skge.c 90.0 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 * New driver for Marvell Yukon chipset and SysKonnect Gigabit
 * Ethernet adapters. Based on earlier sk98lin, e100 and
 * FreeBSD if_sk drivers.
 *
 * This driver intentionally does not support all the features
 * of the original driver such as link fail-over and link management because
 * those should be done at higher levels.
 *
10
 * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

#include <linux/config.h>
28
#include <linux/in.h>
29 30 31 32 33 34 35 36 37 38 39
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/pci.h>
#include <linux/if_vlan.h>
#include <linux/ip.h>
#include <linux/delay.h>
#include <linux/crc32.h>
A
Al Viro 已提交
40
#include <linux/dma-mapping.h>
41
#include <linux/mii.h>
42 43 44 45 46
#include <asm/irq.h>

#include "skge.h"

#define DRV_NAME		"skge"
S
Stephen Hemminger 已提交
47
#define DRV_VERSION		"1.5"
48 49 50 51 52 53
#define PFX			DRV_NAME " "

#define DEFAULT_TX_RING_SIZE	128
#define DEFAULT_RX_RING_SIZE	512
#define MAX_TX_RING_SIZE	1024
#define MAX_RX_RING_SIZE	4096
54 55
#define RX_COPY_THRESHOLD	128
#define RX_BUF_SIZE		1536
56 57 58 59
#define PHY_RETRIES	        1000
#define ETH_JUMBO_MTU		9000
#define TX_WATCHDOG		(5 * HZ)
#define NAPI_WEIGHT		64
60
#define BLINK_MS		250
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75

MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
MODULE_AUTHOR("Stephen Hemminger <shemminger@osdl.org>");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);

static const u32 default_msg
	= NETIF_MSG_DRV| NETIF_MSG_PROBE| NETIF_MSG_LINK
	  | NETIF_MSG_IFUP| NETIF_MSG_IFDOWN;

static int debug = -1;	/* defaults above */
module_param(debug, int, 0);
MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");

static const struct pci_device_id skge_id_table[] = {
76 77 78 79 80
	{ PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940) },
	{ PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940B) },
	{ PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_GE) },
	{ PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_YU) },
	{ PCI_DEVICE(PCI_VENDOR_ID_DLINK, PCI_DEVICE_ID_DLINK_DGE510T), },
81
	{ PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b01) },	/* DGE-530T */
82 83 84 85
	{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) },
	{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) }, /* Belkin */
	{ PCI_DEVICE(PCI_VENDOR_ID_CNET, PCI_DEVICE_ID_CNET_GIGACARD) },
	{ PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, PCI_DEVICE_ID_LINKSYS_EG1064) },
86
	{ PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015, },
87 88 89 90 91 92
	{ 0 }
};
MODULE_DEVICE_TABLE(pci, skge_id_table);

static int skge_up(struct net_device *dev);
static int skge_down(struct net_device *dev);
93
static void skge_phy_reset(struct skge_port *skge);
94
static void skge_tx_clean(struct skge_port *skge);
95 96
static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
97 98 99 100
static void genesis_get_stats(struct skge_port *skge, u64 *data);
static void yukon_get_stats(struct skge_port *skge, u64 *data);
static void yukon_init(struct skge_hw *hw, int port);
static void genesis_mac_init(struct skge_hw *hw, int port);
101
static void genesis_link_up(struct skge_port *skge);
102

103
/* Avoid conditionals by using array */
104 105 106 107 108 109 110
static const int txqaddr[] = { Q_XA1, Q_XA2 };
static const int rxqaddr[] = { Q_R1, Q_R2 };
static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };

static int skge_get_regs_len(struct net_device *dev)
{
111
	return 0x4000;
112 113 114
}

/*
115 116 117
 * Returns copy of whole control register region
 * Note: skip RAM address register because accessing it will
 * 	 cause bus hangs!
118 119 120 121 122 123 124 125
 */
static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
			  void *p)
{
	const struct skge_port *skge = netdev_priv(dev);
	const void __iomem *io = skge->hw->regs;

	regs->version = 1;
126 127
	memset(p, 0, regs->len);
	memcpy_fromio(p, io, B3_RAM_ADDR);
128

129 130
	memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1,
		      regs->len - B3_RI_WTO_R1);
131 132
}

S
Stephen Hemminger 已提交
133
/* Wake on Lan only supported on Yukon chips with rev 1 or above */
134 135 136
static int wol_supported(const struct skge_hw *hw)
{
	return !((hw->chip_id == CHIP_ID_GENESIS ||
137
		  (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)));
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
}

static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
{
	struct skge_port *skge = netdev_priv(dev);

	wol->supported = wol_supported(skge->hw) ? WAKE_MAGIC : 0;
	wol->wolopts = skge->wol ? WAKE_MAGIC : 0;
}

static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
{
	struct skge_port *skge = netdev_priv(dev);
	struct skge_hw *hw = skge->hw;

153
	if (wol->wolopts != WAKE_MAGIC && wol->wolopts != 0)
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
		return -EOPNOTSUPP;

	if (wol->wolopts == WAKE_MAGIC && !wol_supported(hw))
		return -EOPNOTSUPP;

	skge->wol = wol->wolopts == WAKE_MAGIC;

	if (skge->wol) {
		memcpy_toio(hw->regs + WOL_MAC_ADDR, dev->dev_addr, ETH_ALEN);

		skge_write16(hw, WOL_CTRL_STAT,
			     WOL_CTL_ENA_PME_ON_MAGIC_PKT |
			     WOL_CTL_ENA_MAGIC_PKT_UNIT);
	} else
		skge_write16(hw, WOL_CTRL_STAT, WOL_CTL_DEFAULT);

	return 0;
}

S
Stephen Hemminger 已提交
173 174
/* Determine supported/advertised modes based on hardware.
 * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
175 176 177 178 179
 */
static u32 skge_supported_modes(const struct skge_hw *hw)
{
	u32 supported;

180
	if (hw->copper) {
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
		supported = SUPPORTED_10baseT_Half
			| SUPPORTED_10baseT_Full
			| SUPPORTED_100baseT_Half
			| SUPPORTED_100baseT_Full
			| SUPPORTED_1000baseT_Half
			| SUPPORTED_1000baseT_Full
			| SUPPORTED_Autoneg| SUPPORTED_TP;

		if (hw->chip_id == CHIP_ID_GENESIS)
			supported &= ~(SUPPORTED_10baseT_Half
					     | SUPPORTED_10baseT_Full
					     | SUPPORTED_100baseT_Half
					     | SUPPORTED_100baseT_Full);

		else if (hw->chip_id == CHIP_ID_YUKON)
			supported &= ~SUPPORTED_1000baseT_Half;
	} else
		supported = SUPPORTED_1000baseT_Full | SUPPORTED_FIBRE
			| SUPPORTED_Autoneg;

	return supported;
}
203 204 205 206 207 208 209 210

static int skge_get_settings(struct net_device *dev,
			     struct ethtool_cmd *ecmd)
{
	struct skge_port *skge = netdev_priv(dev);
	struct skge_hw *hw = skge->hw;

	ecmd->transceiver = XCVR_INTERNAL;
211
	ecmd->supported = skge_supported_modes(hw);
212

213
	if (hw->copper) {
214 215
		ecmd->port = PORT_TP;
		ecmd->phy_address = hw->phy_addr;
216
	} else
217 218 219 220 221 222 223 224 225 226 227 228 229
		ecmd->port = PORT_FIBRE;

	ecmd->advertising = skge->advertising;
	ecmd->autoneg = skge->autoneg;
	ecmd->speed = skge->speed;
	ecmd->duplex = skge->duplex;
	return 0;
}

static int skge_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
{
	struct skge_port *skge = netdev_priv(dev);
	const struct skge_hw *hw = skge->hw;
230
	u32 supported = skge_supported_modes(hw);
231 232

	if (ecmd->autoneg == AUTONEG_ENABLE) {
233 234 235
		ecmd->advertising = supported;
		skge->duplex = -1;
		skge->speed = -1;
236
	} else {
237 238
		u32 setting;

239
		switch (ecmd->speed) {
240
		case SPEED_1000:
241 242 243 244 245 246
			if (ecmd->duplex == DUPLEX_FULL)
				setting = SUPPORTED_1000baseT_Full;
			else if (ecmd->duplex == DUPLEX_HALF)
				setting = SUPPORTED_1000baseT_Half;
			else
				return -EINVAL;
247 248
			break;
		case SPEED_100:
249 250 251 252 253 254 255 256
			if (ecmd->duplex == DUPLEX_FULL)
				setting = SUPPORTED_100baseT_Full;
			else if (ecmd->duplex == DUPLEX_HALF)
				setting = SUPPORTED_100baseT_Half;
			else
				return -EINVAL;
			break;

257
		case SPEED_10:
258 259 260 261 262
			if (ecmd->duplex == DUPLEX_FULL)
				setting = SUPPORTED_10baseT_Full;
			else if (ecmd->duplex == DUPLEX_HALF)
				setting = SUPPORTED_10baseT_Half;
			else
263 264 265 266 267
				return -EINVAL;
			break;
		default:
			return -EINVAL;
		}
268 269 270 271 272 273

		if ((setting & supported) == 0)
			return -EINVAL;

		skge->speed = ecmd->speed;
		skge->duplex = ecmd->duplex;
274 275 276 277 278
	}

	skge->autoneg = ecmd->autoneg;
	skge->advertising = ecmd->advertising;

279 280 281
	if (netif_running(dev))
		skge_phy_reset(skge);

282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
	return (0);
}

static void skge_get_drvinfo(struct net_device *dev,
			     struct ethtool_drvinfo *info)
{
	struct skge_port *skge = netdev_priv(dev);

	strcpy(info->driver, DRV_NAME);
	strcpy(info->version, DRV_VERSION);
	strcpy(info->fw_version, "N/A");
	strcpy(info->bus_info, pci_name(skge->hw->pdev));
}

static const struct skge_stat {
	char 	   name[ETH_GSTRING_LEN];
	u16	   xmac_offset;
	u16	   gma_offset;
} skge_stats[] = {
	{ "tx_bytes",		XM_TXO_OK_HI,  GM_TXO_OK_HI },
	{ "rx_bytes",		XM_RXO_OK_HI,  GM_RXO_OK_HI },

	{ "tx_broadcast",	XM_TXF_BC_OK,  GM_TXF_BC_OK },
	{ "rx_broadcast",	XM_RXF_BC_OK,  GM_RXF_BC_OK },
	{ "tx_multicast",	XM_TXF_MC_OK,  GM_TXF_MC_OK },
	{ "rx_multicast",	XM_RXF_MC_OK,  GM_RXF_MC_OK },
	{ "tx_unicast",		XM_TXF_UC_OK,  GM_TXF_UC_OK },
	{ "rx_unicast",		XM_RXF_UC_OK,  GM_RXF_UC_OK },
	{ "tx_mac_pause",	XM_TXF_MPAUSE, GM_TXF_MPAUSE },
	{ "rx_mac_pause",	XM_RXF_MPAUSE, GM_RXF_MPAUSE },

