rt2800pci.c 32.0 KB
Newer Older
1
/*
2
	Copyright (C) 2009 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
3 4 5 6 7 8 9
	Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
	Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
	Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
	Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
	Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
	Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
	Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
	<http://rt2x00.serialmonkey.com>

	This program is free software; you can redistribute it and/or modify
	it under the terms of the GNU General Public License as published by
	the Free Software Foundation; either version 2 of the License, or
	(at your option) any later version.

	This program is distributed in the hope that it will be useful,
	but WITHOUT ANY WARRANTY; without even the implied warranty of
	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
	GNU General Public License for more details.

	You should have received a copy of the GNU General Public License
	along with this program; if not, write to the
	Free Software Foundation, Inc.,
	59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

/*
	Module: rt2800pci
	Abstract: rt2800pci device specific routines.
	Supported chipsets: RT2800E & RT2800ED.
 */

#include <linux/delay.h>
#include <linux/etherdevice.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/platform_device.h>
#include <linux/eeprom_93cx6.h>

#include "rt2x00.h"
#include "rt2x00pci.h"
#include "rt2x00soc.h"
46
#include "rt2800lib.h"
47
#include "rt2800.h"
48 49 50 51 52
#include "rt2800pci.h"

/*
 * Allow hardware encryption to be disabled.
 */
53
static int modparam_nohwcrypt = 0;
54 55 56 57 58 59 60 61
module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");

static void rt2800pci_mcu_status(struct rt2x00_dev *rt2x00dev, const u8 token)
{
	unsigned int i;
	u32 reg;

62 63 64 65 66 67
	/*
	 * SOC devices don't support MCU requests.
	 */
	if (rt2x00_is_soc(rt2x00dev))
		return;

68
	for (i = 0; i < 200; i++) {
69
		rt2800_register_read(rt2x00dev, H2M_MAILBOX_CID, &reg);
70 71 72 73 74 75 76 77 78 79 80 81 82

		if ((rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD0) == token) ||
		    (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD1) == token) ||
		    (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD2) == token) ||
		    (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD3) == token))
			break;

		udelay(REGISTER_BUSY_DELAY);
	}

	if (i == 200)
		ERROR(rt2x00dev, "MCU request failed, no response from hardware\n");

83 84
	rt2800_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
	rt2800_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);
85 86
}

87
#ifdef CONFIG_RT2800PCI_SOC
88 89 90 91 92 93 94 95 96 97
static void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
{
	u32 *base_addr = (u32 *) KSEG1ADDR(0x1F040000); /* XXX for RT3052 */

	memcpy_fromio(rt2x00dev->eeprom, base_addr, EEPROM_SIZE);
}
#else
static inline void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
{
}
98
#endif /* CONFIG_RT2800PCI_SOC */
99 100 101 102 103 104 105

#ifdef CONFIG_RT2800PCI_PCI
static void rt2800pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
{
	struct rt2x00_dev *rt2x00dev = eeprom->data;
	u32 reg;

106
	rt2800_register_read(rt2x00dev, E2PROM_CSR, &reg);
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

	eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
	eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
	eeprom->reg_data_clock =
	    !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
	eeprom->reg_chip_select =
	    !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
}

static void rt2800pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
{
	struct rt2x00_dev *rt2x00dev = eeprom->data;
	u32 reg = 0;

	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
			   !!eeprom->reg_data_clock);
	rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
			   !!eeprom->reg_chip_select);

128
	rt2800_register_write(rt2x00dev, E2PROM_CSR, reg);
129 130 131 132 133 134 135
}

static void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
{
	struct eeprom_93cx6 eeprom;
	u32 reg;

136
	rt2800_register_read(rt2x00dev, E2PROM_CSR, &reg);
137 138 139 140

	eeprom.data = rt2x00dev;
	eeprom.register_read = rt2800pci_eepromregister_read;
	eeprom.register_write = rt2800pci_eepromregister_write;
141 142 143 144 145 146 147 148 149 150 151 152
	switch (rt2x00_get_field32(reg, E2PROM_CSR_TYPE))
	{
	case 0:
		eeprom.width = PCI_EEPROM_WIDTH_93C46;
		break;
	case 1:
		eeprom.width = PCI_EEPROM_WIDTH_93C66;
		break;
	default:
		eeprom.width = PCI_EEPROM_WIDTH_93C86;
		break;
	}
153 154 155 156 157 158 159 160 161
	eeprom.reg_data_in = 0;
	eeprom.reg_data_out = 0;
	eeprom.reg_data_clock = 0;
	eeprom.reg_chip_select = 0;

	eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
			       EEPROM_SIZE / sizeof(u16));
}

162 163
static int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
{
164
	return rt2800_efuse_detect(rt2x00dev);
165 166
}

