rt2800pci.c 106.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
/*
	Copyright (C) 2004 - 2009 rt2x00 SourceForge Project
	<http://rt2x00.serialmonkey.com>

	This program is free software; you can redistribute it and/or modify
	it under the terms of the GNU General Public License as published by
	the Free Software Foundation; either version 2 of the License, or
	(at your option) any later version.

	This program is distributed in the hope that it will be useful,
	but WITHOUT ANY WARRANTY; without even the implied warranty of
	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
	GNU General Public License for more details.

	You should have received a copy of the GNU General Public License
	along with this program; if not, write to the
	Free Software Foundation, Inc.,
	59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

/*
	Module: rt2800pci
	Abstract: rt2800pci device specific routines.
	Supported chipsets: RT2800E & RT2800ED.
 */

#include <linux/crc-ccitt.h>
#include <linux/delay.h>
#include <linux/etherdevice.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/platform_device.h>
#include <linux/eeprom_93cx6.h>

#include "rt2x00.h"
#include "rt2x00pci.h"
#include "rt2x00soc.h"
#include "rt2800pci.h"

#ifdef CONFIG_RT2800PCI_PCI_MODULE
#define CONFIG_RT2800PCI_PCI
#endif

#ifdef CONFIG_RT2800PCI_WISOC_MODULE
#define CONFIG_RT2800PCI_WISOC
#endif

/*
 * Allow hardware encryption to be disabled.
 */
static int modparam_nohwcrypt = 1;
module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");

/*
 * Register access.
59
 * All access to the CSR registers will go through the methods
60
 * rt2800_register_read and rt2800_register_write.
61
 * BBP and RF register require indirect register access,
62
 * and use the CSR registers BBPCSR and RFCSR to achieve this.
63 64 65 66 67 68
 * These indirect registers work with busy bits,
 * and we will try maximal REGISTER_BUSY_COUNT times to access
 * the register while taking a REGISTER_BUSY_DELAY us delay
 * between each attampt. When the busy bit is still set at that time,
 * the access attempt is considered to have failed,
 * and we will print an error.
69
 * The _lock versions must be used if you already hold the csr_mutex
70 71
 */
#define WAIT_FOR_BBP(__dev, __reg) \
72
	rt2800_regbusy_read((__dev), BBP_CSR_CFG, BBP_CSR_CFG_BUSY, (__reg))
73
#define WAIT_FOR_RFCSR(__dev, __reg) \
74
	rt2800_regbusy_read((__dev), RF_CSR_CFG, RF_CSR_CFG_BUSY, (__reg))
75
#define WAIT_FOR_RF(__dev, __reg) \
76
	rt2800_regbusy_read((__dev), RF_CSR_CFG0, RF_CSR_CFG0_BUSY, (__reg))
77
#define WAIT_FOR_MCU(__dev, __reg) \
78 79
	rt2800_regbusy_read((__dev), H2M_MAILBOX_CSR, \
			    H2M_MAILBOX_CSR_OWNER, (__reg))
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99

static void rt2800pci_bbp_write(struct rt2x00_dev *rt2x00dev,
				const unsigned int word, const u8 value)
{
	u32 reg;

	mutex_lock(&rt2x00dev->csr_mutex);

	/*
	 * Wait until the BBP becomes available, afterwards we
	 * can safely write the new data into the register.
	 */
	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
		reg = 0;
		rt2x00_set_field32(&reg, BBP_CSR_CFG_VALUE, value);
		rt2x00_set_field32(&reg, BBP_CSR_CFG_REGNUM, word);
		rt2x00_set_field32(&reg, BBP_CSR_CFG_BUSY, 1);
		rt2x00_set_field32(&reg, BBP_CSR_CFG_READ_CONTROL, 0);
		rt2x00_set_field32(&reg, BBP_CSR_CFG_BBP_RW_MODE, 1);

100
		rt2800_register_write_lock(rt2x00dev, BBP_CSR_CFG, reg);
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
	}

	mutex_unlock(&rt2x00dev->csr_mutex);
}

static void rt2800pci_bbp_read(struct rt2x00_dev *rt2x00dev,
			       const unsigned int word, u8 *value)
{
	u32 reg;

	mutex_lock(&rt2x00dev->csr_mutex);

	/*
	 * Wait until the BBP becomes available, afterwards we
	 * can safely write the read request into the register.
	 * After the data has been written, we wait until hardware
	 * returns the correct value, if at any time the register
	 * doesn't become available in time, reg will be 0xffffffff
	 * which means we return 0xff to the caller.
	 */
	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
		reg = 0;
		rt2x00_set_field32(&reg, BBP_CSR_CFG_REGNUM, word);
		rt2x00_set_field32(&reg, BBP_CSR_CFG_BUSY, 1);
		rt2x00_set_field32(&reg, BBP_CSR_CFG_READ_CONTROL, 1);
		rt2x00_set_field32(&reg, BBP_CSR_CFG_BBP_RW_MODE, 1);

128
		rt2800_register_write_lock(rt2x00dev, BBP_CSR_CFG, reg);
129 130 131 132 133 134 135 136 137

		WAIT_FOR_BBP(rt2x00dev, &reg);
	}

	*value = rt2x00_get_field32(reg, BBP_CSR_CFG_VALUE);

	mutex_unlock(&rt2x00dev->csr_mutex);
}

138 139 140 141 142 143 144 145 146 147 148 149
static inline void rt2800_bbp_write(struct rt2x00_dev *rt2x00dev,
				    const unsigned int word, const u8 value)
{
	rt2800pci_bbp_write(rt2x00dev, word, value);
}

static inline void rt2800_bbp_read(struct rt2x00_dev *rt2x00dev,
				   const unsigned int word, u8 *value)
{
	rt2800pci_bbp_read(rt2x00dev, word, value);
}

150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
static void rt2800pci_rfcsr_write(struct rt2x00_dev *rt2x00dev,
				  const unsigned int word, const u8 value)
{
	u32 reg;

	mutex_lock(&rt2x00dev->csr_mutex);

	/*
	 * Wait until the RFCSR becomes available, afterwards we
	 * can safely write the new data into the register.
	 */
	if (WAIT_FOR_RFCSR(rt2x00dev, &reg)) {
		reg = 0;
		rt2x00_set_field32(&reg, RF_CSR_CFG_DATA, value);
		rt2x00_set_field32(&reg, RF_CSR_CFG_REGNUM, word);
		rt2x00_set_field32(&reg, RF_CSR_CFG_WRITE, 1);
		rt2x00_set_field32(&reg, RF_CSR_CFG_BUSY, 1);

168
		rt2800_register_write_lock(rt2x00dev, RF_CSR_CFG, reg);
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
	}

	mutex_unlock(&rt2x00dev->csr_mutex);
}

static void rt2800pci_rfcsr_read(struct rt2x00_dev *rt2x00dev,
				 const unsigned int word, u8 *value)
{
	u32 reg;

	mutex_lock(&rt2x00dev->csr_mutex);

	/*
	 * Wait until the RFCSR becomes available, afterwards we
	 * can safely write the read request into the register.
	 * After the data has been written, we wait until hardware
	 * returns the correct value, if at any time the register
	 * doesn't become available in time, reg will be 0xffffffff
	 * which means we return 0xff to the caller.
	 */
	if (WAIT_FOR_RFCSR(rt2x00dev, &reg)) {
		reg = 0;
		rt2x00_set_field32(&reg, RF_CSR_CFG_REGNUM, word);
		rt2x00_set_field32(&reg, RF_CSR_CFG_WRITE, 0);
		rt2x00_set_field32(&reg, RF_CSR_CFG_BUSY, 1);

195
		rt2800_register_write_lock(rt2x00dev, RF_CSR_CFG, reg);
196 197 198 199 200 201 202 203 204

		WAIT_FOR_RFCSR(rt2x00dev, &reg);
	}

	*value = rt2x00_get_field32(reg, RF_CSR_CFG_DATA);

	mutex_unlock(&rt2x00dev->csr_mutex);
}

205 206 207 208 209 210 211 212 213 214 215 216
static inline void rt2800_rfcsr_write(struct rt2x00_dev *rt2x00dev,
				      const unsigned int word, const u8 value)
{
	rt2800pci_rfcsr_write(rt2x00dev, word, value);
}

static inline void rt2800_rfcsr_read(struct rt2x00_dev *rt2x00dev,
				     const unsigned int word, u8 *value)
{
	rt2800pci_rfcsr_read(rt2x00dev, word, value);
}

217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
static void rt2800pci_rf_write(struct rt2x00_dev *rt2x00dev,
			       const unsigned int word, const u32 value)
{
	u32 reg;

	mutex_lock(&rt2x00dev->csr_mutex);

	/*
	 * Wait until the RF becomes available, afterwards we
	 * can safely write the new data into the register.
	 */
	if (WAIT_FOR_RF(rt2x00dev, &reg)) {
		reg = 0;
		rt2x00_set_field32(&reg, RF_CSR_CFG0_REG_VALUE_BW, value);
		rt2x00_set_field32(&reg, RF_CSR_CFG0_STANDBYMODE, 0);
		rt2x00_set_field32(&reg, RF_CSR_CFG0_SEL, 0);
		rt2x00_set_field32(&reg, RF_CSR_CFG0_BUSY, 1);

235
		rt2800_register_write_lock(rt2x00dev, RF_CSR_CFG0, reg);
236 237 238 239 240 241
		rt2x00_rf_write(rt2x00dev, word, value);
	}

	mutex_unlock(&rt2x00dev->csr_mutex);
}

242 243 244 245 246 247
static inline void rt2800_rf_write(struct rt2x00_dev *rt2x00dev,
				   const unsigned int word, const u32 value)
{
	rt2800pci_rf_write(rt2x00dev, word, value);
}

248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
static void rt2800pci_mcu_request(struct rt2x00_dev *rt2x00dev,
				  const u8 command, const u8 token,
				  const u8 arg0, const u8 arg1)
{
	u32 reg;

	/*
	 * RT2880 and RT3052 don't support MCU requests.
	 */
	if (rt2x00_rt(&rt2x00dev->chip, RT2880) ||
	    rt2x00_rt(&rt2x00dev->chip, RT3052))
		return;

	mutex_lock(&rt2x00dev->csr_mutex);

	/*
	 * Wait until the MCU becomes available, afterwards we
	 * can safely write the new data into the register.
	 */
	if (WAIT_FOR_MCU(rt2x00dev, &reg)) {
		rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_OWNER, 1);
		rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_CMD_TOKEN, token);
		rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG0, arg0);
		rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG1, arg1);
272
		rt2800_register_write_lock(rt2x00dev, H2M_MAILBOX_CSR, reg);
273 274 275

		reg = 0;
		rt2x00_set_field32(&reg, HOST_CMD_CSR_HOST_COMMAND, command);
276
		rt2800_register_write_lock(rt2x00dev, HOST_CMD_CSR, reg);
277 278 279 280 281
	}

	mutex_unlock(&rt2x00dev->csr_mutex);
}

282 283 284 285 286 287 288
static inline void rt2800_mcu_request(struct rt2x00_dev *rt2x00dev,
				      const u8 command, const u8 token,
				      const u8 arg0, const u8 arg1)
{
	rt2800pci_mcu_request(rt2x00dev, command, token, arg0, arg1);
}

289 290 291 292 293 294
static void rt2800pci_mcu_status(struct rt2x00_dev *rt2x00dev, const u8 token)
{
	unsigned int i;
	u32 reg;

	for (i = 0; i < 200; i++) {
295
		rt2800_register_read(rt2x00dev, H2M_MAILBOX_CID, &reg);
296 297 298 299 300 301 302 303 304 305 306 307 308

		if ((rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD0) == token) ||
		    (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD1) == token) ||
		    (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD2) == token) ||
		    (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD3) == token))
			break;

		udelay(REGISTER_BUSY_DELAY);
	}

	if (i == 200)
		ERROR(rt2x00dev, "MCU request failed, no response from hardware\n");

309 310
	rt2800_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
	rt2800_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
}

#ifdef CONFIG_RT2800PCI_WISOC
static void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
{
	u32 *base_addr = (u32 *) KSEG1ADDR(0x1F040000); /* XXX for RT3052 */

	memcpy_fromio(rt2x00dev->eeprom, base_addr, EEPROM_SIZE);
}
#else
static inline void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
{
}
#endif /* CONFIG_RT2800PCI_WISOC */

#ifdef CONFIG_RT2800PCI_PCI
static void rt2800pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
{
	struct rt2x00_dev *rt2x00dev = eeprom->data;
	u32 reg;

332
	rt2800_register_read(rt2x00dev, E2PROM_CSR, &reg);
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353

	eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
	eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
	eeprom->reg_data_clock =
	    !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
	eeprom->reg_chip_select =
	    !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
}

static void rt2800pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
{
	struct rt2x00_dev *rt2x00dev = eeprom->data;
	u32 reg = 0;

	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
			   !!eeprom->reg_data_clock);
	rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
			   !!eeprom->reg_chip_select);

354
	rt2800_register_write(rt2x00dev, E2PROM_CSR, reg);
355 356 357 358 359 360 361
}

static void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
{
	struct eeprom_93cx6 eeprom;
	u32 reg;

362
	rt2800_register_read(rt2x00dev, E2PROM_CSR, &reg);
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382

	eeprom.data = rt2x00dev;
	eeprom.register_read = rt2800pci_eepromregister_read;
	eeprom.register_write = rt2800pci_eepromregister_write;
	eeprom.width = !rt2x00_get_field32(reg, E2PROM_CSR_TYPE) ?
	    PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
	eeprom.reg_data_in = 0;
	eeprom.reg_data_out = 0;
	eeprom.reg_data_clock = 0;
	eeprom.reg_chip_select = 0;

	eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
			       EEPROM_SIZE / sizeof(u16));
}

static void rt2800pci_efuse_read(struct rt2x00_dev *rt2x00dev,
				 unsigned int i)
{
	u32 reg;

383
	rt2800_register_read(rt2x00dev, EFUSE_CTRL, &reg);
384 385 386
	rt2x00_set_field32(&reg, EFUSE_CTRL_ADDRESS_IN, i);
	rt2x00_set_field32(&reg, EFUSE_CTRL_MODE, 0);
	rt2x00_set_field32(&reg, EFUSE_CTRL_KICK, 1);
387
	rt2800_register_write(rt2x00dev, EFUSE_CTRL, reg);
388 389

	/* Wait until the EEPROM has been loaded */
390
	rt2800_regbusy_read(rt2x00dev, EFUSE_CTRL, EFUSE_CTRL_KICK, &reg);
391 392

	/* Apparently the data is read from end to start */
393
	rt2800_register_read(rt2x00dev, EFUSE_DATA3,
394
				(u32 *)&rt2x00dev->eeprom[i]);
395
	rt2800_register_read(rt2x00dev, EFUSE_DATA2,
396
				(u32 *)&rt2x00dev->eeprom[i + 2]);
397
	rt2800_register_read(rt2x00dev, EFUSE_DATA1,
398
				(u32 *)&rt2x00dev->eeprom[i + 4]);
399
	rt2800_register_read(rt2x00dev, EFUSE_DATA0,
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
				(u32 *)&rt2x00dev->eeprom[i + 6]);
}

static void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
{
	unsigned int i;

	for (i = 0; i < EEPROM_SIZE / sizeof(u16); i += 8)
		rt2800pci_efuse_read(rt2x00dev, i);
}
#else
static inline void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
{
}

static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
{
}
#endif /* CONFIG_RT2800PCI_PCI */

#ifdef CONFIG_RT2X00_LIB_DEBUGFS
static const struct rt2x00debug rt2800pci_rt2x00debug = {
	.owner	= THIS_MODULE,
	.csr	= {
424 425
		.read		= rt2800_register_read,
		.write		= rt2800_register_write,
426 427 428 429 430 431 432 433 434 435 436 437 438
		.flags		= RT2X00DEBUGFS_OFFSET,
		.word_base	= CSR_REG_BASE,
		.word_size	= sizeof(u32),
		.word_count	= CSR_REG_SIZE / sizeof(u32),
	},
	.eeprom	= {
		.read		= rt2x00_eeprom_read,
		.write		= rt2x00_eeprom_write,
		.word_base	= EEPROM_BASE,
		.word_size	= sizeof(u16),
		.word_count	= EEPROM_SIZE / sizeof(u16),
	},
	.bbp	= {
439 440
		.read		= rt2800_bbp_read,
		.write		= rt2800_bbp_write,
441 442 443 444 445 446
		.word_base	= BBP_BASE,
		.word_size	= sizeof(u8),
		.word_count	= BBP_SIZE / sizeof(u8),
	},
	.rf	= {
		.read		= rt2x00_rf_read,
447
		.write		= rt2800_rf_write,
448 449 450 451 452 453 454 455 456 457 458
		.word_base	= RF_BASE,
		.word_size	= sizeof(u32),
		.word_count	= RF_SIZE / sizeof(u32),
	},
};
#endif /* CONFIG_RT2X00_LIB_DEBUGFS */

static int rt2800pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;

459
	rt2800_register_read(rt2x00dev, GPIO_CTRL_CFG, &reg);
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
	return rt2x00_get_field32(reg, GPIO_CTRL_CFG_BIT2);
}

