rt2800pci.c 35.5 KB
Newer Older
1
/*
2 3 4 5 6 7 8 9
	Copyright (C) 2009 Ivo van Doorn <IvDoorn@gmail.com>
	Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
	Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
	Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
	Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
	Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
	Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
	Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
	<http://rt2x00.serialmonkey.com>

	This program is free software; you can redistribute it and/or modify
	it under the terms of the GNU General Public License as published by
	the Free Software Foundation; either version 2 of the License, or
	(at your option) any later version.

	This program is distributed in the hope that it will be useful,
	but WITHOUT ANY WARRANTY; without even the implied warranty of
	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
	GNU General Public License for more details.

	You should have received a copy of the GNU General Public License
	along with this program; if not, write to the
	Free Software Foundation, Inc.,
	59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

/*
	Module: rt2800pci
	Abstract: rt2800pci device specific routines.
	Supported chipsets: RT2800E & RT2800ED.
 */

#include <linux/crc-ccitt.h>
#include <linux/delay.h>
#include <linux/etherdevice.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/platform_device.h>
#include <linux/eeprom_93cx6.h>

#include "rt2x00.h"
#include "rt2x00pci.h"
#include "rt2x00soc.h"
47
#include "rt2800lib.h"
48
#include "rt2800.h"
49 50 51 52 53
#include "rt2800pci.h"

/*
 * Allow hardware encryption to be disabled.
 */
54
static int modparam_nohwcrypt = 0;
55 56 57 58 59 60 61 62
module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");

static void rt2800pci_mcu_status(struct rt2x00_dev *rt2x00dev, const u8 token)
{
	unsigned int i;
	u32 reg;

63 64 65 66 67 68
	/*
	 * SOC devices don't support MCU requests.
	 */
	if (rt2x00_is_soc(rt2x00dev))
		return;

69
	for (i = 0; i < 200; i++) {
70
		rt2800_register_read(rt2x00dev, H2M_MAILBOX_CID, &reg);
71 72 73 74 75 76 77 78 79 80 81 82 83

		if ((rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD0) == token) ||
		    (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD1) == token) ||
		    (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD2) == token) ||
		    (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD3) == token))
			break;

		udelay(REGISTER_BUSY_DELAY);
	}

	if (i == 200)
		ERROR(rt2x00dev, "MCU request failed, no response from hardware\n");

84 85
	rt2800_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
	rt2800_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);
86 87
}

88
#ifdef CONFIG_RT2800PCI_SOC
89 90 91 92 93 94 95 96 97 98
static void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
{
	u32 *base_addr = (u32 *) KSEG1ADDR(0x1F040000); /* XXX for RT3052 */

	memcpy_fromio(rt2x00dev->eeprom, base_addr, EEPROM_SIZE);
}
#else
static inline void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
{
}
99
#endif /* CONFIG_RT2800PCI_SOC */
100 101 102 103 104 105 106

#ifdef CONFIG_RT2800PCI_PCI
static void rt2800pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
{
	struct rt2x00_dev *rt2x00dev = eeprom->data;
	u32 reg;

107
	rt2800_register_read(rt2x00dev, E2PROM_CSR, &reg);
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128

	eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
	eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
	eeprom->reg_data_clock =
	    !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
	eeprom->reg_chip_select =
	    !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
}

static void rt2800pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
{
	struct rt2x00_dev *rt2x00dev = eeprom->data;
	u32 reg = 0;

	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
			   !!eeprom->reg_data_clock);
	rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
			   !!eeprom->reg_chip_select);

129
	rt2800_register_write(rt2x00dev, E2PROM_CSR, reg);
130 131 132 133 134 135 136
}

static void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
{
	struct eeprom_93cx6 eeprom;
	u32 reg;

137
	rt2800_register_read(rt2x00dev, E2PROM_CSR, &reg);
138 139 140 141

	eeprom.data = rt2x00dev;
	eeprom.register_read = rt2800pci_eepromregister_read;
	eeprom.register_write = rt2800pci_eepromregister_write;
142 143 144 145 146 147 148 149 150 151 152 153
	switch (rt2x00_get_field32(reg, E2PROM_CSR_TYPE))
	{
	case 0:
		eeprom.width = PCI_EEPROM_WIDTH_93C46;
		break;
	case 1:
		eeprom.width = PCI_EEPROM_WIDTH_93C66;
		break;
	default:
		eeprom.width = PCI_EEPROM_WIDTH_93C86;
		break;
	}
154 155 156 157 158 159 160 161 162
	eeprom.reg_data_in = 0;
	eeprom.reg_data_out = 0;
	eeprom.reg_data_clock = 0;
	eeprom.reg_chip_select = 0;

	eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
			       EEPROM_SIZE / sizeof(u16));
}

163 164
static int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
{
165
	return rt2800_efuse_detect(rt2x00dev);
166 167
}

168
static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
169
{
170
	rt2800_read_eeprom_efuse(rt2x00dev);
171 172 173 174 175 176
}
#else
static inline void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
{
}

177 178 179 180 181
static inline int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
{
	return 0;
}

182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
{
}
#endif /* CONFIG_RT2800PCI_PCI */

