

	bcmgenet_hfb_clear(priv);
}

2826 2827 2828 2829 2830
static void bcmgenet_netif_start(struct net_device *dev)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);

	/* Start the network engine */
2831
	bcmgenet_enable_rx_napi(priv);
2832
	bcmgenet_enable_tx_napi(priv);
2833 2834 2835 2836 2837

	umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true);

	netif_tx_start_all_queues(dev);

2838 2839 2840
	/* Monitor link interrupts now */
	bcmgenet_link_intr_enable(priv);

2841
	phy_start(priv->phydev);
2842 2843
}

2844 2845 2846 2847 2848 2849 2850 2851 2852 2853
static int bcmgenet_open(struct net_device *dev)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
	unsigned long dma_ctrl;
	u32 reg;
	int ret;

	netif_dbg(priv, ifup, dev, "bcmgenet_open\n");

	/* Turn on the clock */
2854
	clk_prepare_enable(priv->clk);
2855

2856 2857 2858
	/* If this is an internal GPHY, power it back on now, before UniMAC is
	 * brought out of reset as absolutely no UniMAC activity is allowed
	 */
2859
	if (priv->internal_phy)
2860 2861
		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);

2862 2863 2864 2865 2866 2867 2868 2869
	/* take MAC out of reset */
	bcmgenet_umac_reset(priv);

	ret = init_umac(priv);
	if (ret)
		goto err_clk_disable;

	/* disable ethernet MAC while updating its registers */
2870
	umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, false);
2871

2872 2873 2874 2875
	/* Make sure we reflect the value of CRC_CMD_FWD */
	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
	priv->crc_fwd_en = !!(reg & CMD_CRC_FWD);

2876 2877
	bcmgenet_set_hw_addr(priv, dev->dev_addr);

2878
	if (priv->internal_phy) {
2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890
		reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
		reg |= EXT_ENERGY_DET_MASK;
		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
	}

	/* Disable RX/TX DMA and flush TX queues */
	dma_ctrl = bcmgenet_dma_disable(priv);

	/* Reinitialize TDMA and RDMA and SW housekeeping */
	ret = bcmgenet_init_dma(priv);
	if (ret) {
		netdev_err(dev, "failed to initialize DMA\n");
2891
		goto err_clk_disable;
2892 2893 2894 2895 2896
	}

	/* Always enable ring 16 - descriptor ring */
	bcmgenet_enable_dma(priv, dma_ctrl);

2897 2898 2899
	/* HFB init */
	bcmgenet_hfb_init(priv);

2900
	ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED,
2901
			  dev->name, priv);
2902 2903 2904 2905 2906 2907
	if (ret < 0) {
		netdev_err(dev, "can't request IRQ %d\n", priv->irq0);
		goto err_fini_dma;
	}

	ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED,
2908
			  dev->name, priv);
2909 2910 2911 2912 2913
	if (ret < 0) {
		netdev_err(dev, "can't request IRQ %d\n", priv->irq1);
		goto err_irq0;
	}

2914 2915 2916 2917 2918
	ret = bcmgenet_mii_probe(dev);
	if (ret) {
		netdev_err(dev, "failed to connect to PHY\n");
		goto err_irq1;
	}
2919

2920
	bcmgenet_netif_start(dev);
2921 2922 2923

	return 0;

2924 2925
err_irq1:
	free_irq(priv->irq1, priv);
2926
err_irq0:
2927
	free_irq(priv->irq0, priv);
2928 2929 2930
err_fini_dma:
	bcmgenet_fini_dma(priv);
err_clk_disable:
2931 2932
	if (priv->internal_phy)
		bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
2933
	clk_disable_unprepare(priv->clk);
2934 2935 2936
	return ret;
}

2937 2938 2939 2940 2941
static void bcmgenet_netif_stop(struct net_device *dev)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);

	netif_tx_stop_all_queues(dev);
2942
	phy_stop(priv->phydev);
2943
	bcmgenet_intr_disable(priv);
2944
	bcmgenet_disable_rx_napi(priv);
2945
	bcmgenet_disable_tx_napi(priv);
2946 2947 2948 2949 2950