#ifdef CONFIG_RT2X00_LIB_LEDS
static void rt2800pci_brightness_set(struct led_classdev *led_cdev,
				     enum led_brightness brightness)
{
	struct rt2x00_led *led =
	    container_of(led_cdev, struct rt2x00_led, led_dev);
	unsigned int enabled = brightness != LED_OFF;
	unsigned int bg_mode =
	    (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
	unsigned int polarity =
		rt2x00_get_field16(led->rt2x00dev->led_mcu_reg,
				   EEPROM_FREQ_LED_POLARITY);
	unsigned int ledmode =
		rt2x00_get_field16(led->rt2x00dev->led_mcu_reg,
				   EEPROM_FREQ_LED_MODE);

	if (led->type == LED_TYPE_RADIO) {
480
		rt2800_mcu_request(led->rt2x00dev, MCU_LED, 0xff, ledmode,
481 482
				      enabled ? 0x20 : 0);
	} else if (led->type == LED_TYPE_ASSOC) {
483
		rt2800_mcu_request(led->rt2x00dev, MCU_LED, 0xff, ledmode,
484 485 486 487 488 489 490 491 492 493
				      enabled ? (bg_mode ? 0x60 : 0xa0) : 0x20);
	} else if (led->type == LED_TYPE_QUALITY) {
		/*
		 * The brightness is divided into 6 levels (0 - 5),
		 * The specs tell us the following levels:
		 *	0, 1 ,3, 7, 15, 31
		 * to determine the level in a simple way we can simply
		 * work with bitshifting:
		 *	(1 << level) - 1
		 */
494
		rt2800_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff,
495 496 497 498 499 500 501 502 503 504 505 506 507
				      (1 << brightness / (LED_FULL / 6)) - 1,
				      polarity);
	}
}

static int rt2800pci_blink_set(struct led_classdev *led_cdev,
			       unsigned long *delay_on,
			       unsigned long *delay_off)
{
	struct rt2x00_led *led =
	    container_of(led_cdev, struct rt2x00_led, led_dev);
	u32 reg;

508
	rt2800_register_read(led->rt2x00dev, LED_CFG, &reg);
509 510 511 512 513 514 515
	rt2x00_set_field32(&reg, LED_CFG_ON_PERIOD, *delay_on);
	rt2x00_set_field32(&reg, LED_CFG_OFF_PERIOD, *delay_off);
	rt2x00_set_field32(&reg, LED_CFG_SLOW_BLINK_PERIOD, 3);
	rt2x00_set_field32(&reg, LED_CFG_R_LED_MODE, 3);
	rt2x00_set_field32(&reg, LED_CFG_G_LED_MODE, 12);
	rt2x00_set_field32(&reg, LED_CFG_Y_LED_MODE, 3);
	rt2x00_set_field32(&reg, LED_CFG_LED_POLAR, 1);
516
	rt2800_register_write(led->rt2x00dev, LED_CFG, reg);
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546

	return 0;
}

static void rt2800pci_init_led(struct rt2x00_dev *rt2x00dev,
			       struct rt2x00_led *led,
			       enum led_type type)
{
	led->rt2x00dev = rt2x00dev;
	led->type = type;
	led->led_dev.brightness_set = rt2800pci_brightness_set;
	led->led_dev.blink_set = rt2800pci_blink_set;
	led->flags = LED_INITIALIZED;
}
#endif /* CONFIG_RT2X00_LIB_LEDS */

/*
 * Configuration handlers.
 */
static void rt2800pci_config_wcid_attr(struct rt2x00_dev *rt2x00dev,
				       struct rt2x00lib_crypto *crypto,
				       struct ieee80211_key_conf *key)
{
	struct mac_wcid_entry wcid_entry;
	struct mac_iveiv_entry iveiv_entry;
	u32 offset;
	u32 reg;

	offset = MAC_WCID_ATTR_ENTRY(key->hw_key_idx);

547
	rt2800_register_read(rt2x00dev, offset, &reg);
548 549 550 551 552 553 554
	rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_KEYTAB,
			   !!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE));
	rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_CIPHER,
			   (crypto->cmd == SET_KEY) * crypto->cipher);
	rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_BSS_IDX,
			   (crypto->cmd == SET_KEY) * crypto->bssidx);
	rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_RX_WIUDF, crypto->cipher);
555
	rt2800_register_write(rt2x00dev, offset, reg);
556 557 558 559 560 561 562 563 564

	offset = MAC_IVEIV_ENTRY(key->hw_key_idx);

	memset(&iveiv_entry, 0, sizeof(iveiv_entry));
	if ((crypto->cipher == CIPHER_TKIP) ||
	    (crypto->cipher == CIPHER_TKIP_NO_MIC) ||
	    (crypto->cipher == CIPHER_AES))
		iveiv_entry.iv[3] |= 0x20;
	iveiv_entry.iv[3] |= key->keyidx << 6;
565
	rt2800_register_multiwrite(rt2x00dev, offset,
566 567 568 569 570 571 572
				      &iveiv_entry, sizeof(iveiv_entry));

	offset = MAC_WCID_ENTRY(key->hw_key_idx);

	memset(&wcid_entry, 0, sizeof(wcid_entry));
	if (crypto->cmd == SET_KEY)
		memcpy(&wcid_entry, crypto->address, ETH_ALEN);
573
	rt2800_register_multiwrite(rt2x00dev, offset,
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
				      &wcid_entry, sizeof(wcid_entry));
}

static int rt2800pci_config_shared_key(struct rt2x00_dev *rt2x00dev,
				       struct rt2x00lib_crypto *crypto,
				       struct ieee80211_key_conf *key)
{
	struct hw_key_entry key_entry;
	struct rt2x00_field32 field;
	u32 offset;
	u32 reg;

	if (crypto->cmd == SET_KEY) {
		key->hw_key_idx = (4 * crypto->bssidx) + key->keyidx;

		memcpy(key_entry.key, crypto->key,
		       sizeof(key_entry.key));
		memcpy(key_entry.tx_mic, crypto->tx_mic,
		       sizeof(key_entry.tx_mic));
		memcpy(key_entry.rx_mic, crypto->rx_mic,
		       sizeof(key_entry.rx_mic));

		offset = SHARED_KEY_ENTRY(key->hw_key_idx);
597
		rt2800_register_multiwrite(rt2x00dev, offset,
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
					      &key_entry, sizeof(key_entry));
	}

	/*
	 * The cipher types are stored over multiple registers
	 * starting with SHARED_KEY_MODE_BASE each word will have
	 * 32 bits and contains the cipher types for 2 bssidx each.
	 * Using the correct defines correctly will cause overhead,
	 * so just calculate the correct offset.
	 */
	field.bit_offset = 4 * (key->hw_key_idx % 8);
	field.bit_mask = 0x7 << field.bit_offset;

	offset = SHARED_KEY_MODE_ENTRY(key->hw_key_idx / 8);

613
	rt2800_register_read(rt2x00dev, offset, &reg);
614 615
	rt2x00_set_field32(&reg, field,
			   (crypto->cmd == SET_KEY) * crypto->cipher);
616
	rt2800_register_write(rt2x00dev, offset, reg);
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652

	/*
	 * Update WCID information
	 */
	rt2800pci_config_wcid_attr(rt2x00dev, crypto, key);

	return 0;
}

static int rt2800pci_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
					 struct rt2x00lib_crypto *crypto,
					 struct ieee80211_key_conf *key)
{
	struct hw_key_entry key_entry;
	u32 offset;

	if (crypto->cmd == SET_KEY) {
		/*
		 * 1 pairwise key is possible per AID, this means that the AID
		 * equals our hw_key_idx. Make sure the WCID starts _after_ the
		 * last possible shared key entry.
		 */
		if (crypto->aid > (256 - 32))
			return -ENOSPC;

		key->hw_key_idx = 32 + crypto->aid;


		memcpy(key_entry.key, crypto->key,
		       sizeof(key_entry.key));
		memcpy(key_entry.tx_mic, crypto->tx_mic,
		       sizeof(key_entry.tx_mic));
		memcpy(key_entry.rx_mic, crypto->rx_mic,
		       sizeof(key_entry.rx_mic));

		offset = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
653
		rt2800_register_multiwrite(rt2x00dev, offset,
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
					      &key_entry, sizeof(key_entry));
	}

	/*
	 * Update WCID information
	 */
	rt2800pci_config_wcid_attr(rt2x00dev, crypto, key);

	return 0;
}

static void rt2800pci_config_filter(struct rt2x00_dev *rt2x00dev,
				    const unsigned int filter_flags)
{
	u32 reg;

	/*
	 * Start configuration steps.
	 * Note that the version error will always be dropped
	 * and broadcast frames will always be accepted since
	 * there is no filter for it at this time.
	 */
676
	rt2800_register_read(rt2x00dev, RX_FILTER_CFG, &reg);
677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
	rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_CRC_ERROR,
			   !(filter_flags & FIF_FCSFAIL));
	rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_PHY_ERROR,
			   !(filter_flags & FIF_PLCPFAIL));
	rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_NOT_TO_ME,
			   !(filter_flags & FIF_PROMISC_IN_BSS));
	rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_NOT_MY_BSSD, 0);
	rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_VER_ERROR, 1);
	rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_MULTICAST,
			   !(filter_flags & FIF_ALLMULTI));
	rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_BROADCAST, 0);
	rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_DUPLICATE, 1);
	rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_CF_END_ACK,
			   !(filter_flags & FIF_CONTROL));
	rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_CF_END,
			   !(filter_flags & FIF_CONTROL));
	rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_ACK,
			   !(filter_flags & FIF_CONTROL));
	rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_CTS,
			   !(filter_flags & FIF_CONTROL));
	rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_RTS,
			   !(filter_flags & FIF_CONTROL));
	rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_PSPOLL,
			   !(filter_flags & FIF_PSPOLL));
	rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_BA, 1);
	rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_BAR, 0);
	rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_CNTL,
			   !(filter_flags & FIF_CONTROL));
705
	rt2800_register_write(rt2x00dev, RX_FILTER_CFG, reg);
706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
}

static void rt2800pci_config_intf(struct rt2x00_dev *rt2x00dev,
				  struct rt2x00_intf *intf,
				  struct rt2x00intf_conf *conf,
				  const unsigned int flags)
{
	unsigned int beacon_base;
	u32 reg;

	if (flags & CONFIG_UPDATE_TYPE) {
		/*
		 * Clear current synchronisation setup.
		 * For the Beacon base registers we only need to clear
		 * the first byte since that byte contains the VALID and OWNER
		 * bits which (when set to 0) will invalidate the entire beacon.
		 */
		beacon_base = HW_BEACON_OFFSET(intf->beacon->entry_idx);
724
		rt2800_register_write(rt2x00dev, beacon_base, 0);
725 726 727 728

		/*
		 * Enable synchronisation.
		 */
729
		rt2800_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
730 731 732
		rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 1);
		rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_SYNC, conf->sync);
		rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 1);
733
		rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
734 735 736 737 738 739 740
	}

	if (flags & CONFIG_UPDATE_MAC) {
		reg = le32_to_cpu(conf->mac[1]);
		rt2x00_set_field32(&reg, MAC_ADDR_DW1_UNICAST_TO_ME_MASK, 0xff);
		conf->mac[1] = cpu_to_le32(reg);

741
		rt2800_register_multiwrite(rt2x00dev, MAC_ADDR_DW0,
742 743 744 745 746 747 748 749 750
					      conf->mac, sizeof(conf->mac));
	}

	if (flags & CONFIG_UPDATE_BSSID) {
		reg = le32_to_cpu(conf->bssid[1]);
		rt2x00_set_field32(&reg, MAC_BSSID_DW1_BSS_ID_MASK, 0);
		rt2x00_set_field32(&reg, MAC_BSSID_DW1_BSS_BCN_NUM, 0);
		conf->bssid[1] = cpu_to_le32(reg);

751
		rt2800_register_multiwrite(rt2x00dev, MAC_BSSID_DW0,
752 753 754 755 756 757 758 759 760
					      conf->bssid, sizeof(conf->bssid));
	}
}

static void rt2800pci_config_erp(struct rt2x00_dev *rt2x00dev,
				 struct rt2x00lib_erp *erp)
{
	u32 reg;

761
	rt2800_register_read(rt2x00dev, TX_TIMEOUT_CFG, &reg);
762
	rt2x00_set_field32(&reg, TX_TIMEOUT_CFG_RX_ACK_TIMEOUT, 0x20);
763
	rt2800_register_write(rt2x00dev, TX_TIMEOUT_CFG, reg);
764

765
	rt2800_register_read(rt2x00dev, AUTO_RSP_CFG, &reg);
766 767 768 769
	rt2x00_set_field32(&reg, AUTO_RSP_CFG_BAC_ACK_POLICY,
			   !!erp->short_preamble);
	rt2x00_set_field32(&reg, AUTO_RSP_CFG_AR_PREAMBLE,
			   !!erp->short_preamble);
770
	rt2800_register_write(rt2x00dev, AUTO_RSP_CFG, reg);
771

772
	rt2800_register_read(rt2x00dev, OFDM_PROT_CFG, &reg);
773 774
	rt2x00_set_field32(&reg, OFDM_PROT_CFG_PROTECT_CTRL,
			   erp->cts_protection ? 2 : 0);
775
	rt2800_register_write(rt2x00dev, OFDM_PROT_CFG, reg);
776

777
	rt2800_register_write(rt2x00dev, LEGACY_BASIC_RATE,
778
				 erp->basic_rates);
779
	rt2800_register_write(rt2x00dev, HT_BASIC_RATE, 0x00008003);
780

781
	rt2800_register_read(rt2x00dev, BKOFF_SLOT_CFG, &reg);
782 783
	rt2x00_set_field32(&reg, BKOFF_SLOT_CFG_SLOT_TIME, erp->slot_time);
	rt2x00_set_field32(&reg, BKOFF_SLOT_CFG_CC_DELAY_TIME, 2);
784
	rt2800_register_write(rt2x00dev, BKOFF_SLOT_CFG, reg);
785

786
	rt2800_register_read(rt2x00dev, XIFS_TIME_CFG, &reg);
787 788 789 790 791
	rt2x00_set_field32(&reg, XIFS_TIME_CFG_CCKM_SIFS_TIME, erp->sifs);
	rt2x00_set_field32(&reg, XIFS_TIME_CFG_OFDM_SIFS_TIME, erp->sifs);
	rt2x00_set_field32(&reg, XIFS_TIME_CFG_OFDM_XIFS_TIME, 4);
	rt2x00_set_field32(&reg, XIFS_TIME_CFG_EIFS, erp->eifs);
	rt2x00_set_field32(&reg, XIFS_TIME_CFG_BB_RXEND_ENABLE, 1);
792
	rt2800_register_write(rt2x00dev, XIFS_TIME_CFG, reg);
793

794
	rt2800_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
795 796
	rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL,
			   erp->beacon_int * 16);
797
	rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
798 799 800 801 802 803 804 805
}

static void rt2800pci_config_ant(struct rt2x00_dev *rt2x00dev,
				 struct antenna_setup *ant)
{
	u8 r1;
	u8 r3;

806 807
	rt2800_bbp_read(rt2x00dev, 1, &r1);
	rt2800_bbp_read(rt2x00dev, 3, &r3);
808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839

	/*
	 * Configure the TX antenna.
	 */
	switch ((int)ant->tx) {
	case 1:
		rt2x00_set_field8(&r1, BBP1_TX_ANTENNA, 0);
		rt2x00_set_field8(&r3, BBP3_RX_ANTENNA, 0);
		break;
	case 2:
		rt2x00_set_field8(&r1, BBP1_TX_ANTENNA, 2);
		break;
	case 3:
		/* Do nothing */
		break;
	}

	/*
	 * Configure the RX antenna.
	 */
	switch ((int)ant->rx) {
	case 1:
		rt2x00_set_field8(&r3, BBP3_RX_ANTENNA, 0);
		break;
	case 2:
		rt2x00_set_field8(&r3, BBP3_RX_ANTENNA, 1);
		break;
	case 3:
		rt2x00_set_field8(&r3, BBP3_RX_ANTENNA, 2);
		break;
	}

840 841
	rt2800_bbp_write(rt2x00dev, 3, r3);
	rt2800_bbp_write(rt2x00dev, 1, r1);
842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
}

static void rt2800pci_config_lna_gain(struct rt2x00_dev *rt2x00dev,
				      struct rt2x00lib_conf *libconf)
{
	u16 eeprom;
	short lna_gain;

	if (libconf->rf.channel <= 14) {
		rt2x00_eeprom_read(rt2x00dev, EEPROM_LNA, &eeprom);
		lna_gain = rt2x00_get_field16(eeprom, EEPROM_LNA_BG);
	} else if (libconf->rf.channel <= 64) {
		rt2x00_eeprom_read(rt2x00dev, EEPROM_LNA, &eeprom);
		lna_gain = rt2x00_get_field16(eeprom, EEPROM_LNA_A0);
	} else if (libconf->rf.channel <= 128) {
		rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_BG2, &eeprom);
		lna_gain = rt2x00_get_field16(eeprom, EEPROM_RSSI_BG2_LNA_A1);
	} else {
		rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_A2, &eeprom);
		lna_gain = rt2x00_get_field16(eeprom, EEPROM_RSSI_A2_LNA_A2);
	}

	rt2x00dev->lna_gain = lna_gain;
}

static void rt2800pci_config_channel_rt2x(struct rt2x00_dev *rt2x00dev,
					  struct ieee80211_conf *conf,
					  struct rf_channel *rf,
					  struct channel_info *info)
{
	rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);

	if (rt2x00dev->default_ant.tx == 1)
		rt2x00_set_field32(&rf->rf2, RF2_ANTENNA_TX1, 1);

	if (rt2x00dev->default_ant.rx == 1) {
		rt2x00_set_field32(&rf->rf2, RF2_ANTENNA_RX1, 1);
		rt2x00_set_field32(&rf->rf2, RF2_ANTENNA_RX2, 1);
	} else if (rt2x00dev->default_ant.rx == 2)
		rt2x00_set_field32(&rf->rf2, RF2_ANTENNA_RX2, 1);

	if (rf->channel > 14) {
		/*
		 * When TX power is below 0, we should increase it by 7 to
		 * make it a positive value (Minumum value is -7).
		 * However this means that values between 0 and 7 have
		 * double meaning, and we should set a 7DBm boost flag.
		 */
		rt2x00_set_field32(&rf->rf3, RF3_TXPOWER_A_7DBM_BOOST,
				   (info->tx_power1 >= 0));

		if (info->tx_power1 < 0)
			info->tx_power1 += 7;

		rt2x00_set_field32(&rf->rf3, RF3_TXPOWER_A,
				   TXPOWER_A_TO_DEV(info->tx_power1));

		rt2x00_set_field32(&rf->rf4, RF4_TXPOWER_A_7DBM_BOOST,
				   (info->tx_power2 >= 0));

		if (info->tx_power2 < 0)
			info->tx_power2 += 7;

		rt2x00_set_field32(&rf->rf4, RF4_TXPOWER_A,
				   TXPOWER_A_TO_DEV(info->tx_power2));
	} else {
		rt2x00_set_field32(&rf->rf3, RF3_TXPOWER_G,
				   TXPOWER_G_TO_DEV(info->tx_power1));
		rt2x00_set_field32(&rf->rf4, RF4_TXPOWER_G,
				   TXPOWER_G_TO_DEV(info->tx_power2));
	}

	rt2x00_set_field32(&rf->rf4, RF4_HT40, conf_is_ht40(conf));

