rx.c 57.0 KB
Newer Older
1 2
/******************************************************************************
 *
3
 * Copyright(c) 2003 - 2014 Intel Corporation. All rights reserved.
4
 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
5
 * Copyright(c) 2016 Intel Deutschland GmbH
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
 *
 * Portions of this file are derived from the ipw3945 project, as well
 * as portions of the ieee80211 subsystem header files.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of version 2 of the GNU General Public License as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
 *
 * The full GNU General Public License is included in this distribution in the
 * file called LICENSE.
 *
 * Contact Information:
27
 *  Intel Linux Wireless <linuxwifi@intel.com>
28 29 30 31 32
 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 *
 *****************************************************************************/
#include <linux/sched.h>
#include <linux/wait.h>
33
#include <linux/gfp.h>
34

35
#include "iwl-prph.h"
36
#include "iwl-io.h"
37
#include "internal.h"
38
#include "iwl-op-mode.h"
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77

/******************************************************************************
 *
 * RX path functions
 *
 ******************************************************************************/

/*
 * Rx theory of operation
 *
 * Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs),
 * each of which point to Receive Buffers to be filled by the NIC.  These get
 * used not only for Rx frames, but for any command response or notification
 * from the NIC.  The driver and NIC manage the Rx buffers by means
 * of indexes into the circular buffer.
 *
 * Rx Queue Indexes
 * The host/firmware share two index registers for managing the Rx buffers.
 *
 * The READ index maps to the first position that the firmware may be writing
 * to -- the driver can read up to (but not including) this position and get
 * good data.
 * The READ index is managed by the firmware once the card is enabled.
 *
 * The WRITE index maps to the last position the driver has read from -- the
 * position preceding WRITE is the last slot the firmware can place a packet.
 *
 * The queue is empty (no good data) if WRITE = READ - 1, and is full if
 * WRITE = READ.
 *
 * During initialization, the host sets up the READ queue position to the first
 * INDEX position, and WRITE to the last (READ - 1 wrapped)
 *
 * When the firmware places a packet in a buffer, it will advance the READ index
 * and fire the RX interrupt.  The driver can then query the READ index and
 * process as many packets as possible, moving the WRITE index forward as it
 * resets the Rx queue buffers with new memory.
 *
 * The management in the driver is as follows:
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
 * + A list of pre-allocated RBDs is stored in iwl->rxq->rx_free.
 *   When the interrupt handler is called, the request is processed.
 *   The page is either stolen - transferred to the upper layer
 *   or reused - added immediately to the iwl->rxq->rx_free list.
 * + When the page is stolen - the driver updates the matching queue's used
 *   count, detaches the RBD and transfers it to the queue used list.
 *   When there are two used RBDs - they are transferred to the allocator empty
 *   list. Work is then scheduled for the allocator to start allocating
 *   eight buffers.
 *   When there are another 6 used RBDs - they are transferred to the allocator
 *   empty list and the driver tries to claim the pre-allocated buffers and
 *   add them to iwl->rxq->rx_free. If it fails - it continues to claim them
 *   until ready.
 *   When there are 8+ buffers in the free list - either from allocation or from
 *   8 reused unstolen pages - restock is called to update the FW and indexes.
 * + In order to make sure the allocator always has RBDs to use for allocation
 *   the allocator has initial pool in the size of num_queues*(8-2) - the
 *   maximum missing RBDs per allocation request (request posted with 2
 *    empty RBDs, there is no guarantee when the other 6 RBDs are supplied).
 *   The queues supplies the recycle of the rest of the RBDs.
98 99
 * + A received packet is processed and handed to the kernel network stack,
 *   detached from the iwl->rxq.  The driver 'processed' index is updated.
100
 * + If there are no allocated buffers in iwl->rxq->rx_free,
101 102
 *   the READ INDEX is not incremented and iwl->status(RX_STALLED) is set.
 *   If there were enough free buffers and RX_STALLED is set it is cleared.
103 104 105 106
 *
 *
 * Driver sequence:
 *
107 108
 * iwl_rxq_alloc()            Allocates rx_free
 * iwl_pcie_rx_replenish()    Replenishes rx_free list from rx_used, and calls
109 110
 *                            iwl_pcie_rxq_restock.
 *                            Used only during initialization.
111
 * iwl_pcie_rxq_restock()     Moves available buffers from rx_free into Rx
112
 *                            queue, updates firmware pointers, and updates
113 114
 *                            the WRITE index.
 * iwl_pcie_rx_allocator()     Background work for allocating pages.
115 116
 *
 * -- enable interrupts --
117
 * ISR - iwl_rx()             Detach iwl_rx_mem_buffers from pool up to the
118 119
 *                            READ INDEX, detaching the SKB from the pool.
 *                            Moves the packet buffer from queue to rx_used.
120
 *                            Posts and claims requests to the allocator.
121
 *                            Calls iwl_pcie_rxq_restock to refill any empty
122
 *                            slots.
123 124 125 126 127 128 129 130 131 132 133 134
 *
 * RBD life-cycle:
 *
 * Init:
 * rxq.pool -> rxq.rx_used -> rxq.rx_free -> rxq.queue
 *
 * Regular Receive interrupt:
 * Page Stolen:
 * rxq.queue -> rxq.rx_used -> allocator.rbd_empty ->
 * allocator.rbd_allocated -> rxq.rx_free -> rxq.queue
 * Page not Stolen:
 * rxq.queue -> rxq.rx_free -> rxq.queue
135 136 137 138
 * ...
 *
 */

139 140
/*
 * iwl_rxq_space - Return number of free slots available in queue.
141
 */
142
static int iwl_rxq_space(const struct iwl_rxq *rxq)
143
{
144 145
	/* Make sure rx queue size is a power of 2 */
	WARN_ON(rxq->queue_size & (rxq->queue_size - 1));
146

147 148 149 150 151 152
	/*
	 * There can be up to (RX_QUEUE_SIZE - 1) free slots, to avoid ambiguity
	 * between empty and completely full queues.
	 * The following is equivalent to modulo by RX_QUEUE_SIZE and is well
	 * defined for negative dividends.
	 */
153
	return (rxq->read - rxq->write - 1) & (rxq->queue_size - 1);
154 155
}

156 157 158 159 160 161 162 163
/*
 * iwl_dma_addr2rbd_ptr - convert a DMA address to a uCode read buffer ptr
 */
static inline __le32 iwl_pcie_dma_addr2rbd_ptr(dma_addr_t dma_addr)
{
	return cpu_to_le32((u32)(dma_addr >> 8));
}

164 165 166 167 168 169
static void iwl_pcie_write_prph_64(struct iwl_trans *trans, u64 ofs, u64 val)
{
	iwl_write_prph(trans, ofs, val & 0xffffffff);
	iwl_write_prph(trans, ofs + 4, val >> 32);
}

170 171 172
/*
 * iwl_pcie_rx_stop - stops the Rx DMA
 */
173 174 175 176 177 178 179
int iwl_pcie_rx_stop(struct iwl_trans *trans)
{
	iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
	return iwl_poll_direct_bit(trans, FH_MEM_RSSR_RX_STATUS_REG,
				   FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE, 1000);
}

180 181
/*
 * iwl_pcie_rxq_inc_wr_ptr - Update the write pointer for the RX queue
182
 */
183 184
static void iwl_pcie_rxq_inc_wr_ptr(struct iwl_trans *trans,
				    struct iwl_rxq *rxq)
185 186 187
{
	u32 reg;

188
	lockdep_assert_held(&rxq->lock);
189

190 191 192 193 194 195 196 197 198 199 200 201 202 203
	/*
	 * explicitly wake up the NIC if:
	 * 1. shadow registers aren't enabled
	 * 2. there is a chance that the NIC is asleep
	 */
	if (!trans->cfg->base_params->shadow_reg_enable &&
	    test_bit(STATUS_TPOWER_PMI, &trans->status)) {
		reg = iwl_read32(trans, CSR_UCODE_DRV_GP1);

		if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) {
			IWL_DEBUG_INFO(trans, "Rx queue requesting wakeup, GP1 = 0x%x\n",
				       reg);
			iwl_set_bit(trans, CSR_GP_CNTRL,
				    CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
204 205
			rxq->need_update = true;
			return;
206 207
		}
	}
208 209

	rxq->write_actual = round_down(rxq->write, 8);
210 211 212 213 214
	if (trans->cfg->mq_rx_supported)
		iwl_write_prph(trans, RFH_Q_FRBDCB_WIDX(rxq->id),
			       rxq->write_actual);
	else
		iwl_write32(trans, FH_RSCSR_CHNL0_WPTR, rxq->write_actual);
215 216 217 218 219
}

static void iwl_pcie_rxq_check_wrptr(struct iwl_trans *trans)
{
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
220
	int i;
221

222 223
	for (i = 0; i < trans->num_rx_queues; i++) {
		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
224

225 226 227 228 229 230 231
		if (!rxq->need_update)
			continue;
		spin_lock(&rxq->lock);
		iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
		rxq->need_update = false;
		spin_unlock(&rxq->lock);
	}
232 233
}

234 235 236
/*
 * iwl_pcie_rxq_mq_restock - restock implementation for multi-queue rx
 */
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
static void iwl_pcie_rxq_mq_restock(struct iwl_trans *trans,
				    struct iwl_rxq *rxq)
{
	struct iwl_rx_mem_buffer *rxb;

	/*
	 * If the device isn't enabled - no need to try to add buffers...
	 * This can happen when we stop the device and still have an interrupt
	 * pending. We stop the APM before we sync the interrupts because we
	 * have to (see comment there). On the other hand, since the APM is
	 * stopped, we cannot access the HW (in particular not prph).
	 * So don't try to restock if the APM has been already stopped.
	 */
	if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
		return;

	spin_lock(&rxq->lock);
	while (rxq->free_count) {
		__le64 *bd = (__le64 *)rxq->bd;