	/* Wait for pending work items to complete. Since interrupts are
	 * disabled no new work will be scheduled.
	 */
	cancel_work_sync(&priv->bcmgenet_irq_work);
2951 2952

	priv->old_link = -1;
2953
	priv->old_speed = -1;
2954
	priv->old_duplex = -1;
2955
	priv->old_pause = -1;
2956 2957
}

2958 2959 2960 2961 2962 2963 2964
static int bcmgenet_close(struct net_device *dev)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
	int ret;

	netif_dbg(priv, ifdown, dev, "bcmgenet_close\n");

2965
	bcmgenet_netif_stop(dev);
2966

2967
	/* Really kill the PHY state machine and disconnect from it */
2968
	phy_disconnect(priv->phydev);
2969

2970
	/* Disable MAC receive */
2971
	umac_enable_set(priv, CMD_RX_EN, false);
2972 2973 2974 2975 2976

	ret = bcmgenet_dma_teardown(priv);
	if (ret)
		return ret;

2977
	/* Disable MAC transmit. TX DMA disabled must be done before this */
2978
	umac_enable_set(priv, CMD_TX_EN, false);
2979 2980 2981 2982 2983 2984 2985 2986

	/* tx reclaim */
	bcmgenet_tx_reclaim_all(dev);
	bcmgenet_fini_dma(priv);

	free_irq(priv->irq0, priv);
	free_irq(priv->irq1, priv);

2987
	if (priv->internal_phy)
2988
		ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
2989

2990
	clk_disable_unprepare(priv->clk);
2991

2992
	return ret;
2993 2994
}

2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
static void bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring *ring)
{
	struct bcmgenet_priv *priv = ring->priv;
	u32 p_index, c_index, intsts, intmsk;
	struct netdev_queue *txq;
	unsigned int free_bds;
	unsigned long flags;
	bool txq_stopped;

	if (!netif_msg_tx_err(priv))
		return;

	txq = netdev_get_tx_queue(priv->dev, ring->queue);

	spin_lock_irqsave(&ring->lock, flags);
	if (ring->index == DESC_INDEX) {
		intsts = ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
		intmsk = UMAC_IRQ_TXDMA_DONE | UMAC_IRQ_TXDMA_MBDONE;
	} else {
		intsts = ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
		intmsk = 1 << ring->index;
	}
	c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
	p_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_PROD_INDEX);
	txq_stopped = netif_tx_queue_stopped(txq);
	free_bds = ring->free_bds;
	spin_unlock_irqrestore(&ring->lock, flags);

	netif_err(priv, tx_err, priv->dev, "Ring %d queue %d status summary\n"
		  "TX queue status: %s, interrupts: %s\n"
		  "(sw)free_bds: %d (sw)size: %d\n"
		  "(sw)p_index: %d (hw)p_index: %d\n"
		  "(sw)c_index: %d (hw)c_index: %d\n"
		  "(sw)clean_p: %d (sw)write_p: %d\n"
		  "(sw)cb_ptr: %d (sw)end_ptr: %d\n",
		  ring->index, ring->queue,
		  txq_stopped ? "stopped" : "active",
		  intsts & intmsk ? "enabled" : "disabled",
		  free_bds, ring->size,
		  ring->prod_index, p_index & DMA_P_INDEX_MASK,
		  ring->c_index, c_index & DMA_C_INDEX_MASK,
		  ring->clean_ptr, ring->write_ptr,
		  ring->cb_ptr, ring->end_ptr);
}

3040 3041 3042
static void bcmgenet_timeout(struct net_device *dev)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
3043 3044 3045
	u32 int0_enable = 0;
	u32 int1_enable = 0;
	unsigned int q;
3046 3047 3048

	netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n");

3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063
	for (q = 0; q < priv->hw_params->tx_queues; q++)
		bcmgenet_dump_tx_queue(&priv->tx_rings[q]);
	bcmgenet_dump_tx_queue(&priv->tx_rings[DESC_INDEX]);

	bcmgenet_tx_reclaim_all(dev);

	for (q = 0; q < priv->hw_params->tx_queues; q++)
		int1_enable |= (1 << q);

	int0_enable = UMAC_IRQ_TXDMA_DONE;

	/* Re-enable TX interrupts if disabled */
	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
	bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);