/*
 * Firmware functions
 */
static char *rt2800pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
{
	return FIRMWARE_RT2860;
}

static int rt2800pci_check_firmware(struct rt2x00_dev *rt2x00dev,
				    const u8 *data, const size_t len)
{
	u16 fw_crc;
	u16 crc;

	/*
	 * Only support 8kb firmware files.
	 */
	if (len != 8192)
		return FW_BAD_LENGTH;

	/*
	 * The last 2 bytes in the firmware array are the crc checksum itself,
	 * this means that we should never pass those 2 bytes to the crc
	 * algorithm.
	 */
	fw_crc = (data[len - 2] << 8 | data[len - 1]);

	/*
	 * Use the crc ccitt algorithm.
	 * This will return the same value as the legacy driver which
	 * used bit ordering reversion on the both the firmware bytes
	 * before input input as well as on the final output.
	 * Obviously using crc ccitt directly is much more efficient.
	 */
	crc = crc_ccitt(~0, data, len - 2);

	/*
	 * There is a small difference between the crc-itu-t + bitrev and
	 * the crc-ccitt crc calculation. In the latter method the 2 bytes
	 * will be swapped, use swab16 to convert the crc to the correct
	 * value.
	 */
	crc = swab16(crc);

	return (fw_crc == crc) ? FW_OK : FW_BAD_CRC;
}

static int rt2800pci_load_firmware(struct rt2x00_dev *rt2x00dev,
				   const u8 *data, const size_t len)
{
	unsigned int i;
	u32 reg;

	/*
	 * Wait for stable hardware.
	 */
	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
244
		rt2800_register_read(rt2x00dev, MAC_CSR0, &reg);
245 246 247 248 249 250 251 252 253 254
		if (reg && reg != ~0)
			break;
		msleep(1);
	}

	if (i == REGISTER_BUSY_COUNT) {
		ERROR(rt2x00dev, "Unstable hardware.\n");
		return -EBUSY;
	}

255 256
	rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000002);
	rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, 0x00000000);
257 258 259 260 261

	/*
	 * Disable DMA, will be reenabled later when enabling
	 * the radio.
	 */
262
	rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
263 264 265 266 267
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_DMA_BUSY, 0);
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_RX_DMA_BUSY, 0);
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
268
	rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
269 270 271 272 273 274

	/*
	 * enable Host program ram write selection
	 */
	reg = 0;
	rt2x00_set_field32(&reg, PBF_SYS_CTRL_HOST_RAM_WRITE, 1);
275
	rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, reg);
276 277 278 279

	/*
	 * Write firmware to device.
	 */
280
	rt2800_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
281 282
				      data, len);

283 284
	rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000);
	rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001);
285 286 287 288 289

	/*
	 * Wait for device to stabilize.
	 */
	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
290
		rt2800_register_read(rt2x00dev, PBF_SYS_CTRL, &reg);
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
		if (rt2x00_get_field32(reg, PBF_SYS_CTRL_READY))
			break;
		msleep(1);
	}

	if (i == REGISTER_BUSY_COUNT) {
		ERROR(rt2x00dev, "PBF system register not ready.\n");
		return -EBUSY;
	}

	/*
	 * Disable interrupts
	 */
	rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);

	/*
	 * Initialize BBP R/W access agent
	 */
309 310
	rt2800_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
	rt2800_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363

	return 0;
}

/*
 * Initialization functions.
 */
static bool rt2800pci_get_entry_state(struct queue_entry *entry)
{
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
	u32 word;

	if (entry->queue->qid == QID_RX) {
		rt2x00_desc_read(entry_priv->desc, 1, &word);

		return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE));
	} else {
		rt2x00_desc_read(entry_priv->desc, 1, &word);

		return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE));
	}
}

static void rt2800pci_clear_entry(struct queue_entry *entry)
{
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
	u32 word;

	if (entry->queue->qid == QID_RX) {
		rt2x00_desc_read(entry_priv->desc, 0, &word);
		rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma);
		rt2x00_desc_write(entry_priv->desc, 0, word);

		rt2x00_desc_read(entry_priv->desc, 1, &word);
		rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0);
		rt2x00_desc_write(entry_priv->desc, 1, word);
	} else {
		rt2x00_desc_read(entry_priv->desc, 1, &word);
		rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1);
		rt2x00_desc_write(entry_priv->desc, 1, word);
	}
}

static int rt2800pci_init_queues(struct rt2x00_dev *rt2x00dev)
{
	struct queue_entry_priv_pci *entry_priv;
	u32 reg;

	/*
	 * Initialize registers.
	 */
	entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
364 365 366 367
	rt2800_register_write(rt2x00dev, TX_BASE_PTR0, entry_priv->desc_dma);
	rt2800_register_write(rt2x00dev, TX_MAX_CNT0, rt2x00dev->tx[0].limit);
	rt2800_register_write(rt2x00dev, TX_CTX_IDX0, 0);
	rt2800_register_write(rt2x00dev, TX_DTX_IDX0, 0);
368 369

	entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
370 371 372 373
	rt2800_register_write(rt2x00dev, TX_BASE_PTR1, entry_priv->desc_dma);
	rt2800_register_write(rt2x00dev, TX_MAX_CNT1, rt2x00dev->tx[1].limit);
	rt2800_register_write(rt2x00dev, TX_CTX_IDX1, 0);
	rt2800_register_write(rt2x00dev, TX_DTX_IDX1, 0);
374 375

	entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
376 377 378 379
	rt2800_register_write(rt2x00dev, TX_BASE_PTR2, entry_priv->desc_dma);
	rt2800_register_write(rt2x00dev, TX_MAX_CNT2, rt2x00dev->tx[2].limit);
	rt2800_register_write(rt2x00dev, TX_CTX_IDX2, 0);
	rt2800_register_write(rt2x00dev, TX_DTX_IDX2, 0);
380 381

	entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
382 383 384 385
	rt2800_register_write(rt2x00dev, TX_BASE_PTR3, entry_priv->desc_dma);
	rt2800_register_write(rt2x00dev, TX_MAX_CNT3, rt2x00dev->tx[3].limit);
	rt2800_register_write(rt2x00dev, TX_CTX_IDX3, 0);
	rt2800_register_write(rt2x00dev, TX_DTX_IDX3, 0);
386 387

	entry_priv = rt2x00dev->rx->entries[0].priv_data;
388 389 390 391
	rt2800_register_write(rt2x00dev, RX_BASE_PTR, entry_priv->desc_dma);
	rt2800_register_write(rt2x00dev, RX_MAX_CNT, rt2x00dev->rx[0].limit);
	rt2800_register_write(rt2x00dev, RX_CRX_IDX, rt2x00dev->rx[0].limit - 1);
	rt2800_register_write(rt2x00dev, RX_DRX_IDX, 0);
392 393 394 395

	/*
	 * Enable global DMA configuration
	 */
396
	rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
397 398 399
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
400
	rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
401

402
	rt2800_register_write(rt2x00dev, DELAY_INT_CFG, 0);
403 404 405 406 407 408 409 410 411 412 413 414

	return 0;
}

/*
 * Device state switch handlers.
 */
static void rt2800pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
				enum dev_state state)
{
	u32 reg;

415
	rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
416 417 418
	rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX,
			   (state == STATE_RADIO_RX_ON) ||
			   (state == STATE_RADIO_RX_ON_LINK));
419
	rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
420 421 422 423 424 425 426 427 428 429 430 431 432
}

static void rt2800pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
				 enum dev_state state)
{
	int mask = (state == STATE_RADIO_IRQ_ON);
	u32 reg;

	/*
	 * When interrupts are being enabled, the interrupt registers
	 * should clear the register to assure a clean state.
	 */
	if (state == STATE_RADIO_IRQ_ON) {
433 434
		rt2800_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
		rt2800_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
435 436
	}

437
	rt2800_register_read(rt2x00dev, INT_MASK_CSR, &reg);
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
	rt2x00_set_field32(&reg, INT_MASK_CSR_RXDELAYINT, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_TXDELAYINT, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_RX_DONE, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_AC0_DMA_DONE, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_AC1_DMA_DONE, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_AC2_DMA_DONE, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_AC3_DMA_DONE, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_HCCA_DMA_DONE, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_MGMT_DMA_DONE, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_MCU_COMMAND, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_RXTX_COHERENT, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_TBTT, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_PRE_TBTT, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_AUTO_WAKEUP, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_GPTIMER, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_RX_COHERENT, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_TX_COHERENT, mask);
456
	rt2800_register_write(rt2x00dev, INT_MASK_CSR, reg);
457 458
}

459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
static int rt2800pci_init_registers(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;

	/*
	 * Reset DMA indexes
	 */
	rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
	rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);

	rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
	rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);

	rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);

	rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
	rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_CSR, 1);
	rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_BBP, 1);
	rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);

	rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);

	return 0;
}

491 492 493 494 495 496 497 498
static int rt2800pci_enable_radio(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;
	u16 word;

	/*
	 * Initialize all registers.
	 */
499
	if (unlikely(rt2800_wait_wpdma_ready(rt2x00dev) ||
500
		     rt2800pci_init_queues(rt2x00dev) ||
501
		     rt2800_init_registers(rt2x00dev) ||
502
		     rt2800_wait_wpdma_ready(rt2x00dev) ||
503 504
		     rt2800_init_bbp(rt2x00dev) ||
		     rt2800_init_rfcsr(rt2x00dev)))
505 506 507 508 509
		return -EIO;

	/*
	 * Send signal to firmware during boot time.
	 */
510
	rt2800_mcu_request(rt2x00dev, MCU_BOOT_SIGNAL, 0, 0, 0);
511 512 513 514

	/*
	 * Enable RX.
	 */
515
	rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
516 517
	rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_TX, 1);
	rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 0);
518
	rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
519

520
	rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
521 522 523 524
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 1);
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 1);
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_WP_DMA_BURST_SIZE, 2);
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
525
	rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
526

527
	rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
528 529
	rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_TX, 1);
	rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 1);
530
	rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
531 532 533 534 535