	{ "collisions",		XM_TXF_SNG_COL, GM_TXF_SNG_COL },
	{ "multi_collisions",	XM_TXF_MUL_COL, GM_TXF_MUL_COL },
	{ "aborted",		XM_TXF_ABO_COL, GM_TXF_ABO_COL },
	{ "late_collision",	XM_TXF_LAT_COL, GM_TXF_LAT_COL },
	{ "fifo_underrun",	XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
	{ "fifo_overflow",	XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },

	{ "rx_toolong",		XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
	{ "rx_jabber",		XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
	{ "rx_runt",		XM_RXE_RUNT, 	GM_RXE_FRAG },
	{ "rx_too_long",	XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
	{ "rx_fcs_error",	XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
};

static int skge_get_stats_count(struct net_device *dev)
{
	return ARRAY_SIZE(skge_stats);
}

static void skge_get_ethtool_stats(struct net_device *dev,
				   struct ethtool_stats *stats, u64 *data)
{
	struct skge_port *skge = netdev_priv(dev);

	if (skge->hw->chip_id == CHIP_ID_GENESIS)
		genesis_get_stats(skge, data);
	else
		yukon_get_stats(skge, data);
}

/* Use hardware MIB variables for critical path statistics and
 * transmit feedback not reported at interrupt.
 * Other errors are accounted for in interrupt handler.
 */
static struct net_device_stats *skge_get_stats(struct net_device *dev)
{
	struct skge_port *skge = netdev_priv(dev);
	u64 data[ARRAY_SIZE(skge_stats)];

	if (skge->hw->chip_id == CHIP_ID_GENESIS)
		genesis_get_stats(skge, data);
	else
		yukon_get_stats(skge, data);

	skge->net_stats.tx_bytes = data[0];
	skge->net_stats.rx_bytes = data[1];
	skge->net_stats.tx_packets = data[2] + data[4] + data[6];
	skge->net_stats.rx_packets = data[3] + data[5] + data[7];
361
	skge->net_stats.multicast = data[3] + data[5];
362 363 364 365 366 367 368 369 370 371
	skge->net_stats.collisions = data[10];
	skge->net_stats.tx_aborted_errors = data[12];

	return &skge->net_stats;
}

static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
{
	int i;

372
	switch (stringset) {
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
	case ETH_SS_STATS:
		for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
			memcpy(data + i * ETH_GSTRING_LEN,
			       skge_stats[i].name, ETH_GSTRING_LEN);
		break;
	}
}

static void skge_get_ring_param(struct net_device *dev,
				struct ethtool_ringparam *p)
{
	struct skge_port *skge = netdev_priv(dev);

	p->rx_max_pending = MAX_RX_RING_SIZE;
	p->tx_max_pending = MAX_TX_RING_SIZE;
	p->rx_mini_max_pending = 0;
	p->rx_jumbo_max_pending = 0;

	p->rx_pending = skge->rx_ring.count;
	p->tx_pending = skge->tx_ring.count;
	p->rx_mini_pending = 0;
	p->rx_jumbo_pending = 0;
}

static int skge_set_ring_param(struct net_device *dev,
			       struct ethtool_ringparam *p)
{
	struct skge_port *skge = netdev_priv(dev);
401
	int err;
402 403 404 405 406 407 408 409 410 411

	if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
	    p->tx_pending == 0 || p->tx_pending > MAX_TX_RING_SIZE)
		return -EINVAL;

	skge->rx_ring.count = p->rx_pending;
	skge->tx_ring.count = p->tx_pending;

	if (netif_running(dev)) {
		skge_down(dev);
412 413 414
		err = skge_up(dev);
		if (err)
			dev_close(dev);
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
	}

	return 0;
}

static u32 skge_get_msglevel(struct net_device *netdev)
{
	struct skge_port *skge = netdev_priv(netdev);
	return skge->msg_enable;
}

static void skge_set_msglevel(struct net_device *netdev, u32 value)
{
	struct skge_port *skge = netdev_priv(netdev);
	skge->msg_enable = value;
}

static int skge_nway_reset(struct net_device *dev)
{
	struct skge_port *skge = netdev_priv(dev);

	if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
		return -EINVAL;

439
	skge_phy_reset(skge);
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
	return 0;
}

static int skge_set_sg(struct net_device *dev, u32 data)
{
	struct skge_port *skge = netdev_priv(dev);
	struct skge_hw *hw = skge->hw;

	if (hw->chip_id == CHIP_ID_GENESIS && data)
		return -EOPNOTSUPP;
	return ethtool_op_set_sg(dev, data);
}

static int skge_set_tx_csum(struct net_device *dev, u32 data)
{
	struct skge_port *skge = netdev_priv(dev);
	struct skge_hw *hw = skge->hw;

	if (hw->chip_id == CHIP_ID_GENESIS && data)
		return -EOPNOTSUPP;

	return ethtool_op_set_tx_csum(dev, data);
}

static u32 skge_get_rx_csum(struct net_device *dev)
{
	struct skge_port *skge = netdev_priv(dev);

	return skge->rx_csum;
}

/* Only Yukon supports checksum offload. */
static int skge_set_rx_csum(struct net_device *dev, u32 data)
{
	struct skge_port *skge = netdev_priv(dev);

	if (skge->hw->chip_id == CHIP_ID_GENESIS && data)
		return -EOPNOTSUPP;

	skge->rx_csum = data;
	return 0;
}

static void skge_get_pauseparam(struct net_device *dev,
				struct ethtool_pauseparam *ecmd)
{
	struct skge_port *skge = netdev_priv(dev);

	ecmd->tx_pause = (skge->flow_control == FLOW_MODE_LOC_SEND)
		|| (skge->flow_control == FLOW_MODE_SYMMETRIC);
	ecmd->rx_pause = (skge->flow_control == FLOW_MODE_REM_SEND)
		|| (skge->flow_control == FLOW_MODE_SYMMETRIC);

	ecmd->autoneg = skge->autoneg;
}

static int skge_set_pauseparam(struct net_device *dev,
			       struct ethtool_pauseparam *ecmd)
{
	struct skge_port *skge = netdev_priv(dev);

	skge->autoneg = ecmd->autoneg;
	if (ecmd->rx_pause && ecmd->tx_pause)
		skge->flow_control = FLOW_MODE_SYMMETRIC;
504
	else if (ecmd->rx_pause && !ecmd->tx_pause)
505
		skge->flow_control = FLOW_MODE_REM_SEND;
506
	else if (!ecmd->rx_pause && ecmd->tx_pause)
507 508 509 510
		skge->flow_control = FLOW_MODE_LOC_SEND;
	else
		skge->flow_control = FLOW_MODE_NONE;

511 512
	if (netif_running(dev))
		skge_phy_reset(skge);
513 514 515 516 517 518 519 520 521 522 523 524
	return 0;
}

/* Chip internal frequency for clock calculations */
static inline u32 hwkhz(const struct skge_hw *hw)
{
	if (hw->chip_id == CHIP_ID_GENESIS)
		return 53215; /* or:  53.125 MHz */
	else
		return 78215; /* or:  78.125 MHz */
}

S
Stephen Hemminger 已提交
525
/* Chip HZ to microseconds */
526 527 528 529 530
static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
{
	return (ticks * 1000) / hwkhz(hw);
}

S
Stephen Hemminger 已提交
531
/* Microseconds to chip HZ */
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
{
	return hwkhz(hw) * usec / 1000;
}

static int skge_get_coalesce(struct net_device *dev,
			     struct ethtool_coalesce *ecmd)
{
	struct skge_port *skge = netdev_priv(dev);
	struct skge_hw *hw = skge->hw;
	int port = skge->port;

	ecmd->rx_coalesce_usecs = 0;
	ecmd->tx_coalesce_usecs = 0;

	if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
		u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
		u32 msk = skge_read32(hw, B2_IRQM_MSK);

		if (msk & rxirqmask[port])
			ecmd->rx_coalesce_usecs = delay;
		if (msk & txirqmask[port])
			ecmd->tx_coalesce_usecs = delay;
	}

	return 0;
}

/* Note: interrupt timer is per board, but can turn on/off per port */
static int skge_set_coalesce(struct net_device *dev,
			     struct ethtool_coalesce *ecmd)
{
	struct skge_port *skge = netdev_priv(dev);
	struct skge_hw *hw = skge->hw;
	int port = skge->port;
	u32 msk = skge_read32(hw, B2_IRQM_MSK);
	u32 delay = 25;

	if (ecmd->rx_coalesce_usecs == 0)
		msk &= ~rxirqmask[port];
	else if (ecmd->rx_coalesce_usecs < 25 ||
		 ecmd->rx_coalesce_usecs > 33333)
		return -EINVAL;
	else {
		msk |= rxirqmask[port];
		delay = ecmd->rx_coalesce_usecs;
	}

	if (ecmd->tx_coalesce_usecs == 0)
		msk &= ~txirqmask[port];
	else if (ecmd->tx_coalesce_usecs < 25 ||
		 ecmd->tx_coalesce_usecs > 33333)
		return -EINVAL;
	else {
		msk |= txirqmask[port];
		delay = min(delay, ecmd->rx_coalesce_usecs);
	}

	skge_write32(hw, B2_IRQM_MSK, msk);
	if (msk == 0)
		skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
	else {
		skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
		skge_write32(hw, B2_IRQM_CTRL, TIM_START);
	}
	return 0;
}

600 601
enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST };
static void skge_led(struct skge_port *skge, enum led_mode mode)
602
{
603 604 605 606
	struct skge_hw *hw = skge->hw;
	int port = skge->port;

	spin_lock_bh(&hw->phy_lock);
607
	if (hw->chip_id == CHIP_ID_GENESIS) {
608 609 610 611 612 613 614
		switch (mode) {
		case LED_MODE_OFF:
			xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF);
			skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
			skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
			skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
			break;
615

616 617 618
		case LED_MODE_ON:
			skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
			skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
619

620 621
			skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
			skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
622

623
			break;
624

625 626 627 628
		case LED_MODE_TST:
			skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
			skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
			skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
629

630 631 632
			xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON);
			break;
		}
633
	} else {
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
		switch (mode) {
		case LED_MODE_OFF:
			gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
			gm_phy_write(hw, port, PHY_MARV_LED_OVER,
				     PHY_M_LED_MO_DUP(MO_LED_OFF)  |
				     PHY_M_LED_MO_10(MO_LED_OFF)   |
				     PHY_M_LED_MO_100(MO_LED_OFF)  |
				     PHY_M_LED_MO_1000(MO_LED_OFF) |
				     PHY_M_LED_MO_RX(MO_LED_OFF));
			break;
		case LED_MODE_ON:
			gm_phy_write(hw, port, PHY_MARV_LED_CTRL,
				     PHY_M_LED_PULS_DUR(PULS_170MS) |
				     PHY_M_LED_BLINK_RT(BLINK_84MS) |
				     PHY_M_LEDC_TX_CTRL |
				     PHY_M_LEDC_DP_CTRL);
650