3064
	netif_trans_update(dev);
3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079

	dev->stats.tx_errors++;

	netif_tx_wake_all_queues(dev);
}

#define MAX_MC_COUNT	16

static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv,
					 unsigned char *addr,
					 int *i,
					 int *mc)
{
	u32 reg;

3080 3081 3082 3083 3084
	bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1],
			     UMAC_MDF_ADDR + (*i * 4));
	bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 |
			     addr[4] << 8 | addr[5],
			     UMAC_MDF_ADDR + ((*i + 1) * 4));
3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100
	reg = bcmgenet_umac_readl(priv, UMAC_MDF_CTRL);
	reg |= (1 << (MAX_MC_COUNT - *mc));
	bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL);
	*i += 2;
	(*mc)++;
}

static void bcmgenet_set_rx_mode(struct net_device *dev)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
	struct netdev_hw_addr *ha;
	int i, mc;
	u32 reg;

	netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags);

B
Brian Norris 已提交
3101
	/* Promiscuous mode */
3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156
	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
	if (dev->flags & IFF_PROMISC) {
		reg |= CMD_PROMISC;
		bcmgenet_umac_writel(priv, reg, UMAC_CMD);
		bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL);
		return;
	} else {
		reg &= ~CMD_PROMISC;
		bcmgenet_umac_writel(priv, reg, UMAC_CMD);
	}

	/* UniMac doesn't support ALLMULTI */
	if (dev->flags & IFF_ALLMULTI) {
		netdev_warn(dev, "ALLMULTI is not supported\n");
		return;
	}

	/* update MDF filter */
	i = 0;
	mc = 0;
	/* Broadcast */
	bcmgenet_set_mdf_addr(priv, dev->broadcast, &i, &mc);
	/* my own address.*/
	bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i, &mc);
	/* Unicast list*/
	if (netdev_uc_count(dev) > (MAX_MC_COUNT - mc))
		return;

	if (!netdev_uc_empty(dev))
		netdev_for_each_uc_addr(ha, dev)
			bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc);
	/* Multicast */
	if (netdev_mc_empty(dev) || netdev_mc_count(dev) >= (MAX_MC_COUNT - mc))
		return;

	netdev_for_each_mc_addr(ha, dev)
		bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc);
}

/* Set the hardware MAC address. */
static int bcmgenet_set_mac_addr(struct net_device *dev, void *p)
{
	struct sockaddr *addr = p;

	/* Setting the MAC address at the hardware level is not possible
	 * without disabling the UniMAC RX/TX enable bits.
	 */
	if (netif_running(dev))
		return -EBUSY;

	ether_addr_copy(dev->dev_addr, addr->sa_data);

	return 0;
}

3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198
static struct net_device_stats *bcmgenet_get_stats(struct net_device *dev)
{
	struct bcmgenet_priv *priv = netdev_priv(dev);
	unsigned long tx_bytes = 0, tx_packets = 0;
	unsigned long rx_bytes = 0, rx_packets = 0;
	unsigned long rx_errors = 0, rx_dropped = 0;
	struct bcmgenet_tx_ring *tx_ring;
	struct bcmgenet_rx_ring *rx_ring;
	unsigned int q;

	for (q = 0; q < priv->hw_params->tx_queues; q++) {
		tx_ring = &priv->tx_rings[q];
		tx_bytes += tx_ring->bytes;
		tx_packets += tx_ring->packets;
	}
	tx_ring = &priv->tx_rings[DESC_INDEX];
	tx_bytes += tx_ring->bytes;
	tx_packets += tx_ring->packets;

	for (q = 0; q < priv->hw_params->rx_queues; q++) {
		rx_ring = &priv->rx_rings[q];

		rx_bytes += rx_ring->bytes;
		rx_packets += rx_ring->packets;
		rx_errors += rx_ring->errors;
		rx_dropped += rx_ring->dropped;
	}
	rx_ring = &priv->rx_rings[DESC_INDEX];
	rx_bytes += rx_ring->bytes;
	rx_packets += rx_ring->packets;
	rx_errors += rx_ring->errors;
	rx_dropped += rx_ring->dropped;

	dev->stats.tx_bytes = tx_bytes;
	dev->stats.tx_packets = tx_packets;
	dev->stats.rx_bytes = rx_bytes;
	dev->stats.rx_packets = rx_packets;
	dev->stats.rx_errors = rx_errors;
	dev->stats.rx_missed_errors = rx_errors;
	return &dev->stats;
}