	/*
	 * Initialize LED control
	 */
	rt2x00_eeprom_read(rt2x00dev, EEPROM_LED1, &word);
536
	rt2800_mcu_request(rt2x00dev, MCU_LED_1, 0xff,
537 538 539
			      word & 0xff, (word >> 8) & 0xff);

	rt2x00_eeprom_read(rt2x00dev, EEPROM_LED2, &word);
540
	rt2800_mcu_request(rt2x00dev, MCU_LED_2, 0xff,
541 542 543
			      word & 0xff, (word >> 8) & 0xff);

	rt2x00_eeprom_read(rt2x00dev, EEPROM_LED3, &word);
544
	rt2800_mcu_request(rt2x00dev, MCU_LED_3, 0xff,
545 546 547 548 549 550 551 552 553
			      word & 0xff, (word >> 8) & 0xff);

	return 0;
}

static void rt2800pci_disable_radio(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;

554
	rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
555 556 557 558 559
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_DMA_BUSY, 0);
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_RX_DMA_BUSY, 0);
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
560
	rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
561

562 563 564
	rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, 0);
	rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0);
	rt2800_register_write(rt2x00dev, TX_PIN_CFG, 0);
565

566
	rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001280);
567

568
	rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
569 570 571 572 573 574 575
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
576
	rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
577

578 579
	rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
	rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
580 581

	/* Wait for DMA, ignore error */
582
	rt2800_wait_wpdma_ready(rt2x00dev);
583 584 585 586 587 588 589 590 591 592
}

static int rt2800pci_set_state(struct rt2x00_dev *rt2x00dev,
			       enum dev_state state)
{
	/*
	 * Always put the device to sleep (even when we intend to wakeup!)
	 * if the device is booting and wasn't asleep it will return
	 * failure when attempting to wakeup.
	 */
593
	rt2800_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0, 2);
594 595

	if (state == STATE_AWAKE) {
596
		rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKUP, 0, 0);
597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
		rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKUP);
	}

	return 0;
}

static int rt2800pci_set_device_state(struct rt2x00_dev *rt2x00dev,
				      enum dev_state state)
{
	int retval = 0;

	switch (state) {
	case STATE_RADIO_ON:
		/*
		 * Before the radio can be enabled, the device first has
		 * to be woken up. After that it needs a bit of time
		 * to be fully awake and then the radio can be enabled.
		 */
		rt2800pci_set_state(rt2x00dev, STATE_AWAKE);
		msleep(1);
		retval = rt2800pci_enable_radio(rt2x00dev);
		break;
	case STATE_RADIO_OFF:
		/*
		 * After the radio has been disabled, the device should
		 * be put to sleep for powersaving.
		 */
		rt2800pci_disable_radio(rt2x00dev);
		rt2800pci_set_state(rt2x00dev, STATE_SLEEP);
		break;
	case STATE_RADIO_RX_ON:
	case STATE_RADIO_RX_ON_LINK:
	case STATE_RADIO_RX_OFF:
	case STATE_RADIO_RX_OFF_LINK:
		rt2800pci_toggle_rx(rt2x00dev, state);
		break;
	case STATE_RADIO_IRQ_ON:
	case STATE_RADIO_IRQ_OFF:
		rt2800pci_toggle_irq(rt2x00dev, state);
		break;
	case STATE_DEEP_SLEEP:
	case STATE_SLEEP:
	case STATE_STANDBY:
	case STATE_AWAKE:
		retval = rt2800pci_set_state(rt2x00dev, state);
		break;
	default:
		retval = -ENOTSUPP;
		break;
	}

	if (unlikely(retval))
		ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
		      state, retval);

	return retval;
}

/*
 * TX descriptor initialization
 */
658 659
static void rt2800pci_write_tx_data(struct queue_entry* entry,
				    struct txentry_desc *txdesc)
660
{
661 662 663
	__le32 *txwi = (__le32 *) entry->skb->data;

	rt2800_write_txwi(txwi, txdesc);
664 665 666 667 668 669 670 671
}


static void rt2800pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
				    struct sk_buff *skb,
				    struct txentry_desc *txdesc)
{
	struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
672 673
	struct queue_entry_priv_pci *entry_priv = skbdesc->entry->priv_data;
	__le32 *txd = entry_priv->desc;
674 675
	u32 word;

676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
	/*
	 * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
	 * must contains a TXWI structure + 802.11 header + padding + 802.11
	 * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
	 * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
	 * data. It means that LAST_SEC0 is always 0.
	 */

	/*
	 * Initialize TX descriptor
	 */
	rt2x00_desc_read(txd, 0, &word);
	rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma);
	rt2x00_desc_write(txd, 0, word);

	rt2x00_desc_read(txd, 1, &word);
	rt2x00_set_field32(&word, TXD_W1_SD_LEN1, skb->len);
	rt2x00_set_field32(&word, TXD_W1_LAST_SEC1,
			   !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
	rt2x00_set_field32(&word, TXD_W1_BURST,
			   test_bit(ENTRY_TXD_BURST, &txdesc->flags));
697
	rt2x00_set_field32(&word, TXD_W1_SD_LEN0, TXWI_DESC_SIZE);
698 699 700 701 702 703
	rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0);
	rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0);
	rt2x00_desc_write(txd, 1, word);

	rt2x00_desc_read(txd, 2, &word);
	rt2x00_set_field32(&word, TXD_W2_SD_PTR1,
704
			   skbdesc->skb_dma + TXWI_DESC_SIZE);
705 706 707 708 709 710 711
	rt2x00_desc_write(txd, 2, word);

	rt2x00_desc_read(txd, 3, &word);
	rt2x00_set_field32(&word, TXD_W3_WIV,
			   !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
	rt2x00_set_field32(&word, TXD_W3_QSEL, 2);
	rt2x00_desc_write(txd, 3, word);
712 713 714 715 716 717