651 652 653 654 655 656 657 658 659 660 661 662 663 664
			gm_phy_write(hw, port, PHY_MARV_LED_OVER,
				     PHY_M_LED_MO_RX(MO_LED_OFF) |
				     (skge->speed == SPEED_100 ?
				      PHY_M_LED_MO_100(MO_LED_ON) : 0));
			break;
		case LED_MODE_TST:
			gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
			gm_phy_write(hw, port, PHY_MARV_LED_OVER,
				     PHY_M_LED_MO_DUP(MO_LED_ON)  |
				     PHY_M_LED_MO_10(MO_LED_ON)   |
				     PHY_M_LED_MO_100(MO_LED_ON)  |
				     PHY_M_LED_MO_1000(MO_LED_ON) |
				     PHY_M_LED_MO_RX(MO_LED_ON));
		}
665
	}
666
	spin_unlock_bh(&hw->phy_lock);
667 668 669 670 671 672
}

/* blink LED's for finding board */
static int skge_phys_id(struct net_device *dev, u32 data)
{
	struct skge_port *skge = netdev_priv(dev);
673 674
	unsigned long ms;
	enum led_mode mode = LED_MODE_TST;
675

676
	if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
677 678 679
		ms = jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT / HZ) * 1000;
	else
		ms = data * 1000;
680

681 682 683
	while (ms > 0) {
		skge_led(skge, mode);
		mode ^= LED_MODE_TST;
684

685 686 687 688
		if (msleep_interruptible(BLINK_MS))
			break;
		ms -= BLINK_MS;
	}
689

690 691
	/* back to regular LED state */
	skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF);
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723

	return 0;
}

static struct ethtool_ops skge_ethtool_ops = {
	.get_settings	= skge_get_settings,
	.set_settings	= skge_set_settings,
	.get_drvinfo	= skge_get_drvinfo,
	.get_regs_len	= skge_get_regs_len,
	.get_regs	= skge_get_regs,
	.get_wol	= skge_get_wol,
	.set_wol	= skge_set_wol,
	.get_msglevel	= skge_get_msglevel,
	.set_msglevel	= skge_set_msglevel,
	.nway_reset	= skge_nway_reset,
	.get_link	= ethtool_op_get_link,
	.get_ringparam	= skge_get_ring_param,
	.set_ringparam	= skge_set_ring_param,
	.get_pauseparam = skge_get_pauseparam,
	.set_pauseparam = skge_set_pauseparam,
	.get_coalesce	= skge_get_coalesce,
	.set_coalesce	= skge_set_coalesce,
	.get_sg		= ethtool_op_get_sg,
	.set_sg		= skge_set_sg,
	.get_tx_csum	= ethtool_op_get_tx_csum,
	.set_tx_csum	= skge_set_tx_csum,
	.get_rx_csum	= skge_get_rx_csum,
	.set_rx_csum	= skge_set_rx_csum,
	.get_strings	= skge_get_strings,
	.phys_id	= skge_phys_id,
	.get_stats_count = skge_get_stats_count,
	.get_ethtool_stats = skge_get_ethtool_stats,
724
	.get_perm_addr	= ethtool_op_get_perm_addr,
725 726 727 728 729 730
};

/*
 * Allocate ring elements and chain them together
 * One-to-one association of board descriptors with ring elements
 */
731
static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base)
732 733 734 735 736
{
	struct skge_tx_desc *d;
	struct skge_element *e;
	int i;

S
Stephen Hemminger 已提交
737
	ring->start = kcalloc(sizeof(*e), ring->count, GFP_KERNEL);
738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
	if (!ring->start)
		return -ENOMEM;

	for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
		e->desc = d;
		if (i == ring->count - 1) {
			e->next = ring->start;
			d->next_offset = base;
		} else {
			e->next = e + 1;
			d->next_offset = base + (i+1) * sizeof(*d);
		}
	}
	ring->to_use = ring->to_clean = ring->start;

	return 0;
}

756 757 758 759 760 761
/* Allocate and setup a new buffer for receiving */
static void skge_rx_setup(struct skge_port *skge, struct skge_element *e,
			  struct sk_buff *skb, unsigned int bufsize)
{
	struct skge_rx_desc *rd = e->desc;
	u64 map;
762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780

	map = pci_map_single(skge->hw->pdev, skb->data, bufsize,
			     PCI_DMA_FROMDEVICE);

	rd->dma_lo = map;
	rd->dma_hi = map >> 32;
	e->skb = skb;
	rd->csum1_start = ETH_HLEN;
	rd->csum2_start = ETH_HLEN;
	rd->csum1 = 0;
	rd->csum2 = 0;

	wmb();

	rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
	pci_unmap_addr_set(e, mapaddr, map);
	pci_unmap_len_set(e, maplen, bufsize);
}

781 782 783 784
/* Resume receiving using existing skb,
 * Note: DMA address is not changed by chip.
 * 	 MTU not changed while receiver active.
 */
785
static inline void skge_rx_reuse(struct skge_element *e, unsigned int size)
786 787 788 789 790 791 792 793 794 795 796 797 798
{
	struct skge_rx_desc *rd = e->desc;

	rd->csum2 = 0;
	rd->csum2_start = ETH_HLEN;

	wmb();

	rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size;
}


/* Free all  buffers in receive ring, assumes receiver stopped */
799 800 801 802 803 804
static void skge_rx_clean(struct skge_port *skge)
{
	struct skge_hw *hw = skge->hw;
	struct skge_ring *ring = &skge->rx_ring;
	struct skge_element *e;

805 806
	e = ring->start;
	do {
807 808
		struct skge_rx_desc *rd = e->desc;
		rd->control = 0;
809 810 811 812 813 814 815 816 817
		if (e->skb) {
			pci_unmap_single(hw->pdev,
					 pci_unmap_addr(e, mapaddr),
					 pci_unmap_len(e, maplen),
					 PCI_DMA_FROMDEVICE);
			dev_kfree_skb(e->skb);
			e->skb = NULL;
		}
	} while ((e = e->next) != ring->start);
818 819
}

820

821
/* Allocate buffers for receive ring
822
 * For receive:  to_clean is next received frame.
823 824 825 826 827 828
 */
static int skge_rx_fill(struct skge_port *skge)
{
	struct skge_ring *ring = &skge->rx_ring;
	struct skge_element *e;

829 830
	e = ring->start;
	do {
831
		struct sk_buff *skb;
832

833
		skb = alloc_skb(skge->rx_buf_size + NET_IP_ALIGN, GFP_KERNEL);
834 835 836
		if (!skb)
			return -ENOMEM;

837 838
		skb_reserve(skb, NET_IP_ALIGN);
		skge_rx_setup(skge, e, skb, skge->rx_buf_size);
839
	} while ( (e = e->next) != ring->start);
840

841 842
	ring->to_clean = ring->start;
	return 0;
843 844 845 846
}

static void skge_link_up(struct skge_port *skge)
{
847
	skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG),
848 849
		    LED_BLK_OFF|LED_SYNC_OFF|LED_ON);

850
	netif_carrier_on(skge->netdev);
851
	netif_wake_queue(skge->netdev);
852 853 854 855 856 857 858 859 860 861 862 863 864 865 866

	if (netif_msg_link(skge))
		printk(KERN_INFO PFX
		       "%s: Link is up at %d Mbps, %s duplex, flow control %s\n",
		       skge->netdev->name, skge->speed,
		       skge->duplex == DUPLEX_FULL ? "full" : "half",
		       (skge->flow_control == FLOW_MODE_NONE) ? "none" :
		       (skge->flow_control == FLOW_MODE_LOC_SEND) ? "tx only" :
		       (skge->flow_control == FLOW_MODE_REM_SEND) ? "rx only" :
		       (skge->flow_control == FLOW_MODE_SYMMETRIC) ? "tx and rx" :
		       "unknown");
}

static void skge_link_down(struct skge_port *skge)
{
867
	skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
868 869 870 871 872 873 874
	netif_carrier_off(skge->netdev);
	netif_stop_queue(skge->netdev);

	if (netif_msg_link(skge))
		printk(KERN_INFO PFX "%s: Link is down.\n", skge->netdev->name);
}

875
static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
876 877 878
{
	int i;

879
	xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
880
	*val = xm_read16(hw, port, XM_PHY_DATA);
881

882
	for (i = 0; i < PHY_RETRIES; i++) {
883
		if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY)
884
			goto ready;
885
		udelay(1);
886 887
	}

888
	return -ETIMEDOUT;
889
 ready:
890
	*val = xm_read16(hw, port, XM_PHY_DATA);
891

892 893 894 895 896 897 898 899 900
	return 0;
}

static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
{
	u16 v = 0;
	if (__xm_phy_read(hw, port, reg, &v))
		printk(KERN_WARNING PFX "%s: phy read timed out\n",
		       hw->dev[port]->name);
901 902 903
	return v;
}

904
static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
905 906 907
{
	int i;

908
	xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
909
	for (i = 0; i < PHY_RETRIES; i++) {
910
		if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
911
			goto ready;
912
		udelay(1);
913
	}
914
	return -EIO;
915 916

 ready:
917
	xm_write16(hw, port, XM_PHY_DATA, val);
918 919 920 921 922 923
	for (i = 0; i < PHY_RETRIES; i++) {
		if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
			return 0;
		udelay(1);
	}
	return -ETIMEDOUT;
924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
}

static void genesis_init(struct skge_hw *hw)
{
	/* set blink source counter */
	skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
	skge_write8(hw, B2_BSC_CTRL, BSC_START);

	/* configure mac arbiter */
	skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);

	/* configure mac arbiter timeout values */
	skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
	skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
	skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
	skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);

	skge_write8(hw, B3_MA_RCINI_RX1, 0);
	skge_write8(hw, B3_MA_RCINI_RX2, 0);
	skge_write8(hw, B3_MA_RCINI_TX1, 0);
	skge_write8(hw, B3_MA_RCINI_TX2, 0);

	/* configure packet arbiter timeout */
	skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
	skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
	skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
	skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
	skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
}

static void genesis_reset(struct skge_hw *hw, int port)
{
956
	const u8 zero[8]  = { 0 };
957

958 959
	skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);

960
	/* reset the statistics module */
961 962 963 964 965
	xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
	xm_write16(hw, port, XM_IMSK, 0xffff);	/* disable XMAC IRQs */
	xm_write32(hw, port, XM_MODE, 0);		/* clear Mode Reg */
	xm_write16(hw, port, XM_TX_CMD, 0);	/* reset TX CMD Reg */
	xm_write16(hw, port, XM_RX_CMD, 0);	/* reset RX CMD Reg */
966

967 968
	/* disable Broadcom PHY IRQ */
	xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
969