916 917 918 919
	rt2800_rf_write(rt2x00dev, 1, rf->rf1);
	rt2800_rf_write(rt2x00dev, 2, rf->rf2);
	rt2800_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
	rt2800_rf_write(rt2x00dev, 4, rf->rf4);
920 921 922

	udelay(200);

923 924 925 926
	rt2800_rf_write(rt2x00dev, 1, rf->rf1);
	rt2800_rf_write(rt2x00dev, 2, rf->rf2);
	rt2800_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
	rt2800_rf_write(rt2x00dev, 4, rf->rf4);
927 928 929

	udelay(200);

930 931 932 933
	rt2800_rf_write(rt2x00dev, 1, rf->rf1);
	rt2800_rf_write(rt2x00dev, 2, rf->rf2);
	rt2800_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
	rt2800_rf_write(rt2x00dev, 4, rf->rf4);
934 935 936 937 938 939 940 941 942
}

static void rt2800pci_config_channel_rt3x(struct rt2x00_dev *rt2x00dev,
					  struct ieee80211_conf *conf,
					  struct rf_channel *rf,
					  struct channel_info *info)
{
	u8 rfcsr;

943 944
	rt2800_rfcsr_write(rt2x00dev, 2, rf->rf1);
	rt2800_rfcsr_write(rt2x00dev, 2, rf->rf3);
945

946
	rt2800_rfcsr_read(rt2x00dev, 6, &rfcsr);
947
	rt2x00_set_field8(&rfcsr, RFCSR6_R, rf->rf2);
948
	rt2800_rfcsr_write(rt2x00dev, 6, rfcsr);
949

950
	rt2800_rfcsr_read(rt2x00dev, 12, &rfcsr);
951 952
	rt2x00_set_field8(&rfcsr, RFCSR12_TX_POWER,
			  TXPOWER_G_TO_DEV(info->tx_power1));
953
	rt2800_rfcsr_write(rt2x00dev, 12, rfcsr);
954

955
	rt2800_rfcsr_read(rt2x00dev, 23, &rfcsr);
956
	rt2x00_set_field8(&rfcsr, RFCSR23_FREQ_OFFSET, rt2x00dev->freq_offset);
957
	rt2800_rfcsr_write(rt2x00dev, 23, rfcsr);
958

959
	rt2800_rfcsr_write(rt2x00dev, 24,
960 961
			      rt2x00dev->calibration[conf_is_ht40(conf)]);

962
	rt2800_rfcsr_read(rt2x00dev, 23, &rfcsr);
963
	rt2x00_set_field8(&rfcsr, RFCSR7_RF_TUNING, 1);
964
	rt2800_rfcsr_write(rt2x00dev, 23, rfcsr);
965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
}

static void rt2800pci_config_channel(struct rt2x00_dev *rt2x00dev,
				     struct ieee80211_conf *conf,
				     struct rf_channel *rf,
				     struct channel_info *info)
{
	u32 reg;
	unsigned int tx_pin;
	u8 bbp;

	if (rt2x00_rev(&rt2x00dev->chip) != RT3070_VERSION)
		rt2800pci_config_channel_rt2x(rt2x00dev, conf, rf, info);
	else
		rt2800pci_config_channel_rt3x(rt2x00dev, conf, rf, info);

	/*
	 * Change BBP settings
	 */
984 985 986 987
	rt2800_bbp_write(rt2x00dev, 62, 0x37 - rt2x00dev->lna_gain);
	rt2800_bbp_write(rt2x00dev, 63, 0x37 - rt2x00dev->lna_gain);
	rt2800_bbp_write(rt2x00dev, 64, 0x37 - rt2x00dev->lna_gain);
	rt2800_bbp_write(rt2x00dev, 86, 0);
988 989 990

	if (rf->channel <= 14) {
		if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags)) {
991 992
			rt2800_bbp_write(rt2x00dev, 82, 0x62);
			rt2800_bbp_write(rt2x00dev, 75, 0x46);
993
		} else {
994 995
			rt2800_bbp_write(rt2x00dev, 82, 0x84);
			rt2800_bbp_write(rt2x00dev, 75, 0x50);
996 997
		}
	} else {
998
		rt2800_bbp_write(rt2x00dev, 82, 0xf2);
999 1000

		if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags))
1001
			rt2800_bbp_write(rt2x00dev, 75, 0x46);
1002
		else
1003
			rt2800_bbp_write(rt2x00dev, 75, 0x50);
1004 1005
	}

1006
	rt2800_register_read(rt2x00dev, TX_BAND_CFG, &reg);
1007 1008 1009
	rt2x00_set_field32(&reg, TX_BAND_CFG_HT40_PLUS, conf_is_ht40_plus(conf));
	rt2x00_set_field32(&reg, TX_BAND_CFG_A, rf->channel > 14);
	rt2x00_set_field32(&reg, TX_BAND_CFG_BG, rf->channel <= 14);
1010
	rt2800_register_write(rt2x00dev, TX_BAND_CFG, reg);
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032

	tx_pin = 0;

	/* Turn on unused PA or LNA when not using 1T or 1R */
	if (rt2x00dev->default_ant.tx != 1) {
		rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_A1_EN, 1);
		rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_G1_EN, 1);
	}

	/* Turn on unused PA or LNA when not using 1T or 1R */
	if (rt2x00dev->default_ant.rx != 1) {
		rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_A1_EN, 1);
		rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_G1_EN, 1);
	}

	rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_A0_EN, 1);
	rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_G0_EN, 1);
	rt2x00_set_field32(&tx_pin, TX_PIN_CFG_RFTR_EN, 1);
	rt2x00_set_field32(&tx_pin, TX_PIN_CFG_TRSW_EN, 1);
	rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_G0_EN, rf->channel <= 14);
	rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_A0_EN, rf->channel > 14);

1033
	rt2800_register_write(rt2x00dev, TX_PIN_CFG, tx_pin);
1034

1035
	rt2800_bbp_read(rt2x00dev, 4, &bbp);
1036
	rt2x00_set_field8(&bbp, BBP4_BANDWIDTH, 2 * conf_is_ht40(conf));
1037
	rt2800_bbp_write(rt2x00dev, 4, bbp);
1038

1039
	rt2800_bbp_read(rt2x00dev, 3, &bbp);
1040
	rt2x00_set_field8(&bbp, BBP3_HT40_PLUS, conf_is_ht40_plus(conf));
1041
	rt2800_bbp_write(rt2x00dev, 3, bbp);
1042 1043 1044

	if (rt2x00_rev(&rt2x00dev->chip) == RT2860C_VERSION) {
		if (conf_is_ht40(conf)) {
1045 1046 1047
			rt2800_bbp_write(rt2x00dev, 69, 0x1a);
			rt2800_bbp_write(rt2x00dev, 70, 0x0a);
			rt2800_bbp_write(rt2x00dev, 73, 0x16);
1048
		} else {
1049 1050 1051
			rt2800_bbp_write(rt2x00dev, 69, 0x16);
			rt2800_bbp_write(rt2x00dev, 70, 0x08);
			rt2800_bbp_write(rt2x00dev, 73, 0x11);
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
		}
	}

	msleep(1);
}

static void rt2800pci_config_txpower(struct rt2x00_dev *rt2x00dev,
				     const int txpower)
{
	u32 reg;
	u32 value = TXPOWER_G_TO_DEV(txpower);
	u8 r1;

1065
	rt2800_bbp_read(rt2x00dev, 1, &r1);
1066
	rt2x00_set_field8(&reg, BBP1_TX_POWER, 0);
1067
	rt2800_bbp_write(rt2x00dev, 1, r1);
1068

1069
	rt2800_register_read(rt2x00dev, TX_PWR_CFG_0, &reg);
1070 1071 1072 1073 1074 1075 1076 1077
	rt2x00_set_field32(&reg, TX_PWR_CFG_0_1MBS, value);
	rt2x00_set_field32(&reg, TX_PWR_CFG_0_2MBS, value);
	rt2x00_set_field32(&reg, TX_PWR_CFG_0_55MBS, value);
	rt2x00_set_field32(&reg, TX_PWR_CFG_0_11MBS, value);
	rt2x00_set_field32(&reg, TX_PWR_CFG_0_6MBS, value);
	rt2x00_set_field32(&reg, TX_PWR_CFG_0_9MBS, value);
	rt2x00_set_field32(&reg, TX_PWR_CFG_0_12MBS, value);
	rt2x00_set_field32(&reg, TX_PWR_CFG_0_18MBS, value);
1078
	rt2800_register_write(rt2x00dev, TX_PWR_CFG_0, reg);
1079

1080
	rt2800_register_read(rt2x00dev, TX_PWR_CFG_1, &reg);
1081 1082 1083 1084 1085 1086 1087 1088
	rt2x00_set_field32(&reg, TX_PWR_CFG_1_24MBS, value);
	rt2x00_set_field32(&reg, TX_PWR_CFG_1_36MBS, value);
	rt2x00_set_field32(&reg, TX_PWR_CFG_1_48MBS, value);
	rt2x00_set_field32(&reg, TX_PWR_CFG_1_54MBS, value);
	rt2x00_set_field32(&reg, TX_PWR_CFG_1_MCS0, value);
	rt2x00_set_field32(&reg, TX_PWR_CFG_1_MCS1, value);
	rt2x00_set_field32(&reg, TX_PWR_CFG_1_MCS2, value);
	rt2x00_set_field32(&reg, TX_PWR_CFG_1_MCS3, value);
1089
	rt2800_register_write(rt2x00dev, TX_PWR_CFG_1, reg);
1090

1091
	rt2800_register_read(rt2x00dev, TX_PWR_CFG_2, &reg);
1092 1093 1094 1095 1096 1097 1098 1099
	rt2x00_set_field32(&reg, TX_PWR_CFG_2_MCS4, value);
	rt2x00_set_field32(&reg, TX_PWR_CFG_2_MCS5, value);
	rt2x00_set_field32(&reg, TX_PWR_CFG_2_MCS6, value);
	rt2x00_set_field32(&reg, TX_PWR_CFG_2_MCS7, value);
	rt2x00_set_field32(&reg, TX_PWR_CFG_2_MCS8, value);
	rt2x00_set_field32(&reg, TX_PWR_CFG_2_MCS9, value);
	rt2x00_set_field32(&reg, TX_PWR_CFG_2_MCS10, value);
	rt2x00_set_field32(&reg, TX_PWR_CFG_2_MCS11, value);
1100
	rt2800_register_write(rt2x00dev, TX_PWR_CFG_2, reg);
1101

1102
	rt2800_register_read(rt2x00dev, TX_PWR_CFG_3, &reg);
1103 1104 1105 1106 1107 1108 1109 1110
	rt2x00_set_field32(&reg, TX_PWR_CFG_3_MCS12, value);
	rt2x00_set_field32(&reg, TX_PWR_CFG_3_MCS13, value);
	rt2x00_set_field32(&reg, TX_PWR_CFG_3_MCS14, value);
	rt2x00_set_field32(&reg, TX_PWR_CFG_3_MCS15, value);
	rt2x00_set_field32(&reg, TX_PWR_CFG_3_UKNOWN1, value);
	rt2x00_set_field32(&reg, TX_PWR_CFG_3_UKNOWN2, value);
	rt2x00_set_field32(&reg, TX_PWR_CFG_3_UKNOWN3, value);
	rt2x00_set_field32(&reg, TX_PWR_CFG_3_UKNOWN4, value);
1111
	rt2800_register_write(rt2x00dev, TX_PWR_CFG_3, reg);
1112

1113
	rt2800_register_read(rt2x00dev, TX_PWR_CFG_4, &reg);
1114 1115 1116 1117
	rt2x00_set_field32(&reg, TX_PWR_CFG_4_UKNOWN5, value);
	rt2x00_set_field32(&reg, TX_PWR_CFG_4_UKNOWN6, value);
	rt2x00_set_field32(&reg, TX_PWR_CFG_4_UKNOWN7, value);
	rt2x00_set_field32(&reg, TX_PWR_CFG_4_UKNOWN8, value);
1118
	rt2800_register_write(rt2x00dev, TX_PWR_CFG_4, reg);
1119 1120 1121 1122 1123 1124 1125
}

static void rt2800pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
					 struct rt2x00lib_conf *libconf)
{
	u32 reg;

1126
	rt2800_register_read(rt2x00dev, TX_RTY_CFG, &reg);
1127 1128 1129 1130 1131 1132 1133 1134
	rt2x00_set_field32(&reg, TX_RTY_CFG_SHORT_RTY_LIMIT,
			   libconf->conf->short_frame_max_tx_count);
	rt2x00_set_field32(&reg, TX_RTY_CFG_LONG_RTY_LIMIT,
			   libconf->conf->long_frame_max_tx_count);
	rt2x00_set_field32(&reg, TX_RTY_CFG_LONG_RTY_THRE, 2000);
	rt2x00_set_field32(&reg, TX_RTY_CFG_NON_AGG_RTY_MODE, 0);
	rt2x00_set_field32(&reg, TX_RTY_CFG_AGG_RTY_MODE, 0);
	rt2x00_set_field32(&reg, TX_RTY_CFG_TX_AUTO_FB_ENABLE, 1);
1135
	rt2800_register_write(rt2x00dev, TX_RTY_CFG, reg);
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
}

static void rt2800pci_config_ps(struct rt2x00_dev *rt2x00dev,
				struct rt2x00lib_conf *libconf)
{
	enum dev_state state =
	    (libconf->conf->flags & IEEE80211_CONF_PS) ?
		STATE_SLEEP : STATE_AWAKE;
	u32 reg;

	if (state == STATE_SLEEP) {
1147
		rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, 0);
1148

1149
		rt2800_register_read(rt2x00dev, AUTOWAKEUP_CFG, &reg);
1150 1151 1152 1153
		rt2x00_set_field32(&reg, AUTOWAKEUP_CFG_AUTO_LEAD_TIME, 5);
		rt2x00_set_field32(&reg, AUTOWAKEUP_CFG_TBCN_BEFORE_WAKE,
				   libconf->conf->listen_interval - 1);
		rt2x00_set_field32(&reg, AUTOWAKEUP_CFG_AUTOWAKE, 1);
1154
		rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, reg);
1155 1156 1157 1158 1159

		rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
	} else {
		rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);

1160
		rt2800_register_read(rt2x00dev, AUTOWAKEUP_CFG, &reg);
1161 1162 1163
		rt2x00_set_field32(&reg, AUTOWAKEUP_CFG_AUTO_LEAD_TIME, 0);
		rt2x00_set_field32(&reg, AUTOWAKEUP_CFG_TBCN_BEFORE_WAKE, 0);
		rt2x00_set_field32(&reg, AUTOWAKEUP_CFG_AUTOWAKE, 0);
1164
		rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, reg);
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
	}
}

static void rt2800pci_config(struct rt2x00_dev *rt2x00dev,
			     struct rt2x00lib_conf *libconf,
			     const unsigned int flags)
{
	/* Always recalculate LNA gain before changing configuration */
	rt2800pci_config_lna_gain(rt2x00dev, libconf);

	if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
		rt2800pci_config_channel(rt2x00dev, libconf->conf,
					 &libconf->rf, &libconf->channel);
	if (flags & IEEE80211_CONF_CHANGE_POWER)
		rt2800pci_config_txpower(rt2x00dev, libconf->conf->power_level);
	if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
		rt2800pci_config_retry_limit(rt2x00dev, libconf);
	if (flags & IEEE80211_CONF_CHANGE_PS)
		rt2800pci_config_ps(rt2x00dev, libconf);
}

/*
 * Link tuning
 */
static void rt2800pci_link_stats(struct rt2x00_dev *rt2x00dev,
				 struct link_qual *qual)
{
	u32 reg;

	/*
	 * Update FCS error count from register.
	 */
1197
	rt2800_register_read(rt2x00dev, RX_STA_CNT0, &reg);
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
	qual->rx_failed = rt2x00_get_field32(reg, RX_STA_CNT0_CRC_ERR);
}

static u8 rt2800pci_get_default_vgc(struct rt2x00_dev *rt2x00dev)
{
	if (rt2x00dev->curr_band == IEEE80211_BAND_2GHZ)
		return 0x2e + rt2x00dev->lna_gain;

	if (!test_bit(CONFIG_CHANNEL_HT40, &rt2x00dev->flags))
		return 0x32 + (rt2x00dev->lna_gain * 5) / 3;
	else
		return 0x3a + (rt2x00dev->lna_gain * 5) / 3;
}

static inline void rt2800pci_set_vgc(struct rt2x00_dev *rt2x00dev,
				     struct link_qual *qual, u8 vgc_level)
{
	if (qual->vgc_level != vgc_level) {
1216
		rt2800_bbp_write(rt2x00dev, 66, vgc_level);
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
		qual->vgc_level = vgc_level;
		qual->vgc_level_reg = vgc_level;
	}
}

static void rt2800pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
				  struct link_qual *qual)
{
	rt2800pci_set_vgc(rt2x00dev, qual,
			  rt2800pci_get_default_vgc(rt2x00dev));
}

static void rt2800pci_link_tuner(struct rt2x00_dev *rt2x00dev,
				 struct link_qual *qual, const u32 count)
{
	if (rt2x00_rev(&rt2x00dev->chip) == RT2860C_VERSION)
		return;

	/*
	 * When RSSI is better then -80 increase VGC level with 0x10
	 */
	rt2800pci_set_vgc(rt2x00dev, qual,
			  rt2800pci_get_default_vgc(rt2x00dev) +
			  ((qual->rssi > -80) * 0x10));
}

/*
 * Firmware functions
 */
static char *rt2800pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
{
	return FIRMWARE_RT2860;
}

static int rt2800pci_check_firmware(struct rt2x00_dev *rt2x00dev,
				    const u8 *data, const size_t len)
{
	u16 fw_crc;
	u16 crc;