	/*
	 * Register descriptor details in skb frame descriptor.
	 */
	skbdesc->desc = txd;
	skbdesc->desc_len = TXD_DESC_SIZE;
718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
}

/*
 * TX data initialization
 */
static void rt2800pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
				    const enum data_queue_qid queue_idx)
{
	struct data_queue *queue;
	unsigned int idx, qidx = 0;

	if (queue_idx > QID_HCCA && queue_idx != QID_MGMT)
		return;

	queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
	idx = queue->index[Q_INDEX];

	if (queue_idx == QID_MGMT)
		qidx = 5;
	else
		qidx = queue_idx;

740
	rt2800_register_write(rt2x00dev, TX_CTX_IDX(qidx), idx);
741 742 743 744 745 746 747 748
}

static void rt2800pci_kill_tx_queue(struct rt2x00_dev *rt2x00dev,
				    const enum data_queue_qid qid)
{
	u32 reg;

	if (qid == QID_BEACON) {
749
		rt2800_register_write(rt2x00dev, BCN_TIME_CFG, 0);
750 751 752
		return;
	}

753
	rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
754 755 756 757
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, (qid == QID_AC_BE));
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, (qid == QID_AC_BK));
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, (qid == QID_AC_VI));
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, (qid == QID_AC_VO));
758
	rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
759 760 761 762 763 764 765 766 767 768 769
}

/*
 * RX control handlers
 */
static void rt2800pci_fill_rxdone(struct queue_entry *entry,
				  struct rxdone_entry_desc *rxdesc)
{
	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
	__le32 *rxd = entry_priv->desc;
770 771 772 773 774
	u32 word;

	rt2x00_desc_read(rxd, 3, &word);

	if (rt2x00_get_field32(word, RXD_W3_CRC_ERROR))
775 776
		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;

777 778 779 780 781
	/*
	 * Unfortunately we don't know the cipher type used during
	 * decryption. This prevents us from correct providing
	 * correct statistics through debugfs.
	 */
782
	rxdesc->cipher_status = rt2x00_get_field32(word, RXD_W3_CIPHER_ERROR);
783

784
	if (rt2x00_get_field32(word, RXD_W3_DECRYPTED)) {
785 786 787 788 789 790 791 792 793 794 795 796 797 798
		/*
		 * Hardware has stripped IV/EIV data from 802.11 frame during
		 * decryption. Unfortunately the descriptor doesn't contain
		 * any fields with the EIV/IV data either, so they can't
		 * be restored by rt2x00lib.
		 */
		rxdesc->flags |= RX_FLAG_IV_STRIPPED;

		if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
			rxdesc->flags |= RX_FLAG_DECRYPTED;
		else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
			rxdesc->flags |= RX_FLAG_MMIC_ERROR;
	}

799
	if (rt2x00_get_field32(word, RXD_W3_MY_BSS))
800 801
		rxdesc->dev_flags |= RXDONE_MY_BSS;

802
	if (rt2x00_get_field32(word, RXD_W3_L2PAD))
803 804 805
		rxdesc->dev_flags |= RXDONE_L2PAD;

	/*
806
	 * Process the RXWI structure that is at the start of the buffer.
807
	 */
808
	rt2800_process_rxwi(entry->skb, rxdesc);
809 810 811 812 813

	/*
	 * Set RX IDX in register to inform hardware that we have handled
	 * this entry and it is available for reuse again.
	 */
814
	rt2800_register_write(rt2x00dev, RX_CRX_IDX, entry->entry_idx);
815 816 817 818 819 820 821 822 823
}

/*
 * Interrupt functions.
 */
static void rt2800pci_txdone(struct rt2x00_dev *rt2x00dev)
{
	struct data_queue *queue;
	struct queue_entry *entry;
824
	__le32 *txwi;
825 826 827
	struct txdone_entry_desc txdesc;
	u32 word;
	u32 reg;
828
	int wcid, ack, pid, tx_wcid, tx_ack, tx_pid;
829
	u16 mcs, real_mcs;
H
Helmut Schaa 已提交
830
	int i;
831 832

	/*
H
Helmut Schaa 已提交
833 834 835 836 837 838 839
	 * TX_STA_FIFO is a stack of X entries, hence read TX_STA_FIFO
	 * at most X times and also stop processing once the TX_STA_FIFO_VALID
	 * flag is not set anymore.
	 *
	 * The legacy drivers use X=TX_RING_SIZE but state in a comment
	 * that the TX_STA_FIFO stack has a size of 16. We stick to our
	 * tx ring size for now.
840
	 */
H
Helmut Schaa 已提交
841
	for (i = 0; i < TX_ENTRIES; i++) {
842
		rt2800_register_read(rt2x00dev, TX_STA_FIFO, &reg);
843 844 845
		if (!rt2x00_get_field32(reg, TX_STA_FIFO_VALID))
			break;

846 847 848 849
		wcid    = rt2x00_get_field32(reg, TX_STA_FIFO_WCID);
		ack     = rt2x00_get_field32(reg, TX_STA_FIFO_TX_ACK_REQUIRED);
		pid     = rt2x00_get_field32(reg, TX_STA_FIFO_PID_TYPE);