970
	xm_outhash(hw, port, XM_HSM, zero);
971 972 973
}


974 975 976 977 978 979 980 981 982 983 984
/* Convert mode to MII values  */
static const u16 phy_pause_map[] = {
	[FLOW_MODE_NONE] =	0,
	[FLOW_MODE_LOC_SEND] =	PHY_AN_PAUSE_ASYM,
	[FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP,
	[FLOW_MODE_REM_SEND]  = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM,
};


/* Check status of Broadcom phy link */
static void bcom_check_link(struct skge_hw *hw, int port)
985
{
986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
	struct net_device *dev = hw->dev[port];
	struct skge_port *skge = netdev_priv(dev);
	u16 status;

	/* read twice because of latch */
	(void) xm_phy_read(hw, port, PHY_BCOM_STAT);
	status = xm_phy_read(hw, port, PHY_BCOM_STAT);

	if ((status & PHY_ST_LSYNC) == 0) {
		u16 cmd = xm_read16(hw, port, XM_MMU_CMD);
		cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
		xm_write16(hw, port, XM_MMU_CMD, cmd);
		/* dummy read to ensure writing */
		(void) xm_read16(hw, port, XM_MMU_CMD);

		if (netif_carrier_ok(dev))
			skge_link_down(skge);
	} else {
		if (skge->autoneg == AUTONEG_ENABLE &&
		    (status & PHY_ST_AN_OVER)) {
			u16 lpa = xm_phy_read(hw, port, PHY_BCOM_AUNE_LP);
			u16 aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);

			if (lpa & PHY_B_AN_RF) {
				printk(KERN_NOTICE PFX "%s: remote fault\n",
				       dev->name);
				return;
			}

			/* Check Duplex mismatch */
1016
			switch (aux & PHY_B_AS_AN_RES_MSK) {
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
			case PHY_B_RES_1000FD:
				skge->duplex = DUPLEX_FULL;
				break;
			case PHY_B_RES_1000HD:
				skge->duplex = DUPLEX_HALF;
				break;
			default:
				printk(KERN_NOTICE PFX "%s: duplex mismatch\n",
				       dev->name);
				return;
			}


			/* We are using IEEE 802.3z/D5.0 Table 37-4 */
			switch (aux & PHY_B_AS_PAUSE_MSK) {
			case PHY_B_AS_PAUSE_MSK:
				skge->flow_control = FLOW_MODE_SYMMETRIC;
				break;
			case PHY_B_AS_PRR:
				skge->flow_control = FLOW_MODE_REM_SEND;
				break;
			case PHY_B_AS_PRT:
				skge->flow_control = FLOW_MODE_LOC_SEND;
				break;
			default:
				skge->flow_control = FLOW_MODE_NONE;
			}

			skge->speed = SPEED_1000;
		}

		if (!netif_carrier_ok(dev))
			genesis_link_up(skge);
	}
}

/* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
 * Phy on for 100 or 10Mbit operation
 */
static void bcom_phy_init(struct skge_port *skge, int jumbo)
{
	struct skge_hw *hw = skge->hw;
	int port = skge->port;
1060
	int i;
1061
	u16 id1, r, ext, ctl;
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076

	/* magic workaround patterns for Broadcom */
	static const struct {
		u16 reg;
		u16 val;
	} A1hack[] = {
		{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
		{ 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
		{ 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
		{ 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
	}, C0hack[] = {
		{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
		{ 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
	};

1077 1078 1079 1080 1081 1082 1083 1084
	/* read Id from external PHY (all have the same address) */
	id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);

	/* Optimize MDIO transfer by suppressing preamble. */
	r = xm_read16(hw, port, XM_MMU_CMD);
	r |=  XM_MMU_NO_PRE;
	xm_write16(hw, port, XM_MMU_CMD,r);

1085
	switch (id1) {
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
	case PHY_BCOM_ID1_C0:
		/*
		 * Workaround BCOM Errata for the C0 type.
		 * Write magic patterns to reserved registers.
		 */
		for (i = 0; i < ARRAY_SIZE(C0hack); i++)
			xm_phy_write(hw, port,
				     C0hack[i].reg, C0hack[i].val);

		break;
	case PHY_BCOM_ID1_A1:
		/*
		 * Workaround BCOM Errata for the A1 type.
		 * Write magic patterns to reserved registers.
		 */
		for (i = 0; i < ARRAY_SIZE(A1hack); i++)
			xm_phy_write(hw, port,
				     A1hack[i].reg, A1hack[i].val);
		break;
	}

	/*
	 * Workaround BCOM Errata (#10523) for all BCom PHYs.
	 * Disable Power Management after reset.
	 */
	r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
	r |= PHY_B_AC_DIS_PM;
	xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r);

	/* Dummy read */
	xm_read16(hw, port, XM_ISRC);

	ext = PHY_B_PEC_EN_LTR; /* enable tx led */
	ctl = PHY_CT_SP1000;	/* always 1000mbit */

	if (skge->autoneg == AUTONEG_ENABLE) {
		/*
		 * Workaround BCOM Errata #1 for the C5 type.
		 * 1000Base-T Link Acquisition Failure in Slave Mode
		 * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
		 */
		u16 adv = PHY_B_1000C_RD;
		if (skge->advertising & ADVERTISED_1000baseT_Half)
			adv |= PHY_B_1000C_AHD;
		if (skge->advertising & ADVERTISED_1000baseT_Full)
			adv |= PHY_B_1000C_AFD;
		xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv);

		ctl |= PHY_CT_ANE | PHY_CT_RE_CFG;
	} else {
		if (skge->duplex == DUPLEX_FULL)
			ctl |= PHY_CT_DUP_MD;
		/* Force to slave */
		xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE);
	}

	/* Set autonegotiation pause parameters */
	xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV,
		     phy_pause_map[skge->flow_control] | PHY_AN_CSMA);

	/* Handle Jumbo frames */
	if (jumbo) {
		xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
			     PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK);

		ext |= PHY_B_PEC_HIGH_LA;

	}

	xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext);
	xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl);

S
Stephen Hemminger 已提交
1158
	/* Use link status change interrupt */
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
	xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);

	bcom_check_link(hw, port);
}

static void genesis_mac_init(struct skge_hw *hw, int port)
{
	struct net_device *dev = hw->dev[port];
	struct skge_port *skge = netdev_priv(dev);
	int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN;
	int i;
	u32 r;
	const u8 zero[6]  = { 0 };

1173 1174 1175 1176 1177 1178 1179
	for (i = 0; i < 10; i++) {
		skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
			     MFF_SET_MAC_RST);
		if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST)
			goto reset_ok;
		udelay(1);
	}
1180

1181 1182 1183
	printk(KERN_WARNING PFX "%s: genesis reset failed\n", dev->name);

 reset_ok:
1184
	/* Unreset the XMAC. */
1185
	skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1186 1187 1188 1189 1190 1191

	/*
	 * Perform additional initialization for external PHYs,
	 * namely for the 1000baseTX cards that use the XMAC's
	 * GMII mode.
	 */
1192
	/* Take external Phy out of reset */
1193 1194 1195 1196 1197 1198 1199
	r = skge_read32(hw, B2_GP_IO);
	if (port == 0)
		r |= GP_DIR_0|GP_IO_0;
	else
		r |= GP_DIR_2|GP_IO_2;

	skge_write32(hw, B2_GP_IO, r);
1200

1201

S
Stephen Hemminger 已提交
1202
	/* Enable GMII interface */
1203 1204
	xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);

1205
	bcom_phy_init(skge, jumbo);
1206

1207 1208
	/* Set Station Address */
	xm_outaddr(hw, port, XM_SA, dev->dev_addr);
1209

1210 1211 1212 1213
	/* We don't use match addresses so clear */
	for (i = 1; i < 16; i++)
		xm_outaddr(hw, port, XM_EXM(i), zero);

1214 1215 1216 1217 1218 1219 1220
	/* Clear MIB counters */
	xm_write16(hw, port, XM_STAT_CMD,
			XM_SC_CLR_RXC | XM_SC_CLR_TXC);
	/* Clear two times according to Errata #3 */
	xm_write16(hw, port, XM_STAT_CMD,
			XM_SC_CLR_RXC | XM_SC_CLR_TXC);

1221 1222 1223 1224 1225 1226 1227
	/* configure Rx High Water Mark (XM_RX_HI_WM) */
	xm_write16(hw, port, XM_RX_HI_WM, 1450);

	/* We don't need the FCS appended to the packet. */
	r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS;
	if (jumbo)
		r |= XM_RX_BIG_PK_OK;
1228

1229
	if (skge->duplex == DUPLEX_HALF) {
1230
		/*
1231 1232 1233
		 * If in manual half duplex mode the other side might be in
		 * full duplex mode, so ignore if a carrier extension is not seen
		 * on frames received
1234
		 */
1235
		r |= XM_RX_DIS_CEXT;
1236
	}
1237
	xm_write16(hw, port, XM_RX_CMD, r);
1238 1239 1240


	/* We want short frames padded to 60 bytes. */
1241 1242 1243 1244 1245 1246 1247
	xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD);

	/*
	 * Bump up the transmit threshold. This helps hold off transmit
	 * underruns when we're blasting traffic from both ports at once.
	 */
	xm_write16(hw, port, XM_TX_THR, 512);
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259

	/*
	 * Enable the reception of all error frames. This is is
	 * a necessary evil due to the design of the XMAC. The
	 * XMAC's receive FIFO is only 8K in size, however jumbo
	 * frames can be up to 9000 bytes in length. When bad
	 * frame filtering is enabled, the XMAC's RX FIFO operates
	 * in 'store and forward' mode. For this to work, the
	 * entire frame has to fit into the FIFO, but that means
	 * that jumbo frames larger than 8192 bytes will be
	 * truncated. Disabling all bad frame filtering causes
	 * the RX FIFO to operate in streaming mode, in which
S
Stephen Hemminger 已提交
1260
	 * case the XMAC will start transferring frames out of the
1261 1262
	 * RX FIFO as soon as the FIFO threshold is reached.
	 */
1263
	xm_write32(hw, port, XM_MODE, XM_DEF_MODE);
1264 1265 1266


	/*
1267 1268 1269
	 * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
	 *	- Enable all bits excepting 'Octets Rx OK Low CntOv'
	 *	  and 'Octets Rx OK Hi Cnt Ov'.
1270
	 */
1271 1272 1273 1274 1275 1276 1277 1278
	xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK);

	/*
	 * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
	 *	- Enable all bits excepting 'Octets Tx OK Low CntOv'
	 *	  and 'Octets Tx OK Hi Cnt Ov'.
	 */
	xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK);
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294

	/* Configure MAC arbiter */
	skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);

	/* configure timeout values */
	skge_write8(hw, B3_MA_TOINI_RX1, 72);
	skge_write8(hw, B3_MA_TOINI_RX2, 72);
	skge_write8(hw, B3_MA_TOINI_TX1, 72);
	skge_write8(hw, B3_MA_TOINI_TX2, 72);

	skge_write8(hw, B3_MA_RCINI_RX1, 0);
	skge_write8(hw, B3_MA_RCINI_RX2, 0);
	skge_write8(hw, B3_MA_RCINI_TX1, 0);
	skge_write8(hw, B3_MA_RCINI_TX2, 0);