3199 3200 3201 3202 3203 3204 3205 3206 3207
static const struct net_device_ops bcmgenet_netdev_ops = {
	.ndo_open		= bcmgenet_open,
	.ndo_stop		= bcmgenet_close,
	.ndo_start_xmit		= bcmgenet_xmit,
	.ndo_tx_timeout		= bcmgenet_timeout,
	.ndo_set_rx_mode	= bcmgenet_set_rx_mode,
	.ndo_set_mac_address	= bcmgenet_set_mac_addr,
	.ndo_do_ioctl		= bcmgenet_ioctl,
	.ndo_set_features	= bcmgenet_set_features,
3208 3209 3210
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller	= bcmgenet_poll_controller,
#endif
3211
	.ndo_get_stats		= bcmgenet_get_stats,
3212 3213 3214 3215 3216 3217
};

/* Array of GENET hardware parameters/characteristics */
static struct bcmgenet_hw_params bcmgenet_hw_params[] = {
	[GENET_V1] = {
		.tx_queues = 0,
3218
		.tx_bds_per_q = 0,
3219
		.rx_queues = 0,
3220
		.rx_bds_per_q = 0,
3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231
		.bp_in_en_shift = 16,
		.bp_in_mask = 0xffff,
		.hfb_filter_cnt = 16,
		.qtag_mask = 0x1F,
		.hfb_offset = 0x1000,
		.rdma_offset = 0x2000,
		.tdma_offset = 0x3000,
		.words_per_bd = 2,
	},
	[GENET_V2] = {
		.tx_queues = 4,
3232
		.tx_bds_per_q = 32,
3233
		.rx_queues = 0,
3234
		.rx_bds_per_q = 0,
3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248
		.bp_in_en_shift = 16,
		.bp_in_mask = 0xffff,
		.hfb_filter_cnt = 16,
		.qtag_mask = 0x1F,
		.tbuf_offset = 0x0600,
		.hfb_offset = 0x1000,
		.hfb_reg_offset = 0x2000,
		.rdma_offset = 0x3000,
		.tdma_offset = 0x4000,
		.words_per_bd = 2,
		.flags = GENET_HAS_EXT,
	},
	[GENET_V3] = {
		.tx_queues = 4,
3249
		.tx_bds_per_q = 32,
3250
		.rx_queues = 0,
3251
		.rx_bds_per_q = 0,
3252 3253 3254
		.bp_in_en_shift = 17,
		.bp_in_mask = 0x1ffff,
		.hfb_filter_cnt = 48,
3255
		.hfb_filter_size = 128,
3256 3257 3258 3259 3260 3261 3262
		.qtag_mask = 0x3F,
		.tbuf_offset = 0x0600,
		.hfb_offset = 0x8000,
		.hfb_reg_offset = 0xfc00,
		.rdma_offset = 0x10000,
		.tdma_offset = 0x11000,
		.words_per_bd = 2,
3263 3264
		.flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR |
			 GENET_HAS_MOCA_LINK_DET,
3265 3266 3267
	},
	[GENET_V4] = {
		.tx_queues = 4,
3268
		.tx_bds_per_q = 32,
3269
		.rx_queues = 0,
3270
		.rx_bds_per_q = 0,
3271 3272 3273
		.bp_in_en_shift = 17,
		.bp_in_mask = 0x1ffff,
		.hfb_filter_cnt = 48,
3274
		.hfb_filter_size = 128,
3275 3276 3277 3278 3279 3280 3281
		.qtag_mask = 0x3F,
		.tbuf_offset = 0x0600,
		.hfb_offset = 0x8000,
		.hfb_reg_offset = 0xfc00,
		.rdma_offset = 0x2000,
		.tdma_offset = 0x4000,
		.words_per_bd = 3,
3282 3283
		.flags = GENET_HAS_40BITS | GENET_HAS_EXT |
			 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3284
	},
3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303
	[GENET_V5] = {
		.tx_queues = 4,
		.tx_bds_per_q = 32,
		.rx_queues = 0,
		.rx_bds_per_q = 0,
		.bp_in_en_shift = 17,
		.bp_in_mask = 0x1ffff,
		.hfb_filter_cnt = 48,
		.hfb_filter_size = 128,
		.qtag_mask = 0x3F,
		.tbuf_offset = 0x0600,
		.hfb_offset = 0x8000,
		.hfb_reg_offset = 0xfc00,
		.rdma_offset = 0x2000,
		.tdma_offset = 0x4000,
		.words_per_bd = 3,
		.flags = GENET_HAS_40BITS | GENET_HAS_EXT |
			 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
	},
3304 3305 3306 3307 3308 3309 3310 3311
};