	/*
	 * Only support 8kb firmware files.
	 */
	if (len != 8192)
		return FW_BAD_LENGTH;

	/*
	 * The last 2 bytes in the firmware array are the crc checksum itself,
	 * this means that we should never pass those 2 bytes to the crc
	 * algorithm.
	 */
	fw_crc = (data[len - 2] << 8 | data[len - 1]);

	/*
	 * Use the crc ccitt algorithm.
	 * This will return the same value as the legacy driver which
	 * used bit ordering reversion on the both the firmware bytes
	 * before input input as well as on the final output.
	 * Obviously using crc ccitt directly is much more efficient.
	 */
	crc = crc_ccitt(~0, data, len - 2);

	/*
	 * There is a small difference between the crc-itu-t + bitrev and
	 * the crc-ccitt crc calculation. In the latter method the 2 bytes
	 * will be swapped, use swab16 to convert the crc to the correct
	 * value.
	 */
	crc = swab16(crc);

	return (fw_crc == crc) ? FW_OK : FW_BAD_CRC;
}

static int rt2800pci_load_firmware(struct rt2x00_dev *rt2x00dev,
				   const u8 *data, const size_t len)
{
	unsigned int i;
	u32 reg;

	/*
	 * Wait for stable hardware.
	 */
	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1300
		rt2800_register_read(rt2x00dev, MAC_CSR0, &reg);
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
		if (reg && reg != ~0)
			break;
		msleep(1);
	}

	if (i == REGISTER_BUSY_COUNT) {
		ERROR(rt2x00dev, "Unstable hardware.\n");
		return -EBUSY;
	}

1311 1312
	rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000002);
	rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, 0x00000000);
1313 1314 1315 1316 1317

	/*
	 * Disable DMA, will be reenabled later when enabling
	 * the radio.
	 */
1318
	rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
1319 1320 1321 1322 1323
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_DMA_BUSY, 0);
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_RX_DMA_BUSY, 0);
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
1324
	rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
1325 1326 1327 1328 1329 1330

	/*
	 * enable Host program ram write selection
	 */
	reg = 0;
	rt2x00_set_field32(&reg, PBF_SYS_CTRL_HOST_RAM_WRITE, 1);
1331
	rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, reg);
1332 1333 1334 1335

	/*
	 * Write firmware to device.
	 */
1336
	rt2800_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
1337 1338
				      data, len);

1339 1340
	rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000);
	rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001);
1341 1342 1343 1344 1345

	/*
	 * Wait for device to stabilize.
	 */
	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1346
		rt2800_register_read(rt2x00dev, PBF_SYS_CTRL, &reg);
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
		if (rt2x00_get_field32(reg, PBF_SYS_CTRL_READY))
			break;
		msleep(1);
	}

	if (i == REGISTER_BUSY_COUNT) {
		ERROR(rt2x00dev, "PBF system register not ready.\n");
		return -EBUSY;
	}

	/*
	 * Disable interrupts
	 */
	rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);

	/*
	 * Initialize BBP R/W access agent
	 */
1365 1366
	rt2800_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
	rt2800_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415

	return 0;
}

/*
 * Initialization functions.
 */
static bool rt2800pci_get_entry_state(struct queue_entry *entry)
{
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
	u32 word;

	if (entry->queue->qid == QID_RX) {
		rt2x00_desc_read(entry_priv->desc, 1, &word);

		return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE));
	} else {
		rt2x00_desc_read(entry_priv->desc, 1, &word);

		return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE));
	}
}

static void rt2800pci_clear_entry(struct queue_entry *entry)
{
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
	u32 word;

	if (entry->queue->qid == QID_RX) {
		rt2x00_desc_read(entry_priv->desc, 0, &word);
		rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma);
		rt2x00_desc_write(entry_priv->desc, 0, word);

		rt2x00_desc_read(entry_priv->desc, 1, &word);
		rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0);
		rt2x00_desc_write(entry_priv->desc, 1, word);
	} else {
		rt2x00_desc_read(entry_priv->desc, 1, &word);
		rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1);
		rt2x00_desc_write(entry_priv->desc, 1, word);
	}
}

static int rt2800pci_init_queues(struct rt2x00_dev *rt2x00dev)
{
	struct queue_entry_priv_pci *entry_priv;
	u32 reg;

1416
	rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
1417 1418 1419 1420 1421 1422 1423
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
1424
	rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
1425

1426 1427
	rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
	rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
1428 1429 1430 1431 1432

	/*
	 * Initialize registers.
	 */
	entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
1433 1434 1435 1436
	rt2800_register_write(rt2x00dev, TX_BASE_PTR0, entry_priv->desc_dma);
	rt2800_register_write(rt2x00dev, TX_MAX_CNT0, rt2x00dev->tx[0].limit);
	rt2800_register_write(rt2x00dev, TX_CTX_IDX0, 0);
	rt2800_register_write(rt2x00dev, TX_DTX_IDX0, 0);
1437 1438

	entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
1439 1440 1441 1442
	rt2800_register_write(rt2x00dev, TX_BASE_PTR1, entry_priv->desc_dma);
	rt2800_register_write(rt2x00dev, TX_MAX_CNT1, rt2x00dev->tx[1].limit);
	rt2800_register_write(rt2x00dev, TX_CTX_IDX1, 0);
	rt2800_register_write(rt2x00dev, TX_DTX_IDX1, 0);
1443 1444

	entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
1445 1446 1447 1448
	rt2800_register_write(rt2x00dev, TX_BASE_PTR2, entry_priv->desc_dma);
	rt2800_register_write(rt2x00dev, TX_MAX_CNT2, rt2x00dev->tx[2].limit);
	rt2800_register_write(rt2x00dev, TX_CTX_IDX2, 0);
	rt2800_register_write(rt2x00dev, TX_DTX_IDX2, 0);
1449 1450

	entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
1451 1452 1453 1454
	rt2800_register_write(rt2x00dev, TX_BASE_PTR3, entry_priv->desc_dma);
	rt2800_register_write(rt2x00dev, TX_MAX_CNT3, rt2x00dev->tx[3].limit);
	rt2800_register_write(rt2x00dev, TX_CTX_IDX3, 0);
	rt2800_register_write(rt2x00dev, TX_DTX_IDX3, 0);
1455 1456

	entry_priv = rt2x00dev->rx->entries[0].priv_data;
1457 1458 1459 1460
	rt2800_register_write(rt2x00dev, RX_BASE_PTR, entry_priv->desc_dma);
	rt2800_register_write(rt2x00dev, RX_MAX_CNT, rt2x00dev->rx[0].limit);
	rt2800_register_write(rt2x00dev, RX_CRX_IDX, rt2x00dev->rx[0].limit - 1);
	rt2800_register_write(rt2x00dev, RX_DRX_IDX, 0);
1461 1462 1463 1464

	/*
	 * Enable global DMA configuration
	 */
1465
	rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
1466 1467 1468
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
1469
	rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
1470

1471
	rt2800_register_write(rt2x00dev, DELAY_INT_CFG, 0);
1472 1473 1474 1475 1476 1477 1478 1479 1480

	return 0;
}

static int rt2800pci_init_registers(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;
	unsigned int i;

1481
	rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);
1482

1483
	rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
1484 1485
	rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_CSR, 1);
	rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_BBP, 1);
1486
	rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
1487

1488
	rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);
1489

1490
	rt2800_register_read(rt2x00dev, BCN_OFFSET0, &reg);
1491 1492 1493 1494
	rt2x00_set_field32(&reg, BCN_OFFSET0_BCN0, 0xe0); /* 0x3800 */
	rt2x00_set_field32(&reg, BCN_OFFSET0_BCN1, 0xe8); /* 0x3a00 */
	rt2x00_set_field32(&reg, BCN_OFFSET0_BCN2, 0xf0); /* 0x3c00 */
	rt2x00_set_field32(&reg, BCN_OFFSET0_BCN3, 0xf8); /* 0x3e00 */
1495
	rt2800_register_write(rt2x00dev, BCN_OFFSET0, reg);
1496

1497
	rt2800_register_read(rt2x00dev, BCN_OFFSET1, &reg);
1498 1499 1500 1501
	rt2x00_set_field32(&reg, BCN_OFFSET1_BCN4, 0xc8); /* 0x3200 */
	rt2x00_set_field32(&reg, BCN_OFFSET1_BCN5, 0xd0); /* 0x3400 */
	rt2x00_set_field32(&reg, BCN_OFFSET1_BCN6, 0x77); /* 0x1dc0 */
	rt2x00_set_field32(&reg, BCN_OFFSET1_BCN7, 0x6f); /* 0x1bc0 */
1502
	rt2800_register_write(rt2x00dev, BCN_OFFSET1, reg);
1503

1504 1505
	rt2800_register_write(rt2x00dev, LEGACY_BASIC_RATE, 0x0000013f);
	rt2800_register_write(rt2x00dev, HT_BASIC_RATE, 0x00008003);
1506

1507
	rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);
1508

1509
	rt2800_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
1510 1511 1512 1513 1514 1515
	rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL, 0);
	rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 0);
	rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_SYNC, 0);
	rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 0);
	rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
	rt2x00_set_field32(&reg, BCN_TIME_CFG_TX_TIME_COMPENSATE, 0);
1516
	rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
1517

1518 1519
	rt2800_register_write(rt2x00dev, TX_SW_CFG0, 0x00000000);
	rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00080606);
1520

1521
	rt2800_register_read(rt2x00dev, TX_LINK_CFG, &reg);
1522 1523 1524 1525 1526 1527 1528 1529
	rt2x00_set_field32(&reg, TX_LINK_CFG_REMOTE_MFB_LIFETIME, 32);
	rt2x00_set_field32(&reg, TX_LINK_CFG_MFB_ENABLE, 0);
	rt2x00_set_field32(&reg, TX_LINK_CFG_REMOTE_UMFS_ENABLE, 0);
	rt2x00_set_field32(&reg, TX_LINK_CFG_TX_MRQ_EN, 0);
	rt2x00_set_field32(&reg, TX_LINK_CFG_TX_RDG_EN, 0);
	rt2x00_set_field32(&reg, TX_LINK_CFG_TX_CF_ACK_EN, 1);
	rt2x00_set_field32(&reg, TX_LINK_CFG_REMOTE_MFB, 0);
	rt2x00_set_field32(&reg, TX_LINK_CFG_REMOTE_MFS, 0);
1530
	rt2800_register_write(rt2x00dev, TX_LINK_CFG, reg);
1531

1532
	rt2800_register_read(rt2x00dev, TX_TIMEOUT_CFG, &reg);
1533 1534
	rt2x00_set_field32(&reg, TX_TIMEOUT_CFG_MPDU_LIFETIME, 9);
	rt2x00_set_field32(&reg, TX_TIMEOUT_CFG_TX_OP_TIMEOUT, 10);
1535
	rt2800_register_write(rt2x00dev, TX_TIMEOUT_CFG, reg);
1536

1537
	rt2800_register_read(rt2x00dev, MAX_LEN_CFG, &reg);
1538 1539 1540 1541 1542 1543 1544 1545
	rt2x00_set_field32(&reg, MAX_LEN_CFG_MAX_MPDU, AGGREGATION_SIZE);
	if (rt2x00_rev(&rt2x00dev->chip) >= RT2880E_VERSION &&
	    rt2x00_rev(&rt2x00dev->chip) < RT3070_VERSION)
		rt2x00_set_field32(&reg, MAX_LEN_CFG_MAX_PSDU, 2);
	else
		rt2x00_set_field32(&reg, MAX_LEN_CFG_MAX_PSDU, 1);
	rt2x00_set_field32(&reg, MAX_LEN_CFG_MIN_PSDU, 0);
	rt2x00_set_field32(&reg, MAX_LEN_CFG_MIN_MPDU, 0);
1546
	rt2800_register_write(rt2x00dev, MAX_LEN_CFG, reg);
1547

1548
	rt2800_register_write(rt2x00dev, PBF_MAX_PCNT, 0x1f3fbf9f);
1549

1550
	rt2800_register_read(rt2x00dev, AUTO_RSP_CFG, &reg);
1551 1552 1553 1554 1555
	rt2x00_set_field32(&reg, AUTO_RSP_CFG_AUTORESPONDER, 1);
	rt2x00_set_field32(&reg, AUTO_RSP_CFG_CTS_40_MMODE, 0);
	rt2x00_set_field32(&reg, AUTO_RSP_CFG_CTS_40_MREF, 0);
	rt2x00_set_field32(&reg, AUTO_RSP_CFG_DUAL_CTS_EN, 0);
	rt2x00_set_field32(&reg, AUTO_RSP_CFG_ACK_CTS_PSM_BIT, 0);
1556
	rt2800_register_write(rt2x00dev, AUTO_RSP_CFG, reg);
1557

1558
	rt2800_register_read(rt2x00dev, CCK_PROT_CFG, &reg);
1559 1560 1561 1562 1563 1564 1565 1566 1567
	rt2x00_set_field32(&reg, CCK_PROT_CFG_PROTECT_RATE, 8);
	rt2x00_set_field32(&reg, CCK_PROT_CFG_PROTECT_CTRL, 0);
	rt2x00_set_field32(&reg, CCK_PROT_CFG_PROTECT_NAV, 1);
	rt2x00_set_field32(&reg, CCK_PROT_CFG_TX_OP_ALLOW_CCK, 1);
	rt2x00_set_field32(&reg, CCK_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
	rt2x00_set_field32(&reg, CCK_PROT_CFG_TX_OP_ALLOW_MM20, 1);
	rt2x00_set_field32(&reg, CCK_PROT_CFG_TX_OP_ALLOW_MM40, 1);
	rt2x00_set_field32(&reg, CCK_PROT_CFG_TX_OP_ALLOW_GF20, 1);
	rt2x00_set_field32(&reg, CCK_PROT_CFG_TX_OP_ALLOW_GF40, 1);
1568
	rt2800_register_write(rt2x00dev, CCK_PROT_CFG, reg);
1569

1570
	rt2800_register_read(rt2x00dev, OFDM_PROT_CFG, &reg);
1571 1572 1573 1574 1575 1576 1577 1578 1579
	rt2x00_set_field32(&reg, OFDM_PROT_CFG_PROTECT_RATE, 8);
	rt2x00_set_field32(&reg, OFDM_PROT_CFG_PROTECT_CTRL, 0);
	rt2x00_set_field32(&reg, OFDM_PROT_CFG_PROTECT_NAV, 1);
	rt2x00_set_field32(&reg, OFDM_PROT_CFG_TX_OP_ALLOW_CCK, 1);
	rt2x00_set_field32(&reg, OFDM_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
	rt2x00_set_field32(&reg, OFDM_PROT_CFG_TX_OP_ALLOW_MM20, 1);
	rt2x00_set_field32(&reg, OFDM_PROT_CFG_TX_OP_ALLOW_MM40, 1);
	rt2x00_set_field32(&reg, OFDM_PROT_CFG_TX_OP_ALLOW_GF20, 1);
	rt2x00_set_field32(&reg, OFDM_PROT_CFG_TX_OP_ALLOW_GF40, 1);
1580
	rt2800_register_write(rt2x00dev, OFDM_PROT_CFG, reg);
1581

1582
	rt2800_register_read(rt2x00dev, MM20_PROT_CFG, &reg);
1583 1584 1585 1586 1587 1588 1589 1590 1591
	rt2x00_set_field32(&reg, MM20_PROT_CFG_PROTECT_RATE, 0x4004);
	rt2x00_set_field32(&reg, MM20_PROT_CFG_PROTECT_CTRL, 0);
	rt2x00_set_field32(&reg, MM20_PROT_CFG_PROTECT_NAV, 1);
	rt2x00_set_field32(&reg, MM20_PROT_CFG_TX_OP_ALLOW_CCK, 1);
	rt2x00_set_field32(&reg, MM20_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
	rt2x00_set_field32(&reg, MM20_PROT_CFG_TX_OP_ALLOW_MM20, 1);
	rt2x00_set_field32(&reg, MM20_PROT_CFG_TX_OP_ALLOW_MM40, 0);
	rt2x00_set_field32(&reg, MM20_PROT_CFG_TX_OP_ALLOW_GF20, 1);
	rt2x00_set_field32(&reg, MM20_PROT_CFG_TX_OP_ALLOW_GF40, 0);
1592
	rt2800_register_write(rt2x00dev, MM20_PROT_CFG, reg);
1593

1594
	rt2800_register_read(rt2x00dev, MM40_PROT_CFG, &reg);
1595 1596 1597 1598 1599 1600 1601 1602 1603
	rt2x00_set_field32(&reg, MM40_PROT_CFG_PROTECT_RATE, 0x4084);
	rt2x00_set_field32(&reg, MM40_PROT_CFG_PROTECT_CTRL, 0);
	rt2x00_set_field32(&reg, MM40_PROT_CFG_PROTECT_NAV, 1);
	rt2x00_set_field32(&reg, MM40_PROT_CFG_TX_OP_ALLOW_CCK, 1);
	rt2x00_set_field32(&reg, MM40_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
	rt2x00_set_field32(&reg, MM40_PROT_CFG_TX_OP_ALLOW_MM20, 1);
	rt2x00_set_field32(&reg, MM40_PROT_CFG_TX_OP_ALLOW_MM40, 1);
	rt2x00_set_field32(&reg, MM40_PROT_CFG_TX_OP_ALLOW_GF20, 1);
	rt2x00_set_field32(&reg, MM40_PROT_CFG_TX_OP_ALLOW_GF40, 1);
1604
	rt2800_register_write(rt2x00dev, MM40_PROT_CFG, reg);
1605