167
static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
168
{
169
	rt2800_read_eeprom_efuse(rt2x00dev);
170 171 172 173 174 175
}
#else
static inline void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
{
}

176 177 178 179 180
static inline int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
{
	return 0;
}

181 182 183 184 185 186 187 188 189 190 191 192 193
static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
{
}
#endif /* CONFIG_RT2800PCI_PCI */

/*
 * Firmware functions
 */
static char *rt2800pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
{
	return FIRMWARE_RT2860;
}

194
static int rt2800pci_write_firmware(struct rt2x00_dev *rt2x00dev,
195 196 197 198
				    const u8 *data, const size_t len)
{
	u32 reg;

199
	rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, 0x00000000);
200 201 202 203 204 205

	/*
	 * enable Host program ram write selection
	 */
	reg = 0;
	rt2x00_set_field32(&reg, PBF_SYS_CTRL_HOST_RAM_WRITE, 1);
206
	rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, reg);
207 208 209 210

	/*
	 * Write firmware to device.
	 */
211
	rt2800_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
212
				   data, len);
213

214 215
	rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000);
	rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001);
216

217 218
	rt2800_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
	rt2800_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271

	return 0;
}

/*
 * Initialization functions.
 */
static bool rt2800pci_get_entry_state(struct queue_entry *entry)
{
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
	u32 word;

	if (entry->queue->qid == QID_RX) {
		rt2x00_desc_read(entry_priv->desc, 1, &word);

		return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE));
	} else {
		rt2x00_desc_read(entry_priv->desc, 1, &word);

		return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE));
	}
}

static void rt2800pci_clear_entry(struct queue_entry *entry)
{
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
	u32 word;

	if (entry->queue->qid == QID_RX) {
		rt2x00_desc_read(entry_priv->desc, 0, &word);
		rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma);
		rt2x00_desc_write(entry_priv->desc, 0, word);

		rt2x00_desc_read(entry_priv->desc, 1, &word);
		rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0);
		rt2x00_desc_write(entry_priv->desc, 1, word);
	} else {
		rt2x00_desc_read(entry_priv->desc, 1, &word);
		rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1);
		rt2x00_desc_write(entry_priv->desc, 1, word);
	}
}

static int rt2800pci_init_queues(struct rt2x00_dev *rt2x00dev)
{
	struct queue_entry_priv_pci *entry_priv;
	u32 reg;

	/*
	 * Initialize registers.
	 */
	entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
272 273 274 275
	rt2800_register_write(rt2x00dev, TX_BASE_PTR0, entry_priv->desc_dma);
	rt2800_register_write(rt2x00dev, TX_MAX_CNT0, rt2x00dev->tx[0].limit);
	rt2800_register_write(rt2x00dev, TX_CTX_IDX0, 0);
	rt2800_register_write(rt2x00dev, TX_DTX_IDX0, 0);
276 277

	entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
278 279 280 281
	rt2800_register_write(rt2x00dev, TX_BASE_PTR1, entry_priv->desc_dma);
	rt2800_register_write(rt2x00dev, TX_MAX_CNT1, rt2x00dev->tx[1].limit);
	rt2800_register_write(rt2x00dev, TX_CTX_IDX1, 0);
	rt2800_register_write(rt2x00dev, TX_DTX_IDX1, 0);
282 283

	entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
284 285 286 287
	rt2800_register_write(rt2x00dev, TX_BASE_PTR2, entry_priv->desc_dma);
	rt2800_register_write(rt2x00dev, TX_MAX_CNT2, rt2x00dev->tx[2].limit);
	rt2800_register_write(rt2x00dev, TX_CTX_IDX2, 0);
	rt2800_register_write(rt2x00dev, TX_DTX_IDX2, 0);
288 289

	entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
290 291 292 293
	rt2800_register_write(rt2x00dev, TX_BASE_PTR3, entry_priv->desc_dma);
	rt2800_register_write(rt2x00dev, TX_MAX_CNT3, rt2x00dev->tx[3].limit);
	rt2800_register_write(rt2x00dev, TX_CTX_IDX3, 0);
	rt2800_register_write(rt2x00dev, TX_DTX_IDX3, 0);
294 295

	entry_priv = rt2x00dev->rx->entries[0].priv_data;
296 297 298 299
	rt2800_register_write(rt2x00dev, RX_BASE_PTR, entry_priv->desc_dma);
	rt2800_register_write(rt2x00dev, RX_MAX_CNT, rt2x00dev->rx[0].limit);
	rt2800_register_write(rt2x00dev, RX_CRX_IDX, rt2x00dev->rx[0].limit - 1);
	rt2800_register_write(rt2x00dev, RX_DRX_IDX, 0);
300 301 302 303