/* Infer hardware parameters from the detected GENET version */
static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv)
{
	struct bcmgenet_hw_params *params;
	u32 reg;
	u8 major;
3312
	u16 gphy_rev;
3313

3314
	if (GENET_IS_V5(priv) || GENET_IS_V4(priv)) {
3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338
		bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
		genet_dma_ring_regs = genet_dma_ring_regs_v4;
		priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
	} else if (GENET_IS_V3(priv)) {
		bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
		genet_dma_ring_regs = genet_dma_ring_regs_v123;
		priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
	} else if (GENET_IS_V2(priv)) {
		bcmgenet_dma_regs = bcmgenet_dma_regs_v2;
		genet_dma_ring_regs = genet_dma_ring_regs_v123;
		priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
	} else if (GENET_IS_V1(priv)) {
		bcmgenet_dma_regs = bcmgenet_dma_regs_v1;
		genet_dma_ring_regs = genet_dma_ring_regs_v123;
		priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
	}

	/* enum genet_version starts at 1 */
	priv->hw_params = &bcmgenet_hw_params[priv->version];
	params = priv->hw_params;

	/* Read GENET HW version */
	reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL);
	major = (reg >> 24 & 0x0f);
3339 3340 3341
	if (major == 6)
		major = 5;
	else if (major == 5)
3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352
		major = 4;
	else if (major == 0)
		major = 1;
	if (major != priv->version) {
		dev_err(&priv->pdev->dev,
			"GENET version mismatch, got: %d, configured for: %d\n",
			major, priv->version);
	}

	/* Print the GENET core version */
	dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT,
3353
		 major, (reg >> 16) & 0x0f, reg & 0xffff);
3354

3355 3356 3357 3358
	/* Store the integrated PHY revision for the MDIO probing function
	 * to pass this information to the PHY driver. The PHY driver expects
	 * to find the PHY major revision in bits 15:8 while the GENET register
	 * stores that information in bits 7:0, account for that.
3359 3360 3361 3362 3363 3364 3365
	 *
	 * On newer chips, starting with PHY revision G0, a new scheme is
	 * deployed similar to the Starfighter 2 switch with GPHY major
	 * revision in bits 15:8 and patch level in bits 7:0. Major revision 0
	 * is reserved as well as special value 0x01ff, we have a small
	 * heuristic to check for the new GPHY revision and re-arrange things
	 * so the GPHY driver is happy.
3366
	 */
3367 3368
	gphy_rev = reg & 0xffff;

3369 3370 3371 3372 3373 3374 3375 3376
	if (GENET_IS_V5(priv)) {
		/* The EPHY revision should come from the MDIO registers of
		 * the PHY not from GENET.
		 */
		if (gphy_rev != 0) {
			pr_warn("GENET is reporting EPHY revision: 0x%04x\n",
				gphy_rev);
		}
3377
	/* This is reserved so should require special treatment */
3378
	} else if (gphy_rev == 0 || gphy_rev == 0x01ff) {
3379 3380
		pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev);
		return;
3381
	/* This is the good old scheme, just GPHY major, no minor nor patch */
3382
	} else if ((gphy_rev & 0xf0) != 0) {
3383 3384
		priv->gphy_rev = gphy_rev << 8;
	/* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */
3385
	} else if ((gphy_rev & 0xff00) != 0) {
3386 3387
		priv->gphy_rev = gphy_rev;
	}
3388