		/* Get next free Rx buffer, remove from free list */
		rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
				       list);
		list_del(&rxb->list);

		/* 12 first bits are expected to be empty */
		WARN_ON(rxb->page_dma & DMA_BIT_MASK(12));
		/* Point to Rx buffer via next RBD in circular buffer */
		bd[rxq->write] = cpu_to_le64(rxb->page_dma | rxb->vid);
		rxq->write = (rxq->write + 1) & MQ_RX_TABLE_MASK;
		rxq->free_count--;
	}
	spin_unlock(&rxq->lock);

	/*
	 * If we've added more space for the firmware to place data, tell it.
	 * Increment device's write pointer in multiples of 8.
	 */
	if (rxq->write_actual != (rxq->write & ~0x7)) {
		spin_lock(&rxq->lock);
		iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
		spin_unlock(&rxq->lock);
	}
}

282
/*
283
 * iwl_pcie_rxq_sq_restock - restock implementation for single queue rx
284
 */
285 286
static void iwl_pcie_rxq_sq_restock(struct iwl_trans *trans,
				    struct iwl_rxq *rxq)
287 288 289
{
	struct iwl_rx_mem_buffer *rxb;

290 291 292
	/*
	 * If the device isn't enabled - not need to try to add buffers...
	 * This can happen when we stop the device and still have an interrupt
293 294 295
	 * pending. We stop the APM before we sync the interrupts because we
	 * have to (see comment there). On the other hand, since the APM is
	 * stopped, we cannot access the HW (in particular not prph).
296 297
	 * So don't try to restock if the APM has been already stopped.
	 */
298
	if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
299 300
		return;

301
	spin_lock(&rxq->lock);
302
	while ((iwl_rxq_space(rxq) > 0) && (rxq->free_count)) {
303
		__le32 *bd = (__le32 *)rxq->bd;
304 305 306 307 308
		/* The overwritten rxb must be a used one */
		rxb = rxq->queue[rxq->write];
		BUG_ON(rxb && rxb->page);

		/* Get next free Rx buffer, remove from free list */
J
Johannes Berg 已提交
309 310 311
		rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
				       list);
		list_del(&rxb->list);
312 313

		/* Point to Rx buffer via next RBD in circular buffer */
314
		bd[rxq->write] = iwl_pcie_dma_addr2rbd_ptr(rxb->page_dma);
315 316 317 318
		rxq->queue[rxq->write] = rxb;
		rxq->write = (rxq->write + 1) & RX_QUEUE_MASK;
		rxq->free_count--;
	}
319
	spin_unlock(&rxq->lock);
320 321 322 323

	/* If we've added more space for the firmware to place data, tell it.
	 * Increment device's write pointer in multiples of 8. */
	if (rxq->write_actual != (rxq->write & ~0x7)) {
324
		spin_lock(&rxq->lock);
325
		iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
326
		spin_unlock(&rxq->lock);
327 328 329
	}
}

330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
/*
 * iwl_pcie_rxq_restock - refill RX queue from pre-allocated pool
 *
 * If there are slots in the RX queue that need to be restocked,
 * and we have free pre-allocated buffers, fill the ranks as much
 * as we can, pulling from rx_free.
 *
 * This moves the 'write' index forward to catch up with 'processed', and
 * also updates the memory address in the firmware to reference the new
 * target buffer.
 */
static
void iwl_pcie_rxq_restock(struct iwl_trans *trans, struct iwl_rxq *rxq)
{
	if (trans->cfg->mq_rx_supported)
		iwl_pcie_rxq_mq_restock(trans, rxq);
	else
		iwl_pcie_rxq_sq_restock(trans, rxq);
}

350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
/*
 * iwl_pcie_rx_alloc_page - allocates and returns a page.
 *
 */
static struct page *iwl_pcie_rx_alloc_page(struct iwl_trans *trans,
					   gfp_t priority)
{
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
	struct page *page;
	gfp_t gfp_mask = priority;

	if (trans_pcie->rx_page_order > 0)
		gfp_mask |= __GFP_COMP;

	/* Alloc a new receive buffer */
	page = alloc_pages(gfp_mask, trans_pcie->rx_page_order);
	if (!page) {
		if (net_ratelimit())
			IWL_DEBUG_INFO(trans, "alloc_pages failed, order: %d\n",
				       trans_pcie->rx_page_order);
370 371 372
		/*
		 * Issue an error if we don't have enough pre-allocated
		  * buffers.
373
`		 */
374
		if (!(gfp_mask & __GFP_NOWARN) && net_ratelimit())
375
			IWL_CRIT(trans,
376
				 "Failed to alloc_pages\n");
377 378 379 380 381
		return NULL;
	}
	return page;
}

382
/*
383
 * iwl_pcie_rxq_alloc_rbs - allocate a page for each used RBD
384
 *
385 386 387
 * A used RBD is an Rx buffer that has been given to the stack. To use it again
 * a page must be allocated and the RBD must point to the page. This function
 * doesn't change the HW pointer but handles the list of pages that is used by
388
 * iwl_pcie_rxq_restock. The latter function will update the HW to use the newly
389
 * allocated buffers.
390
 */
391 392
static void iwl_pcie_rxq_alloc_rbs(struct iwl_trans *trans, gfp_t priority,
				   struct iwl_rxq *rxq)
393
{
394
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
395 396 397 398
	struct iwl_rx_mem_buffer *rxb;
	struct page *page;

	while (1) {
399
		spin_lock(&rxq->lock);
400
		if (list_empty(&rxq->rx_used)) {
401
			spin_unlock(&rxq->lock);
402 403
			return;
		}
404
		spin_unlock(&rxq->lock);
405 406

		/* Alloc a new receive buffer */
407 408
		page = iwl_pcie_rx_alloc_page(trans, priority);
		if (!page)
409 410
			return;

411
		spin_lock(&rxq->lock);
412 413

		if (list_empty(&rxq->rx_used)) {
414
			spin_unlock(&rxq->lock);
415
			__free_pages(page, trans_pcie->rx_page_order);
416 417
			return;
		}
J
Johannes Berg 已提交
418 419 420
		rxb = list_first_entry(&rxq->rx_used, struct iwl_rx_mem_buffer,
				       list);
		list_del(&rxb->list);
421
		spin_unlock(&rxq->lock);
422 423 424 425

		BUG_ON(rxb->page);
		rxb->page = page;
		/* Get physical address of the RB */
426 427 428 429
		rxb->page_dma =
			dma_map_page(trans->dev, page, 0,
				     PAGE_SIZE << trans_pcie->rx_page_order,
				     DMA_FROM_DEVICE);
430 431
		if (dma_mapping_error(trans->dev, rxb->page_dma)) {
			rxb->page = NULL;
432
			spin_lock(&rxq->lock);
433
			list_add(&rxb->list, &rxq->rx_used);
434
			spin_unlock(&rxq->lock);
435 436 437
			__free_pages(page, trans_pcie->rx_page_order);
			return;
		}
438

439
		spin_lock(&rxq->lock);
440 441 442 443

		list_add_tail(&rxb->list, &rxq->rx_free);
		rxq->free_count++;

444
		spin_unlock(&rxq->lock);
445 446 447
	}
}

448
static void iwl_pcie_free_rbs_pool(struct iwl_trans *trans)
449 450 451 452
{
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
	int i;

453
	for (i = 0; i < RX_POOL_SIZE; i++) {
454
		if (!trans_pcie->rx_pool[i].page)
455
			continue;
456
		dma_unmap_page(trans->dev, trans_pcie->rx_pool[i].page_dma,
457 458
			       PAGE_SIZE << trans_pcie->rx_page_order,
			       DMA_FROM_DEVICE);
459 460 461
		__free_pages(trans_pcie->rx_pool[i].page,
			     trans_pcie->rx_page_order);
		trans_pcie->rx_pool[i].page = NULL;
462 463 464
	}
}

465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
/*
 * iwl_pcie_rx_allocator - Allocates pages in the background for RX queues
 *
 * Allocates for each received request 8 pages
 * Called as a scheduled work item.
 */
static void iwl_pcie_rx_allocator(struct iwl_trans *trans)
{
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
	struct iwl_rb_allocator *rba = &trans_pcie->rba;
	struct list_head local_empty;
	int pending = atomic_xchg(&rba->req_pending, 0);

	IWL_DEBUG_RX(trans, "Pending allocation requests = %d\n", pending);

	/* If we were scheduled - there is at least one request */
	spin_lock(&rba->lock);
	/* swap out the rba->rbd_empty to a local list */
	list_replace_init(&rba->rbd_empty, &local_empty);
	spin_unlock(&rba->lock);

	while (pending) {
		int i;
		struct list_head local_allocated;
489 490 491 492 493
		gfp_t gfp_mask = GFP_KERNEL;

		/* Do not post a warning if there are only a few requests */
		if (pending < RX_PENDING_WATERMARK)
			gfp_mask |= __GFP_NOWARN;
494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512

		INIT_LIST_HEAD(&local_allocated);

		for (i = 0; i < RX_CLAIM_REQ_ALLOC;) {
			struct iwl_rx_mem_buffer *rxb;
			struct page *page;

			/* List should never be empty - each reused RBD is
			 * returned to the list, and initial pool covers any
			 * possible gap between the time the page is allocated
			 * to the time the RBD is added.
			 */
			BUG_ON(list_empty(&local_empty));
			/* Get the first rxb from the rbd list */
			rxb = list_first_entry(&local_empty,
					       struct iwl_rx_mem_buffer, list);
			BUG_ON(rxb->page);