	/* Configure Rx MAC FIFO */
1295 1296 1297
	skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
	skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
	skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
1298 1299

	/* Configure Tx MAC FIFO */
1300 1301 1302
	skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
	skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
	skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
1303

1304
	if (jumbo) {
1305
		/* Enable frame flushing if jumbo frames used */
1306
		skge_write16(hw, SK_REG(port,RX_MFF_CTRL1), MFF_ENA_FLUSH);
1307 1308 1309
	} else {
		/* enable timeout timers if normal frames */
		skge_write16(hw, B3_PA_CTRL,
1310
			     (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
1311 1312 1313 1314 1315 1316 1317
	}
}

static void genesis_stop(struct skge_port *skge)
{
	struct skge_hw *hw = skge->hw;
	int port = skge->port;
1318
	u32 reg;
1319

1320 1321
	genesis_reset(hw, port);

1322 1323 1324 1325 1326
	/* Clear Tx packet arbiter timeout IRQ */
	skge_write16(hw, B3_PA_CTRL,
		     port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);

	/*
S
Stephen Hemminger 已提交
1327
	 * If the transfer sticks at the MAC the STOP command will not
1328 1329
	 * terminate if we don't flush the XMAC's transmit FIFO !
	 */
1330 1331
	xm_write32(hw, port, XM_MODE,
			xm_read32(hw, port, XM_MODE)|XM_MD_FTF);
1332 1333 1334


	/* Reset the MAC */
1335
	skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
1336 1337

	/* For external PHYs there must be special handling */
1338 1339 1340 1341 1342 1343 1344
	reg = skge_read32(hw, B2_GP_IO);
	if (port == 0) {
		reg |= GP_DIR_0;
		reg &= ~GP_IO_0;
	} else {
		reg |= GP_DIR_2;
		reg &= ~GP_IO_2;
1345
	}
1346 1347
	skge_write32(hw, B2_GP_IO, reg);
	skge_read32(hw, B2_GP_IO);
1348

1349 1350
	xm_write16(hw, port, XM_MMU_CMD,
			xm_read16(hw, port, XM_MMU_CMD)
1351 1352
			& ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));

1353
	xm_read16(hw, port, XM_MMU_CMD);
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
}


static void genesis_get_stats(struct skge_port *skge, u64 *data)
{
	struct skge_hw *hw = skge->hw;
	int port = skge->port;
	int i;
	unsigned long timeout = jiffies + HZ;

1364
	xm_write16(hw, port,
1365 1366 1367
			XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);

	/* wait for update to complete */
1368
	while (xm_read16(hw, port, XM_STAT_CMD)
1369 1370 1371 1372 1373 1374 1375
	       & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
		if (time_after(jiffies, timeout))
			break;
		udelay(10);
	}

	/* special case for 64 bit octet counter */
1376 1377 1378 1379
	data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32
		| xm_read32(hw, port, XM_TXO_OK_LO);
	data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32
		| xm_read32(hw, port, XM_RXO_OK_LO);
1380 1381

	for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
1382
		data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset);
1383 1384 1385 1386 1387
}

static void genesis_mac_intr(struct skge_hw *hw, int port)
{
	struct skge_port *skge = netdev_priv(hw->dev[port]);
1388
	u16 status = xm_read16(hw, port, XM_ISRC);
1389

1390 1391 1392
	if (netif_msg_intr(skge))
		printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n",
		       skge->netdev->name, status);
1393 1394

	if (status & XM_IS_TXF_UR) {
1395
		xm_write32(hw, port, XM_MODE, XM_MD_FTF);
1396 1397 1398
		++skge->net_stats.tx_fifo_errors;
	}
	if (status & XM_IS_RXF_OV) {
1399
		xm_write32(hw, port, XM_MODE, XM_MD_FRF);
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
		++skge->net_stats.rx_fifo_errors;
	}
}

static void genesis_link_up(struct skge_port *skge)
{
	struct skge_hw *hw = skge->hw;
	int port = skge->port;
	u16 cmd;
	u32 mode, msk;

1411
	cmd = xm_read16(hw, port, XM_MMU_CMD);
1412 1413 1414 1415 1416 1417 1418

	/*
	 * enabling pause frame reception is required for 1000BT
	 * because the XMAC is not reset if the link is going down
	 */
	if (skge->flow_control == FLOW_MODE_NONE ||
	    skge->flow_control == FLOW_MODE_LOC_SEND)
1419
		/* Disable Pause Frame Reception */
1420 1421 1422 1423 1424
		cmd |= XM_MMU_IGN_PF;
	else
		/* Enable Pause Frame Reception */
		cmd &= ~XM_MMU_IGN_PF;

1425
	xm_write16(hw, port, XM_MMU_CMD, cmd);
1426

1427
	mode = xm_read32(hw, port, XM_MODE);
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
	if (skge->flow_control == FLOW_MODE_SYMMETRIC ||
	    skge->flow_control == FLOW_MODE_LOC_SEND) {
		/*
		 * Configure Pause Frame Generation
		 * Use internal and external Pause Frame Generation.
		 * Sending pause frames is edge triggered.
		 * Send a Pause frame with the maximum pause time if
		 * internal oder external FIFO full condition occurs.
		 * Send a zero pause time frame to re-start transmission.
		 */
		/* XM_PAUSE_DA = '010000C28001' (default) */
		/* XM_MAC_PTIME = 0xffff (maximum) */
		/* remember this value is defined in big endian (!) */
1441
		xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
1442 1443

		mode |= XM_PAUSE_MODE;
1444
		skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
1445 1446 1447 1448 1449 1450 1451 1452
	} else {
		/*
		 * disable pause frame generation is required for 1000BT
		 * because the XMAC is not reset if the link is going down
		 */
		/* Disable Pause Mode in Mode Register */
		mode &= ~XM_PAUSE_MODE;

1453
		skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
1454 1455
	}

1456
	xm_write32(hw, port, XM_MODE, mode);
1457 1458

	msk = XM_DEF_MSK;
1459 1460
	/* disable GP0 interrupt bit for external Phy */
	msk |= XM_IS_INP_ASS;
1461

1462 1463
	xm_write16(hw, port, XM_IMSK, msk);
	xm_read16(hw, port, XM_ISRC);
1464 1465

	/* get MMU Command Reg. */
1466
	cmd = xm_read16(hw, port, XM_MMU_CMD);
1467
	if (skge->duplex == DUPLEX_FULL)
1468 1469
		cmd |= XM_MMU_GMII_FD;

1470 1471 1472 1473 1474 1475 1476 1477
	/*
	 * Workaround BCOM Errata (#10523) for all BCom Phys
	 * Enable Power Management after link up
	 */
	xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
		     xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
		     & ~PHY_B_AC_DIS_PM);
	xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1478 1479

	/* enable Rx/Tx */
1480
	xm_write16(hw, port, XM_MMU_CMD,
1481 1482 1483 1484 1485
			cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
	skge_link_up(skge);
}


1486
static inline void bcom_phy_intr(struct skge_port *skge)
1487 1488 1489
{
	struct skge_hw *hw = skge->hw;
	int port = skge->port;
1490 1491 1492
	u16 isrc;

	isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
1493 1494 1495
	if (netif_msg_intr(skge))
		printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x\n",
		       skge->netdev->name, isrc);
1496

1497 1498 1499
	if (isrc & PHY_B_IS_PSE)
		printk(KERN_ERR PFX "%s: uncorrectable pair swap error\n",
		       hw->dev[port]->name);
1500 1501 1502 1503

	/* Workaround BCom Errata:
	 *	enable and disable loopback mode if "NO HCD" occurs.
	 */
1504
	if (isrc & PHY_B_IS_NO_HDCL) {
1505 1506
		u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
		xm_phy_write(hw, port, PHY_BCOM_CTRL,
1507
				  ctrl | PHY_CT_LOOP);
1508
		xm_phy_write(hw, port, PHY_BCOM_CTRL,
1509 1510 1511
				  ctrl & ~PHY_CT_LOOP);
	}

1512 1513
	if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE))
		bcom_check_link(hw, port);
1514 1515 1516

}

1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
{
	int i;

	gma_write16(hw, port, GM_SMI_DATA, val);
	gma_write16(hw, port, GM_SMI_CTRL,
			 GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
	for (i = 0; i < PHY_RETRIES; i++) {
		udelay(1);

		if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
			return 0;
	}

	printk(KERN_WARNING PFX "%s: phy write timeout\n",
	       hw->dev[port]->name);
	return -EIO;
}

static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
{
	int i;

	gma_write16(hw, port, GM_SMI_CTRL,
			 GM_SMI_CT_PHY_AD(hw->phy_addr)
			 | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);

	for (i = 0; i < PHY_RETRIES; i++) {
		udelay(1);
		if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
			goto ready;
	}

	return -ETIMEDOUT;
 ready:
	*val = gma_read16(hw, port, GM_SMI_DATA);
	return 0;
}

static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
{
	u16 v = 0;
	if (__gm_phy_read(hw, port, reg, &v))
		printk(KERN_WARNING PFX "%s: phy read timeout\n",
	       hw->dev[port]->name);
	return v;
}

S
Stephen Hemminger 已提交
1565
/* Marvell Phy Initialization */
1566 1567 1568 1569 1570 1571
static void yukon_init(struct skge_hw *hw, int port)
{
	struct skge_port *skge = netdev_priv(hw->dev[port]);
	u16 ctrl, ct1000, adv;

	if (skge->autoneg == AUTONEG_ENABLE) {
1572
		u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
1573 1574 1575 1576 1577

		ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
			  PHY_M_EC_MAC_S_MSK);
		ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);

1578
		ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
1579

1580
		gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
1581 1582
	}

1583
	ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
1584 1585 1586 1587
	if (skge->autoneg == AUTONEG_DISABLE)
		ctrl &= ~PHY_CT_ANE;

	ctrl |= PHY_CT_RESET;
1588
	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1589 1590 1591

	ctrl = 0;
	ct1000 = 0;
1592
	adv = PHY_AN_CSMA;
1593 1594

	if (skge->autoneg == AUTONEG_ENABLE) {
1595
		if (hw->copper) {
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
			if (skge->advertising & ADVERTISED_1000baseT_Full)
				ct1000 |= PHY_M_1000C_AFD;
			if (skge->advertising & ADVERTISED_1000baseT_Half)
				ct1000 |= PHY_M_1000C_AHD;
			if (skge->advertising & ADVERTISED_100baseT_Full)
				adv |= PHY_M_AN_100_FD;
			if (skge->advertising & ADVERTISED_100baseT_Half)
				adv |= PHY_M_AN_100_HD;
			if (skge->advertising & ADVERTISED_10baseT_Full)
				adv |= PHY_M_AN_10_FD;
			if (skge->advertising & ADVERTISED_10baseT_Half)
				adv |= PHY_M_AN_10_HD;
1608
		} else	/* special defines for FIBER (88E1011S only) */
1609 1610
			adv |= PHY_M_AN_1000X_AHD | PHY_M_AN_1000X_AFD;