3389 3390 3391 3392 3393 3394
#ifdef CONFIG_PHYS_ADDR_T_64BIT
	if (!(params->flags & GENET_HAS_40BITS))
		pr_warn("GENET does not support 40-bits PA\n");
#endif

	pr_debug("Configuration for version: %d\n"
3395
		"TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n"
3396 3397 3398 3399 3400 3401
		"BP << en: %2d, BP msk: 0x%05x\n"
		"HFB count: %2d, QTAQ msk: 0x%05x\n"
		"TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n"
		"RDMA: 0x%05x, TDMA: 0x%05x\n"
		"Words/BD: %d\n",
		priv->version,
3402
		params->tx_queues, params->tx_bds_per_q,
3403
		params->rx_queues, params->rx_bds_per_q,
3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416
		params->bp_in_en_shift, params->bp_in_mask,
		params->hfb_filter_cnt, params->qtag_mask,
		params->tbuf_offset, params->hfb_offset,
		params->hfb_reg_offset,
		params->rdma_offset, params->tdma_offset,
		params->words_per_bd);
}

static const struct of_device_id bcmgenet_match[] = {
	{ .compatible = "brcm,genet-v1", .data = (void *)GENET_V1 },
	{ .compatible = "brcm,genet-v2", .data = (void *)GENET_V2 },
	{ .compatible = "brcm,genet-v3", .data = (void *)GENET_V3 },
	{ .compatible = "brcm,genet-v4", .data = (void *)GENET_V4 },
3417
	{ .compatible = "brcm,genet-v5", .data = (void *)GENET_V5 },
3418 3419
	{ },
};
3420
MODULE_DEVICE_TABLE(of, bcmgenet_match);
3421 3422 3423

static int bcmgenet_probe(struct platform_device *pdev)
{
3424
	struct bcmgenet_platform_data *pd = pdev->dev.platform_data;
3425
	struct device_node *dn = pdev->dev.of_node;
3426
	const struct of_device_id *of_id = NULL;
3427 3428 3429 3430 3431
	struct bcmgenet_priv *priv;
	struct net_device *dev;
	const void *macaddr;
	struct resource *r;
	int err = -EIO;
3432
	const char *phy_mode_str;
3433

3434 3435 3436
	/* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */
	dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1,
				 GENET_MAX_MQ_CNT + 1);
3437 3438 3439 3440 3441
	if (!dev) {
		dev_err(&pdev->dev, "can't allocate net device\n");
		return -ENOMEM;
	}

3442 3443 3444 3445 3446
	if (dn) {
		of_id = of_match_node(bcmgenet_match, dn);
		if (!of_id)
			return -EINVAL;
	}
3447 3448 3449 3450

	priv = netdev_priv(dev);
	priv->irq0 = platform_get_irq(pdev, 0);
	priv->irq1 = platform_get_irq(pdev, 1);
3451
	priv->wol_irq = platform_get_irq(pdev, 2);
3452 3453 3454 3455 3456 3457
	if (!priv->irq0 || !priv->irq1) {
		dev_err(&pdev->dev, "can't find IRQs\n");
		err = -EINVAL;
		goto err;
	}

3458 3459 3460 3461 3462 3463 3464 3465 3466
	if (dn) {
		macaddr = of_get_mac_address(dn);
		if (!macaddr) {
			dev_err(&pdev->dev, "can't find MAC address\n");
			err = -EINVAL;
			goto err;
		}
	} else {
		macaddr = pd->mac_address;
3467 3468 3469
	}

	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3470 3471 3472
	priv->base = devm_ioremap_resource(&pdev->dev, r);
	if (IS_ERR(priv->base)) {
		err = PTR_ERR(priv->base);
3473 3474 3475
		goto err;
	}

3476 3477
	spin_lock_init(&priv->lock);

3478 3479 3480 3481
	SET_NETDEV_DEV(dev, &pdev->dev);
	dev_set_drvdata(&pdev->dev, dev);
	ether_addr_copy(dev->dev_addr, macaddr);
	dev->watchdog_timeo = 2 * HZ;
3482
	dev->ethtool_ops = &bcmgenet_ethtool_ops;
3483 3484 3485 3486 3487 3488 3489 3490
	dev->netdev_ops = &bcmgenet_netdev_ops;

	priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT);

	/* Set hardware features */
	dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM |
		NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;

3491 3492 3493 3494 3495 3496 3497
	/* Request the WOL interrupt and advertise suspend if available */
	priv->wol_irq_disabled = true;
	err = devm_request_irq(&pdev->dev, priv->wol_irq, bcmgenet_wol_isr, 0,
			       dev->name, priv);
	if (!err)
		device_set_wakeup_capable(&pdev->dev, 1);