			/* Alloc a new receive buffer */
513
			page = iwl_pcie_rx_alloc_page(trans, gfp_mask);
514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
			if (!page)
				continue;
			rxb->page = page;

			/* Get physical address of the RB */
			rxb->page_dma = dma_map_page(trans->dev, page, 0,
					PAGE_SIZE << trans_pcie->rx_page_order,
					DMA_FROM_DEVICE);
			if (dma_mapping_error(trans->dev, rxb->page_dma)) {
				rxb->page = NULL;
				__free_pages(page, trans_pcie->rx_page_order);
				continue;
			}

			/* move the allocated entry to the out list */
			list_move(&rxb->list, &local_allocated);
			i++;
		}

		pending--;
		if (!pending) {
			pending = atomic_xchg(&rba->req_pending, 0);
			IWL_DEBUG_RX(trans,
				     "Pending allocation requests = %d\n",
				     pending);
		}

		spin_lock(&rba->lock);
		/* add the allocated rbds to the allocator allocated list */
		list_splice_tail(&local_allocated, &rba->rbd_allocated);
		/* get more empty RBDs for current pending requests */
		list_splice_tail_init(&rba->rbd_empty, &local_empty);
		spin_unlock(&rba->lock);

		atomic_inc(&rba->req_ready);
	}

	spin_lock(&rba->lock);
	/* return unused rbds to the allocator empty list */
	list_splice_tail(&local_empty, &rba->rbd_empty);
	spin_unlock(&rba->lock);
}

/*
558
 * iwl_pcie_rx_allocator_get - returns the pre-allocated pages
559 560 561
.*
.* Called by queue when the queue posted allocation request and
 * has freed 8 RBDs in order to restock itself.
562 563
 * This function directly moves the allocated RBs to the queue's ownership
 * and updates the relevant counters.
564
 */
565 566
static void iwl_pcie_rx_allocator_get(struct iwl_trans *trans,
				      struct iwl_rxq *rxq)
567 568 569 570 571
{
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
	struct iwl_rb_allocator *rba = &trans_pcie->rba;
	int i;

572 573
	lockdep_assert_held(&rxq->lock);

574 575 576
	/*
	 * atomic_dec_if_positive returns req_ready - 1 for any scenario.
	 * If req_ready is 0 atomic_dec_if_positive will return -1 and this
577
	 * function will return early, as there are no ready requests.
578 579 580 581 582
	 * atomic_dec_if_positive will perofrm the *actual* decrement only if
	 * req_ready > 0, i.e. - there are ready requests and the function
	 * hands one request to the caller.
	 */
	if (atomic_dec_if_positive(&rba->req_ready) < 0)
583
		return;
584 585 586 587

	spin_lock(&rba->lock);
	for (i = 0; i < RX_CLAIM_REQ_ALLOC; i++) {
		/* Get next free Rx buffer, remove it from free list */
588 589 590 591 592
		struct iwl_rx_mem_buffer *rxb =
			list_first_entry(&rba->rbd_allocated,
					 struct iwl_rx_mem_buffer, list);

		list_move(&rxb->list, &rxq->rx_free);
593 594 595
	}
	spin_unlock(&rba->lock);

596 597
	rxq->used_count -= RX_CLAIM_REQ_ALLOC;
	rxq->free_count += RX_CLAIM_REQ_ALLOC;
598 599 600
}

static void iwl_pcie_rx_allocator_work(struct work_struct *data)
601
{
602 603
	struct iwl_rb_allocator *rba_p =
		container_of(data, struct iwl_rb_allocator, rx_alloc);
604
	struct iwl_trans_pcie *trans_pcie =
605
		container_of(rba_p, struct iwl_trans_pcie, rba);
606

607
	iwl_pcie_rx_allocator(trans_pcie->trans);
608 609
}

610 611 612
static int iwl_pcie_rx_alloc(struct iwl_trans *trans)
{
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
613
	struct iwl_rb_allocator *rba = &trans_pcie->rba;
614
	struct device *dev = trans->dev;
615
	int i;
616 617
	int free_size = trans->cfg->mq_rx_supported ? sizeof(__le64) :
						      sizeof(__le32);
618

619 620 621 622 623 624 625
	if (WARN_ON(trans_pcie->rxq))
		return -EINVAL;

	trans_pcie->rxq = kcalloc(trans->num_rx_queues, sizeof(struct iwl_rxq),
				  GFP_KERNEL);
	if (!trans_pcie->rxq)
		return -EINVAL;
626

627
	spin_lock_init(&rba->lock);
628

629 630
	for (i = 0; i < trans->num_rx_queues; i++) {
		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
631

632
		spin_lock_init(&rxq->lock);
633 634 635 636 637
		if (trans->cfg->mq_rx_supported)
			rxq->queue_size = MQ_RX_TABLE_SIZE;
		else
			rxq->queue_size = RX_QUEUE_SIZE;

638 639 640 641 642
		/*
		 * Allocate the circular buffer of Read Buffer Descriptors
		 * (RBDs)
		 */
		rxq->bd = dma_zalloc_coherent(dev,
643 644
					     free_size * rxq->queue_size,
					     &rxq->bd_dma, GFP_KERNEL);
645 646
		if (!rxq->bd)
			goto err;
647

648 649 650 651 652 653 654 655 656
		if (trans->cfg->mq_rx_supported) {
			rxq->used_bd = dma_zalloc_coherent(dev,
							   sizeof(__le32) *
							   rxq->queue_size,
							   &rxq->used_bd_dma,
							   GFP_KERNEL);
			if (!rxq->used_bd)
				goto err;
		}
657

658 659 660 661 662 663 664
		/*Allocate the driver's pointer to receive buffer status */
		rxq->rb_stts = dma_zalloc_coherent(dev, sizeof(*rxq->rb_stts),
						   &rxq->rb_stts_dma,
						   GFP_KERNEL);
		if (!rxq->rb_stts)
			goto err;
	}
665 666
	return 0;

667 668 669 670 671
err:
	for (i = 0; i < trans->num_rx_queues; i++) {
		struct iwl_rxq *rxq = &trans_pcie->rxq[i];

		if (rxq->bd)
672
			dma_free_coherent(dev, free_size * rxq->queue_size,
673 674 675 676 677 678 679 680
					  rxq->bd, rxq->bd_dma);
		rxq->bd_dma = 0;
		rxq->bd = NULL;

		if (rxq->rb_stts)
			dma_free_coherent(trans->dev,
					  sizeof(struct iwl_rb_status),
					  rxq->rb_stts, rxq->rb_stts_dma);
681 682 683 684 685 686

		if (rxq->used_bd)
			dma_free_coherent(dev, sizeof(__le32) * rxq->queue_size,
					  rxq->used_bd, rxq->used_bd_dma);
		rxq->used_bd_dma = 0;
		rxq->used_bd = NULL;
687 688
	}
	kfree(trans_pcie->rxq);
689

690
	return -ENOMEM;
691 692
}

693 694 695 696 697 698
static void iwl_pcie_rx_hw_init(struct iwl_trans *trans, struct iwl_rxq *rxq)
{
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
	u32 rb_size;
	const u32 rfdnlog = RX_QUEUE_SIZE_LOG; /* 256 RBDs */

699 700 701 702 703
	switch (trans_pcie->rx_buf_size) {
	case IWL_AMSDU_4K:
		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
		break;
	case IWL_AMSDU_8K:
704
		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_8K;
705 706 707 708 709 710
		break;
	case IWL_AMSDU_12K:
		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_12K;
		break;
	default:
		WARN_ON(1);
711
		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
712
	}
713 714 715

	/* Stop Rx DMA */
	iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
716 717 718 719
	/* reset and flush pointers */
	iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0);
	iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0);
	iwl_write_direct32(trans, FH_RSCSR_CHNL0_RDPTR, 0);
720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735

	/* Reset driver's Rx queue write index */
	iwl_write_direct32(trans, FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0);

	/* Tell device where to find RBD circular buffer in DRAM */
	iwl_write_direct32(trans, FH_RSCSR_CHNL0_RBDCB_BASE_REG,
			   (u32)(rxq->bd_dma >> 8));

	/* Tell device where in DRAM to update its Rx status */
	iwl_write_direct32(trans, FH_RSCSR_CHNL0_STTS_WPTR_REG,
			   rxq->rb_stts_dma >> 4);

	/* Enable Rx DMA
	 * FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY is set because of HW bug in
	 *      the credit mechanism in 5000 HW RX FIFO
	 * Direct rx interrupts to hosts
736
	 * Rx buffer size 4 or 8k or 12k
737 738 739 740 741 742 743 744
	 * RB timeout 0x10
	 * 256 RBDs
	 */
	iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG,
			   FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL |
			   FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY |
			   FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL |
			   rb_size|
745
			   (RX_RB_TIMEOUT << FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS)|
746 747 748 749
			   (rfdnlog << FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS));

	/* Set interrupt coalescing timer to default (2048 usecs) */
	iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
750 751 752 753

	/* W/A for interrupt coalescing bug in 7260 and 3160 */
	if (trans->cfg->host_interrupt_operation_mode)
		iwl_set_bit(trans, CSR_INT_COALESCING, IWL_HOST_INT_OPER_MODE);
754 755
}

756
static void iwl_pcie_rx_mq_hw_init(struct iwl_trans *trans)
757
{
758 759 760
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
	u32 rb_size, enabled = 0;
	int i;
761

762 763 764 765 766 767 768 769 770 771 772 773 774 775
	switch (trans_pcie->rx_buf_size) {
	case IWL_AMSDU_4K:
		rb_size = RFH_RXF_DMA_RB_SIZE_4K;
		break;
	case IWL_AMSDU_8K:
		rb_size = RFH_RXF_DMA_RB_SIZE_8K;
		break;
	case IWL_AMSDU_12K:
		rb_size = RFH_RXF_DMA_RB_SIZE_12K;
		break;
	default:
		WARN_ON(1);
		rb_size = RFH_RXF_DMA_RB_SIZE_4K;
	}
776