850 851 852 853
		/*
		 * Skip this entry when it contains an invalid
		 * queue identication number.
		 */
854
		if (pid <= 0 || pid > QID_RX)
855 856
			continue;

857
		queue = rt2x00queue_get_queue(rt2x00dev, pid - 1);
858 859 860 861
		if (unlikely(!queue))
			continue;

		/*
862 863
		 * Inside each queue, we process each entry in a chronological
		 * order. We first check that the queue is not empty.
864
		 */
865
		if (rt2x00queue_empty(queue))
866
			continue;
867
		entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
868

869 870
		/* Check if we got a match by looking at WCID/ACK/PID
		 * fields */
871
		txwi = (__le32 *) entry->skb->data;
872 873 874 875 876 877 878 879

		rt2x00_desc_read(txwi, 1, &word);
		tx_wcid = rt2x00_get_field32(word, TXWI_W1_WIRELESS_CLI_ID);
		tx_ack  = rt2x00_get_field32(word, TXWI_W1_ACK);
		tx_pid  = rt2x00_get_field32(word, TXWI_W1_PACKETID);

		if ((wcid != tx_wcid) || (ack != tx_ack) || (pid != tx_pid))
			WARNING(rt2x00dev, "invalid TX_STA_FIFO content\n");
880 881 882 883 884

		/*
		 * Obtain the status about this packet.
		 */
		txdesc.flags = 0;
885 886 887
		rt2x00_desc_read(txwi, 0, &word);
		mcs = rt2x00_get_field32(word, TXWI_W0_MCS);
		real_mcs = rt2x00_get_field32(reg, TX_STA_FIFO_MCS);
888 889 890

		/*
		 * Ralink has a retry mechanism using a global fallback
891 892 893 894
		 * table. We setup this fallback table to try the immediate
		 * lower rate for all rates. In the TX_STA_FIFO, the MCS field
		 * always contains the MCS used for the last transmission, be
		 * it successful or not.
895
		 */
896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
		if (rt2x00_get_field32(reg, TX_STA_FIFO_TX_SUCCESS)) {
			/*
			 * Transmission succeeded. The number of retries is
			 * mcs - real_mcs
			 */
			__set_bit(TXDONE_SUCCESS, &txdesc.flags);
			txdesc.retry = ((mcs > real_mcs) ? mcs - real_mcs : 0);
		} else {
			/*
			 * Transmission failed. The number of retries is
			 * always 7 in this case (for a total number of 8
			 * frames sent).
			 */
			__set_bit(TXDONE_FAILURE, &txdesc.flags);
			txdesc.retry = 7;
		}

913 914 915 916 917 918
		/*
		 * the frame was retried at least once
		 * -> hw used fallback rates
		 */
		if (txdesc.retry)
			__set_bit(TXDONE_FALLBACK, &txdesc.flags);
919

920
		rt2x00lib_txdone(entry, &txdesc);
921 922 923
	}
}

924 925 926 927 928 929 930 931
static void rt2800pci_wakeup(struct rt2x00_dev *rt2x00dev)
{
	struct ieee80211_conf conf = { .flags = 0 };
	struct rt2x00lib_conf libconf = { .conf = &conf };

	rt2800_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
}

932 933 934 935 936 937
static irqreturn_t rt2800pci_interrupt(int irq, void *dev_instance)
{
	struct rt2x00_dev *rt2x00dev = dev_instance;
	u32 reg;

	/* Read status and ACK all interrupts */
938 939
	rt2800_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
	rt2800_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955

	if (!reg)
		return IRQ_NONE;

	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
		return IRQ_HANDLED;

	/*
	 * 1 - Rx ring done interrupt.
	 */
	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE))
		rt2x00pci_rxdone(rt2x00dev);

	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS))
		rt2800pci_txdone(rt2x00dev);

956 957 958 959 960 961
	/*
	 * Current beacon was sent out, fetch the next one
	 */
	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TBTT))
		rt2x00lib_beacondone(rt2x00dev);

962 963 964
	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP))
		rt2800pci_wakeup(rt2x00dev);

965 966 967 968 969 970
	return IRQ_HANDLED;
}

/*
 * Device probe functions.
 */
971 972 973 974 975
static int rt2800pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
{
	/*
	 * Read EEPROM into buffer
	 */
976
	if (rt2x00_is_soc(rt2x00dev))
977
		rt2800pci_read_eeprom_soc(rt2x00dev);
978 979 980 981
	else if (rt2800pci_efuse_detect(rt2x00dev))
		rt2800pci_read_eeprom_efuse(rt2x00dev);
	else
		rt2800pci_read_eeprom_pci(rt2x00dev);
982 983 984 985

	return rt2800_validate_eeprom(rt2x00dev);
}

986 987
static const struct rt2800_ops rt2800pci_rt2800_ops = {
	.register_read		= rt2x00pci_register_read,
988
	.register_read_lock	= rt2x00pci_register_read, /* same for PCI */
989 990 991 992 993 994 995
	.register_write		= rt2x00pci_register_write,
	.register_write_lock	= rt2x00pci_register_write, /* same for PCI */