1606
	rt2800_register_read(rt2x00dev, GF20_PROT_CFG, &reg);
1607 1608 1609 1610 1611 1612 1613 1614 1615
	rt2x00_set_field32(&reg, GF20_PROT_CFG_PROTECT_RATE, 0x4004);
	rt2x00_set_field32(&reg, GF20_PROT_CFG_PROTECT_CTRL, 0);
	rt2x00_set_field32(&reg, GF20_PROT_CFG_PROTECT_NAV, 1);
	rt2x00_set_field32(&reg, GF20_PROT_CFG_TX_OP_ALLOW_CCK, 1);
	rt2x00_set_field32(&reg, GF20_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
	rt2x00_set_field32(&reg, GF20_PROT_CFG_TX_OP_ALLOW_MM20, 1);
	rt2x00_set_field32(&reg, GF20_PROT_CFG_TX_OP_ALLOW_MM40, 0);
	rt2x00_set_field32(&reg, GF20_PROT_CFG_TX_OP_ALLOW_GF20, 1);
	rt2x00_set_field32(&reg, GF20_PROT_CFG_TX_OP_ALLOW_GF40, 0);
1616
	rt2800_register_write(rt2x00dev, GF20_PROT_CFG, reg);
1617

1618
	rt2800_register_read(rt2x00dev, GF40_PROT_CFG, &reg);
1619 1620 1621 1622 1623 1624 1625 1626 1627
	rt2x00_set_field32(&reg, GF40_PROT_CFG_PROTECT_RATE, 0x4084);
	rt2x00_set_field32(&reg, GF40_PROT_CFG_PROTECT_CTRL, 0);
	rt2x00_set_field32(&reg, GF40_PROT_CFG_PROTECT_NAV, 1);
	rt2x00_set_field32(&reg, GF40_PROT_CFG_TX_OP_ALLOW_CCK, 1);
	rt2x00_set_field32(&reg, GF40_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
	rt2x00_set_field32(&reg, GF40_PROT_CFG_TX_OP_ALLOW_MM20, 1);
	rt2x00_set_field32(&reg, GF40_PROT_CFG_TX_OP_ALLOW_MM40, 1);
	rt2x00_set_field32(&reg, GF40_PROT_CFG_TX_OP_ALLOW_GF20, 1);
	rt2x00_set_field32(&reg, GF40_PROT_CFG_TX_OP_ALLOW_GF40, 1);
1628
	rt2800_register_write(rt2x00dev, GF40_PROT_CFG, reg);
1629

1630 1631
	rt2800_register_write(rt2x00dev, TXOP_CTRL_CFG, 0x0000583f);
	rt2800_register_write(rt2x00dev, TXOP_HLDR_ET, 0x00000002);
1632

1633
	rt2800_register_read(rt2x00dev, TX_RTS_CFG, &reg);
1634 1635 1636 1637
	rt2x00_set_field32(&reg, TX_RTS_CFG_AUTO_RTS_RETRY_LIMIT, 32);
	rt2x00_set_field32(&reg, TX_RTS_CFG_RTS_THRES,
			   IEEE80211_MAX_RTS_THRESHOLD);
	rt2x00_set_field32(&reg, TX_RTS_CFG_RTS_FBK_EN, 0);
1638
	rt2800_register_write(rt2x00dev, TX_RTS_CFG, reg);
1639

1640 1641
	rt2800_register_write(rt2x00dev, EXP_ACK_TIME, 0x002400ca);
	rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);
1642 1643 1644 1645 1646

	/*
	 * ASIC will keep garbage value after boot, clear encryption keys.
	 */
	for (i = 0; i < 4; i++)
1647
		rt2800_register_write(rt2x00dev,
1648 1649 1650 1651
					 SHARED_KEY_MODE_ENTRY(i), 0);

	for (i = 0; i < 256; i++) {
		u32 wcid[2] = { 0xffffffff, 0x00ffffff };
1652
		rt2800_register_multiwrite(rt2x00dev, MAC_WCID_ENTRY(i),
1653 1654
					      wcid, sizeof(wcid));

1655 1656
		rt2800_register_write(rt2x00dev, MAC_WCID_ATTR_ENTRY(i), 1);
		rt2800_register_write(rt2x00dev, MAC_IVEIV_ENTRY(i), 0);
1657 1658 1659 1660 1661 1662 1663 1664
	}

	/*
	 * Clear all beacons
	 * For the Beacon base registers we only need to clear
	 * the first byte since that byte contains the VALID and OWNER
	 * bits which (when set to 0) will invalidate the entire beacon.
	 */
1665 1666 1667 1668 1669 1670 1671 1672
	rt2800_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
	rt2800_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
	rt2800_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
	rt2800_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
	rt2800_register_write(rt2x00dev, HW_BEACON_BASE4, 0);
	rt2800_register_write(rt2x00dev, HW_BEACON_BASE5, 0);
	rt2800_register_write(rt2x00dev, HW_BEACON_BASE6, 0);
	rt2800_register_write(rt2x00dev, HW_BEACON_BASE7, 0);
1673

1674
	rt2800_register_read(rt2x00dev, HT_FBK_CFG0, &reg);
1675 1676 1677 1678 1679 1680 1681 1682
	rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS0FBK, 0);
	rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS1FBK, 0);
	rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS2FBK, 1);
	rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS3FBK, 2);
	rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS4FBK, 3);
	rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS5FBK, 4);
	rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS6FBK, 5);
	rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS7FBK, 6);
1683
	rt2800_register_write(rt2x00dev, HT_FBK_CFG0, reg);
1684

1685
	rt2800_register_read(rt2x00dev, HT_FBK_CFG1, &reg);
1686 1687 1688 1689 1690 1691 1692 1693
	rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS8FBK, 8);
	rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS9FBK, 8);
	rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS10FBK, 9);
	rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS11FBK, 10);
	rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS12FBK, 11);
	rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS13FBK, 12);
	rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS14FBK, 13);
	rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS15FBK, 14);
1694
	rt2800_register_write(rt2x00dev, HT_FBK_CFG1, reg);
1695

1696
	rt2800_register_read(rt2x00dev, LG_FBK_CFG0, &reg);
1697 1698 1699 1700 1701 1702 1703 1704
	rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS0FBK, 8);
	rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS1FBK, 8);
	rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS2FBK, 9);
	rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS3FBK, 10);
	rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS4FBK, 11);
	rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS5FBK, 12);
	rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS6FBK, 13);
	rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS7FBK, 14);
1705
	rt2800_register_write(rt2x00dev, LG_FBK_CFG0, reg);
1706

1707
	rt2800_register_read(rt2x00dev, LG_FBK_CFG1, &reg);
1708 1709 1710 1711
	rt2x00_set_field32(&reg, LG_FBK_CFG0_CCKMCS0FBK, 0);
	rt2x00_set_field32(&reg, LG_FBK_CFG0_CCKMCS1FBK, 0);
	rt2x00_set_field32(&reg, LG_FBK_CFG0_CCKMCS2FBK, 1);
	rt2x00_set_field32(&reg, LG_FBK_CFG0_CCKMCS3FBK, 2);
1712
	rt2800_register_write(rt2x00dev, LG_FBK_CFG1, reg);
1713 1714 1715 1716 1717 1718

	/*
	 * We must clear the error counters.
	 * These registers are cleared on read,
	 * so we may pass a useless variable to store the value.
	 */
1719 1720 1721 1722 1723 1724
	rt2800_register_read(rt2x00dev, RX_STA_CNT0, &reg);
	rt2800_register_read(rt2x00dev, RX_STA_CNT1, &reg);
	rt2800_register_read(rt2x00dev, RX_STA_CNT2, &reg);
	rt2800_register_read(rt2x00dev, TX_STA_CNT0, &reg);
	rt2800_register_read(rt2x00dev, TX_STA_CNT1, &reg);
	rt2800_register_read(rt2x00dev, TX_STA_CNT2, &reg);
1725 1726 1727 1728 1729 1730 1731 1732 1733 1734

	return 0;
}

static int rt2800pci_wait_bbp_rf_ready(struct rt2x00_dev *rt2x00dev)
{
	unsigned int i;
	u32 reg;

	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1735
		rt2800_register_read(rt2x00dev, MAC_STATUS_CFG, &reg);
1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
		if (!rt2x00_get_field32(reg, MAC_STATUS_CFG_BBP_RF_BUSY))
			return 0;

		udelay(REGISTER_BUSY_DELAY);
	}

	ERROR(rt2x00dev, "BBP/RF register access failed, aborting.\n");
	return -EACCES;
}

static int rt2800pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
{
	unsigned int i;
	u8 value;

	/*
	 * BBP was enabled after firmware was loaded,
	 * but we need to reactivate it now.
	 */
1755 1756
	rt2800_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
	rt2800_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
1757 1758 1759
	msleep(1);

	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1760
		rt2800_bbp_read(rt2x00dev, 0, &value);
1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
		if ((value != 0xff) && (value != 0x00))
			return 0;
		udelay(REGISTER_BUSY_DELAY);
	}

	ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
	return -EACCES;
}

static int rt2800pci_init_bbp(struct rt2x00_dev *rt2x00dev)
{
	unsigned int i;
	u16 eeprom;
	u8 reg_id;
	u8 value;

	if (unlikely(rt2800pci_wait_bbp_rf_ready(rt2x00dev) ||
		     rt2800pci_wait_bbp_ready(rt2x00dev)))
		return -EACCES;

1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
	rt2800_bbp_write(rt2x00dev, 65, 0x2c);
	rt2800_bbp_write(rt2x00dev, 66, 0x38);
	rt2800_bbp_write(rt2x00dev, 69, 0x12);
	rt2800_bbp_write(rt2x00dev, 70, 0x0a);
	rt2800_bbp_write(rt2x00dev, 73, 0x10);
	rt2800_bbp_write(rt2x00dev, 81, 0x37);
	rt2800_bbp_write(rt2x00dev, 82, 0x62);
	rt2800_bbp_write(rt2x00dev, 83, 0x6a);
	rt2800_bbp_write(rt2x00dev, 84, 0x99);
	rt2800_bbp_write(rt2x00dev, 86, 0x00);
	rt2800_bbp_write(rt2x00dev, 91, 0x04);
	rt2800_bbp_write(rt2x00dev, 92, 0x00);
	rt2800_bbp_write(rt2x00dev, 103, 0x00);
	rt2800_bbp_write(rt2x00dev, 105, 0x05);
1795 1796

	if (rt2x00_rev(&rt2x00dev->chip) == RT2860C_VERSION) {
1797 1798
		rt2800_bbp_write(rt2x00dev, 69, 0x16);
		rt2800_bbp_write(rt2x00dev, 73, 0x12);
1799 1800 1801
	}

	if (rt2x00_rev(&rt2x00dev->chip) > RT2860D_VERSION)
1802
		rt2800_bbp_write(rt2x00dev, 84, 0x19);
1803 1804

	if (rt2x00_rt(&rt2x00dev->chip, RT3052)) {
1805 1806 1807
		rt2800_bbp_write(rt2x00dev, 31, 0x08);
		rt2800_bbp_write(rt2x00dev, 78, 0x0e);
		rt2800_bbp_write(rt2x00dev, 80, 0x08);
1808 1809 1810 1811 1812 1813 1814 1815
	}

	for (i = 0; i < EEPROM_BBP_SIZE; i++) {
		rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);

		if (eeprom != 0xffff && eeprom != 0x0000) {
			reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
			value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1816
			rt2800_bbp_write(rt2x00dev, reg_id, value);
1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
		}
	}

	return 0;
}

static u8 rt2800pci_init_rx_filter(struct rt2x00_dev *rt2x00dev,
				   bool bw40, u8 rfcsr24, u8 filter_target)
{
	unsigned int i;
	u8 bbp;
	u8 rfcsr;
	u8 passband;
	u8 stopband;
	u8 overtuned = 0;

1833
	rt2800_rfcsr_write(rt2x00dev, 24, rfcsr24);
1834

1835
	rt2800_bbp_read(rt2x00dev, 4, &bbp);
1836
	rt2x00_set_field8(&bbp, BBP4_BANDWIDTH, 2 * bw40);
1837
	rt2800_bbp_write(rt2x00dev, 4, bbp);
1838

1839
	rt2800_rfcsr_read(rt2x00dev, 22, &rfcsr);
1840
	rt2x00_set_field8(&rfcsr, RFCSR22_BASEBAND_LOOPBACK, 1);
1841
	rt2800_rfcsr_write(rt2x00dev, 22, rfcsr);
1842 1843 1844 1845

	/*
	 * Set power & frequency of passband test tone
	 */
1846
	rt2800_bbp_write(rt2x00dev, 24, 0);
1847 1848

	for (i = 0; i < 100; i++) {
1849
		rt2800_bbp_write(rt2x00dev, 25, 0x90);
1850 1851
		msleep(1);

1852
		rt2800_bbp_read(rt2x00dev, 55, &passband);
1853 1854 1855 1856 1857 1858 1859
		if (passband)
			break;
	}

	/*
	 * Set power & frequency of stopband test tone
	 */
1860
	rt2800_bbp_write(rt2x00dev, 24, 0x06);
1861 1862

	for (i = 0; i < 100; i++) {
1863
		rt2800_bbp_write(rt2x00dev, 25, 0x90);
1864 1865
		msleep(1);

1866
		rt2800_bbp_read(rt2x00dev, 55, &stopband);
1867 1868 1869 1870 1871 1872 1873

		if ((passband - stopband) <= filter_target) {
			rfcsr24++;
			overtuned += ((passband - stopband) == filter_target);
		} else
			break;

1874
		rt2800_rfcsr_write(rt2x00dev, 24, rfcsr24);
1875 1876 1877 1878
	}

	rfcsr24 -= !!overtuned;

1879
	rt2800_rfcsr_write(rt2x00dev, 24, rfcsr24);
1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895
	return rfcsr24;
}

static int rt2800pci_init_rfcsr(struct rt2x00_dev *rt2x00dev)
{
	u8 rfcsr;
	u8 bbp;

	if (!rt2x00_rf(&rt2x00dev->chip, RF3020) &&
	    !rt2x00_rf(&rt2x00dev->chip, RF3021) &&
	    !rt2x00_rf(&rt2x00dev->chip, RF3022))
		return 0;

	/*
	 * Init RF calibration.
	 */
1896
	rt2800_rfcsr_read(rt2x00dev, 30, &rfcsr);
1897
	rt2x00_set_field8(&rfcsr, RFCSR30_RF_CALIBRATION, 1);
1898
	rt2800_rfcsr_write(rt2x00dev, 30, rfcsr);
1899 1900
	msleep(1);
	rt2x00_set_field8(&rfcsr, RFCSR30_RF_CALIBRATION, 0);
1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
	rt2800_rfcsr_write(rt2x00dev, 30, rfcsr);

	rt2800_rfcsr_write(rt2x00dev, 0, 0x50);
	rt2800_rfcsr_write(rt2x00dev, 1, 0x01);
	rt2800_rfcsr_write(rt2x00dev, 2, 0xf7);
	rt2800_rfcsr_write(rt2x00dev, 3, 0x75);
	rt2800_rfcsr_write(rt2x00dev, 4, 0x40);
	rt2800_rfcsr_write(rt2x00dev, 5, 0x03);
	rt2800_rfcsr_write(rt2x00dev, 6, 0x02);
	rt2800_rfcsr_write(rt2x00dev, 7, 0x50);
	rt2800_rfcsr_write(rt2x00dev, 8, 0x39);
	rt2800_rfcsr_write(rt2x00dev, 9, 0x0f);
	rt2800_rfcsr_write(rt2x00dev, 10, 0x60);
	rt2800_rfcsr_write(rt2x00dev, 11, 0x21);
	rt2800_rfcsr_write(rt2x00dev, 12, 0x75);
	rt2800_rfcsr_write(rt2x00dev, 13, 0x75);
	rt2800_rfcsr_write(rt2x00dev, 14, 0x90);
	rt2800_rfcsr_write(rt2x00dev, 15, 0x58);
	rt2800_rfcsr_write(rt2x00dev, 16, 0xb3);
	rt2800_rfcsr_write(rt2x00dev, 17, 0x92);
	rt2800_rfcsr_write(rt2x00dev, 18, 0x2c);
	rt2800_rfcsr_write(rt2x00dev, 19, 0x02);
	rt2800_rfcsr_write(rt2x00dev, 20, 0xba);
	rt2800_rfcsr_write(rt2x00dev, 21, 0xdb);
	rt2800_rfcsr_write(rt2x00dev, 22, 0x00);
	rt2800_rfcsr_write(rt2x00dev, 23, 0x31);
	rt2800_rfcsr_write(rt2x00dev, 24, 0x08);
	rt2800_rfcsr_write(rt2x00dev, 25, 0x01);
	rt2800_rfcsr_write(rt2x00dev, 26, 0x25);
	rt2800_rfcsr_write(rt2x00dev, 27, 0x23);
	rt2800_rfcsr_write(rt2x00dev, 28, 0x13);
	rt2800_rfcsr_write(rt2x00dev, 29, 0x83);
1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944

	/*
	 * Set RX Filter calibration for 20MHz and 40MHz
	 */
	rt2x00dev->calibration[0] =
	    rt2800pci_init_rx_filter(rt2x00dev, false, 0x07, 0x16);
	rt2x00dev->calibration[1] =
	    rt2800pci_init_rx_filter(rt2x00dev, true, 0x27, 0x19);

	/*
	 * Set back to initial state
	 */
1945
	rt2800_bbp_write(rt2x00dev, 24, 0);
1946

1947
	rt2800_rfcsr_read(rt2x00dev, 22, &rfcsr);
1948
	rt2x00_set_field8(&rfcsr, RFCSR22_BASEBAND_LOOPBACK, 0);
1949
	rt2800_rfcsr_write(rt2x00dev, 22, rfcsr);
1950 1951 1952 1953

	/*
	 * set BBP back to BW20
	 */
1954
	rt2800_bbp_read(rt2x00dev, 4, &bbp);
1955
	rt2x00_set_field8(&bbp, BBP4_BANDWIDTH, 0);
1956
	rt2800_bbp_write(rt2x00dev, 4, bbp);
1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968

	return 0;
}

/*
 * Device state switch handlers.
 */
static void rt2800pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
				enum dev_state state)
{
	u32 reg;

1969
	rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
1970 1971 1972
	rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX,
			   (state == STATE_RADIO_RX_ON) ||
			   (state == STATE_RADIO_RX_ON_LINK));
1973
	rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
}

static void rt2800pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
				 enum dev_state state)
{
	int mask = (state == STATE_RADIO_IRQ_ON);
	u32 reg;

	/*
	 * When interrupts are being enabled, the interrupt registers
	 * should clear the register to assure a clean state.
	 */
	if (state == STATE_RADIO_IRQ_ON) {
1987 1988
		rt2800_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
		rt2800_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
1989 1990
	}