777 778 779 780
	/* Stop Rx DMA */
	iwl_write_prph(trans, RFH_RXF_DMA_CFG, 0);
	/* disable free amd used rx queue operation */
	iwl_write_prph(trans, RFH_RXF_RXQ_ACTIVE, 0);
781

782 783 784
	for (i = 0; i < trans->num_rx_queues; i++) {
		/* Tell device where to find RBD free table in DRAM */
		iwl_pcie_write_prph_64(trans, RFH_Q_FRBDCB_BA_LSB(i),
785
				       (u64)(trans_pcie->rxq[i].bd_dma));
786 787
		/* Tell device where to find RBD used table in DRAM */
		iwl_pcie_write_prph_64(trans, RFH_Q_URBDCB_BA_LSB(i),
788
				       (u64)(trans_pcie->rxq[i].used_bd_dma));
789 790
		/* Tell device where in DRAM to update its Rx status */
		iwl_pcie_write_prph_64(trans, RFH_Q_URBD_STTS_WPTR_LSB(i),
791
				       trans_pcie->rxq[i].rb_stts_dma);
792 793 794 795 796 797 798
		/* Reset device indice tables */
		iwl_write_prph(trans, RFH_Q_FRBDCB_WIDX(i), 0);
		iwl_write_prph(trans, RFH_Q_FRBDCB_RIDX(i), 0);
		iwl_write_prph(trans, RFH_Q_URBDCB_WIDX(i), 0);

		enabled |= BIT(i) | BIT(i + 16);
	}
799

800 801 802 803 804 805 806 807
	/* restock default queue */
	iwl_pcie_rxq_mq_restock(trans, &trans_pcie->rxq[0]);

	/*
	 * Enable Rx DMA
	 * Single frame mode
	 * Rx buffer size 4 or 8k or 12k
	 * Min RB size 4 or 8
808
	 * Drop frames that exceed RB size
809 810 811 812 813 814
	 * 512 RBDs
	 */
	iwl_write_prph(trans, RFH_RXF_DMA_CFG,
		       RFH_DMA_EN_ENABLE_VAL |
		       rb_size | RFH_RXF_DMA_SINGLE_FRAME_MASK |
		       RFH_RXF_DMA_MIN_RB_4_8 |
815
		       RFH_RXF_DMA_DROP_TOO_LARGE_MASK |
816 817
		       RFH_RXF_DMA_RBDCB_SIZE_512);

818 819
	/*
	 * Activate DMA snooping.
820
	 * Set RX DMA chunk size to 64B
821 822
	 * Default queue is 0
	 */
823
	iwl_write_prph(trans, RFH_GEN_CFG, RFH_GEN_CFG_RFH_DMA_SNOOP |
824 825 826
		       (DEFAULT_RXQ_NUM << RFH_GEN_CFG_DEFAULT_RXQ_NUM_POS) |
		       RFH_GEN_CFG_SERVICE_DMA_SNOOP);
	/* Enable the relevant rx queues */
827
	iwl_write_prph(trans, RFH_RXF_RXQ_ACTIVE, enabled);
828

829 830
	/* Set interrupt coalescing timer to default (2048 usecs) */
	iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
831 832
}

833
static void iwl_pcie_rx_init_rxb_lists(struct iwl_rxq *rxq)
834
{
835
	lockdep_assert_held(&rxq->lock);
836

837 838 839 840
	INIT_LIST_HEAD(&rxq->rx_free);
	INIT_LIST_HEAD(&rxq->rx_used);
	rxq->free_count = 0;
	rxq->used_count = 0;
841 842
}

843 844 845 846 847 848
static int iwl_pcie_dummy_napi_poll(struct napi_struct *napi, int budget)
{
	WARN_ON(1);
	return 0;
}

849 850 851
int iwl_pcie_rx_init(struct iwl_trans *trans)
{
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
852
	struct iwl_rxq *def_rxq;
853
	struct iwl_rb_allocator *rba = &trans_pcie->rba;
854
	int i, err, queue_size, allocator_pool_size, num_alloc;
855

856
	if (!trans_pcie->rxq) {
857 858 859 860
		err = iwl_pcie_rx_alloc(trans);
		if (err)
			return err;
	}
861
	def_rxq = trans_pcie->rxq;
862 863 864 865 866 867 868 869
	if (!rba->alloc_wq)
		rba->alloc_wq = alloc_workqueue("rb_allocator",
						WQ_HIGHPRI | WQ_UNBOUND, 1);
	INIT_WORK(&rba->rx_alloc, iwl_pcie_rx_allocator_work);

	spin_lock(&rba->lock);
	atomic_set(&rba->req_pending, 0);
	atomic_set(&rba->req_ready, 0);
870 871
	INIT_LIST_HEAD(&rba->rbd_allocated);
	INIT_LIST_HEAD(&rba->rbd_empty);
872
	spin_unlock(&rba->lock);
873

874
	/* free all first - we might be reconfigured for a different size */
875
	iwl_pcie_free_rbs_pool(trans);
876 877

	for (i = 0; i < RX_QUEUE_SIZE; i++)
878
		def_rxq->queue[i] = NULL;
879

880 881 882
	for (i = 0; i < trans->num_rx_queues; i++) {
		struct iwl_rxq *rxq = &trans_pcie->rxq[i];

883 884
		rxq->id = i;

885 886 887 888 889 890 891 892 893 894
		spin_lock(&rxq->lock);
		/*
		 * Set read write pointer to reflect that we have processed
		 * and used all buffers, but have not restocked the Rx queue
		 * with fresh buffers
		 */
		rxq->read = 0;
		rxq->write = 0;
		rxq->write_actual = 0;
		memset(rxq->rb_stts, 0, sizeof(*rxq->rb_stts));
895

896 897
		iwl_pcie_rx_init_rxb_lists(rxq);

898 899 900 901
		if (!rxq->napi.poll)
			netif_napi_add(&trans_pcie->napi_dev, &rxq->napi,
				       iwl_pcie_dummy_napi_poll, 64);

902 903
		spin_unlock(&rxq->lock);
	}
904

905
	/* move the pool to the default queue and allocator ownerships */
906 907
	queue_size = trans->cfg->mq_rx_supported ?
		     MQ_RX_NUM_RBDS : RX_QUEUE_SIZE;
908 909
	allocator_pool_size = trans->num_rx_queues *
		(RX_CLAIM_REQ_ALLOC - RX_POST_REQ_ALLOC);
910
	num_alloc = queue_size + allocator_pool_size;
911 912
	BUILD_BUG_ON(ARRAY_SIZE(trans_pcie->global_table) !=
		     ARRAY_SIZE(trans_pcie->rx_pool));
913
	for (i = 0; i < num_alloc; i++) {
914 915 916 917 918 919 920 921 922
		struct iwl_rx_mem_buffer *rxb = &trans_pcie->rx_pool[i];

		if (i < allocator_pool_size)
			list_add(&rxb->list, &rba->rbd_empty);
		else
			list_add(&rxb->list, &def_rxq->rx_used);
		trans_pcie->global_table[i] = rxb;
		rxb->vid = (u16)i;
	}
923

924
	iwl_pcie_rxq_alloc_rbs(trans, GFP_KERNEL, def_rxq);
925
	if (trans->cfg->mq_rx_supported) {
926
		iwl_pcie_rx_mq_hw_init(trans);
927
	} else {
928
		iwl_pcie_rxq_sq_restock(trans, def_rxq);
929 930
		iwl_pcie_rx_hw_init(trans, def_rxq);
	}
931 932 933 934

	spin_lock(&def_rxq->lock);
	iwl_pcie_rxq_inc_wr_ptr(trans, def_rxq);
	spin_unlock(&def_rxq->lock);
935 936 937 938 939 940 941

	return 0;
}

void iwl_pcie_rx_free(struct iwl_trans *trans)
{
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
942
	struct iwl_rb_allocator *rba = &trans_pcie->rba;
943 944
	int free_size = trans->cfg->mq_rx_supported ? sizeof(__le64) :
					      sizeof(__le32);
945
	int i;
946

947 948 949 950 951
	/*
	 * if rxq is NULL, it means that nothing has been allocated,
	 * exit now
	 */
	if (!trans_pcie->rxq) {
952 953 954 955
		IWL_DEBUG_INFO(trans, "Free NULL rx context\n");
		return;
	}

956 957 958 959 960 961
	cancel_work_sync(&rba->rx_alloc);
	if (rba->alloc_wq) {
		destroy_workqueue(rba->alloc_wq);
		rba->alloc_wq = NULL;
	}

962 963 964 965 966 967 968
	iwl_pcie_free_rbs_pool(trans);

	for (i = 0; i < trans->num_rx_queues; i++) {
		struct iwl_rxq *rxq = &trans_pcie->rxq[i];

		if (rxq->bd)
			dma_free_coherent(trans->dev,
969
					  free_size * rxq->queue_size,
970 971 972 973 974 975 976 977 978 979 980
					  rxq->bd, rxq->bd_dma);
		rxq->bd_dma = 0;
		rxq->bd = NULL;

		if (rxq->rb_stts)
			dma_free_coherent(trans->dev,
					  sizeof(struct iwl_rb_status),
					  rxq->rb_stts, rxq->rb_stts_dma);
		else
			IWL_DEBUG_INFO(trans,
				       "Free rxq->rb_stts which is NULL\n");
981