	/*
	 * Enable global DMA configuration
	 */
304
	rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
305 306 307
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
308
	rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
309

310
	rt2800_register_write(rt2x00dev, DELAY_INT_CFG, 0);
311 312 313 314 315 316 317 318 319 320 321 322

	return 0;
}

/*
 * Device state switch handlers.
 */
static void rt2800pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
				enum dev_state state)
{
	u32 reg;

323
	rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
324 325 326
	rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX,
			   (state == STATE_RADIO_RX_ON) ||
			   (state == STATE_RADIO_RX_ON_LINK));
327
	rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
328 329 330 331 332
}

static void rt2800pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
				 enum dev_state state)
{
333 334
	int mask = (state == STATE_RADIO_IRQ_ON) ||
		   (state == STATE_RADIO_IRQ_ON_ISR);
335 336 337 338 339 340 341
	u32 reg;

	/*
	 * When interrupts are being enabled, the interrupt registers
	 * should clear the register to assure a clean state.
	 */
	if (state == STATE_RADIO_IRQ_ON) {
342 343
		rt2800_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
		rt2800_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
344 345
	}

346
	rt2800_register_read(rt2x00dev, INT_MASK_CSR, &reg);
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
	rt2x00_set_field32(&reg, INT_MASK_CSR_RXDELAYINT, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_TXDELAYINT, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_RX_DONE, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_AC0_DMA_DONE, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_AC1_DMA_DONE, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_AC2_DMA_DONE, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_AC3_DMA_DONE, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_HCCA_DMA_DONE, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_MGMT_DMA_DONE, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_MCU_COMMAND, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_RXTX_COHERENT, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_TBTT, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_PRE_TBTT, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_AUTO_WAKEUP, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_GPTIMER, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_RX_COHERENT, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_TX_COHERENT, mask);
365
	rt2800_register_write(rt2x00dev, INT_MASK_CSR, reg);
366 367
}

368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
static int rt2800pci_init_registers(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;

	/*
	 * Reset DMA indexes
	 */
	rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
	rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);

	rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
	rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);

	rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);

	rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
	rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_CSR, 1);
	rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_BBP, 1);
	rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);

	rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);

	return 0;
}

400 401 402 403 404 405 406 407
static int rt2800pci_enable_radio(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;
	u16 word;

	/*
	 * Initialize all registers.
	 */
408
	if (unlikely(rt2800_wait_wpdma_ready(rt2x00dev) ||
409
		     rt2800pci_init_queues(rt2x00dev) ||
410
		     rt2800_init_registers(rt2x00dev) ||
411
		     rt2800_wait_wpdma_ready(rt2x00dev) ||
412 413
		     rt2800_init_bbp(rt2x00dev) ||
		     rt2800_init_rfcsr(rt2x00dev)))
414 415 416 417 418
		return -EIO;

	/*
	 * Send signal to firmware during boot time.
	 */
419
	rt2800_mcu_request(rt2x00dev, MCU_BOOT_SIGNAL, 0, 0, 0);
420 421 422 423

	/*
	 * Enable RX.
	 */
424
	rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
425 426
	rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_TX, 1);
	rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 0);
427
	rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
428

429
	rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
430 431 432 433
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 1);
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 1);
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_WP_DMA_BURST_SIZE, 2);
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
434
	rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
435

436
	rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
437 438
	rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_TX, 1);
	rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 1);
439
	rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
440 441 442 443 444

	/*
	 * Initialize LED control
	 */
	rt2x00_eeprom_read(rt2x00dev, EEPROM_LED1, &word);
445
	rt2800_mcu_request(rt2x00dev, MCU_LED_1, 0xff,
446 447 448
			      word & 0xff, (word >> 8) & 0xff);

	rt2x00_eeprom_read(rt2x00dev, EEPROM_LED2, &word);
449
	rt2800_mcu_request(rt2x00dev, MCU_LED_2, 0xff,
450 451 452
			      word & 0xff, (word >> 8) & 0xff);

	rt2x00_eeprom_read(rt2x00dev, EEPROM_LED3, &word);
453
	rt2800_mcu_request(rt2x00dev, MCU_LED_3, 0xff,
454 455 456 457 458 459 460 461 462
			      word & 0xff, (word >> 8) & 0xff);

	return 0;
}

static void rt2800pci_disable_radio(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;

463
	rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
464 465 466 467 468
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_DMA_BUSY, 0);
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_RX_DMA_BUSY, 0);
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
469
	rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
470

471 472 473
	rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, 0);
	rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0);
	rt2800_register_write(rt2x00dev, TX_PIN_CFG, 0);
474

475
	rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001280);
476

477
	rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
478 479 480 481 482 483 484
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
485
	rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
486

487 488
	rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
	rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
489 490