3498 3499 3500 3501 3502 3503 3504 3505 3506
	/* Set the needed headroom to account for any possible
	 * features enabling/disabling at runtime
	 */
	dev->needed_headroom += 64;

	netdev_boot_setup_check(dev);

	priv->dev = dev;
	priv->pdev = pdev;
3507 3508 3509 3510
	if (of_id)
		priv->version = (enum bcmgenet_version)of_id->data;
	else
		priv->version = pd->genet_version;
3511

3512
	priv->clk = devm_clk_get(&priv->pdev->dev, "enet");
3513
	if (IS_ERR(priv->clk)) {
3514
		dev_warn(&priv->pdev->dev, "failed to get enet clock\n");
3515 3516
		priv->clk = NULL;
	}
3517

3518
	clk_prepare_enable(priv->clk);
3519

3520 3521 3522 3523 3524 3525 3526 3527 3528
	bcmgenet_set_hw_params(priv);

	/* Mii wait queue */
	init_waitqueue_head(&priv->wq);
	/* Always use RX_BUF_LENGTH (2KB) buffer for all chips */
	priv->rx_buf_len = RX_BUF_LENGTH;
	INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task);

	priv->clk_wol = devm_clk_get(&priv->pdev->dev, "enet-wol");
3529
	if (IS_ERR(priv->clk_wol)) {
3530
		dev_warn(&priv->pdev->dev, "failed to get enet-wol clock\n");
3531 3532
		priv->clk_wol = NULL;
	}
3533

F
Florian Fainelli 已提交
3534 3535 3536 3537 3538 3539
	priv->clk_eee = devm_clk_get(&priv->pdev->dev, "enet-eee");
	if (IS_ERR(priv->clk_eee)) {
		dev_warn(&priv->pdev->dev, "failed to get enet-eee clock\n");
		priv->clk_eee = NULL;
	}

3540 3541 3542 3543 3544 3545 3546
	/* If this is an internal GPHY, power it on now, before UniMAC is
	 * brought out of reset as absolutely no UniMAC activity is allowed
	 */
	if (dn && !of_property_read_string(dn, "phy-mode", &phy_mode_str) &&
	    !strcasecmp(phy_mode_str, "internal"))
		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);

3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560
	err = reset_umac(priv);
	if (err)
		goto err_clk_disable;

	err = bcmgenet_mii_init(dev);
	if (err)
		goto err_clk_disable;

	/* setup number of real queues  + 1 (GENET_V1 has 0 hardware queues
	 * just the ring 16 descriptor based TX
	 */
	netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1);
	netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1);

3561 3562 3563
	/* libphy will determine the link state */
	netif_carrier_off(dev);

3564
	/* Turn off the main clock, WOL clock is handled separately */
3565
	clk_disable_unprepare(priv->clk);
3566

3567 3568 3569 3570
	err = register_netdev(dev);
	if (err)
		goto err;

3571 3572 3573
	return err;

err_clk_disable:
3574
	clk_disable_unprepare(priv->clk);
3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591
err:
	free_netdev(dev);
	return err;
}

static int bcmgenet_remove(struct platform_device *pdev)
{
	struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev);

	dev_set_drvdata(&pdev->dev, NULL);
	unregister_netdev(priv->dev);
	bcmgenet_mii_exit(priv->dev);
	free_netdev(priv->dev);

	return 0;
}

3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603
#ifdef CONFIG_PM_SLEEP
static int bcmgenet_suspend(struct device *d)
{
	struct net_device *dev = dev_get_drvdata(d);
	struct bcmgenet_priv *priv = netdev_priv(dev);
	int ret;

	if (!netif_running(dev))
		return 0;

	bcmgenet_netif_stop(dev);

3604 3605
	if (!device_may_wakeup(d))
		phy_suspend(priv->phydev);
3606

3607 3608 3609 3610 3611 3612 3613 3614 3615
	netif_device_detach(dev);

	/* Disable MAC receive */
	umac_enable_set(priv, CMD_RX_EN, false);

	ret = bcmgenet_dma_teardown(priv);
	if (ret)
		return ret;