982 983 984 985 986 987
		if (rxq->used_bd)
			dma_free_coherent(trans->dev,
					  sizeof(__le32) * rxq->queue_size,
					  rxq->used_bd, rxq->used_bd_dma);
		rxq->used_bd_dma = 0;
		rxq->used_bd = NULL;
988 989 990

		if (rxq->napi.poll)
			netif_napi_del(&rxq->napi);
991
	}
992
	kfree(trans_pcie->rxq);
993 994
}

995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
/*
 * iwl_pcie_rx_reuse_rbd - Recycle used RBDs
 *
 * Called when a RBD can be reused. The RBD is transferred to the allocator.
 * When there are 2 empty RBDs - a request for allocation is posted
 */
static void iwl_pcie_rx_reuse_rbd(struct iwl_trans *trans,
				  struct iwl_rx_mem_buffer *rxb,
				  struct iwl_rxq *rxq, bool emergency)
{
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
	struct iwl_rb_allocator *rba = &trans_pcie->rba;

	/* Move the RBD to the used list, will be moved to allocator in batches
	 * before claiming or posting a request*/
	list_add_tail(&rxb->list, &rxq->rx_used);

	if (unlikely(emergency))
		return;

	/* Count the allocator owned RBDs */
	rxq->used_count++;

	/* If we have RX_POST_REQ_ALLOC new released rx buffers -
	 * issue a request for allocator. Modulo RX_CLAIM_REQ_ALLOC is
	 * used for the case we failed to claim RX_CLAIM_REQ_ALLOC,
	 * after but we still need to post another request.
	 */
	if ((rxq->used_count % RX_CLAIM_REQ_ALLOC) == RX_POST_REQ_ALLOC) {
		/* Move the 2 RBDs to the allocator ownership.
		 Allocator has another 6 from pool for the request completion*/
		spin_lock(&rba->lock);
		list_splice_tail_init(&rxq->rx_used, &rba->rbd_empty);
		spin_unlock(&rba->lock);

		atomic_inc(&rba->req_pending);
		queue_work(rba->alloc_wq, &rba->rx_alloc);
	}
}

1035
static void iwl_pcie_rx_handle_rb(struct iwl_trans *trans,
1036
				struct iwl_rxq *rxq,
1037 1038
				struct iwl_rx_mem_buffer *rxb,
				bool emergency)
J
Johannes Berg 已提交
1039 1040
{
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1041
	struct iwl_txq *txq = &trans_pcie->txq[trans_pcie->cmd_queue];
1042
	bool page_stolen = false;
1043
	int max_len = PAGE_SIZE << trans_pcie->rx_page_order;
1044
	u32 offset = 0;
J
Johannes Berg 已提交
1045 1046 1047 1048

	if (WARN_ON(!rxb))
		return;

1049 1050 1051 1052 1053 1054
	dma_unmap_page(trans->dev, rxb->page_dma, max_len, DMA_FROM_DEVICE);

	while (offset + sizeof(u32) + sizeof(struct iwl_cmd_header) < max_len) {
		struct iwl_rx_packet *pkt;
		u16 sequence;
		bool reclaim;
1055
		int index, cmd_index, len;
1056 1057
		struct iwl_rx_cmd_buffer rxcb = {
			._offset = offset,
1058
			._rx_page_order = trans_pcie->rx_page_order,
1059 1060
			._page = rxb->page,
			._page_stolen = false,
1061
			.truesize = max_len,
1062 1063 1064 1065 1066 1067 1068
		};

		pkt = rxb_addr(&rxcb);

		if (pkt->len_n_flags == cpu_to_le32(FH_RSCSR_FRAME_INVALID))
			break;

1069 1070 1071
		IWL_DEBUG_RX(trans,
			     "cmd at offset %d: %s (0x%.2x, seq 0x%x)\n",
			     rxcb._offset,
1072 1073 1074 1075
			     iwl_get_cmd_string(trans,
						iwl_cmd_id(pkt->hdr.cmd,
							   pkt->hdr.group_id,
							   0)),
1076
			     pkt->hdr.cmd, le16_to_cpu(pkt->hdr.sequence));
1077

1078
		len = iwl_rx_packet_len(pkt);
1079
		len += sizeof(u32); /* account for status word */
1080 1081
		trace_iwlwifi_dev_rx(trans->dev, trans, pkt, len);
		trace_iwlwifi_dev_rx_data(trans->dev, trans, pkt, len);
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098

		/* Reclaim a command buffer only if this packet is a response
		 *   to a (driver-originated) command.
		 * If the packet (e.g. Rx frame) originated from uCode,
		 *   there is no command buffer to reclaim.
		 * Ucode should set SEQ_RX_FRAME bit if ucode-originated,
		 *   but apparently a few don't get set; catch them here. */
		reclaim = !(pkt->hdr.sequence & SEQ_RX_FRAME);
		if (reclaim) {
			int i;

			for (i = 0; i < trans_pcie->n_no_reclaim_cmds; i++) {
				if (trans_pcie->no_reclaim_cmds[i] ==
							pkt->hdr.cmd) {
					reclaim = false;
					break;
				}
1099 1100
			}
		}
J
Johannes Berg 已提交
1101

1102 1103 1104 1105
		sequence = le16_to_cpu(pkt->hdr.sequence);
		index = SEQ_TO_INDEX(sequence);
		cmd_index = get_cmd_index(&txq->q, index);

1106 1107 1108 1109 1110 1111
		if (rxq->id == 0)
			iwl_op_mode_rx(trans->op_mode, &rxq->napi,
				       &rxcb);
		else
			iwl_op_mode_rx_rss(trans->op_mode, &rxq->napi,
					   &rxcb, rxq->id);
1112

1113
		if (reclaim) {
1114
			kzfree(txq->entries[cmd_index].free_buf);
1115
			txq->entries[cmd_index].free_buf = NULL;
1116 1117
		}

1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
		/*
		 * After here, we should always check rxcb._page_stolen,
		 * if it is true then one of the handlers took the page.
		 */

		if (reclaim) {
			/* Invoke any callbacks, transfer the buffer to caller,
			 * and fire off the (possibly) blocking
			 * iwl_trans_send_cmd()
			 * as we reclaim the driver command queue */
			if (!rxcb._page_stolen)
1129
				iwl_pcie_hcmd_complete(trans, &rxcb);
1130 1131 1132 1133 1134 1135
			else
				IWL_WARN(trans, "Claim null rxb?\n");
		}

		page_stolen |= rxcb._page_stolen;
		offset += ALIGN(len, FH_RSCSR_FRAME_ALIGN);
J
Johannes Berg 已提交
1136 1137
	}

1138 1139
	/* page was stolen from us -- free our reference */
	if (page_stolen) {
1140
		__free_pages(rxb->page, trans_pcie->rx_page_order);
J
Johannes Berg 已提交
1141
		rxb->page = NULL;
1142
	}
J
Johannes Berg 已提交
1143 1144 1145 1146 1147 1148 1149

	/* Reuse the page if possible. For notification packets and
	 * SKBs that fail to Rx correctly, add them back into the
	 * rx_free list for reuse later. */
	if (rxb->page != NULL) {
		rxb->page_dma =
			dma_map_page(trans->dev, rxb->page, 0,
1150 1151
				     PAGE_SIZE << trans_pcie->rx_page_order,
				     DMA_FROM_DEVICE);
1152 1153 1154 1155 1156 1157 1158 1159
		if (dma_mapping_error(trans->dev, rxb->page_dma)) {
			/*
			 * free the page(s) as well to not break
			 * the invariant that the items on the used
			 * list have no page(s)
			 */
			__free_pages(rxb->page, trans_pcie->rx_page_order);
			rxb->page = NULL;
1160
			iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
1161 1162 1163 1164
		} else {
			list_add_tail(&rxb->list, &rxq->rx_free);
			rxq->free_count++;
		}
J
Johannes Berg 已提交
1165
	} else
1166
		iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
J
Johannes Berg 已提交
1167 1168
}

1169 1170
/*
 * iwl_pcie_rx_handle - Main entry function for receiving responses from fw
1171
 */
1172
static void iwl_pcie_rx_handle(struct iwl_trans *trans, int queue)
1173
{
J
Johannes Berg 已提交
1174
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1175
	struct iwl_rxq *rxq = &trans_pcie->rxq[queue];
1176
	u32 r, i, count = 0;
1177
	bool emergency = false;
1178

1179 1180
restart:
	spin_lock(&rxq->lock);
1181 1182
	/* uCode's read index (stored in shared DRAM) indicates the last Rx
	 * buffer that the driver may process (last buffer filled by ucode). */
1183
	r = le16_to_cpu(ACCESS_ONCE(rxq->rb_stts->closed_rb_num)) & 0x0FFF;
1184 1185
	i = rxq->read;

1186 1187 1188
	/* W/A 9000 device step A0 wrap-around bug */
	r &= (rxq->queue_size - 1);

1189 1190
	/* Rx interrupt, but nothing sent from uCode */
	if (i == r)
1191
		IWL_DEBUG_RX(trans, "Q %d: HW = SW = %d\n", rxq->id, r);
1192 1193

	while (i != r) {
1194
		struct iwl_rx_mem_buffer *rxb;
1195

1196
		if (unlikely(rxq->used_count == rxq->queue_size / 2))
1197 1198
			emergency = true;

1199 1200 1201 1202 1203
		if (trans->cfg->mq_rx_supported) {
			/*
			 * used_bd is a 32 bit but only 12 are used to retrieve
			 * the vid
			 */
1204
			u16 vid = le32_to_cpu(rxq->used_bd[i]) & 0x0FFF;
1205

1206 1207 1208
			if (WARN(vid >= ARRAY_SIZE(trans_pcie->global_table),
				 "Invalid rxb index from HW %u\n", (u32)vid))
				goto out;
1209 1210 1211 1212 1213
			rxb = trans_pcie->global_table[vid];
		} else {
			rxb = rxq->queue[i];
			rxq->queue[i] = NULL;
		}
1214