	/* Wait for DMA, ignore error */
491
	rt2800_wait_wpdma_ready(rt2x00dev);
492 493 494 495 496 497 498 499 500 501
}

static int rt2800pci_set_state(struct rt2x00_dev *rt2x00dev,
			       enum dev_state state)
{
	/*
	 * Always put the device to sleep (even when we intend to wakeup!)
	 * if the device is booting and wasn't asleep it will return
	 * failure when attempting to wakeup.
	 */
502
	rt2800_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0, 2);
503 504

	if (state == STATE_AWAKE) {
505
		rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKUP, 0, 0);
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
		rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKUP);
	}

	return 0;
}

static int rt2800pci_set_device_state(struct rt2x00_dev *rt2x00dev,
				      enum dev_state state)
{
	int retval = 0;

	switch (state) {
	case STATE_RADIO_ON:
		/*
		 * Before the radio can be enabled, the device first has
		 * to be woken up. After that it needs a bit of time
		 * to be fully awake and then the radio can be enabled.
		 */
		rt2800pci_set_state(rt2x00dev, STATE_AWAKE);
		msleep(1);
		retval = rt2800pci_enable_radio(rt2x00dev);
		break;
	case STATE_RADIO_OFF:
		/*
		 * After the radio has been disabled, the device should
		 * be put to sleep for powersaving.
		 */
		rt2800pci_disable_radio(rt2x00dev);
		rt2800pci_set_state(rt2x00dev, STATE_SLEEP);
		break;
	case STATE_RADIO_RX_ON:
	case STATE_RADIO_RX_ON_LINK:
	case STATE_RADIO_RX_OFF:
	case STATE_RADIO_RX_OFF_LINK:
		rt2800pci_toggle_rx(rt2x00dev, state);
		break;
	case STATE_RADIO_IRQ_ON:
543
	case STATE_RADIO_IRQ_ON_ISR:
544
	case STATE_RADIO_IRQ_OFF:
545
	case STATE_RADIO_IRQ_OFF_ISR:
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
		rt2800pci_toggle_irq(rt2x00dev, state);
		break;
	case STATE_DEEP_SLEEP:
	case STATE_SLEEP:
	case STATE_STANDBY:
	case STATE_AWAKE:
		retval = rt2800pci_set_state(rt2x00dev, state);
		break;
	default:
		retval = -ENOTSUPP;
		break;
	}

	if (unlikely(retval))
		ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
		      state, retval);

	return retval;
}

/*
 * TX descriptor initialization
 */
569
static __le32 *rt2800pci_get_txwi(struct queue_entry *entry)
570
{
571
	return (__le32 *) entry->skb->data;
572 573
}

574
static void rt2800pci_write_tx_desc(struct queue_entry *entry,
575 576
				    struct txentry_desc *txdesc)
{
577 578
	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
579
	__le32 *txd = entry_priv->desc;
580 581
	u32 word;

582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
	/*
	 * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
	 * must contains a TXWI structure + 802.11 header + padding + 802.11
	 * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
	 * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
	 * data. It means that LAST_SEC0 is always 0.
	 */

	/*
	 * Initialize TX descriptor
	 */
	rt2x00_desc_read(txd, 0, &word);
	rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma);
	rt2x00_desc_write(txd, 0, word);

	rt2x00_desc_read(txd, 1, &word);
598
	rt2x00_set_field32(&word, TXD_W1_SD_LEN1, entry->skb->len);
599 600 601 602
	rt2x00_set_field32(&word, TXD_W1_LAST_SEC1,
			   !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
	rt2x00_set_field32(&word, TXD_W1_BURST,
			   test_bit(ENTRY_TXD_BURST, &txdesc->flags));
603
	rt2x00_set_field32(&word, TXD_W1_SD_LEN0, TXWI_DESC_SIZE);
604 605 606 607 608 609
	rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0);
	rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0);
	rt2x00_desc_write(txd, 1, word);

	rt2x00_desc_read(txd, 2, &word);
	rt2x00_set_field32(&word, TXD_W2_SD_PTR1,
610
			   skbdesc->skb_dma + TXWI_DESC_SIZE);
611 612 613 614 615 616 617
	rt2x00_desc_write(txd, 2, word);

	rt2x00_desc_read(txd, 3, &word);
	rt2x00_set_field32(&word, TXD_W3_WIV,
			   !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
	rt2x00_set_field32(&word, TXD_W3_QSEL, 2);
	rt2x00_desc_write(txd, 3, word);
618 619 620 621 622 623

	/*
	 * Register descriptor details in skb frame descriptor.
	 */
	skbdesc->desc = txd;
	skbdesc->desc_len = TXD_DESC_SIZE;
624 625 626 627 628
}