1611 1612 1613
		/* Set Flow-control capabilities */
		adv |= phy_pause_map[skge->flow_control];

1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
		/* Restart Auto-negotiation */
		ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
	} else {
		/* forced speed/duplex settings */
		ct1000 = PHY_M_1000C_MSE;

		if (skge->duplex == DUPLEX_FULL)
			ctrl |= PHY_CT_DUP_MD;

		switch (skge->speed) {
		case SPEED_1000:
			ctrl |= PHY_CT_SP1000;
			break;
		case SPEED_100:
			ctrl |= PHY_CT_SP100;
			break;
		}

		ctrl |= PHY_CT_RESET;
	}

1635
	gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
1636

1637 1638
	gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1639 1640 1641

	/* Enable phy interrupt on autonegotiation complete (or link up) */
	if (skge->autoneg == AUTONEG_ENABLE)
1642
		gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK);
1643
	else
1644
		gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
1645 1646 1647 1648
}

static void yukon_reset(struct skge_hw *hw, int port)
{
1649 1650 1651 1652 1653
	gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
	gma_write16(hw, port, GM_MC_ADDR_H1, 0);	/* clear MC hash */
	gma_write16(hw, port, GM_MC_ADDR_H2, 0);
	gma_write16(hw, port, GM_MC_ADDR_H3, 0);
	gma_write16(hw, port, GM_MC_ADDR_H4, 0);
1654

1655 1656
	gma_write16(hw, port, GM_RX_CTRL,
			 gma_read16(hw, port, GM_RX_CTRL)
1657 1658 1659
			 | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
}

1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675
/* Apparently, early versions of Yukon-Lite had wrong chip_id? */
static int is_yukon_lite_a0(struct skge_hw *hw)
{
	u32 reg;
	int ret;

	if (hw->chip_id != CHIP_ID_YUKON)
		return 0;

	reg = skge_read32(hw, B2_FAR);
	skge_write8(hw, B2_FAR + 3, 0xff);
	ret = (skge_read8(hw, B2_FAR + 3) != 0);
	skge_write32(hw, B2_FAR, reg);
	return ret;
}

1676 1677 1678 1679 1680 1681 1682 1683 1684
static void yukon_mac_init(struct skge_hw *hw, int port)
{
	struct skge_port *skge = netdev_priv(hw->dev[port]);
	int i;
	u32 reg;
	const u8 *addr = hw->dev[port]->dev_addr;

	/* WA code for COMA mode -- set PHY reset */
	if (hw->chip_id == CHIP_ID_YUKON_LITE &&
1685 1686 1687 1688 1689
	    hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
		reg = skge_read32(hw, B2_GP_IO);
		reg |= GP_DIR_9 | GP_IO_9;
		skge_write32(hw, B2_GP_IO, reg);
	}
1690 1691

	/* hard reset */
1692 1693
	skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
	skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
1694 1695 1696

	/* WA code for COMA mode -- clear PHY reset */
	if (hw->chip_id == CHIP_ID_YUKON_LITE &&
1697 1698 1699 1700 1701 1702
	    hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
		reg = skge_read32(hw, B2_GP_IO);
		reg |= GP_DIR_9;
		reg &= ~GP_IO_9;
		skge_write32(hw, B2_GP_IO, reg);
	}
1703 1704 1705 1706

	/* Set hardware config mode */
	reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
		GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
1707
	reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
1708 1709

	/* Clear GMC reset */
1710 1711 1712
	skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
	skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
	skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
S
Stephen Hemminger 已提交
1713

1714 1715
	if (skge->autoneg == AUTONEG_DISABLE) {
		reg = GM_GPCR_AU_ALL_DIS;
1716 1717
		gma_write16(hw, port, GM_GP_CTRL,
				 gma_read16(hw, port, GM_GP_CTRL) | reg);
1718 1719 1720

		switch (skge->speed) {
		case SPEED_1000:
S
Stephen Hemminger 已提交
1721
			reg &= ~GM_GPCR_SPEED_100;
1722
			reg |= GM_GPCR_SPEED_1000;
S
Stephen Hemminger 已提交
1723
			break;
1724
		case SPEED_100:
S
Stephen Hemminger 已提交
1725
			reg &= ~GM_GPCR_SPEED_1000;
1726
			reg |= GM_GPCR_SPEED_100;
S
Stephen Hemminger 已提交
1727 1728 1729 1730
			break;
		case SPEED_10:
			reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100);
			break;
1731 1732 1733 1734 1735 1736
		}

		if (skge->duplex == DUPLEX_FULL)
			reg |= GM_GPCR_DUP_FULL;
	} else
		reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
S
Stephen Hemminger 已提交
1737

1738 1739
	switch (skge->flow_control) {
	case FLOW_MODE_NONE:
1740
		skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
1741 1742 1743 1744 1745 1746 1747
		reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
		break;
	case FLOW_MODE_LOC_SEND:
		/* disable Rx flow-control */
		reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
	}

1748
	gma_write16(hw, port, GM_GP_CTRL, reg);
1749
	skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
1750 1751 1752 1753

	yukon_init(hw, port);

	/* MIB clear */
1754 1755
	reg = gma_read16(hw, port, GM_PHY_ADDR);
	gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
1756 1757

	for (i = 0; i < GM_MIB_CNT_SIZE; i++)
1758 1759
		gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
	gma_write16(hw, port, GM_PHY_ADDR, reg);
1760 1761

	/* transmit control */
1762
	gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
1763 1764

	/* receive control reg: unicast + multicast + no FCS  */
1765
	gma_write16(hw, port, GM_RX_CTRL,
1766 1767 1768
			 GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);

	/* transmit flow control */
1769
	gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
1770 1771

	/* transmit parameter */
1772
	gma_write16(hw, port, GM_TX_PARAM,
1773 1774 1775 1776 1777 1778 1779 1780 1781
			 TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
			 TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
			 TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));

	/* serial mode register */
	reg = GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
	if (hw->dev[port]->mtu > 1500)
		reg |= GM_SMOD_JUMBO_ENA;

1782
	gma_write16(hw, port, GM_SERIAL_MODE, reg);
1783 1784

	/* physical address: used for pause frames */
1785
	gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
1786
	/* virtual address for data */
1787
	gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
1788 1789

	/* enable interrupt mask for counter overflows */
1790 1791 1792
	gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
	gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
	gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
1793 1794 1795 1796

	/* Initialize Mac Fifo */

	/* Configure Rx MAC FIFO */
1797
	skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
1798
	reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
1799 1800 1801

	/* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
	if (is_yukon_lite_a0(hw))
1802
		reg &= ~GMF_RX_F_FL_ON;
1803

1804 1805
	skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
	skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
1806 1807 1808 1809 1810 1811
	/*
	 * because Pause Packet Truncation in GMAC is not working
	 * we have to increase the Flush Threshold to 64 bytes
	 * in order to flush pause packets in Rx FIFO on Yukon-1
	 */
	skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);
1812 1813

	/* Configure Tx MAC FIFO */
1814 1815
	skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
	skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
1816 1817
}

1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
/* Go into power down mode */
static void yukon_suspend(struct skge_hw *hw, int port)
{
	u16 ctrl;

	ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
	ctrl |= PHY_M_PC_POL_R_DIS;
	gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);

	ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
	ctrl |= PHY_CT_RESET;
	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);

	/* switch IEEE compatible power down mode on */
	ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
	ctrl |= PHY_CT_PDOWN;
	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
}

1837 1838 1839 1840 1841
static void yukon_stop(struct skge_port *skge)
{
	struct skge_hw *hw = skge->hw;
	int port = skge->port;

1842 1843
	skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
	yukon_reset(hw, port);
1844

1845 1846
	gma_write16(hw, port, GM_GP_CTRL,
			 gma_read16(hw, port, GM_GP_CTRL)
1847
			 & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA));
1848
	gma_read16(hw, port, GM_GP_CTRL);
1849

1850
	yukon_suspend(hw, port);
1851

1852
	/* set GPHY Control reset */
1853 1854
	skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
	skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
1855 1856 1857 1858 1859 1860 1861 1862
}

static void yukon_get_stats(struct skge_port *skge, u64 *data)
{
	struct skge_hw *hw = skge->hw;
	int port = skge->port;
	int i;

1863 1864 1865 1866
	data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
		| gma_read32(hw, port, GM_TXO_OK_LO);
	data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
		| gma_read32(hw, port, GM_RXO_OK_LO);
1867 1868

	for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
1869
		data[i] = gma_read32(hw, port,
1870 1871 1872 1873 1874
					  skge_stats[i].gma_offset);
}

static void yukon_mac_intr(struct skge_hw *hw, int port)
{
1875 1876
	struct net_device *dev = hw->dev[port];
	struct skge_port *skge = netdev_priv(dev);
1877
	u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
1878

1879 1880 1881 1882
	if (netif_msg_intr(skge))
		printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n",
		       dev->name, status);

1883 1884
	if (status & GM_IS_RX_FF_OR) {
		++skge->net_stats.rx_fifo_errors;
1885
		skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
1886
	}
1887

1888 1889
	if (status & GM_IS_TX_FF_UR) {
		++skge->net_stats.tx_fifo_errors;
1890
		skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
1891 1892 1893 1894 1895 1896
	}

}

static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
{
1897
	switch (aux & PHY_M_PS_SPEED_MSK) {
1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
	case PHY_M_PS_SPEED_1000:
		return SPEED_1000;
	case PHY_M_PS_SPEED_100:
		return SPEED_100;
	default:
		return SPEED_10;
	}
}

static void yukon_link_up(struct skge_port *skge)
{
	struct skge_hw *hw = skge->hw;
	int port = skge->port;
	u16 reg;

	/* Enable Transmit FIFO Underrun */
1914
	skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
1915

1916
	reg = gma_read16(hw, port, GM_GP_CTRL);
1917 1918 1919 1920 1921
	if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
		reg |= GM_GPCR_DUP_FULL;

	/* enable Rx/Tx */
	reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
1922
	gma_write16(hw, port, GM_GP_CTRL, reg);
1923

1924
	gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
1925 1926 1927 1928 1929 1930 1931
	skge_link_up(skge);
}

static void yukon_link_down(struct skge_port *skge)
{
	struct skge_hw *hw = skge->hw;
	int port = skge->port;
1932
	u16 ctrl;
1933

1934
	gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);
1935 1936 1937 1938

	ctrl = gma_read16(hw, port, GM_GP_CTRL);
	ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
	gma_write16(hw, port, GM_GP_CTRL, ctrl);
1939

1940
	if (skge->flow_control == FLOW_MODE_REM_SEND) {
1941
		/* restore Asymmetric Pause bit */
1942 1943
		gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
				  gm_phy_read(hw, port,
1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
						   PHY_MARV_AUNE_ADV)
				  | PHY_M_AN_ASP);