3616
	/* Disable MAC transmit. TX DMA disabled must be done before this */
3617 3618 3619 3620 3621 3622
	umac_enable_set(priv, CMD_TX_EN, false);

	/* tx reclaim */
	bcmgenet_tx_reclaim_all(dev);
	bcmgenet_fini_dma(priv);

3623 3624
	/* Prepare the device for Wake-on-LAN and switch to the slow clock */
	if (device_may_wakeup(d) && priv->wolopts) {
3625
		ret = bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC);
3626
		clk_prepare_enable(priv->clk_wol);
3627
	} else if (priv->internal_phy) {
3628
		ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3629 3630
	}

3631 3632 3633
	/* Turn off the clocks */
	clk_disable_unprepare(priv->clk);

3634
	return ret;
3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652
}

static int bcmgenet_resume(struct device *d)
{
	struct net_device *dev = dev_get_drvdata(d);
	struct bcmgenet_priv *priv = netdev_priv(dev);
	unsigned long dma_ctrl;
	int ret;
	u32 reg;

	if (!netif_running(dev))
		return 0;

	/* Turn on the clock */
	ret = clk_prepare_enable(priv->clk);
	if (ret)
		return ret;

3653 3654 3655
	/* If this is an internal GPHY, power it back on now, before UniMAC is
	 * brought out of reset as absolutely no UniMAC activity is allowed
	 */
3656
	if (priv->internal_phy)
3657 3658
		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);

3659 3660 3661 3662 3663 3664
	bcmgenet_umac_reset(priv);

	ret = init_umac(priv);
	if (ret)
		goto out_clk_disable;

3665 3666 3667 3668
	/* From WOL-enabled suspend, switch to regular clock */
	if (priv->wolopts)
		clk_disable_unprepare(priv->clk_wol);

3669
	phy_init_hw(priv->phydev);
3670
	/* Speed settings must be restored */
3671
	bcmgenet_mii_config(priv->dev);
3672

3673 3674 3675 3676 3677
	/* disable ethernet MAC while updating its registers */
	umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, false);

	bcmgenet_set_hw_addr(priv, dev->dev_addr);

3678
	if (priv->internal_phy) {
3679 3680 3681 3682 3683
		reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
		reg |= EXT_ENERGY_DET_MASK;
		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
	}

3684 3685 3686
	if (priv->wolopts)
		bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);

3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701
	/* Disable RX/TX DMA and flush TX queues */
	dma_ctrl = bcmgenet_dma_disable(priv);

	/* Reinitialize TDMA and RDMA and SW housekeeping */
	ret = bcmgenet_init_dma(priv);
	if (ret) {
		netdev_err(dev, "failed to initialize DMA\n");
		goto out_clk_disable;
	}

	/* Always enable ring 16 - descriptor ring */
	bcmgenet_enable_dma(priv, dma_ctrl);

	netif_device_attach(dev);

3702 3703
	if (!device_may_wakeup(d))
		phy_resume(priv->phydev);
3704

F
Florian Fainelli 已提交
3705 3706 3707
	if (priv->eee.eee_enabled)
		bcmgenet_eee_enable_set(dev, true);

3708 3709 3710 3711 3712
	bcmgenet_netif_start(dev);

	return 0;

out_clk_disable:
3713 3714
	if (priv->internal_phy)
		bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3715 3716 3717 3718 3719 3720 3721
	clk_disable_unprepare(priv->clk);
	return ret;
}
#endif /* CONFIG_PM_SLEEP */

static SIMPLE_DEV_PM_OPS(bcmgenet_pm_ops, bcmgenet_suspend, bcmgenet_resume);

3722 3723 3724 3725 3726 3727
static struct platform_driver bcmgenet_driver = {
	.probe	= bcmgenet_probe,
	.remove	= bcmgenet_remove,
	.driver	= {
		.name	= "bcmgenet",
		.of_match_table = bcmgenet_match,
3728
		.pm	= &bcmgenet_pm_ops,
3729 3730 3731 3732 3733 3734 3735 3736
	},
};
module_platform_driver(bcmgenet_driver);

MODULE_AUTHOR("Broadcom Corporation");
MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver");
MODULE_ALIAS("platform:bcmgenet");
MODULE_LICENSE("GPL");