/*
 * TX data initialization
 */
629
static void rt2800pci_kick_tx_queue(struct data_queue *queue)
630
{
631
	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
632
	struct queue_entry *entry = rt2x00queue_get_entry(queue, Q_INDEX);
633
	unsigned int qidx = 0;
634

635
	if (queue->qid == QID_MGMT)
636 637
		qidx = 5;
	else
638
		qidx = queue->qid;
639

640
	rt2800_register_write(rt2x00dev, TX_CTX_IDX(qidx), entry->entry_idx);
641 642
}

643
static void rt2800pci_kill_tx_queue(struct data_queue *queue)
644
{
645
	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
646 647
	u32 reg;

648
	if (queue->qid == QID_BEACON) {
649
		rt2800_register_write(rt2x00dev, BCN_TIME_CFG, 0);
650 651 652
		return;
	}

653
	rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
654 655 656 657
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, (queue->qid == QID_AC_BE));
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, (queue->qid == QID_AC_BK));
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, (queue->qid == QID_AC_VI));
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, (queue->qid == QID_AC_VO));
658
	rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
659 660 661 662 663 664 665 666 667 668 669
}

/*
 * RX control handlers
 */
static void rt2800pci_fill_rxdone(struct queue_entry *entry,
				  struct rxdone_entry_desc *rxdesc)
{
	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
	__le32 *rxd = entry_priv->desc;
670 671 672 673 674
	u32 word;

	rt2x00_desc_read(rxd, 3, &word);

	if (rt2x00_get_field32(word, RXD_W3_CRC_ERROR))
675 676
		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;

677 678 679 680 681
	/*
	 * Unfortunately we don't know the cipher type used during
	 * decryption. This prevents us from correct providing
	 * correct statistics through debugfs.
	 */
682
	rxdesc->cipher_status = rt2x00_get_field32(word, RXD_W3_CIPHER_ERROR);
683

684
	if (rt2x00_get_field32(word, RXD_W3_DECRYPTED)) {
685 686 687 688 689 690 691 692 693 694 695 696 697 698
		/*
		 * Hardware has stripped IV/EIV data from 802.11 frame during
		 * decryption. Unfortunately the descriptor doesn't contain
		 * any fields with the EIV/IV data either, so they can't
		 * be restored by rt2x00lib.
		 */
		rxdesc->flags |= RX_FLAG_IV_STRIPPED;

		if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
			rxdesc->flags |= RX_FLAG_DECRYPTED;
		else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
			rxdesc->flags |= RX_FLAG_MMIC_ERROR;
	}

699
	if (rt2x00_get_field32(word, RXD_W3_MY_BSS))
700 701
		rxdesc->dev_flags |= RXDONE_MY_BSS;

702
	if (rt2x00_get_field32(word, RXD_W3_L2PAD))
703 704 705
		rxdesc->dev_flags |= RXDONE_L2PAD;

	/*
706
	 * Process the RXWI structure that is at the start of the buffer.
707
	 */
708
	rt2800_process_rxwi(entry, rxdesc);
709 710 711 712 713

	/*
	 * Set RX IDX in register to inform hardware that we have handled
	 * this entry and it is available for reuse again.
	 */
714
	rt2800_register_write(rt2x00dev, RX_CRX_IDX, entry->entry_idx);
715 716 717 718 719
}

/*
 * Interrupt functions.
 */
720 721 722 723 724 725 726 727
static void rt2800pci_wakeup(struct rt2x00_dev *rt2x00dev)
{
	struct ieee80211_conf conf = { .flags = 0 };
	struct rt2x00lib_conf libconf = { .conf = &conf };

	rt2800_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
}

728
static irqreturn_t rt2800pci_interrupt_thread(int irq, void *dev_instance)
729 730
{
	struct rt2x00_dev *rt2x00dev = dev_instance;
731
	u32 reg = rt2x00dev->irqvalue[0];
732 733

	/*
734 735 736 737 738 739 740 741 742 743 744 745 746
	 * 1 - Pre TBTT interrupt.
	 */
	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_PRE_TBTT))
		rt2x00lib_pretbtt(rt2x00dev);

	/*
	 * 2 - Beacondone interrupt.
	 */
	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TBTT))
		rt2x00lib_beacondone(rt2x00dev);

	/*
	 * 3 - Rx ring done interrupt.
747 748 749 750
	 */
	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE))
		rt2x00pci_rxdone(rt2x00dev);

751 752 753
	/*
	 * 4 - Tx done interrupt.
	 */
754
	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS))
755
		rt2800_txdone(rt2x00dev);
756

757
	/*
758
	 * 5 - Auto wakeup interrupt.
759
	 */
760 761 762
	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP))
		rt2800pci_wakeup(rt2x00dev);