1991
	rt2800_register_read(rt2x00dev, INT_MASK_CSR, &reg);
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
	rt2x00_set_field32(&reg, INT_MASK_CSR_RXDELAYINT, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_TXDELAYINT, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_RX_DONE, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_AC0_DMA_DONE, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_AC1_DMA_DONE, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_AC2_DMA_DONE, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_AC3_DMA_DONE, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_HCCA_DMA_DONE, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_MGMT_DMA_DONE, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_MCU_COMMAND, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_RXTX_COHERENT, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_TBTT, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_PRE_TBTT, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_AUTO_WAKEUP, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_GPTIMER, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_RX_COHERENT, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_TX_COHERENT, mask);
2010
	rt2800_register_write(rt2x00dev, INT_MASK_CSR, reg);
2011 2012 2013 2014 2015 2016 2017 2018
}

static int rt2800pci_wait_wpdma_ready(struct rt2x00_dev *rt2x00dev)
{
	unsigned int i;
	u32 reg;

	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
2019
		rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049
		if (!rt2x00_get_field32(reg, WPDMA_GLO_CFG_TX_DMA_BUSY) &&
		    !rt2x00_get_field32(reg, WPDMA_GLO_CFG_RX_DMA_BUSY))
			return 0;

		msleep(1);
	}

	ERROR(rt2x00dev, "WPDMA TX/RX busy, aborting.\n");
	return -EACCES;
}

static int rt2800pci_enable_radio(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;
	u16 word;

	/*
	 * Initialize all registers.
	 */
	if (unlikely(rt2800pci_wait_wpdma_ready(rt2x00dev) ||
		     rt2800pci_init_queues(rt2x00dev) ||
		     rt2800pci_init_registers(rt2x00dev) ||
		     rt2800pci_wait_wpdma_ready(rt2x00dev) ||
		     rt2800pci_init_bbp(rt2x00dev) ||
		     rt2800pci_init_rfcsr(rt2x00dev)))
		return -EIO;

	/*
	 * Send signal to firmware during boot time.
	 */
2050
	rt2800_mcu_request(rt2x00dev, MCU_BOOT_SIGNAL, 0xff, 0, 0);
2051 2052 2053 2054

	/*
	 * Enable RX.
	 */
2055
	rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
2056 2057
	rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_TX, 1);
	rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 0);
2058
	rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
2059

2060
	rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
2061 2062 2063 2064
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 1);
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 1);
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_WP_DMA_BURST_SIZE, 2);
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
2065
	rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
2066

2067
	rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
2068 2069
	rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_TX, 1);
	rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 1);
2070
	rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
2071 2072 2073 2074 2075

	/*
	 * Initialize LED control
	 */
	rt2x00_eeprom_read(rt2x00dev, EEPROM_LED1, &word);
2076
	rt2800_mcu_request(rt2x00dev, MCU_LED_1, 0xff,
2077 2078 2079
			      word & 0xff, (word >> 8) & 0xff);

	rt2x00_eeprom_read(rt2x00dev, EEPROM_LED2, &word);
2080
	rt2800_mcu_request(rt2x00dev, MCU_LED_2, 0xff,
2081 2082 2083
			      word & 0xff, (word >> 8) & 0xff);

	rt2x00_eeprom_read(rt2x00dev, EEPROM_LED3, &word);
2084
	rt2800_mcu_request(rt2x00dev, MCU_LED_3, 0xff,
2085 2086 2087 2088 2089 2090 2091 2092 2093
			      word & 0xff, (word >> 8) & 0xff);

	return 0;
}

static void rt2800pci_disable_radio(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;

2094
	rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
2095 2096 2097 2098 2099
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_DMA_BUSY, 0);
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_RX_DMA_BUSY, 0);
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
2100
	rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
2101

2102 2103 2104
	rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, 0);
	rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0);
	rt2800_register_write(rt2x00dev, TX_PIN_CFG, 0);
2105

2106
	rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001280);
2107

2108
	rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
2109 2110 2111 2112 2113 2114 2115
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
2116
	rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
2117

2118 2119
	rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
	rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132

	/* Wait for DMA, ignore error */
	rt2800pci_wait_wpdma_ready(rt2x00dev);
}

static int rt2800pci_set_state(struct rt2x00_dev *rt2x00dev,
			       enum dev_state state)
{
	/*
	 * Always put the device to sleep (even when we intend to wakeup!)
	 * if the device is booting and wasn't asleep it will return
	 * failure when attempting to wakeup.
	 */
2133
	rt2800_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0, 2);
2134 2135

	if (state == STATE_AWAKE) {
2136
		rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKUP, 0, 0);
2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237
		rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKUP);
	}

	return 0;
}

static int rt2800pci_set_device_state(struct rt2x00_dev *rt2x00dev,
				      enum dev_state state)
{
	int retval = 0;

	switch (state) {
	case STATE_RADIO_ON:
		/*
		 * Before the radio can be enabled, the device first has
		 * to be woken up. After that it needs a bit of time
		 * to be fully awake and then the radio can be enabled.
		 */
		rt2800pci_set_state(rt2x00dev, STATE_AWAKE);
		msleep(1);
		retval = rt2800pci_enable_radio(rt2x00dev);
		break;
	case STATE_RADIO_OFF:
		/*
		 * After the radio has been disabled, the device should
		 * be put to sleep for powersaving.
		 */
		rt2800pci_disable_radio(rt2x00dev);
		rt2800pci_set_state(rt2x00dev, STATE_SLEEP);
		break;
	case STATE_RADIO_RX_ON:
	case STATE_RADIO_RX_ON_LINK:
	case STATE_RADIO_RX_OFF:
	case STATE_RADIO_RX_OFF_LINK:
		rt2800pci_toggle_rx(rt2x00dev, state);
		break;
	case STATE_RADIO_IRQ_ON:
	case STATE_RADIO_IRQ_OFF:
		rt2800pci_toggle_irq(rt2x00dev, state);
		break;
	case STATE_DEEP_SLEEP:
	case STATE_SLEEP:
	case STATE_STANDBY:
	case STATE_AWAKE:
		retval = rt2800pci_set_state(rt2x00dev, state);
		break;
	default:
		retval = -ENOTSUPP;
		break;
	}

	if (unlikely(retval))
		ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
		      state, retval);

	return retval;
}

/*
 * TX descriptor initialization
 */
static void rt2800pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
				    struct sk_buff *skb,
				    struct txentry_desc *txdesc)
{
	struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
	__le32 *txd = skbdesc->desc;
	__le32 *txwi = (__le32 *)(skb->data - rt2x00dev->hw->extra_tx_headroom);
	u32 word;

	/*
	 * Initialize TX Info descriptor
	 */
	rt2x00_desc_read(txwi, 0, &word);
	rt2x00_set_field32(&word, TXWI_W0_FRAG,
			   test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
	rt2x00_set_field32(&word, TXWI_W0_MIMO_PS, 0);
	rt2x00_set_field32(&word, TXWI_W0_CF_ACK, 0);
	rt2x00_set_field32(&word, TXWI_W0_TS,
			   test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
	rt2x00_set_field32(&word, TXWI_W0_AMPDU,
			   test_bit(ENTRY_TXD_HT_AMPDU, &txdesc->flags));
	rt2x00_set_field32(&word, TXWI_W0_MPDU_DENSITY, txdesc->mpdu_density);
	rt2x00_set_field32(&word, TXWI_W0_TX_OP, txdesc->ifs);
	rt2x00_set_field32(&word, TXWI_W0_MCS, txdesc->mcs);
	rt2x00_set_field32(&word, TXWI_W0_BW,
			   test_bit(ENTRY_TXD_HT_BW_40, &txdesc->flags));
	rt2x00_set_field32(&word, TXWI_W0_SHORT_GI,
			   test_bit(ENTRY_TXD_HT_SHORT_GI, &txdesc->flags));
	rt2x00_set_field32(&word, TXWI_W0_STBC, txdesc->stbc);
	rt2x00_set_field32(&word, TXWI_W0_PHYMODE, txdesc->rate_mode);
	rt2x00_desc_write(txwi, 0, word);

	rt2x00_desc_read(txwi, 1, &word);
	rt2x00_set_field32(&word, TXWI_W1_ACK,
			   test_bit(ENTRY_TXD_ACK, &txdesc->flags));
	rt2x00_set_field32(&word, TXWI_W1_NSEQ,
			   test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
	rt2x00_set_field32(&word, TXWI_W1_BW_WIN_SIZE, txdesc->ba_size);
	rt2x00_set_field32(&word, TXWI_W1_WIRELESS_CLI_ID,
			   test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags) ?
2238
			   txdesc->key_idx : 0xff);
2239 2240 2241 2242 2243 2244 2245 2246
	rt2x00_set_field32(&word, TXWI_W1_MPDU_TOTAL_BYTE_COUNT,
			   skb->len - txdesc->l2pad);
	rt2x00_set_field32(&word, TXWI_W1_PACKETID,
			   skbdesc->entry->queue->qid + 1);
	rt2x00_desc_write(txwi, 1, word);

	/*
	 * Always write 0 to IV/EIV fields, hardware will insert the IV
2247 2248
	 * from the IVEIV register when TXD_W3_WIV is set to 0.
	 * When TXD_W3_WIV is set to 1 it will use the IV data
2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307
	 * from the descriptor. The TXWI_W1_WIRELESS_CLI_ID indicates which
	 * crypto entry in the registers should be used to encrypt the frame.
	 */
	_rt2x00_desc_write(txwi, 2, 0 /* skbdesc->iv[0] */);
	_rt2x00_desc_write(txwi, 3, 0 /* skbdesc->iv[1] */);

	/*
	 * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
	 * must contains a TXWI structure + 802.11 header + padding + 802.11
	 * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
	 * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
	 * data. It means that LAST_SEC0 is always 0.
	 */

	/*
	 * Initialize TX descriptor
	 */
	rt2x00_desc_read(txd, 0, &word);
	rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma);
	rt2x00_desc_write(txd, 0, word);

	rt2x00_desc_read(txd, 1, &word);
	rt2x00_set_field32(&word, TXD_W1_SD_LEN1, skb->len);
	rt2x00_set_field32(&word, TXD_W1_LAST_SEC1,
			   !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
	rt2x00_set_field32(&word, TXD_W1_BURST,
			   test_bit(ENTRY_TXD_BURST, &txdesc->flags));
	rt2x00_set_field32(&word, TXD_W1_SD_LEN0,
			   rt2x00dev->hw->extra_tx_headroom);
	rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0);
	rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0);
	rt2x00_desc_write(txd, 1, word);

	rt2x00_desc_read(txd, 2, &word);
	rt2x00_set_field32(&word, TXD_W2_SD_PTR1,
			   skbdesc->skb_dma + rt2x00dev->hw->extra_tx_headroom);
	rt2x00_desc_write(txd, 2, word);

	rt2x00_desc_read(txd, 3, &word);
	rt2x00_set_field32(&word, TXD_W3_WIV,
			   !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
	rt2x00_set_field32(&word, TXD_W3_QSEL, 2);
	rt2x00_desc_write(txd, 3, word);
}

/*
 * TX data initialization
 */
static void rt2800pci_write_beacon(struct queue_entry *entry)
{
	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
	unsigned int beacon_base;
	u32 reg;

	/*
	 * Disable beaconing while we are reloading the beacon data,
	 * otherwise we might be sending out invalid data.
	 */
2308
	rt2800_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
2309
	rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
2310
	rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
2311 2312 2313 2314 2315

	/*
	 * Write entire beacon with descriptor to register.
	 */
	beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
2316
	rt2800_register_multiwrite(rt2x00dev,
2317 2318
				      beacon_base,
				      skbdesc->desc, skbdesc->desc_len);
2319
	rt2800_register_multiwrite(rt2x00dev,
2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337
				      beacon_base + skbdesc->desc_len,
				      entry->skb->data, entry->skb->len);

	/*
	 * Clean up beacon skb.
	 */
	dev_kfree_skb_any(entry->skb);
	entry->skb = NULL;
}

static void rt2800pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
				    const enum data_queue_qid queue_idx)
{
	struct data_queue *queue;
	unsigned int idx, qidx = 0;
	u32 reg;

	if (queue_idx == QID_BEACON) {
2338
		rt2800_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
2339 2340 2341 2342
		if (!rt2x00_get_field32(reg, BCN_TIME_CFG_BEACON_GEN)) {
			rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 1);
			rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 1);
			rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 1);
2343
			rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358
		}
		return;
	}

	if (queue_idx > QID_HCCA && queue_idx != QID_MGMT)
		return;

	queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
	idx = queue->index[Q_INDEX];

	if (queue_idx == QID_MGMT)
		qidx = 5;
	else
		qidx = queue_idx;

2359
	rt2800_register_write(rt2x00dev, TX_CTX_IDX(qidx), idx);
2360 2361 2362 2363 2364 2365 2366 2367
}

static void rt2800pci_kill_tx_queue(struct rt2x00_dev *rt2x00dev,
				    const enum data_queue_qid qid)
{
	u32 reg;

	if (qid == QID_BEACON) {
2368
		rt2800_register_write(rt2x00dev, BCN_TIME_CFG, 0);
2369 2370 2371
		return;
	}

2372
	rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
2373 2374 2375 2376
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, (qid == QID_AC_BE));
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, (qid == QID_AC_BK));
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, (qid == QID_AC_VI));
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, (qid == QID_AC_VO));
2377
	rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472
}

/*
 * RX control handlers
 */
static void rt2800pci_fill_rxdone(struct queue_entry *entry,
				  struct rxdone_entry_desc *rxdesc)
{
	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
	__le32 *rxd = entry_priv->desc;
	__le32 *rxwi = (__le32 *)entry->skb->data;
	u32 rxd3;
	u32 rxwi0;
	u32 rxwi1;
	u32 rxwi2;
	u32 rxwi3;

	rt2x00_desc_read(rxd, 3, &rxd3);
	rt2x00_desc_read(rxwi, 0, &rxwi0);
	rt2x00_desc_read(rxwi, 1, &rxwi1);
	rt2x00_desc_read(rxwi, 2, &rxwi2);
	rt2x00_desc_read(rxwi, 3, &rxwi3);

	if (rt2x00_get_field32(rxd3, RXD_W3_CRC_ERROR))
		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;

	if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags)) {
		/*
		 * Unfortunately we don't know the cipher type used during
		 * decryption. This prevents us from correct providing
		 * correct statistics through debugfs.
		 */
		rxdesc->cipher = rt2x00_get_field32(rxwi0, RXWI_W0_UDF);
		rxdesc->cipher_status =
		    rt2x00_get_field32(rxd3, RXD_W3_CIPHER_ERROR);
	}

	if (rt2x00_get_field32(rxd3, RXD_W3_DECRYPTED)) {
		/*
		 * Hardware has stripped IV/EIV data from 802.11 frame during
		 * decryption. Unfortunately the descriptor doesn't contain
		 * any fields with the EIV/IV data either, so they can't
		 * be restored by rt2x00lib.
		 */
		rxdesc->flags |= RX_FLAG_IV_STRIPPED;

		if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
			rxdesc->flags |= RX_FLAG_DECRYPTED;
		else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
			rxdesc->flags |= RX_FLAG_MMIC_ERROR;
	}

	if (rt2x00_get_field32(rxd3, RXD_W3_MY_BSS))
		rxdesc->dev_flags |= RXDONE_MY_BSS;

	if (rt2x00_get_field32(rxd3, RXD_W3_L2PAD)) {
		rxdesc->dev_flags |= RXDONE_L2PAD;
		skbdesc->flags |= SKBDESC_L2_PADDED;
	}

	if (rt2x00_get_field32(rxwi1, RXWI_W1_SHORT_GI))
		rxdesc->flags |= RX_FLAG_SHORT_GI;

	if (rt2x00_get_field32(rxwi1, RXWI_W1_BW))
		rxdesc->flags |= RX_FLAG_40MHZ;

	/*
	 * Detect RX rate, always use MCS as signal type.
	 */
	rxdesc->dev_flags |= RXDONE_SIGNAL_MCS;
	rxdesc->rate_mode = rt2x00_get_field32(rxwi1, RXWI_W1_PHYMODE);
	rxdesc->signal = rt2x00_get_field32(rxwi1, RXWI_W1_MCS);

	/*
	 * Mask of 0x8 bit to remove the short preamble flag.
	 */
	if (rxdesc->rate_mode == RATE_MODE_CCK)
		rxdesc->signal &= ~0x8;

	rxdesc->rssi =
	    (rt2x00_get_field32(rxwi2, RXWI_W2_RSSI0) +
	     rt2x00_get_field32(rxwi2, RXWI_W2_RSSI1)) / 2;

	rxdesc->noise =
	    (rt2x00_get_field32(rxwi3, RXWI_W3_SNR0) +
	     rt2x00_get_field32(rxwi3, RXWI_W3_SNR1)) / 2;

	rxdesc->size = rt2x00_get_field32(rxwi0, RXWI_W0_MPDU_TOTAL_BYTE_COUNT);

	/*
	 * Set RX IDX in register to inform hardware that we have handled
	 * this entry and it is available for reuse again.
	 */
2473
	rt2800_register_write(rt2x00dev, RX_CRX_IDX, entry->entry_idx);
2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509

	/*
	 * Remove TXWI descriptor from start of buffer.
	 */
	skb_pull(entry->skb, RXWI_DESC_SIZE);
	skb_trim(entry->skb, rxdesc->size);
}

/*
 * Interrupt functions.
 */
static void rt2800pci_txdone(struct rt2x00_dev *rt2x00dev)
{
	struct data_queue *queue;
	struct queue_entry *entry;
	struct queue_entry *entry_done;
	struct queue_entry_priv_pci *entry_priv;
	struct txdone_entry_desc txdesc;
	u32 word;
	u32 reg;
	u32 old_reg;
	unsigned int type;
	unsigned int index;
	u16 mcs, real_mcs;