	}

	yukon_reset(hw, port);
	skge_link_down(skge);

	yukon_init(hw, port);
}

static void yukon_phy_intr(struct skge_port *skge)
{
	struct skge_hw *hw = skge->hw;
	int port = skge->port;
	const char *reason = NULL;
	u16 istatus, phystat;

1962 1963
	istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
	phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
1964 1965 1966 1967

	if (netif_msg_intr(skge))
		printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x 0x%x\n",
		       skge->netdev->name, istatus, phystat);
1968 1969

	if (istatus & PHY_M_IS_AN_COMPL) {
1970
		if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
1971 1972 1973 1974 1975
		    & PHY_M_AN_RF) {
			reason = "remote fault";
			goto failed;
		}

1976
		if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
			reason = "master/slave fault";
			goto failed;
		}

		if (!(phystat & PHY_M_PS_SPDUP_RES)) {
			reason = "speed/duplex";
			goto failed;
		}

		skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
			? DUPLEX_FULL : DUPLEX_HALF;
		skge->speed = yukon_speed(hw, phystat);

		/* We are using IEEE 802.3z/D5.0 Table 37-4 */
		switch (phystat & PHY_M_PS_PAUSE_MSK) {
		case PHY_M_PS_PAUSE_MSK:
			skge->flow_control = FLOW_MODE_SYMMETRIC;
			break;
		case PHY_M_PS_RX_P_EN:
			skge->flow_control = FLOW_MODE_REM_SEND;
			break;
		case PHY_M_PS_TX_P_EN:
			skge->flow_control = FLOW_MODE_LOC_SEND;
			break;
		default:
			skge->flow_control = FLOW_MODE_NONE;
		}

		if (skge->flow_control == FLOW_MODE_NONE ||
		    (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
2007
			skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2008
		else
2009
			skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
		yukon_link_up(skge);
		return;
	}

	if (istatus & PHY_M_IS_LSP_CHANGE)
		skge->speed = yukon_speed(hw, phystat);

	if (istatus & PHY_M_IS_DUP_CHANGE)
		skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
	if (istatus & PHY_M_IS_LST_CHANGE) {
		if (phystat & PHY_M_PS_LINK_UP)
			yukon_link_up(skge);
		else
			yukon_link_down(skge);
	}
	return;
 failed:
	printk(KERN_ERR PFX "%s: autonegotiation failed (%s)\n",
	       skge->netdev->name, reason);

	/* XXX restart autonegotiation? */
}

2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051
static void skge_phy_reset(struct skge_port *skge)
{
	struct skge_hw *hw = skge->hw;
	int port = skge->port;

	netif_stop_queue(skge->netdev);
	netif_carrier_off(skge->netdev);

	spin_lock_bh(&hw->phy_lock);
	if (hw->chip_id == CHIP_ID_GENESIS) {
		genesis_reset(hw, port);
		genesis_mac_init(hw, port);
	} else {
		yukon_reset(hw, port);
		yukon_init(hw, port);
	}
	spin_unlock_bh(&hw->phy_lock);
}

2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096
/* Basic MII support */
static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
	struct mii_ioctl_data *data = if_mii(ifr);
	struct skge_port *skge = netdev_priv(dev);
	struct skge_hw *hw = skge->hw;
	int err = -EOPNOTSUPP;

	if (!netif_running(dev))
		return -ENODEV;	/* Phy still in reset */

	switch(cmd) {
	case SIOCGMIIPHY:
		data->phy_id = hw->phy_addr;

		/* fallthru */
	case SIOCGMIIREG: {
		u16 val = 0;
		spin_lock_bh(&hw->phy_lock);
		if (hw->chip_id == CHIP_ID_GENESIS)
			err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
		else
			err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
		spin_unlock_bh(&hw->phy_lock);
		data->val_out = val;
		break;
	}

	case SIOCSMIIREG:
		if (!capable(CAP_NET_ADMIN))
			return -EPERM;

		spin_lock_bh(&hw->phy_lock);
		if (hw->chip_id == CHIP_ID_GENESIS)
			err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f,
				   data->val_in);
		else
			err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f,
				   data->val_in);
		spin_unlock_bh(&hw->phy_lock);
		break;
	}
	return err;
}

2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156
static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
{
	u32 end;

	start /= 8;
	len /= 8;
	end = start + len - 1;

	skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
	skge_write32(hw, RB_ADDR(q, RB_START), start);
	skge_write32(hw, RB_ADDR(q, RB_WP), start);
	skge_write32(hw, RB_ADDR(q, RB_RP), start);
	skge_write32(hw, RB_ADDR(q, RB_END), end);

	if (q == Q_R1 || q == Q_R2) {
		/* Set thresholds on receive queue's */
		skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
			     start + (2*len)/3);
		skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
			     start + (len/3));
	} else {
		/* Enable store & forward on Tx queue's because
		 * Tx FIFO is only 4K on Genesis and 1K on Yukon
		 */
		skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
	}

	skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
}

/* Setup Bus Memory Interface */
static void skge_qset(struct skge_port *skge, u16 q,
		      const struct skge_element *e)
{
	struct skge_hw *hw = skge->hw;
	u32 watermark = 0x600;
	u64 base = skge->dma + (e->desc - skge->mem);

	/* optimization to reduce window on 32bit/33mhz */
	if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
		watermark /= 2;

	skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
	skge_write32(hw, Q_ADDR(q, Q_F), watermark);
	skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
	skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
}

static int skge_up(struct net_device *dev)
{
	struct skge_port *skge = netdev_priv(dev);
	struct skge_hw *hw = skge->hw;
	int port = skge->port;
	u32 chunk, ram_addr;
	size_t rx_size, tx_size;
	int err;

	if (netif_msg_ifup(skge))
		printk(KERN_INFO PFX "%s: enabling interface\n", dev->name);

2157
	if (dev->mtu > RX_BUF_SIZE)
2158
		skge->rx_buf_size = dev->mtu + ETH_HLEN;
2159 2160 2161 2162
	else
		skge->rx_buf_size = RX_BUF_SIZE;


2163 2164 2165 2166 2167 2168 2169
	rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
	tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
	skge->mem_size = tx_size + rx_size;
	skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, &skge->dma);
	if (!skge->mem)
		return -ENOMEM;

2170 2171 2172 2173 2174 2175 2176 2177
	BUG_ON(skge->dma & 7);

	if ((u64)skge->dma >> 32 != ((u64) skge->dma + skge->mem_size) >> 32) {
		printk(KERN_ERR PFX "pci_alloc_consistent region crosses 4G boundary\n");
		err = -EINVAL;
		goto free_pci_mem;
	}

2178 2179
	memset(skge->mem, 0, skge->mem_size);

2180 2181
	err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma);
	if (err)
2182 2183
		goto free_pci_mem;

2184 2185
	err = skge_rx_fill(skge);
	if (err)
2186 2187
		goto free_rx_ring;

2188 2189 2190
	err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
			      skge->dma + rx_size);
	if (err)
2191 2192
		goto free_rx_ring;

S
Stephen Hemminger 已提交
2193
	/* Initialize MAC */
2194
	spin_lock_bh(&hw->phy_lock);
2195 2196 2197 2198
	if (hw->chip_id == CHIP_ID_GENESIS)
		genesis_mac_init(hw, port);
	else
		yukon_mac_init(hw, port);
2199
	spin_unlock_bh(&hw->phy_lock);
2200 2201

	/* Configure RAMbuffers */
2202
	chunk = hw->ram_size / ((hw->ports + 1)*2);
2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214
	ram_addr = hw->ram_offset + 2 * chunk * port;

	skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
	skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);

	BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
	skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
	skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);

	/* Start receiver BMU */
	wmb();
	skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
2215
	skge_led(skge, LED_MODE_ON);
2216 2217 2218 2219 2220 2221 2222 2223

	return 0;

 free_rx_ring:
	skge_rx_clean(skge);
	kfree(skge->rx_ring.start);
 free_pci_mem:
	pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
2224
	skge->mem = NULL;
2225 2226 2227 2228 2229 2230 2231 2232 2233 2234

	return err;
}

static int skge_down(struct net_device *dev)
{
	struct skge_port *skge = netdev_priv(dev);
	struct skge_hw *hw = skge->hw;
	int port = skge->port;

2235 2236 2237
	if (skge->mem == NULL)
		return 0;

2238 2239 2240 2241 2242
	if (netif_msg_ifdown(skge))
		printk(KERN_INFO PFX "%s: disabling interface\n", dev->name);

	netif_stop_queue(dev);

2243 2244 2245 2246 2247 2248
	skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
	if (hw->chip_id == CHIP_ID_GENESIS)
		genesis_stop(skge);
	else
		yukon_stop(skge);

2249 2250 2251 2252 2253 2254 2255
	/* Stop transmitter */
	skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
	skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
		     RB_RST_SET|RB_DIS_OP_MD);


	/* Disable Force Sync bit and Enable Alloc bit */
2256
	skge_write8(hw, SK_REG(port, TXA_CTRL),
2257 2258 2259
		    TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);

	/* Stop Interval Timer and Limit Counter of Tx Arbiter */
2260 2261
	skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
	skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275

	/* Reset PCI FIFO */
	skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
	skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);

	/* Reset the RAM Buffer async Tx queue */
	skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
	/* stop receiver */
	skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
	skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
		     RB_RST_SET|RB_DIS_OP_MD);
	skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);

	if (hw->chip_id == CHIP_ID_GENESIS) {
2276 2277
		skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
		skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
2278
	} else {
2279 2280
		skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
		skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
2281 2282
	}

2283
	skge_led(skge, LED_MODE_OFF);
2284 2285 2286 2287 2288 2289 2290

	skge_tx_clean(skge);
	skge_rx_clean(skge);

	kfree(skge->rx_ring.start);
	kfree(skge->tx_ring.start);
	pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
2291
	skge->mem = NULL;
2292 2293 2294
	return 0;
}

2295 2296 2297 2298 2299 2300
static inline int skge_avail(const struct skge_ring *ring)
{
	return ((ring->to_clean > ring->to_use) ? 0 : ring->count)
		+ (ring->to_clean - ring->to_use) - 1;
}

2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316
static int skge_xmit_frame(struct sk_buff *skb, struct net_device *dev)
{
	struct skge_port *skge = netdev_priv(dev);
	struct skge_hw *hw = skge->hw;
	struct skge_ring *ring = &skge->tx_ring;
	struct skge_element *e;
	struct skge_tx_desc *td;
	int i;
	u32 control, len;
	u64 map;

	skb = skb_padto(skb, ETH_ZLEN);
	if (!skb)
		return NETDEV_TX_OK;

	if (!spin_trylock(&skge->tx_lock)) {
2317 2318 2319
		/* Collision - tell upper layer to requeue */
		return NETDEV_TX_LOCKED;
	}
2320