763 764 765 766
	/* Enable interrupts again. */
	rt2x00dev->ops->lib->set_device_state(rt2x00dev,
					      STATE_RADIO_IRQ_ON_ISR);

767 768 769
	return IRQ_HANDLED;
}

770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
static irqreturn_t rt2800pci_interrupt(int irq, void *dev_instance)
{
	struct rt2x00_dev *rt2x00dev = dev_instance;
	u32 reg;

	/* Read status and ACK all interrupts */
	rt2800_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
	rt2800_register_write(rt2x00dev, INT_SOURCE_CSR, reg);

	if (!reg)
		return IRQ_NONE;

	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
		return IRQ_HANDLED;

	/* Store irqvalue for use in the interrupt thread. */
	rt2x00dev->irqvalue[0] = reg;

	/* Disable interrupts, will be enabled again in the interrupt thread. */
	rt2x00dev->ops->lib->set_device_state(rt2x00dev,
					      STATE_RADIO_IRQ_OFF_ISR);


	return IRQ_WAKE_THREAD;
}

796 797 798
/*
 * Device probe functions.
 */
799 800 801 802 803
static int rt2800pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
{
	/*
	 * Read EEPROM into buffer
	 */
804
	if (rt2x00_is_soc(rt2x00dev))
805
		rt2800pci_read_eeprom_soc(rt2x00dev);
806 807 808 809
	else if (rt2800pci_efuse_detect(rt2x00dev))
		rt2800pci_read_eeprom_efuse(rt2x00dev);
	else
		rt2800pci_read_eeprom_pci(rt2x00dev);
810 811 812 813

	return rt2800_validate_eeprom(rt2x00dev);
}

814 815 816 817 818 819 820 821 822 823 824
static int rt2800pci_probe_hw(struct rt2x00_dev *rt2x00dev)
{
	int retval;

	/*
	 * Allocate eeprom data.
	 */
	retval = rt2800pci_validate_eeprom(rt2x00dev);
	if (retval)
		return retval;

825
	retval = rt2800_init_eeprom(rt2x00dev);
826 827 828 829 830 831
	if (retval)
		return retval;

	/*
	 * Initialize hw specifications.
	 */
832
	retval = rt2800_probe_hw_mode(rt2x00dev);
833 834 835 836 837 838 839 840 841 842
	if (retval)
		return retval;

	/*
	 * This device has multiple filters for control frames
	 * and has a separate filter for PS Poll frames.
	 */
	__set_bit(DRIVER_SUPPORT_CONTROL_FILTERS, &rt2x00dev->flags);
	__set_bit(DRIVER_SUPPORT_CONTROL_FILTER_PSPOLL, &rt2x00dev->flags);

843 844 845 846 847 848
	/*
	 * This device has a pre tbtt interrupt and thus fetches
	 * a new beacon directly prior to transmission.
	 */
	__set_bit(DRIVER_SUPPORT_PRE_TBTT_INTERRUPT, &rt2x00dev->flags);

849 850 851
	/*
	 * This device requires firmware.
	 */
852
	if (!rt2x00_is_soc(rt2x00dev))
853 854 855 856 857
		__set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
	__set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
	__set_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags);
	if (!modparam_nohwcrypt)
		__set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
858
	__set_bit(DRIVER_SUPPORT_LINK_TUNING, &rt2x00dev->flags);
859 860 861 862 863 864 865 866 867

	/*
	 * Set the rssi offset.
	 */
	rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;

	return 0;
}

868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
static const struct ieee80211_ops rt2800pci_mac80211_ops = {
	.tx			= rt2x00mac_tx,
	.start			= rt2x00mac_start,
	.stop			= rt2x00mac_stop,
	.add_interface		= rt2x00mac_add_interface,
	.remove_interface	= rt2x00mac_remove_interface,
	.config			= rt2x00mac_config,
	.configure_filter	= rt2x00mac_configure_filter,
	.set_key		= rt2x00mac_set_key,
	.sw_scan_start		= rt2x00mac_sw_scan_start,
	.sw_scan_complete	= rt2x00mac_sw_scan_complete,
	.get_stats		= rt2x00mac_get_stats,
	.get_tkip_seq		= rt2800_get_tkip_seq,
	.set_rts_threshold	= rt2800_set_rts_threshold,
	.bss_info_changed	= rt2x00mac_bss_info_changed,
	.conf_tx		= rt2800_conf_tx,
	.get_tsf		= rt2800_get_tsf,
	.rfkill_poll		= rt2x00mac_rfkill_poll,
	.ampdu_action		= rt2800_ampdu_action,
};