	/*
	 * During each loop we will compare the freshly read
	 * TX_STA_FIFO register value with the value read from
	 * the previous loop. If the 2 values are equal then
	 * we should stop processing because the chance it
	 * quite big that the device has been unplugged and
	 * we risk going into an endless loop.
	 */
	old_reg = 0;

	while (1) {
2510
		rt2800_register_read(rt2x00dev, TX_STA_FIFO, &reg);
2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593
		if (!rt2x00_get_field32(reg, TX_STA_FIFO_VALID))
			break;

		if (old_reg == reg)
			break;
		old_reg = reg;

		/*
		 * Skip this entry when it contains an invalid
		 * queue identication number.
		 */
		type = rt2x00_get_field32(reg, TX_STA_FIFO_PID_TYPE) - 1;
		if (type >= QID_RX)
			continue;

		queue = rt2x00queue_get_queue(rt2x00dev, type);
		if (unlikely(!queue))
			continue;

		/*
		 * Skip this entry when it contains an invalid
		 * index number.
		 */
		index = rt2x00_get_field32(reg, TX_STA_FIFO_WCID) - 1;
		if (unlikely(index >= queue->limit))
			continue;

		entry = &queue->entries[index];
		entry_priv = entry->priv_data;
		rt2x00_desc_read((__le32 *)entry->skb->data, 0, &word);

		entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
		while (entry != entry_done) {
			/*
			 * Catch up.
			 * Just report any entries we missed as failed.
			 */
			WARNING(rt2x00dev,
				"TX status report missed for entry %d\n",
				entry_done->entry_idx);

			txdesc.flags = 0;
			__set_bit(TXDONE_UNKNOWN, &txdesc.flags);
			txdesc.retry = 0;

			rt2x00lib_txdone(entry_done, &txdesc);
			entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
		}

		/*
		 * Obtain the status about this packet.
		 */
		txdesc.flags = 0;
		if (rt2x00_get_field32(reg, TX_STA_FIFO_TX_SUCCESS))
			__set_bit(TXDONE_SUCCESS, &txdesc.flags);
		else
			__set_bit(TXDONE_FAILURE, &txdesc.flags);

		/*
		 * Ralink has a retry mechanism using a global fallback
		 * table. We setup this fallback table to try immediate
		 * lower rate for all rates. In the TX_STA_FIFO,
		 * the MCS field contains the MCS used for the successfull
		 * transmission. If the first transmission succeed,
		 * we have mcs == tx_mcs. On the second transmission,
		 * we have mcs = tx_mcs - 1. So the number of
		 * retry is (tx_mcs - mcs).
		 */
		mcs = rt2x00_get_field32(word, TXWI_W0_MCS);
		real_mcs = rt2x00_get_field32(reg, TX_STA_FIFO_MCS);
		__set_bit(TXDONE_FALLBACK, &txdesc.flags);
		txdesc.retry = mcs - min(mcs, real_mcs);

		rt2x00lib_txdone(entry, &txdesc);
	}
}

static irqreturn_t rt2800pci_interrupt(int irq, void *dev_instance)
{
	struct rt2x00_dev *rt2x00dev = dev_instance;
	u32 reg;

	/* Read status and ACK all interrupts */
2594 2595
	rt2800_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
	rt2800_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751

	if (!reg)
		return IRQ_NONE;

	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
		return IRQ_HANDLED;

	/*
	 * 1 - Rx ring done interrupt.
	 */
	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE))
		rt2x00pci_rxdone(rt2x00dev);

	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS))
		rt2800pci_txdone(rt2x00dev);

	return IRQ_HANDLED;
}

/*
 * Device probe functions.
 */
static int rt2800pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
{
	u16 word;
	u8 *mac;
	u8 default_lna_gain;

	/*
	 * Read EEPROM into buffer
	 */
	switch(rt2x00dev->chip.rt) {
	case RT2880:
	case RT3052:
		rt2800pci_read_eeprom_soc(rt2x00dev);
		break;
	case RT3090:
		rt2800pci_read_eeprom_efuse(rt2x00dev);
		break;
	default:
		rt2800pci_read_eeprom_pci(rt2x00dev);
		break;
	}

	/*
	 * Start validation of the data that has been read.
	 */
	mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
	if (!is_valid_ether_addr(mac)) {
		random_ether_addr(mac);
		EEPROM(rt2x00dev, "MAC: %pM\n", mac);
	}

	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
	if (word == 0xffff) {
		rt2x00_set_field16(&word, EEPROM_ANTENNA_RXPATH, 2);
		rt2x00_set_field16(&word, EEPROM_ANTENNA_TXPATH, 1);
		rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2820);
		rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
		EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
	} else if (rt2x00_rev(&rt2x00dev->chip) < RT2883_VERSION) {
		/*
		 * There is a max of 2 RX streams for RT2860 series
		 */
		if (rt2x00_get_field16(word, EEPROM_ANTENNA_RXPATH) > 2)
			rt2x00_set_field16(&word, EEPROM_ANTENNA_RXPATH, 2);
		rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
	}

	rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
	if (word == 0xffff) {
		rt2x00_set_field16(&word, EEPROM_NIC_HW_RADIO, 0);
		rt2x00_set_field16(&word, EEPROM_NIC_DYNAMIC_TX_AGC, 0);
		rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0);
		rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0);
		rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
		rt2x00_set_field16(&word, EEPROM_NIC_BW40M_SB_BG, 0);
		rt2x00_set_field16(&word, EEPROM_NIC_BW40M_SB_A, 0);
		rt2x00_set_field16(&word, EEPROM_NIC_WPS_PBC, 0);
		rt2x00_set_field16(&word, EEPROM_NIC_BW40M_BG, 0);
		rt2x00_set_field16(&word, EEPROM_NIC_BW40M_A, 0);
		rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
		EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
	}

	rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
	if ((word & 0x00ff) == 0x00ff) {
		rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
		rt2x00_set_field16(&word, EEPROM_FREQ_LED_MODE,
				   LED_MODE_TXRX_ACTIVITY);
		rt2x00_set_field16(&word, EEPROM_FREQ_LED_POLARITY, 0);
		rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
		rt2x00_eeprom_write(rt2x00dev, EEPROM_LED1, 0x5555);
		rt2x00_eeprom_write(rt2x00dev, EEPROM_LED2, 0x2221);
		rt2x00_eeprom_write(rt2x00dev, EEPROM_LED3, 0xa9f8);
		EEPROM(rt2x00dev, "Freq: 0x%04x\n", word);
	}

	/*
	 * During the LNA validation we are going to use
	 * lna0 as correct value. Note that EEPROM_LNA
	 * is never validated.
	 */
	rt2x00_eeprom_read(rt2x00dev, EEPROM_LNA, &word);
	default_lna_gain = rt2x00_get_field16(word, EEPROM_LNA_A0);

	rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_BG, &word);
	if (abs(rt2x00_get_field16(word, EEPROM_RSSI_BG_OFFSET0)) > 10)
		rt2x00_set_field16(&word, EEPROM_RSSI_BG_OFFSET0, 0);
	if (abs(rt2x00_get_field16(word, EEPROM_RSSI_BG_OFFSET1)) > 10)
		rt2x00_set_field16(&word, EEPROM_RSSI_BG_OFFSET1, 0);
	rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_BG, word);

	rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_BG2, &word);
	if (abs(rt2x00_get_field16(word, EEPROM_RSSI_BG2_OFFSET2)) > 10)
		rt2x00_set_field16(&word, EEPROM_RSSI_BG2_OFFSET2, 0);
	if (rt2x00_get_field16(word, EEPROM_RSSI_BG2_LNA_A1) == 0x00 ||
	    rt2x00_get_field16(word, EEPROM_RSSI_BG2_LNA_A1) == 0xff)
		rt2x00_set_field16(&word, EEPROM_RSSI_BG2_LNA_A1,
				   default_lna_gain);
	rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_BG2, word);

	rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_A, &word);
	if (abs(rt2x00_get_field16(word, EEPROM_RSSI_A_OFFSET0)) > 10)
		rt2x00_set_field16(&word, EEPROM_RSSI_A_OFFSET0, 0);
	if (abs(rt2x00_get_field16(word, EEPROM_RSSI_A_OFFSET1)) > 10)
		rt2x00_set_field16(&word, EEPROM_RSSI_A_OFFSET1, 0);
	rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_A, word);

	rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_A2, &word);
	if (abs(rt2x00_get_field16(word, EEPROM_RSSI_A2_OFFSET2)) > 10)
		rt2x00_set_field16(&word, EEPROM_RSSI_A2_OFFSET2, 0);
	if (rt2x00_get_field16(word, EEPROM_RSSI_A2_LNA_A2) == 0x00 ||
	    rt2x00_get_field16(word, EEPROM_RSSI_A2_LNA_A2) == 0xff)
		rt2x00_set_field16(&word, EEPROM_RSSI_A2_LNA_A2,
				   default_lna_gain);
	rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_A2, word);

	return 0;
}

static int rt2800pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;
	u16 value;
	u16 eeprom;

	/*
	 * Read EEPROM word for configuration.
	 */
	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);

	/*
	 * Identify RF chipset.
	 */
	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
2752
	rt2800_register_read(rt2x00dev, MAC_CSR0, &reg);
2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990
	rt2x00_set_chip_rf(rt2x00dev, value, reg);

	if (!rt2x00_rf(&rt2x00dev->chip, RF2820) &&
	    !rt2x00_rf(&rt2x00dev->chip, RF2850) &&
	    !rt2x00_rf(&rt2x00dev->chip, RF2720) &&
	    !rt2x00_rf(&rt2x00dev->chip, RF2750) &&
	    !rt2x00_rf(&rt2x00dev->chip, RF3020) &&
	    !rt2x00_rf(&rt2x00dev->chip, RF2020) &&
	    !rt2x00_rf(&rt2x00dev->chip, RF3021) &&
	    !rt2x00_rf(&rt2x00dev->chip, RF3022)) {
		ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
		return -ENODEV;
	}

	/*
	 * Identify default antenna configuration.
	 */
	rt2x00dev->default_ant.tx =
	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TXPATH);
	rt2x00dev->default_ant.rx =
	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RXPATH);

	/*
	 * Read frequency offset and RF programming sequence.
	 */
	rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
	rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);

	/*
	 * Read external LNA informations.
	 */
	rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);

	if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A))
		__set_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
	if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG))
		__set_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);

	/*
	 * Detect if this device has an hardware controlled radio.
	 */
	if (rt2x00_get_field16(eeprom, EEPROM_NIC_HW_RADIO))
		__set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);

	/*
	 * Store led settings, for correct led behaviour.
	 */
#ifdef CONFIG_RT2X00_LIB_LEDS
	rt2800pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
	rt2800pci_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
	rt2800pci_init_led(rt2x00dev, &rt2x00dev->led_qual, LED_TYPE_QUALITY);

	rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &rt2x00dev->led_mcu_reg);
#endif /* CONFIG_RT2X00_LIB_LEDS */

	return 0;
}

/*
 * RF value list for rt2860
 * Supports: 2.4 GHz (all) & 5.2 GHz (RF2850 & RF2750)
 */
static const struct rf_channel rf_vals[] = {
	{ 1,  0x18402ecc, 0x184c0786, 0x1816b455, 0x1800510b },
	{ 2,  0x18402ecc, 0x184c0786, 0x18168a55, 0x1800519f },
	{ 3,  0x18402ecc, 0x184c078a, 0x18168a55, 0x1800518b },
	{ 4,  0x18402ecc, 0x184c078a, 0x18168a55, 0x1800519f },
	{ 5,  0x18402ecc, 0x184c078e, 0x18168a55, 0x1800518b },
	{ 6,  0x18402ecc, 0x184c078e, 0x18168a55, 0x1800519f },
	{ 7,  0x18402ecc, 0x184c0792, 0x18168a55, 0x1800518b },
	{ 8,  0x18402ecc, 0x184c0792, 0x18168a55, 0x1800519f },
	{ 9,  0x18402ecc, 0x184c0796, 0x18168a55, 0x1800518b },
	{ 10, 0x18402ecc, 0x184c0796, 0x18168a55, 0x1800519f },
	{ 11, 0x18402ecc, 0x184c079a, 0x18168a55, 0x1800518b },
	{ 12, 0x18402ecc, 0x184c079a, 0x18168a55, 0x1800519f },
	{ 13, 0x18402ecc, 0x184c079e, 0x18168a55, 0x1800518b },
	{ 14, 0x18402ecc, 0x184c07a2, 0x18168a55, 0x18005193 },

	/* 802.11 UNI / HyperLan 2 */
	{ 36, 0x18402ecc, 0x184c099a, 0x18158a55, 0x180ed1a3 },
	{ 38, 0x18402ecc, 0x184c099e, 0x18158a55, 0x180ed193 },
	{ 40, 0x18402ec8, 0x184c0682, 0x18158a55, 0x180ed183 },
	{ 44, 0x18402ec8, 0x184c0682, 0x18158a55, 0x180ed1a3 },
	{ 46, 0x18402ec8, 0x184c0686, 0x18158a55, 0x180ed18b },
	{ 48, 0x18402ec8, 0x184c0686, 0x18158a55, 0x180ed19b },
	{ 52, 0x18402ec8, 0x184c068a, 0x18158a55, 0x180ed193 },
	{ 54, 0x18402ec8, 0x184c068a, 0x18158a55, 0x180ed1a3 },
	{ 56, 0x18402ec8, 0x184c068e, 0x18158a55, 0x180ed18b },
	{ 60, 0x18402ec8, 0x184c0692, 0x18158a55, 0x180ed183 },
	{ 62, 0x18402ec8, 0x184c0692, 0x18158a55, 0x180ed193 },
	{ 64, 0x18402ec8, 0x184c0692, 0x18158a55, 0x180ed1a3 },

	/* 802.11 HyperLan 2 */
	{ 100, 0x18402ec8, 0x184c06b2, 0x18178a55, 0x180ed783 },
	{ 102, 0x18402ec8, 0x184c06b2, 0x18578a55, 0x180ed793 },
	{ 104, 0x18402ec8, 0x185c06b2, 0x18578a55, 0x180ed1a3 },
	{ 108, 0x18402ecc, 0x185c0a32, 0x18578a55, 0x180ed193 },
	{ 110, 0x18402ecc, 0x184c0a36, 0x18178a55, 0x180ed183 },
	{ 112, 0x18402ecc, 0x184c0a36, 0x18178a55, 0x180ed19b },
	{ 116, 0x18402ecc, 0x184c0a3a, 0x18178a55, 0x180ed1a3 },
	{ 118, 0x18402ecc, 0x184c0a3e, 0x18178a55, 0x180ed193 },
	{ 120, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed183 },
	{ 124, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed193 },
	{ 126, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed15b },
	{ 128, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed1a3 },
	{ 132, 0x18402ec4, 0x184c0386, 0x18178a55, 0x180ed18b },
	{ 134, 0x18402ec4, 0x184c0386, 0x18178a55, 0x180ed193 },
	{ 136, 0x18402ec4, 0x184c0386, 0x18178a55, 0x180ed19b },
	{ 140, 0x18402ec4, 0x184c038a, 0x18178a55, 0x180ed183 },

	/* 802.11 UNII */
	{ 149, 0x18402ec4, 0x184c038a, 0x18178a55, 0x180ed1a7 },
	{ 151, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed187 },
	{ 153, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed18f },
	{ 157, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed19f },
	{ 159, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed1a7 },
	{ 161, 0x18402ec4, 0x184c0392, 0x18178a55, 0x180ed187 },
	{ 165, 0x18402ec4, 0x184c0392, 0x18178a55, 0x180ed197 },

	/* 802.11 Japan */
	{ 184, 0x15002ccc, 0x1500491e, 0x1509be55, 0x150c0a0b },
	{ 188, 0x15002ccc, 0x15004922, 0x1509be55, 0x150c0a13 },
	{ 192, 0x15002ccc, 0x15004926, 0x1509be55, 0x150c0a1b },
	{ 196, 0x15002ccc, 0x1500492a, 0x1509be55, 0x150c0a23 },
	{ 208, 0x15002ccc, 0x1500493a, 0x1509be55, 0x150c0a13 },
	{ 212, 0x15002ccc, 0x1500493e, 0x1509be55, 0x150c0a1b },
	{ 216, 0x15002ccc, 0x15004982, 0x1509be55, 0x150c0a23 },
};

static int rt2800pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
{
	struct hw_mode_spec *spec = &rt2x00dev->spec;
	struct channel_info *info;
	char *tx_power1;
	char *tx_power2;
	unsigned int i;
	u16 eeprom;

	/*
	 * Initialize all hw fields.
	 */
	rt2x00dev->hw->flags =
	    IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
	    IEEE80211_HW_SIGNAL_DBM |
	    IEEE80211_HW_SUPPORTS_PS |
	    IEEE80211_HW_PS_NULLFUNC_STACK;
	rt2x00dev->hw->extra_tx_headroom = TXWI_DESC_SIZE;

	SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
	SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
				rt2x00_eeprom_addr(rt2x00dev,
						   EEPROM_MAC_ADDR_0));

	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);

	/*
	 * Initialize hw_mode information.
	 */
	spec->supported_bands = SUPPORT_BAND_2GHZ;
	spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;

	if (rt2x00_rf(&rt2x00dev->chip, RF2820) ||
	    rt2x00_rf(&rt2x00dev->chip, RF2720) ||
	    rt2x00_rf(&rt2x00dev->chip, RF3020) ||
	    rt2x00_rf(&rt2x00dev->chip, RF3021) ||
	    rt2x00_rf(&rt2x00dev->chip, RF3022) ||
	    rt2x00_rf(&rt2x00dev->chip, RF2020) ||
	    rt2x00_rf(&rt2x00dev->chip, RF3052)) {
		spec->num_channels = 14;
		spec->channels = rf_vals;
	} else if (rt2x00_rf(&rt2x00dev->chip, RF2850) ||
		   rt2x00_rf(&rt2x00dev->chip, RF2750)) {
		spec->supported_bands |= SUPPORT_BAND_5GHZ;
		spec->num_channels = ARRAY_SIZE(rf_vals);
		spec->channels = rf_vals;
	}