	.register_multiread	= rt2x00pci_register_multiread,
	.register_multiwrite	= rt2x00pci_register_multiwrite,

	.regbusy_read		= rt2x00pci_regbusy_read,
996 997

	.drv_init_registers	= rt2800pci_init_registers,
998 999
};

1000 1001 1002 1003
static int rt2800pci_probe_hw(struct rt2x00_dev *rt2x00dev)
{
	int retval;

1004 1005
	rt2x00dev->priv = (void *)&rt2800pci_rt2800_ops;

1006 1007 1008 1009 1010 1011 1012
	/*
	 * Allocate eeprom data.
	 */
	retval = rt2800pci_validate_eeprom(rt2x00dev);
	if (retval)
		return retval;

1013
	retval = rt2800_init_eeprom(rt2x00dev);
1014 1015 1016 1017 1018 1019
	if (retval)
		return retval;

	/*
	 * Initialize hw specifications.
	 */
1020
	retval = rt2800_probe_hw_mode(rt2x00dev);
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
	if (retval)
		return retval;

	/*
	 * This device has multiple filters for control frames
	 * and has a separate filter for PS Poll frames.
	 */
	__set_bit(DRIVER_SUPPORT_CONTROL_FILTERS, &rt2x00dev->flags);
	__set_bit(DRIVER_SUPPORT_CONTROL_FILTER_PSPOLL, &rt2x00dev->flags);

	/*
	 * This device requires firmware.
	 */
1034
	if (!rt2x00_is_soc(rt2x00dev))
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
		__set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
	__set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
	__set_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags);
	if (!modparam_nohwcrypt)
		__set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);

	/*
	 * Set the rssi offset.
	 */
	rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;

	return 0;
}

static const struct rt2x00lib_ops rt2800pci_rt2x00_ops = {
	.irq_handler		= rt2800pci_interrupt,
	.probe_hw		= rt2800pci_probe_hw,
	.get_firmware_name	= rt2800pci_get_firmware_name,
	.check_firmware		= rt2800pci_check_firmware,
	.load_firmware		= rt2800pci_load_firmware,
	.initialize		= rt2x00pci_initialize,
	.uninitialize		= rt2x00pci_uninitialize,
	.get_entry_state	= rt2800pci_get_entry_state,
	.clear_entry		= rt2800pci_clear_entry,
	.set_device_state	= rt2800pci_set_device_state,
1060 1061 1062 1063
	.rfkill_poll		= rt2800_rfkill_poll,
	.link_stats		= rt2800_link_stats,
	.reset_tuner		= rt2800_reset_tuner,
	.link_tuner		= rt2800_link_tuner,
1064
	.write_tx_desc		= rt2800pci_write_tx_desc,
1065
	.write_tx_data		= rt2800pci_write_tx_data,
1066
	.write_beacon		= rt2800_write_beacon,
1067 1068 1069
	.kick_tx_queue		= rt2800pci_kick_tx_queue,
	.kill_tx_queue		= rt2800pci_kill_tx_queue,
	.fill_rxdone		= rt2800pci_fill_rxdone,
1070 1071 1072 1073 1074 1075 1076
	.config_shared_key	= rt2800_config_shared_key,
	.config_pairwise_key	= rt2800_config_pairwise_key,
	.config_filter		= rt2800_config_filter,
	.config_intf		= rt2800_config_intf,
	.config_erp		= rt2800_config_erp,
	.config_ant		= rt2800_config_ant,
	.config			= rt2800_config,
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
};

static const struct data_queue_desc rt2800pci_queue_rx = {
	.entry_num		= RX_ENTRIES,
	.data_size		= AGGREGATION_SIZE,
	.desc_size		= RXD_DESC_SIZE,
	.priv_size		= sizeof(struct queue_entry_priv_pci),
};

static const struct data_queue_desc rt2800pci_queue_tx = {
	.entry_num		= TX_ENTRIES,
	.data_size		= AGGREGATION_SIZE,
	.desc_size		= TXD_DESC_SIZE,
	.priv_size		= sizeof(struct queue_entry_priv_pci),
};

static const struct data_queue_desc rt2800pci_queue_bcn = {
	.entry_num		= 8 * BEACON_ENTRIES,
	.data_size		= 0, /* No DMA required for beacons */
	.desc_size		= TXWI_DESC_SIZE,
	.priv_size		= sizeof(struct queue_entry_priv_pci),
};

static const struct rt2x00_ops rt2800pci_ops = {
G
Gertjan van Wingerde 已提交
1101 1102 1103 1104 1105 1106
	.name			= KBUILD_MODNAME,
	.max_sta_intf		= 1,
	.max_ap_intf		= 8,
	.eeprom_size		= EEPROM_SIZE,
	.rf_size		= RF_SIZE,
	.tx_queues		= NUM_TX_QUEUES,
1107
	.extra_tx_headroom	= TXWI_DESC_SIZE,
G
Gertjan van Wingerde 已提交
1108 1109 1110 1111 1112
	.rx			= &rt2800pci_queue_rx,
	.tx			= &rt2800pci_queue_tx,
	.bcn			= &rt2800pci_queue_bcn,
	.lib			= &rt2800pci_rt2x00_ops,
	.hw			= &rt2800_mac80211_ops,
1113
#ifdef CONFIG_RT2X00_LIB_DEBUGFS
G
Gertjan van Wingerde 已提交
1114
	.debugfs		= &rt2800_rt2x00debug,
1115 1116 1117 1118 1119 1120
#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
};