1215
		IWL_DEBUG_RX(trans, "Q %d: HW = %d, SW = %d\n", rxq->id, r, i);
1216
		iwl_pcie_rx_handle_rb(trans, rxq, rxb, emergency);
1217

1218
		i = (i + 1) & (rxq->queue_size - 1);
1219

1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
		/*
		 * If we have RX_CLAIM_REQ_ALLOC released rx buffers -
		 * try to claim the pre-allocated buffers from the allocator.
		 * If not ready - will try to reclaim next time.
		 * There is no need to reschedule work - allocator exits only
		 * on success
		 */
		if (rxq->used_count >= RX_CLAIM_REQ_ALLOC)
			iwl_pcie_rx_allocator_get(trans, rxq);

		if (rxq->used_count % RX_CLAIM_REQ_ALLOC == 0 && !emergency) {
1231 1232
			struct iwl_rb_allocator *rba = &trans_pcie->rba;

1233 1234 1235 1236 1237
			/* Add the remaining empty RBDs for allocator use */
			spin_lock(&rba->lock);
			list_splice_tail_init(&rxq->rx_used, &rba->rbd_empty);
			spin_unlock(&rba->lock);
		} else if (emergency) {
1238
			count++;
1239
			if (count == 8) {
1240
				count = 0;
1241
				if (rxq->used_count < rxq->queue_size / 3)
1242
					emergency = false;
1243 1244

				rxq->read = i;
1245
				spin_unlock(&rxq->lock);
1246
				iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
1247
				iwl_pcie_rxq_restock(trans, rxq);
1248 1249
				goto restart;
			}
1250
		}
1251
	}
1252
out:
1253 1254
	/* Backtrack one entry */
	rxq->read = i;
1255 1256
	spin_unlock(&rxq->lock);

1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
	/*
	 * handle a case where in emergency there are some unallocated RBDs.
	 * those RBDs are in the used list, but are not tracked by the queue's
	 * used_count which counts allocator owned RBDs.
	 * unallocated emergency RBDs must be allocated on exit, otherwise
	 * when called again the function may not be in emergency mode and
	 * they will be handed to the allocator with no tracking in the RBD
	 * allocator counters, which will lead to them never being claimed back
	 * by the queue.
	 * by allocating them here, they are now in the queue free list, and
	 * will be restocked by the next call of iwl_pcie_rxq_restock.
	 */
	if (unlikely(emergency && count))
1270
		iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
1271

1272 1273
	if (rxq->napi.poll)
		napi_gro_flush(&rxq->napi, false);
1274 1275

	iwl_pcie_rxq_restock(trans, rxq);
1276 1277
}

1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
static struct iwl_trans_pcie *iwl_pcie_get_trans_pcie(struct msix_entry *entry)
{
	u8 queue = entry->entry;
	struct msix_entry *entries = entry - queue;

	return container_of(entries, struct iwl_trans_pcie, msix_entries[0]);
}

static inline void iwl_pcie_clear_irq(struct iwl_trans *trans,
				      struct msix_entry *entry)
{
	/*
	 * Before sending the interrupt the HW disables it to prevent
	 * a nested interrupt. This is done by writing 1 to the corresponding
	 * bit in the mask register. After handling the interrupt, it should be
	 * re-enabled by clearing this bit. This register is defined as
	 * write 1 clear (W1C) register, meaning that it's being clear
	 * by writing 1 to the bit.
	 */
	iwl_write_direct32(trans, CSR_MSIX_AUTOMASK_ST_AD, BIT(entry->entry));
}

/*
 * iwl_pcie_rx_msix_handle - Main entry function for receiving responses from fw
 * This interrupt handler should be used with RSS queue only.
 */
irqreturn_t iwl_pcie_irq_rx_msix_handler(int irq, void *dev_id)
{
	struct msix_entry *entry = dev_id;
	struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
	struct iwl_trans *trans = trans_pcie->trans;

1310 1311 1312
	if (WARN_ON(entry->entry >= trans->num_rx_queues))
		return IRQ_NONE;

1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
	lock_map_acquire(&trans->sync_cmd_lockdep_map);

	local_bh_disable();
	iwl_pcie_rx_handle(trans, entry->entry);
	local_bh_enable();

	iwl_pcie_clear_irq(trans, entry);

	lock_map_release(&trans->sync_cmd_lockdep_map);

	return IRQ_HANDLED;
}

1326 1327
/*
 * iwl_pcie_irq_handle_error - called for HW or SW error interrupt from card
1328
 */
1329
static void iwl_pcie_irq_handle_error(struct iwl_trans *trans)
1330
{
1331
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1332
	int i;
1333

1334
	/* W/A for WiFi/WiMAX coex and WiMAX own the RF */
1335
	if (trans->cfg->internal_wimax_coex &&
1336
	    !trans->cfg->apmg_not_supported &&
1337
	    (!(iwl_read_prph(trans, APMG_CLK_CTRL_REG) &
1338
			     APMS_CLK_VAL_MRB_FUNC_MODE) ||
1339
	     (iwl_read_prph(trans, APMG_PS_CTRL_REG) &
1340
			    APMG_PS_CTRL_VAL_RESET_REQ))) {
1341
		clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
1342
		iwl_op_mode_wimax_active(trans->op_mode);
1343
		wake_up(&trans_pcie->wait_command_queue);
1344 1345 1346
		return;
	}

1347
	iwl_pcie_dump_csr(trans);
1348
	iwl_dump_fh(trans, NULL);
1349

1350
	local_bh_disable();
1351 1352 1353
	/* The STATUS_FW_ERROR bit is set in this function. This must happen
	 * before we wake up the command caller, to ensure a proper cleanup. */
	iwl_trans_fw_error(trans);
1354
	local_bh_enable();
1355

1356 1357 1358
	for (i = 0; i < trans->cfg->base_params->num_of_queues; i++)
		del_timer(&trans_pcie->txq[i].stuck_timer);

1359 1360
	clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
	wake_up(&trans_pcie->wait_command_queue);
1361 1362
}

1363
static u32 iwl_pcie_int_cause_non_ict(struct iwl_trans *trans)
1364 1365 1366
{
	u32 inta;

1367
	lockdep_assert_held(&IWL_TRANS_GET_PCIE_TRANS(trans)->irq_lock);
1368 1369 1370 1371 1372 1373 1374

	trace_iwlwifi_dev_irq(trans->dev);

	/* Discover which interrupts are active/pending */
	inta = iwl_read32(trans, CSR_INT);

	/* the thread will service interrupts and re-enable them */
1375
	return inta;
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
}

/* a device (PCI-E) page is 4096 bytes long */
#define ICT_SHIFT	12
#define ICT_SIZE	(1 << ICT_SHIFT)
#define ICT_COUNT	(ICT_SIZE / sizeof(u32))

/* interrupt handler using ict table, with this interrupt driver will
 * stop using INTA register to get device's interrupt, reading this register
 * is expensive, device will write interrupts in ICT dram table, increment
 * index then will fire interrupt to driver, driver will OR all ICT table
 * entries from current index up to table entry with 0 value. the result is
 * the interrupt we need to service, driver will set the entries back to 0 and
 * set index.
 */
1391
static u32 iwl_pcie_int_cause_ict(struct iwl_trans *trans)
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
{
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
	u32 inta;
	u32 val = 0;
	u32 read;

	trace_iwlwifi_dev_irq(trans->dev);

	/* Ignore interrupt if there's nothing in NIC to service.
	 * This may be due to IRQ shared with another device,
	 * or due to sporadic interrupts thrown from our NIC. */
	read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
	trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, read);
1405 1406
	if (!read)
		return 0;
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417

	/*
	 * Collect all entries up to the first 0, starting from ict_index;
	 * note we already read at ict_index.
	 */
	do {
		val |= read;
		IWL_DEBUG_ISR(trans, "ICT index %d value 0x%08X\n",
				trans_pcie->ict_index, read);
		trans_pcie->ict_tbl[trans_pcie->ict_index] = 0;
		trans_pcie->ict_index =
1418
			((trans_pcie->ict_index + 1) & (ICT_COUNT - 1));
1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439

		read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
		trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index,
					   read);
	} while (read);

	/* We should not get this value, just ignore it. */
	if (val == 0xffffffff)
		val = 0;

	/*
	 * this is a w/a for a h/w bug. the h/w bug may cause the Rx bit
	 * (bit 15 before shifting it to 31) to clear when using interrupt
	 * coalescing. fortunately, bits 18 and 19 stay set when this happens
	 * so we use them to decide on the real state of the Rx bit.
	 * In order words, bit 15 is set if bit 18 or bit 19 are set.
	 */
	if (val & 0xC0000)
		val |= 0x8000;

	inta = (0xff & val) | ((0xff00 & val) << 16);
1440
	return inta;
1441 1442
}

1443
irqreturn_t iwl_pcie_irq_handler(int irq, void *dev_id)
1444
{
1445
	struct iwl_trans *trans = dev_id;
1446 1447
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
	struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1448 1449 1450
	u32 inta = 0;
	u32 handled = 0;

1451 1452
	lock_map_acquire(&trans->sync_cmd_lockdep_map);

1453
	spin_lock(&trans_pcie->irq_lock);
1454

1455 1456 1457 1458
	/* dram interrupt table not set yet,
	 * use legacy interrupt.
	 */
	if (likely(trans_pcie->use_ict))
1459
		inta = iwl_pcie_int_cause_ict(trans);
1460
	else
1461
		inta = iwl_pcie_int_cause_non_ict(trans);
1462