889 890 891 892 893 894 895 896 897 898
static const struct rt2800_ops rt2800pci_rt2800_ops = {
	.register_read		= rt2x00pci_register_read,
	.register_read_lock	= rt2x00pci_register_read, /* same for PCI */
	.register_write		= rt2x00pci_register_write,
	.register_write_lock	= rt2x00pci_register_write, /* same for PCI */
	.register_multiread	= rt2x00pci_register_multiread,
	.register_multiwrite	= rt2x00pci_register_multiwrite,
	.regbusy_read		= rt2x00pci_regbusy_read,
	.drv_write_firmware	= rt2800pci_write_firmware,
	.drv_init_registers	= rt2800pci_init_registers,
899
	.drv_get_txwi		= rt2800pci_get_txwi,
900 901
};

902 903
static const struct rt2x00lib_ops rt2800pci_rt2x00_ops = {
	.irq_handler		= rt2800pci_interrupt,
904
	.irq_handler_thread	= rt2800pci_interrupt_thread,
905 906
	.probe_hw		= rt2800pci_probe_hw,
	.get_firmware_name	= rt2800pci_get_firmware_name,
907 908
	.check_firmware		= rt2800_check_firmware,
	.load_firmware		= rt2800_load_firmware,
909 910 911 912 913
	.initialize		= rt2x00pci_initialize,
	.uninitialize		= rt2x00pci_uninitialize,
	.get_entry_state	= rt2800pci_get_entry_state,
	.clear_entry		= rt2800pci_clear_entry,
	.set_device_state	= rt2800pci_set_device_state,
914 915 916 917
	.rfkill_poll		= rt2800_rfkill_poll,
	.link_stats		= rt2800_link_stats,
	.reset_tuner		= rt2800_reset_tuner,
	.link_tuner		= rt2800_link_tuner,
918
	.write_tx_desc		= rt2800pci_write_tx_desc,
919
	.write_tx_data		= rt2800_write_tx_data,
920
	.write_beacon		= rt2800_write_beacon,
921 922 923
	.kick_tx_queue		= rt2800pci_kick_tx_queue,
	.kill_tx_queue		= rt2800pci_kill_tx_queue,
	.fill_rxdone		= rt2800pci_fill_rxdone,
924 925 926 927 928 929 930
	.config_shared_key	= rt2800_config_shared_key,
	.config_pairwise_key	= rt2800_config_pairwise_key,
	.config_filter		= rt2800_config_filter,
	.config_intf		= rt2800_config_intf,
	.config_erp		= rt2800_config_erp,
	.config_ant		= rt2800_config_ant,
	.config			= rt2800_config,
931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
};

static const struct data_queue_desc rt2800pci_queue_rx = {
	.entry_num		= RX_ENTRIES,
	.data_size		= AGGREGATION_SIZE,
	.desc_size		= RXD_DESC_SIZE,
	.priv_size		= sizeof(struct queue_entry_priv_pci),
};

static const struct data_queue_desc rt2800pci_queue_tx = {
	.entry_num		= TX_ENTRIES,
	.data_size		= AGGREGATION_SIZE,
	.desc_size		= TXD_DESC_SIZE,
	.priv_size		= sizeof(struct queue_entry_priv_pci),
};

static const struct data_queue_desc rt2800pci_queue_bcn = {
	.entry_num		= 8 * BEACON_ENTRIES,
	.data_size		= 0, /* No DMA required for beacons */
	.desc_size		= TXWI_DESC_SIZE,
	.priv_size		= sizeof(struct queue_entry_priv_pci),
};

static const struct rt2x00_ops rt2800pci_ops = {
G
Gertjan van Wingerde 已提交
955 956 957 958 959 960
	.name			= KBUILD_MODNAME,
	.max_sta_intf		= 1,
	.max_ap_intf		= 8,
	.eeprom_size		= EEPROM_SIZE,
	.rf_size		= RF_SIZE,
	.tx_queues		= NUM_TX_QUEUES,
961
	.extra_tx_headroom	= TXWI_DESC_SIZE,
G
Gertjan van Wingerde 已提交
962 963 964 965
	.rx			= &rt2800pci_queue_rx,
	.tx			= &rt2800pci_queue_tx,
	.bcn			= &rt2800pci_queue_bcn,
	.lib			= &rt2800pci_rt2x00_ops,
966
	.drv			= &rt2800pci_rt2800_ops,
967
	.hw			= &rt2800pci_mac80211_ops,
968
#ifdef CONFIG_RT2X00_LIB_DEBUGFS
G
Gertjan van Wingerde 已提交
969
	.debugfs		= &rt2800_rt2x00debug,
970 971 972 973 974 975
#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
};