	/*
	 * Initialize HT information.
	 */
	spec->ht.ht_supported = true;
	spec->ht.cap =
	    IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
	    IEEE80211_HT_CAP_GRN_FLD |
	    IEEE80211_HT_CAP_SGI_20 |
	    IEEE80211_HT_CAP_SGI_40 |
	    IEEE80211_HT_CAP_TX_STBC |
	    IEEE80211_HT_CAP_RX_STBC |
	    IEEE80211_HT_CAP_PSMP_SUPPORT;
	spec->ht.ampdu_factor = 3;
	spec->ht.ampdu_density = 4;
	spec->ht.mcs.tx_params =
	    IEEE80211_HT_MCS_TX_DEFINED |
	    IEEE80211_HT_MCS_TX_RX_DIFF |
	    ((rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TXPATH) - 1) <<
		IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT);

	switch (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RXPATH)) {
	case 3:
		spec->ht.mcs.rx_mask[2] = 0xff;
	case 2:
		spec->ht.mcs.rx_mask[1] = 0xff;
	case 1:
		spec->ht.mcs.rx_mask[0] = 0xff;
		spec->ht.mcs.rx_mask[4] = 0x1; /* MCS32 */
		break;
	}

	/*
	 * Create channel information array
	 */
	info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
	if (!info)
		return -ENOMEM;

	spec->channels_info = info;

	tx_power1 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_BG1);
	tx_power2 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_BG2);

	for (i = 0; i < 14; i++) {
		info[i].tx_power1 = TXPOWER_G_FROM_DEV(tx_power1[i]);
		info[i].tx_power2 = TXPOWER_G_FROM_DEV(tx_power2[i]);
	}

	if (spec->num_channels > 14) {
		tx_power1 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A1);
		tx_power2 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A2);

		for (i = 14; i < spec->num_channels; i++) {
			info[i].tx_power1 = TXPOWER_A_FROM_DEV(tx_power1[i]);
			info[i].tx_power2 = TXPOWER_A_FROM_DEV(tx_power2[i]);
		}
	}

	return 0;
}

2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001
static const struct rt2800_ops rt2800pci_rt2800_ops = {
	.register_read		= rt2x00pci_register_read,
	.register_write		= rt2x00pci_register_write,
	.register_write_lock	= rt2x00pci_register_write, /* same for PCI */

	.register_multiread	= rt2x00pci_register_multiread,
	.register_multiwrite	= rt2x00pci_register_multiwrite,

	.regbusy_read		= rt2x00pci_regbusy_read,
};

3002 3003 3004 3005
static int rt2800pci_probe_hw(struct rt2x00_dev *rt2x00dev)
{
	int retval;

3006 3007
	rt2x00dev->priv = (void *)&rt2800pci_rt2800_ops;

3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062
	/*
	 * Allocate eeprom data.
	 */
	retval = rt2800pci_validate_eeprom(rt2x00dev);
	if (retval)
		return retval;

	retval = rt2800pci_init_eeprom(rt2x00dev);
	if (retval)
		return retval;

	/*
	 * Initialize hw specifications.
	 */
	retval = rt2800pci_probe_hw_mode(rt2x00dev);
	if (retval)
		return retval;

	/*
	 * This device has multiple filters for control frames
	 * and has a separate filter for PS Poll frames.
	 */
	__set_bit(DRIVER_SUPPORT_CONTROL_FILTERS, &rt2x00dev->flags);
	__set_bit(DRIVER_SUPPORT_CONTROL_FILTER_PSPOLL, &rt2x00dev->flags);

	/*
	 * This device requires firmware.
	 */
	if (!rt2x00_rt(&rt2x00dev->chip, RT2880) &&
	    !rt2x00_rt(&rt2x00dev->chip, RT3052))
		__set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
	__set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
	__set_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags);
	if (!modparam_nohwcrypt)
		__set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);

	/*
	 * Set the rssi offset.
	 */
	rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;

	return 0;
}

/*
 * IEEE80211 stack callback functions.
 */
static void rt2800pci_get_tkip_seq(struct ieee80211_hw *hw, u8 hw_key_idx,
				   u32 *iv32, u16 *iv16)
{
	struct rt2x00_dev *rt2x00dev = hw->priv;
	struct mac_iveiv_entry iveiv_entry;
	u32 offset;

	offset = MAC_IVEIV_ENTRY(hw_key_idx);
3063
	rt2800_register_multiread(rt2x00dev, offset,
3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075
				      &iveiv_entry, sizeof(iveiv_entry));

	memcpy(&iveiv_entry.iv[0], iv16, sizeof(iv16));
	memcpy(&iveiv_entry.iv[4], iv32, sizeof(iv32));
}

static int rt2800pci_set_rts_threshold(struct ieee80211_hw *hw, u32 value)
{
	struct rt2x00_dev *rt2x00dev = hw->priv;
	u32 reg;
	bool enabled = (value < IEEE80211_MAX_RTS_THRESHOLD);

3076
	rt2800_register_read(rt2x00dev, TX_RTS_CFG, &reg);
3077
	rt2x00_set_field32(&reg, TX_RTS_CFG_RTS_THRES, value);
3078
	rt2800_register_write(rt2x00dev, TX_RTS_CFG, reg);
3079

3080
	rt2800_register_read(rt2x00dev, CCK_PROT_CFG, &reg);
3081
	rt2x00_set_field32(&reg, CCK_PROT_CFG_RTS_TH_EN, enabled);
3082
	rt2800_register_write(rt2x00dev, CCK_PROT_CFG, reg);
3083

3084
	rt2800_register_read(rt2x00dev, OFDM_PROT_CFG, &reg);
3085
	rt2x00_set_field32(&reg, OFDM_PROT_CFG_RTS_TH_EN, enabled);
3086
	rt2800_register_write(rt2x00dev, OFDM_PROT_CFG, reg);
3087

3088
	rt2800_register_read(rt2x00dev, MM20_PROT_CFG, &reg);
3089
	rt2x00_set_field32(&reg, MM20_PROT_CFG_RTS_TH_EN, enabled);
3090
	rt2800_register_write(rt2x00dev, MM20_PROT_CFG, reg);
3091

3092
	rt2800_register_read(rt2x00dev, MM40_PROT_CFG, &reg);
3093
	rt2x00_set_field32(&reg, MM40_PROT_CFG_RTS_TH_EN, enabled);
3094
	rt2800_register_write(rt2x00dev, MM40_PROT_CFG, reg);
3095

3096
	rt2800_register_read(rt2x00dev, GF20_PROT_CFG, &reg);
3097
	rt2x00_set_field32(&reg, GF20_PROT_CFG_RTS_TH_EN, enabled);
3098
	rt2800_register_write(rt2x00dev, GF20_PROT_CFG, reg);
3099

3100
	rt2800_register_read(rt2x00dev, GF40_PROT_CFG, &reg);
3101
	rt2x00_set_field32(&reg, GF40_PROT_CFG_RTS_TH_EN, enabled);
3102
	rt2800_register_write(rt2x00dev, GF40_PROT_CFG, reg);
3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140

	return 0;
}

static int rt2800pci_conf_tx(struct ieee80211_hw *hw, u16 queue_idx,
			     const struct ieee80211_tx_queue_params *params)
{
	struct rt2x00_dev *rt2x00dev = hw->priv;
	struct data_queue *queue;
	struct rt2x00_field32 field;
	int retval;
	u32 reg;
	u32 offset;

	/*
	 * First pass the configuration through rt2x00lib, that will
	 * update the queue settings and validate the input. After that
	 * we are free to update the registers based on the value
	 * in the queue parameter.
	 */
	retval = rt2x00mac_conf_tx(hw, queue_idx, params);
	if (retval)
		return retval;

	/*
	 * We only need to perform additional register initialization
	 * for WMM queues/
	 */
	if (queue_idx >= 4)
		return 0;

	queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);

	/* Update WMM TXOP register */
	offset = WMM_TXOP0_CFG + (sizeof(u32) * (!!(queue_idx & 2)));
	field.bit_offset = (queue_idx & 1) * 16;
	field.bit_mask = 0xffff << field.bit_offset;

3141
	rt2800_register_read(rt2x00dev, offset, &reg);
3142
	rt2x00_set_field32(&reg, field, queue->txop);
3143
	rt2800_register_write(rt2x00dev, offset, reg);
3144 3145 3146 3147 3148

	/* Update WMM registers */
	field.bit_offset = queue_idx * 4;
	field.bit_mask = 0xf << field.bit_offset;

3149
	rt2800_register_read(rt2x00dev, WMM_AIFSN_CFG, &reg);
3150
	rt2x00_set_field32(&reg, field, queue->aifs);
3151
	rt2800_register_write(rt2x00dev, WMM_AIFSN_CFG, reg);
3152

3153
	rt2800_register_read(rt2x00dev, WMM_CWMIN_CFG, &reg);
3154
	rt2x00_set_field32(&reg, field, queue->cw_min);
3155
	rt2800_register_write(rt2x00dev, WMM_CWMIN_CFG, reg);
3156

3157
	rt2800_register_read(rt2x00dev, WMM_CWMAX_CFG, &reg);
3158
	rt2x00_set_field32(&reg, field, queue->cw_max);
3159
	rt2800_register_write(rt2x00dev, WMM_CWMAX_CFG, reg);
3160 3161 3162 3163

	/* Update EDCA registers */
	offset = EDCA_AC0_CFG + (sizeof(u32) * queue_idx);

3164
	rt2800_register_read(rt2x00dev, offset, &reg);
3165 3166 3167 3168
	rt2x00_set_field32(&reg, EDCA_AC0_CFG_TX_OP, queue->txop);
	rt2x00_set_field32(&reg, EDCA_AC0_CFG_AIFSN, queue->aifs);
	rt2x00_set_field32(&reg, EDCA_AC0_CFG_CWMIN, queue->cw_min);
	rt2x00_set_field32(&reg, EDCA_AC0_CFG_CWMAX, queue->cw_max);
3169
	rt2800_register_write(rt2x00dev, offset, reg);
3170 3171 3172 3173 3174 3175 3176 3177 3178 3179

	return 0;
}

static u64 rt2800pci_get_tsf(struct ieee80211_hw *hw)
{
	struct rt2x00_dev *rt2x00dev = hw->priv;
	u64 tsf;
	u32 reg;

3180
	rt2800_register_read(rt2x00dev, TSF_TIMER_DW1, &reg);
3181
	tsf = (u64) rt2x00_get_field32(reg, TSF_TIMER_DW1_HIGH_WORD) << 32;
3182
	rt2800_register_read(rt2x00dev, TSF_TIMER_DW0, &reg);
3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376
	tsf |= rt2x00_get_field32(reg, TSF_TIMER_DW0_LOW_WORD);

	return tsf;
}

static const struct ieee80211_ops rt2800pci_mac80211_ops = {
	.tx			= rt2x00mac_tx,
	.start			= rt2x00mac_start,
	.stop			= rt2x00mac_stop,
	.add_interface		= rt2x00mac_add_interface,
	.remove_interface	= rt2x00mac_remove_interface,
	.config			= rt2x00mac_config,
	.configure_filter	= rt2x00mac_configure_filter,
	.set_key		= rt2x00mac_set_key,
	.get_stats		= rt2x00mac_get_stats,
	.get_tkip_seq		= rt2800pci_get_tkip_seq,
	.set_rts_threshold	= rt2800pci_set_rts_threshold,
	.bss_info_changed	= rt2x00mac_bss_info_changed,
	.conf_tx		= rt2800pci_conf_tx,
	.get_tx_stats		= rt2x00mac_get_tx_stats,
	.get_tsf		= rt2800pci_get_tsf,
	.rfkill_poll		= rt2x00mac_rfkill_poll,
};

static const struct rt2x00lib_ops rt2800pci_rt2x00_ops = {
	.irq_handler		= rt2800pci_interrupt,
	.probe_hw		= rt2800pci_probe_hw,
	.get_firmware_name	= rt2800pci_get_firmware_name,
	.check_firmware		= rt2800pci_check_firmware,
	.load_firmware		= rt2800pci_load_firmware,
	.initialize		= rt2x00pci_initialize,
	.uninitialize		= rt2x00pci_uninitialize,
	.get_entry_state	= rt2800pci_get_entry_state,
	.clear_entry		= rt2800pci_clear_entry,
	.set_device_state	= rt2800pci_set_device_state,
	.rfkill_poll		= rt2800pci_rfkill_poll,
	.link_stats		= rt2800pci_link_stats,
	.reset_tuner		= rt2800pci_reset_tuner,
	.link_tuner		= rt2800pci_link_tuner,
	.write_tx_desc		= rt2800pci_write_tx_desc,
	.write_tx_data		= rt2x00pci_write_tx_data,
	.write_beacon		= rt2800pci_write_beacon,
	.kick_tx_queue		= rt2800pci_kick_tx_queue,
	.kill_tx_queue		= rt2800pci_kill_tx_queue,
	.fill_rxdone		= rt2800pci_fill_rxdone,
	.config_shared_key	= rt2800pci_config_shared_key,
	.config_pairwise_key	= rt2800pci_config_pairwise_key,
	.config_filter		= rt2800pci_config_filter,
	.config_intf		= rt2800pci_config_intf,
	.config_erp		= rt2800pci_config_erp,
	.config_ant		= rt2800pci_config_ant,
	.config			= rt2800pci_config,
};

static const struct data_queue_desc rt2800pci_queue_rx = {
	.entry_num		= RX_ENTRIES,
	.data_size		= AGGREGATION_SIZE,
	.desc_size		= RXD_DESC_SIZE,
	.priv_size		= sizeof(struct queue_entry_priv_pci),
};

static const struct data_queue_desc rt2800pci_queue_tx = {
	.entry_num		= TX_ENTRIES,
	.data_size		= AGGREGATION_SIZE,
	.desc_size		= TXD_DESC_SIZE,
	.priv_size		= sizeof(struct queue_entry_priv_pci),
};

static const struct data_queue_desc rt2800pci_queue_bcn = {
	.entry_num		= 8 * BEACON_ENTRIES,
	.data_size		= 0, /* No DMA required for beacons */
	.desc_size		= TXWI_DESC_SIZE,
	.priv_size		= sizeof(struct queue_entry_priv_pci),
};

static const struct rt2x00_ops rt2800pci_ops = {
	.name		= KBUILD_MODNAME,
	.max_sta_intf	= 1,
	.max_ap_intf	= 8,
	.eeprom_size	= EEPROM_SIZE,
	.rf_size	= RF_SIZE,
	.tx_queues	= NUM_TX_QUEUES,
	.rx		= &rt2800pci_queue_rx,
	.tx		= &rt2800pci_queue_tx,
	.bcn		= &rt2800pci_queue_bcn,
	.lib		= &rt2800pci_rt2x00_ops,
	.hw		= &rt2800pci_mac80211_ops,
#ifdef CONFIG_RT2X00_LIB_DEBUGFS
	.debugfs	= &rt2800pci_rt2x00debug,
#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
};

/*
 * RT2800pci module information.
 */
static struct pci_device_id rt2800pci_device_table[] = {
	{ PCI_DEVICE(0x1462, 0x891a), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1432, 0x7708), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1432, 0x7727), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1432, 0x7728), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1432, 0x7738), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1432, 0x7748), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1432, 0x7758), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1432, 0x7768), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1814, 0x0601), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1814, 0x0681), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1814, 0x0701), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1814, 0x0781), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1814, 0x3060), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1814, 0x3062), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1814, 0x3090), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1814, 0x3091), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1814, 0x3092), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1814, 0x3562), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1814, 0x3592), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1a3b, 0x1059), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ 0, }
};

MODULE_AUTHOR(DRV_PROJECT);
MODULE_VERSION(DRV_VERSION);
MODULE_DESCRIPTION("Ralink RT2800 PCI & PCMCIA Wireless LAN driver.");
MODULE_SUPPORTED_DEVICE("Ralink RT2860 PCI & PCMCIA chipset based cards");
#ifdef CONFIG_RT2800PCI_PCI
MODULE_FIRMWARE(FIRMWARE_RT2860);
MODULE_DEVICE_TABLE(pci, rt2800pci_device_table);
#endif /* CONFIG_RT2800PCI_PCI */
MODULE_LICENSE("GPL");

#ifdef CONFIG_RT2800PCI_WISOC
#if defined(CONFIG_RALINK_RT288X)
__rt2x00soc_probe(RT2880, &rt2800pci_ops);
#elif defined(CONFIG_RALINK_RT305X)
__rt2x00soc_probe(RT3052, &rt2800pci_ops);
#endif

static struct platform_driver rt2800soc_driver = {
	.driver		= {
		.name		= "rt2800_wmac",
		.owner		= THIS_MODULE,
		.mod_name	= KBUILD_MODNAME,
	},
	.probe		= __rt2x00soc_probe,
	.remove		= __devexit_p(rt2x00soc_remove),
	.suspend	= rt2x00soc_suspend,
	.resume		= rt2x00soc_resume,
};
#endif /* CONFIG_RT2800PCI_WISOC */

#ifdef CONFIG_RT2800PCI_PCI
static struct pci_driver rt2800pci_driver = {
	.name		= KBUILD_MODNAME,
	.id_table	= rt2800pci_device_table,
	.probe		= rt2x00pci_probe,
	.remove		= __devexit_p(rt2x00pci_remove),
	.suspend	= rt2x00pci_suspend,
	.resume		= rt2x00pci_resume,
};
#endif /* CONFIG_RT2800PCI_PCI */

static int __init rt2800pci_init(void)
{
	int ret = 0;

#ifdef CONFIG_RT2800PCI_WISOC
	ret = platform_driver_register(&rt2800soc_driver);
	if (ret)
		return ret;
#endif
#ifdef CONFIG_RT2800PCI_PCI
	ret = pci_register_driver(&rt2800pci_driver);
	if (ret) {
#ifdef CONFIG_RT2800PCI_WISOC
		platform_driver_unregister(&rt2800soc_driver);
#endif
		return ret;
	}
#endif

	return ret;
}

static void __exit rt2800pci_exit(void)
{
#ifdef CONFIG_RT2800PCI_PCI
	pci_unregister_driver(&rt2800pci_driver);
#endif
#ifdef CONFIG_RT2800PCI_WISOC
	platform_driver_unregister(&rt2800soc_driver);
#endif
}

module_init(rt2800pci_init);
module_exit(rt2800pci_exit);