1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
	if (iwl_have_debug_level(IWL_DL_ISR)) {
		IWL_DEBUG_ISR(trans,
			      "ISR inta 0x%08x, enabled 0x%08x(sw), enabled(hw) 0x%08x, fh 0x%08x\n",
			      inta, trans_pcie->inta_mask,
			      iwl_read32(trans, CSR_INT_MASK),
			      iwl_read32(trans, CSR_FH_INT_STATUS));
		if (inta & (~trans_pcie->inta_mask))
			IWL_DEBUG_ISR(trans,
				      "We got a masked interrupt (0x%08x)\n",
				      inta & (~trans_pcie->inta_mask));
	}

	inta &= trans_pcie->inta_mask;

	/*
	 * Ignore interrupt if there's nothing in NIC to service.
	 * This may be due to IRQ shared with another device,
	 * or due to sporadic interrupts thrown from our NIC.
	 */
1482
	if (unlikely(!inta)) {
1483 1484 1485 1486 1487 1488 1489
		IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
		/*
		 * Re-enable interrupts here since we don't
		 * have anything to service
		 */
		if (test_bit(STATUS_INT_ENABLED, &trans->status))
			iwl_enable_interrupts(trans);
1490
		spin_unlock(&trans_pcie->irq_lock);
1491 1492 1493 1494
		lock_map_release(&trans->sync_cmd_lockdep_map);
		return IRQ_NONE;
	}

1495 1496 1497 1498 1499 1500
	if (unlikely(inta == 0xFFFFFFFF || (inta & 0xFFFFFFF0) == 0xa5a5a5a0)) {
		/*
		 * Hardware disappeared. It might have
		 * already raised an interrupt.
		 */
		IWL_WARN(trans, "HARDWARE GONE?? INTA == 0x%08x\n", inta);
1501
		spin_unlock(&trans_pcie->irq_lock);
1502
		goto out;
1503 1504
	}

1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
	/* Ack/clear/reset pending uCode interrupts.
	 * Note:  Some bits in CSR_INT are "OR" of bits in CSR_FH_INT_STATUS,
	 */
	/* There is a hardware bug in the interrupt mask function that some
	 * interrupts (i.e. CSR_INT_BIT_SCD) can still be generated even if
	 * they are disabled in the CSR_INT_MASK register. Furthermore the
	 * ICT interrupt handling mechanism has another bug that might cause
	 * these unmasked interrupts fail to be detected. We workaround the
	 * hardware bugs here by ACKing all the possible interrupts so that
	 * interrupt coalescing can still be achieved.
	 */
1516
	iwl_write32(trans, CSR_INT, inta | ~trans_pcie->inta_mask);
1517

1518
	if (iwl_have_debug_level(IWL_DL_ISR))
1519
		IWL_DEBUG_ISR(trans, "inta 0x%08x, enabled 0x%08x\n",
1520
			      inta, iwl_read32(trans, CSR_INT_MASK));
1521

1522
	spin_unlock(&trans_pcie->irq_lock);
1523

1524 1525
	/* Now service all interrupt bits discovered above. */
	if (inta & CSR_INT_BIT_HW_ERR) {
1526
		IWL_ERR(trans, "Hardware error detected.  Restarting.\n");
1527 1528

		/* Tell the device to stop sending interrupts */
1529
		iwl_disable_interrupts(trans);
1530

1531
		isr_stats->hw++;
1532
		iwl_pcie_irq_handle_error(trans);
1533 1534 1535

		handled |= CSR_INT_BIT_HW_ERR;

1536
		goto out;
1537 1538
	}

1539
	if (iwl_have_debug_level(IWL_DL_ISR)) {
1540 1541
		/* NIC fires this, but we don't use it, redundant with WAKEUP */
		if (inta & CSR_INT_BIT_SCD) {
1542 1543
			IWL_DEBUG_ISR(trans,
				      "Scheduler finished to transmit the frame/frames.\n");
1544
			isr_stats->sch++;
1545 1546 1547 1548
		}

		/* Alive notification via Rx interrupt will do the real work */
		if (inta & CSR_INT_BIT_ALIVE) {
1549
			IWL_DEBUG_ISR(trans, "Alive interrupt\n");
1550
			isr_stats->alive++;
1551 1552
		}
	}
1553

1554 1555 1556 1557 1558
	/* Safely ignore these bits for debug checks below */
	inta &= ~(CSR_INT_BIT_SCD | CSR_INT_BIT_ALIVE);

	/* HW RF KILL switch toggled */
	if (inta & CSR_INT_BIT_RF_KILL) {
1559
		bool hw_rfkill;
1560

1561
		hw_rfkill = iwl_is_rfkill_set(trans);
1562
		IWL_WARN(trans, "RF_KILL bit toggled to %s.\n",
1563
			 hw_rfkill ? "disable radio" : "enable radio");
1564

1565
		isr_stats->rfkill++;
1566

1567
		mutex_lock(&trans_pcie->mutex);
1568
		iwl_trans_pcie_rf_kill(trans, hw_rfkill);
1569
		mutex_unlock(&trans_pcie->mutex);
1570
		if (hw_rfkill) {
1571 1572 1573
			set_bit(STATUS_RFKILL, &trans->status);
			if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE,
					       &trans->status))
1574 1575 1576 1577
				IWL_DEBUG_RF_KILL(trans,
						  "Rfkill while SYNC HCMD in flight\n");
			wake_up(&trans_pcie->wait_command_queue);
		} else {
1578
			clear_bit(STATUS_RFKILL, &trans->status);
1579
		}
1580 1581 1582 1583 1584 1585

		handled |= CSR_INT_BIT_RF_KILL;
	}

	/* Chip got too hot and stopped itself */
	if (inta & CSR_INT_BIT_CT_KILL) {
1586
		IWL_ERR(trans, "Microcode CT kill error detected.\n");
1587
		isr_stats->ctkill++;
1588 1589 1590 1591 1592
		handled |= CSR_INT_BIT_CT_KILL;
	}

	/* Error detected by uCode */
	if (inta & CSR_INT_BIT_SW_ERR) {
1593
		IWL_ERR(trans, "Microcode SW error detected. "
1594
			" Restarting 0x%X.\n", inta);
1595
		isr_stats->sw++;
1596
		iwl_pcie_irq_handle_error(trans);
1597 1598 1599 1600 1601
		handled |= CSR_INT_BIT_SW_ERR;
	}

	/* uCode wakes up after power-down sleep */
	if (inta & CSR_INT_BIT_WAKEUP) {
1602
		IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
1603
		iwl_pcie_rxq_check_wrptr(trans);
1604
		iwl_pcie_txq_check_wrptrs(trans);
1605

1606
		isr_stats->wakeup++;
1607 1608 1609 1610 1611 1612 1613 1614

		handled |= CSR_INT_BIT_WAKEUP;
	}

	/* All uCode command responses, including Tx command responses,
	 * Rx "responses" (frame-received notification), and other
	 * notifications from uCode come through here*/
	if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX |
1615
		    CSR_INT_BIT_RX_PERIODIC)) {
1616
		IWL_DEBUG_ISR(trans, "Rx interrupt\n");
1617 1618
		if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) {
			handled |= (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX);
1619
			iwl_write32(trans, CSR_FH_INT_STATUS,
1620 1621 1622 1623
					CSR_FH_INT_RX_MASK);
		}
		if (inta & CSR_INT_BIT_RX_PERIODIC) {
			handled |= CSR_INT_BIT_RX_PERIODIC;
1624
			iwl_write32(trans,
1625
				CSR_INT, CSR_INT_BIT_RX_PERIODIC);
1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
		}
		/* Sending RX interrupt require many steps to be done in the
		 * the device:
		 * 1- write interrupt to current index in ICT table.
		 * 2- dma RX frame.
		 * 3- update RX shared data to indicate last write index.
		 * 4- send interrupt.
		 * This could lead to RX race, driver could receive RX interrupt
		 * but the shared data changes does not reflect this;
		 * periodic interrupt will detect any dangling Rx activity.
		 */

		/* Disable periodic interrupt; we use it as just a one-shot. */
1639
		iwl_write8(trans, CSR_INT_PERIODIC_REG,
1640
			    CSR_INT_PERIODIC_DIS);
1641

1642 1643 1644 1645 1646 1647 1648 1649
		/*
		 * Enable periodic interrupt in 8 msec only if we received
		 * real RX interrupt (instead of just periodic int), to catch
		 * any dangling Rx interrupt.  If it was just the periodic
		 * interrupt, there was no dangling Rx activity, and no need
		 * to extend the periodic interrupt; one-shot is enough.
		 */
		if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX))
1650
			iwl_write8(trans, CSR_INT_PERIODIC_REG,
1651
				   CSR_INT_PERIODIC_ENA);
1652

1653
		isr_stats->rx++;
1654 1655

		local_bh_disable();
1656
		iwl_pcie_rx_handle(trans, 0);
1657
		local_bh_enable();
1658 1659 1660 1661
	}

	/* This "Tx" DMA channel is used only for loading uCode */
	if (inta & CSR_INT_BIT_FH_TX) {
1662
		iwl_write32(trans, CSR_FH_INT_STATUS, CSR_FH_INT_TX_MASK);
1663
		IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
1664
		isr_stats->tx++;
1665 1666
		handled |= CSR_INT_BIT_FH_TX;
		/* Wake up uCode load routine, now that load is complete */
1667 1668
		trans_pcie->ucode_write_complete = true;
		wake_up(&trans_pcie->ucode_write_waitq);
1669 1670 1671
	}

	if (inta & ~handled) {
1672
		IWL_ERR(trans, "Unhandled INTA bits 0x%08x\n", inta & ~handled);
1673
		isr_stats->unhandled++;
1674 1675
	}

1676 1677 1678
	if (inta & ~(trans_pcie->inta_mask)) {
		IWL_WARN(trans, "Disabled INTA bits 0x%08x were pending\n",
			 inta & ~trans_pcie->inta_mask);
1679 1680
	}