/*
 * RT2800pci module information.
 */
976
#ifdef CONFIG_RT2800PCI_PCI
977
static DEFINE_PCI_DEVICE_TABLE(rt2800pci_device_table) = {
978 979 980 981
	{ PCI_DEVICE(0x1814, 0x0601), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1814, 0x0681), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1814, 0x0701), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1814, 0x0781), PCI_DEVICE_DATA(&rt2800pci_ops) },
982 983 984 985 986 987 988
	{ PCI_DEVICE(0x1432, 0x7708), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1432, 0x7727), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1432, 0x7728), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1432, 0x7738), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1432, 0x7748), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1432, 0x7758), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1432, 0x7768), PCI_DEVICE_DATA(&rt2800pci_ops) },
989 990
	{ PCI_DEVICE(0x1a3b, 0x1059), PCI_DEVICE_DATA(&rt2800pci_ops) },
#ifdef CONFIG_RT2800PCI_RT30XX
991 992 993
	{ PCI_DEVICE(0x1814, 0x3090), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1814, 0x3091), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1814, 0x3092), PCI_DEVICE_DATA(&rt2800pci_ops) },
994 995 996 997 998
	{ PCI_DEVICE(0x1462, 0x891a), PCI_DEVICE_DATA(&rt2800pci_ops) },
#endif
#ifdef CONFIG_RT2800PCI_RT35XX
	{ PCI_DEVICE(0x1814, 0x3060), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1814, 0x3062), PCI_DEVICE_DATA(&rt2800pci_ops) },
999 1000
	{ PCI_DEVICE(0x1814, 0x3562), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1814, 0x3592), PCI_DEVICE_DATA(&rt2800pci_ops) },
1001
	{ PCI_DEVICE(0x1814, 0x3593), PCI_DEVICE_DATA(&rt2800pci_ops) },
1002
#endif
1003 1004
	{ 0, }
};
1005
#endif /* CONFIG_RT2800PCI_PCI */
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016

MODULE_AUTHOR(DRV_PROJECT);
MODULE_VERSION(DRV_VERSION);
MODULE_DESCRIPTION("Ralink RT2800 PCI & PCMCIA Wireless LAN driver.");
MODULE_SUPPORTED_DEVICE("Ralink RT2860 PCI & PCMCIA chipset based cards");
#ifdef CONFIG_RT2800PCI_PCI
MODULE_FIRMWARE(FIRMWARE_RT2860);
MODULE_DEVICE_TABLE(pci, rt2800pci_device_table);
#endif /* CONFIG_RT2800PCI_PCI */
MODULE_LICENSE("GPL");

1017
#ifdef CONFIG_RT2800PCI_SOC
1018 1019
static int rt2800soc_probe(struct platform_device *pdev)
{
1020
	return rt2x00soc_probe(pdev, &rt2800pci_ops);
1021
}
1022 1023 1024 1025 1026 1027 1028

static struct platform_driver rt2800soc_driver = {
	.driver		= {
		.name		= "rt2800_wmac",
		.owner		= THIS_MODULE,
		.mod_name	= KBUILD_MODNAME,
	},
1029
	.probe		= rt2800soc_probe,
1030 1031 1032 1033
	.remove		= __devexit_p(rt2x00soc_remove),
	.suspend	= rt2x00soc_suspend,
	.resume		= rt2x00soc_resume,
};
1034
#endif /* CONFIG_RT2800PCI_SOC */
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050

#ifdef CONFIG_RT2800PCI_PCI
static struct pci_driver rt2800pci_driver = {
	.name		= KBUILD_MODNAME,
	.id_table	= rt2800pci_device_table,
	.probe		= rt2x00pci_probe,
	.remove		= __devexit_p(rt2x00pci_remove),
	.suspend	= rt2x00pci_suspend,
	.resume		= rt2x00pci_resume,
};
#endif /* CONFIG_RT2800PCI_PCI */

static int __init rt2800pci_init(void)
{
	int ret = 0;

1051
#ifdef CONFIG_RT2800PCI_SOC
1052 1053 1054 1055 1056 1057 1058
	ret = platform_driver_register(&rt2800soc_driver);
	if (ret)
		return ret;
#endif
#ifdef CONFIG_RT2800PCI_PCI
	ret = pci_register_driver(&rt2800pci_driver);
	if (ret) {
1059
#ifdef CONFIG_RT2800PCI_SOC
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
		platform_driver_unregister(&rt2800soc_driver);
#endif
		return ret;
	}
#endif

	return ret;
}

static void __exit rt2800pci_exit(void)
{
#ifdef CONFIG_RT2800PCI_PCI
	pci_unregister_driver(&rt2800pci_driver);
#endif
1074
#ifdef CONFIG_RT2800PCI_SOC
1075 1076 1077 1078 1079 1080
	platform_driver_unregister(&rt2800soc_driver);
#endif
}

module_init(rt2800pci_init);
module_exit(rt2800pci_exit);