/*
 * RT2800pci module information.
 */
1121
#ifdef CONFIG_RT2800PCI_PCI
1122
static DEFINE_PCI_DEVICE_TABLE(rt2800pci_device_table) = {
1123 1124 1125 1126
	{ PCI_DEVICE(0x1814, 0x0601), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1814, 0x0681), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1814, 0x0701), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1814, 0x0781), PCI_DEVICE_DATA(&rt2800pci_ops) },
1127 1128 1129 1130 1131 1132 1133
	{ PCI_DEVICE(0x1432, 0x7708), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1432, 0x7727), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1432, 0x7728), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1432, 0x7738), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1432, 0x7748), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1432, 0x7758), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1432, 0x7768), PCI_DEVICE_DATA(&rt2800pci_ops) },
1134 1135
	{ PCI_DEVICE(0x1a3b, 0x1059), PCI_DEVICE_DATA(&rt2800pci_ops) },
#ifdef CONFIG_RT2800PCI_RT30XX
1136 1137 1138
	{ PCI_DEVICE(0x1814, 0x3090), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1814, 0x3091), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1814, 0x3092), PCI_DEVICE_DATA(&rt2800pci_ops) },
1139 1140 1141 1142 1143
	{ PCI_DEVICE(0x1462, 0x891a), PCI_DEVICE_DATA(&rt2800pci_ops) },
#endif
#ifdef CONFIG_RT2800PCI_RT35XX
	{ PCI_DEVICE(0x1814, 0x3060), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1814, 0x3062), PCI_DEVICE_DATA(&rt2800pci_ops) },
1144 1145
	{ PCI_DEVICE(0x1814, 0x3562), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1814, 0x3592), PCI_DEVICE_DATA(&rt2800pci_ops) },
1146
	{ PCI_DEVICE(0x1814, 0x3593), PCI_DEVICE_DATA(&rt2800pci_ops) },
1147
#endif
1148 1149
	{ 0, }
};
1150
#endif /* CONFIG_RT2800PCI_PCI */
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161

MODULE_AUTHOR(DRV_PROJECT);
MODULE_VERSION(DRV_VERSION);
MODULE_DESCRIPTION("Ralink RT2800 PCI & PCMCIA Wireless LAN driver.");
MODULE_SUPPORTED_DEVICE("Ralink RT2860 PCI & PCMCIA chipset based cards");
#ifdef CONFIG_RT2800PCI_PCI
MODULE_FIRMWARE(FIRMWARE_RT2860);
MODULE_DEVICE_TABLE(pci, rt2800pci_device_table);
#endif /* CONFIG_RT2800PCI_PCI */
MODULE_LICENSE("GPL");

1162
#ifdef CONFIG_RT2800PCI_SOC
1163 1164
static int rt2800soc_probe(struct platform_device *pdev)
{
1165
	return rt2x00soc_probe(pdev, &rt2800pci_ops);
1166
}
1167 1168 1169 1170 1171 1172 1173

static struct platform_driver rt2800soc_driver = {
	.driver		= {
		.name		= "rt2800_wmac",
		.owner		= THIS_MODULE,
		.mod_name	= KBUILD_MODNAME,
	},
1174
	.probe		= rt2800soc_probe,
1175 1176 1177 1178
	.remove		= __devexit_p(rt2x00soc_remove),
	.suspend	= rt2x00soc_suspend,
	.resume		= rt2x00soc_resume,
};
1179
#endif /* CONFIG_RT2800PCI_SOC */
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195

#ifdef CONFIG_RT2800PCI_PCI
static struct pci_driver rt2800pci_driver = {
	.name		= KBUILD_MODNAME,
	.id_table	= rt2800pci_device_table,
	.probe		= rt2x00pci_probe,
	.remove		= __devexit_p(rt2x00pci_remove),
	.suspend	= rt2x00pci_suspend,
	.resume		= rt2x00pci_resume,
};
#endif /* CONFIG_RT2800PCI_PCI */

static int __init rt2800pci_init(void)
{
	int ret = 0;

1196
#ifdef CONFIG_RT2800PCI_SOC
1197 1198 1199 1200 1201 1202 1203
	ret = platform_driver_register(&rt2800soc_driver);
	if (ret)
		return ret;
#endif
#ifdef CONFIG_RT2800PCI_PCI
	ret = pci_register_driver(&rt2800pci_driver);
	if (ret) {
1204
#ifdef CONFIG_RT2800PCI_SOC
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
		platform_driver_unregister(&rt2800soc_driver);
#endif
		return ret;
	}
#endif

	return ret;
}

static void __exit rt2800pci_exit(void)
{
#ifdef CONFIG_RT2800PCI_PCI
	pci_unregister_driver(&rt2800pci_driver);
#endif
1219
#ifdef CONFIG_RT2800PCI_SOC
1220 1221 1222 1223 1224 1225
	platform_driver_unregister(&rt2800soc_driver);
#endif
}

module_init(rt2800pci_init);
module_exit(rt2800pci_exit);