1681 1682 1683 1684 1685
	/* we are loading the firmware, enable FH_TX interrupt only */
	if (handled & CSR_INT_BIT_FH_TX)
		iwl_enable_fw_load_int(trans);
	/* only Re-enable all interrupt if disabled by irq */
	else if (test_bit(STATUS_INT_ENABLED, &trans->status))
1686
		iwl_enable_interrupts(trans);
1687
	/* Re-enable RF_KILL if it occurred */
1688 1689
	else if (handled & CSR_INT_BIT_RF_KILL)
		iwl_enable_rfkill_int(trans);
1690 1691 1692 1693

out:
	lock_map_release(&trans->sync_cmd_lockdep_map);
	return IRQ_HANDLED;
1694 1695
}

1696 1697 1698 1699 1700
/******************************************************************************
 *
 * ICT functions
 *
 ******************************************************************************/
1701

1702
/* Free dram table */
1703
void iwl_pcie_free_ict(struct iwl_trans *trans)
1704
{
1705
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1706

1707
	if (trans_pcie->ict_tbl) {
1708
		dma_free_coherent(trans->dev, ICT_SIZE,
1709
				  trans_pcie->ict_tbl,
1710
				  trans_pcie->ict_tbl_dma);
1711 1712
		trans_pcie->ict_tbl = NULL;
		trans_pcie->ict_tbl_dma = 0;
1713 1714 1715
	}
}

1716 1717 1718
/*
 * allocate dram shared table, it is an aligned memory
 * block of ICT_SIZE.
1719 1720
 * also reset all data related to ICT table interrupt.
 */
1721
int iwl_pcie_alloc_ict(struct iwl_trans *trans)
1722
{
1723
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1724

1725
	trans_pcie->ict_tbl =
1726
		dma_zalloc_coherent(trans->dev, ICT_SIZE,
1727 1728 1729
				   &trans_pcie->ict_tbl_dma,
				   GFP_KERNEL);
	if (!trans_pcie->ict_tbl)
1730 1731
		return -ENOMEM;

1732 1733
	/* just an API sanity check ... it is guaranteed to be aligned */
	if (WARN_ON(trans_pcie->ict_tbl_dma & (ICT_SIZE - 1))) {
1734
		iwl_pcie_free_ict(trans);
1735 1736
		return -EINVAL;
	}
1737 1738 1739 1740 1741 1742 1743

	return 0;
}

/* Device is going up inform it about using ICT interrupt table,
 * also we need to tell the driver to start using ICT interrupt.
 */
1744
void iwl_pcie_reset_ict(struct iwl_trans *trans)
1745
{
1746
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1747 1748
	u32 val;

1749
	if (!trans_pcie->ict_tbl)
1750
		return;
1751

1752
	spin_lock(&trans_pcie->irq_lock);
1753
	iwl_disable_interrupts(trans);
1754

1755
	memset(trans_pcie->ict_tbl, 0, ICT_SIZE);
1756

1757
	val = trans_pcie->ict_tbl_dma >> ICT_SHIFT;
1758

1759 1760 1761
	val |= CSR_DRAM_INT_TBL_ENABLE |
	       CSR_DRAM_INIT_TBL_WRAP_CHECK |
	       CSR_DRAM_INIT_TBL_WRITE_POINTER;
1762

1763
	IWL_DEBUG_ISR(trans, "CSR_DRAM_INT_TBL_REG =0x%x\n", val);
1764

1765
	iwl_write32(trans, CSR_DRAM_INT_TBL_REG, val);
1766 1767
	trans_pcie->use_ict = true;
	trans_pcie->ict_index = 0;
1768
	iwl_write32(trans, CSR_INT, trans_pcie->inta_mask);
1769
	iwl_enable_interrupts(trans);
1770
	spin_unlock(&trans_pcie->irq_lock);
1771 1772 1773
}

/* Device is going down disable ict interrupt usage */
1774
void iwl_pcie_disable_ict(struct iwl_trans *trans)
1775
{
1776
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1777

1778
	spin_lock(&trans_pcie->irq_lock);
1779
	trans_pcie->use_ict = false;
1780
	spin_unlock(&trans_pcie->irq_lock);
1781 1782
}

1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
irqreturn_t iwl_pcie_isr(int irq, void *data)
{
	struct iwl_trans *trans = data;

	if (!trans)
		return IRQ_NONE;

	/* Disable (but don't clear!) interrupts here to avoid
	 * back-to-back ISRs and sporadic interrupts from our NIC.
	 * If we have something to service, the tasklet will re-enable ints.
	 * If we *don't* have something, we'll re-enable before leaving here.
	 */
	iwl_write32(trans, CSR_INT_MASK, 0x00000000);

1797
	return IRQ_WAKE_THREAD;
1798
}
1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924

irqreturn_t iwl_pcie_msix_isr(int irq, void *data)
{
	return IRQ_WAKE_THREAD;
}

irqreturn_t iwl_pcie_irq_msix_handler(int irq, void *dev_id)
{
	struct msix_entry *entry = dev_id;
	struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
	struct iwl_trans *trans = trans_pcie->trans;
	struct isr_statistics *isr_stats = isr_stats = &trans_pcie->isr_stats;
	u32 inta_fh, inta_hw;

	lock_map_acquire(&trans->sync_cmd_lockdep_map);

	spin_lock(&trans_pcie->irq_lock);
	inta_fh = iwl_read_direct32(trans, CSR_MSIX_FH_INT_CAUSES_AD);
	inta_hw = iwl_read_direct32(trans, CSR_MSIX_HW_INT_CAUSES_AD);
	/*
	 * Clear causes registers to avoid being handling the same cause.
	 */
	iwl_write_direct32(trans, CSR_MSIX_FH_INT_CAUSES_AD, inta_fh);
	iwl_write_direct32(trans, CSR_MSIX_HW_INT_CAUSES_AD, inta_hw);
	spin_unlock(&trans_pcie->irq_lock);

	if (unlikely(!(inta_fh | inta_hw))) {
		IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
		lock_map_release(&trans->sync_cmd_lockdep_map);
		return IRQ_NONE;
	}

	if (iwl_have_debug_level(IWL_DL_ISR))
		IWL_DEBUG_ISR(trans, "ISR inta_fh 0x%08x, enabled 0x%08x\n",
			      inta_fh,
			      iwl_read32(trans, CSR_MSIX_FH_INT_MASK_AD));

	/* This "Tx" DMA channel is used only for loading uCode */
	if (inta_fh & MSIX_FH_INT_CAUSES_D2S_CH0_NUM) {
		IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
		isr_stats->tx++;
		/*
		 * Wake up uCode load routine,
		 * now that load is complete
		 */
		trans_pcie->ucode_write_complete = true;
		wake_up(&trans_pcie->ucode_write_waitq);
	}

	/* Error detected by uCode */
	if ((inta_fh & MSIX_FH_INT_CAUSES_FH_ERR) ||
	    (inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR)) {
		IWL_ERR(trans,
			"Microcode SW error detected. Restarting 0x%X.\n",
			inta_fh);
		isr_stats->sw++;
		iwl_pcie_irq_handle_error(trans);
	}

	/* After checking FH register check HW register */
	if (iwl_have_debug_level(IWL_DL_ISR))
		IWL_DEBUG_ISR(trans,
			      "ISR inta_hw 0x%08x, enabled 0x%08x\n",
			      inta_hw,
			      iwl_read32(trans, CSR_MSIX_HW_INT_MASK_AD));

	/* Alive notification via Rx interrupt will do the real work */
	if (inta_hw & MSIX_HW_INT_CAUSES_REG_ALIVE) {
		IWL_DEBUG_ISR(trans, "Alive interrupt\n");
		isr_stats->alive++;
	}

	/* uCode wakes up after power-down sleep */
	if (inta_hw & MSIX_HW_INT_CAUSES_REG_WAKEUP) {
		IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
		iwl_pcie_rxq_check_wrptr(trans);
		iwl_pcie_txq_check_wrptrs(trans);

		isr_stats->wakeup++;
	}

	/* Chip got too hot and stopped itself */
	if (inta_hw & MSIX_HW_INT_CAUSES_REG_CT_KILL) {
		IWL_ERR(trans, "Microcode CT kill error detected.\n");
		isr_stats->ctkill++;
	}

	/* HW RF KILL switch toggled */
	if (inta_hw & MSIX_HW_INT_CAUSES_REG_RF_KILL) {
		bool hw_rfkill;

		hw_rfkill = iwl_is_rfkill_set(trans);
		IWL_WARN(trans, "RF_KILL bit toggled to %s.\n",
			 hw_rfkill ? "disable radio" : "enable radio");

		isr_stats->rfkill++;

		mutex_lock(&trans_pcie->mutex);
		iwl_trans_pcie_rf_kill(trans, hw_rfkill);
		mutex_unlock(&trans_pcie->mutex);
		if (hw_rfkill) {
			set_bit(STATUS_RFKILL, &trans->status);
			if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE,
					       &trans->status))
				IWL_DEBUG_RF_KILL(trans,
						  "Rfkill while SYNC HCMD in flight\n");
			wake_up(&trans_pcie->wait_command_queue);
		} else {
			clear_bit(STATUS_RFKILL, &trans->status);
		}
	}

	if (inta_hw & MSIX_HW_INT_CAUSES_REG_HW_ERR) {
		IWL_ERR(trans,
			"Hardware error detected. Restarting.\n");

		isr_stats->hw++;
		iwl_pcie_irq_handle_error(trans);
	}

	iwl_pcie_clear_irq(trans, entry);

	lock_map_release(&trans->sync_cmd_lockdep_map);

	return IRQ_HANDLED;
}