2321
	if (unlikely(skge_avail(&skge->tx_ring) < skb_shinfo(skb)->nr_frags + 1)) {
J
Jeff Garzik 已提交
2322
		if (!netif_queue_stopped(dev)) {
2323
			netif_stop_queue(dev);
2324

2325 2326 2327
			printk(KERN_WARNING PFX "%s: ring full when queue awake!\n",
			       dev->name);
		}
2328
		spin_unlock(&skge->tx_lock);
2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348
		return NETDEV_TX_BUSY;
	}

	e = ring->to_use;
	td = e->desc;
	e->skb = skb;
	len = skb_headlen(skb);
	map = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
	pci_unmap_addr_set(e, mapaddr, map);
	pci_unmap_len_set(e, maplen, len);

	td->dma_lo = map;
	td->dma_hi = map >> 32;

	if (skb->ip_summed == CHECKSUM_HW) {
		int offset = skb->h.raw - skb->data;

		/* This seems backwards, but it is what the sk98lin
		 * does.  Looks like hardware is wrong?
		 */
J
Jeff Garzik 已提交
2349
		if (skb->h.ipiph->protocol == IPPROTO_UDP
2350
	            && hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON)
2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392
			control = BMU_TCP_CHECK;
		else
			control = BMU_UDP_CHECK;

		td->csum_offs = 0;
		td->csum_start = offset;
		td->csum_write = offset + skb->csum;
	} else
		control = BMU_CHECK;

	if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
		control |= BMU_EOF| BMU_IRQ_EOF;
	else {
		struct skge_tx_desc *tf = td;

		control |= BMU_STFWD;
		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];

			map = pci_map_page(hw->pdev, frag->page, frag->page_offset,
					   frag->size, PCI_DMA_TODEVICE);

			e = e->next;
			e->skb = NULL;
			tf = e->desc;
			tf->dma_lo = map;
			tf->dma_hi = (u64) map >> 32;
			pci_unmap_addr_set(e, mapaddr, map);
			pci_unmap_len_set(e, maplen, frag->size);

			tf->control = BMU_OWN | BMU_SW | control | frag->size;
		}
		tf->control |= BMU_EOF | BMU_IRQ_EOF;
	}
	/* Make sure all the descriptors written */
	wmb();
	td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
	wmb();

	skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);

	if (netif_msg_tx_queued(skge))
A
Al Viro 已提交
2393
		printk(KERN_DEBUG "%s: tx queued, slot %td, len %d\n",
2394 2395 2396
		       dev->name, e - ring->start, skb->len);

	ring->to_use = e->next;
2397
	if (skge_avail(&skge->tx_ring) <= MAX_SKB_FRAGS + 1) {
2398 2399 2400 2401
		pr_debug("%s: transmit queue full\n", dev->name);
		netif_stop_queue(dev);
	}

S
Stephen Hemminger 已提交
2402
	mmiowb();
2403
	spin_unlock(&skge->tx_lock);
2404

S
Stephen Hemminger 已提交
2405 2406
	dev->trans_start = jiffies;

2407 2408 2409
	return NETDEV_TX_OK;
}

2410 2411 2412 2413 2414 2415 2416 2417 2418
static void skge_tx_complete(struct skge_port *skge, struct skge_element *last)
{
	struct pci_dev *pdev = skge->hw->pdev;
	struct skge_element *e;

	for (e = skge->tx_ring.to_clean; e != last; e = e->next) {
		struct sk_buff *skb = e->skb;
		int i;

2419
		e->skb = NULL;
2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430
		pci_unmap_single(pdev, pci_unmap_addr(e, mapaddr),
				 skb_headlen(skb), PCI_DMA_TODEVICE);

		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
			e = e->next;
			pci_unmap_page(pdev, pci_unmap_addr(e, mapaddr),
				       skb_shinfo(skb)->frags[i].size,
				       PCI_DMA_TODEVICE);
		}

		dev_kfree_skb(skb);
2431
	}
2432
	skge->tx_ring.to_clean = e;
2433 2434 2435 2436 2437
}

static void skge_tx_clean(struct skge_port *skge)
{

2438
	spin_lock_bh(&skge->tx_lock);
2439 2440
	skge_tx_complete(skge, skge->tx_ring.to_use);
	netif_wake_queue(skge->netdev);
2441
	spin_unlock_bh(&skge->tx_lock);
2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456
}

static void skge_tx_timeout(struct net_device *dev)
{
	struct skge_port *skge = netdev_priv(dev);

	if (netif_msg_timer(skge))
		printk(KERN_DEBUG PFX "%s: tx timeout\n", dev->name);

	skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
	skge_tx_clean(skge);
}

static int skge_change_mtu(struct net_device *dev, int new_mtu)
{
2457
	int err;
2458

2459
	if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU)
2460 2461
		return -EINVAL;

2462 2463 2464 2465 2466 2467
	if (!netif_running(dev)) {
		dev->mtu = new_mtu;
		return 0;
	}

	skge_down(dev);
2468

2469
	dev->mtu = new_mtu;
2470 2471 2472 2473

	err = skge_up(dev);
	if (err)
		dev_close(dev);
2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487

	return err;
}

static void genesis_set_multicast(struct net_device *dev)
{
	struct skge_port *skge = netdev_priv(dev);
	struct skge_hw *hw = skge->hw;
	int port = skge->port;
	int i, count = dev->mc_count;
	struct dev_mc_list *list = dev->mc_list;
	u32 mode;
	u8 filter[8];

2488
	mode = xm_read32(hw, port, XM_MODE);
2489 2490 2491 2492 2493 2494 2495 2496 2497 2498
	mode |= XM_MD_ENA_HASH;
	if (dev->flags & IFF_PROMISC)
		mode |= XM_MD_ENA_PROM;
	else
		mode &= ~XM_MD_ENA_PROM;

	if (dev->flags & IFF_ALLMULTI)
		memset(filter, 0xff, sizeof(filter));
	else {
		memset(filter, 0, sizeof(filter));
2499
		for (i = 0; list && i < count; i++, list = list->next) {
2500 2501 2502
			u32 crc, bit;
			crc = ether_crc_le(ETH_ALEN, list->dmi_addr);
			bit = ~crc & 0x3f;
2503 2504 2505 2506
			filter[bit/8] |= 1 << (bit%8);
		}
	}

2507
	xm_write32(hw, port, XM_MODE, mode);
2508
	xm_outhash(hw, port, XM_HSM, filter);
2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521
}

static void yukon_set_multicast(struct net_device *dev)
{
	struct skge_port *skge = netdev_priv(dev);
	struct skge_hw *hw = skge->hw;
	int port = skge->port;
	struct dev_mc_list *list = dev->mc_list;
	u16 reg;
	u8 filter[8];

	memset(filter, 0, sizeof(filter));

2522
	reg = gma_read16(hw, port, GM_RX_CTRL);
2523 2524
	reg |= GM_RXCR_UCF_ENA;

S
Stephen Hemminger 已提交
2525
	if (dev->flags & IFF_PROMISC) 		/* promiscuous */
2526 2527 2528 2529 2530 2531 2532 2533 2534
		reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
	else if (dev->flags & IFF_ALLMULTI)	/* all multicast */
		memset(filter, 0xff, sizeof(filter));
	else if (dev->mc_count == 0)		/* no multicast */
		reg &= ~GM_RXCR_MCF_ENA;
	else {
		int i;
		reg |= GM_RXCR_MCF_ENA;

2535
		for (i = 0; list && i < dev->mc_count; i++, list = list->next) {
2536 2537 2538 2539 2540 2541
			u32 bit = ether_crc(ETH_ALEN, list->dmi_addr) & 0x3f;
			filter[bit/8] |= 1 << (bit%8);
		}
	}


2542
	gma_write16(hw, port, GM_MC_ADDR_H1,
2543
			 (u16)filter[0] | ((u16)filter[1] << 8));
2544
	gma_write16(hw, port, GM_MC_ADDR_H2,
2545
			 (u16)filter[2] | ((u16)filter[3] << 8));
2546
	gma_write16(hw, port, GM_MC_ADDR_H3,
2547
			 (u16)filter[4] | ((u16)filter[5] << 8));
2548
	gma_write16(hw, port, GM_MC_ADDR_H4,
2549 2550
			 (u16)filter[6] | ((u16)filter[7] << 8));

2551
	gma_write16(hw, port, GM_RX_CTRL, reg);
2552 2553
}

2554 2555 2556 2557 2558 2559 2560 2561
static inline u16 phy_length(const struct skge_hw *hw, u32 status)
{
	if (hw->chip_id == CHIP_ID_GENESIS)
		return status >> XMR_FS_LEN_SHIFT;
	else
		return status >> GMR_FS_LEN_SHIFT;
}

2562 2563 2564 2565 2566 2567 2568 2569 2570
static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
{
	if (hw->chip_id == CHIP_ID_GENESIS)
		return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
	else
		return (status & GMR_FS_ANY_ERR) ||
			(status & GMR_FS_RX_OK) == 0;
}

2571 2572 2573 2574 2575 2576

/* Get receive buffer from descriptor.
 * Handles copy of small buffers and reallocation failures
 */
static inline struct sk_buff *skge_rx_get(struct skge_port *skge,
					  struct skge_element *e,
2577
					  u32 control, u32 status, u16 csum)
2578
{
2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597
	struct sk_buff *skb;
	u16 len = control & BMU_BBC;

	if (unlikely(netif_msg_rx_status(skge)))
		printk(KERN_DEBUG PFX "%s: rx slot %td status 0x%x len %d\n",
		       skge->netdev->name, e - skge->rx_ring.start,
		       status, len);

	if (len > skge->rx_buf_size)
		goto error;

	if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF))
		goto error;

	if (bad_phy_status(skge->hw, status))
		goto error;

	if (phy_length(skge->hw, status) != len)
		goto error;
2598 2599

	if (len < RX_COPY_THRESHOLD) {
2600
		skb = alloc_skb(len + 2, GFP_ATOMIC);
2601 2602
		if (!skb)
			goto resubmit;
2603

2604
		skb_reserve(skb, 2);
2605 2606 2607
		pci_dma_sync_single_for_cpu(skge->hw->pdev,
					    pci_unmap_addr(e, mapaddr),
					    len, PCI_DMA_FROMDEVICE);
2608
		memcpy(skb->data, e->skb->data, len);
2609 2610 2611 2612 2613
		pci_dma_sync_single_for_device(skge->hw->pdev,
					       pci_unmap_addr(e, mapaddr),
					       len, PCI_DMA_FROMDEVICE);
		skge_rx_reuse(e, skge->rx_buf_size);
	} else {
2614
		struct sk_buff *nskb;
2615
		nskb = alloc_skb(skge->rx_buf_size + NET_IP_ALIGN, GFP_ATOMIC);
2616 2617
		if (!nskb)
			goto resubmit;
2618

2619
		skb_reserve(nskb, NET_IP_ALIGN);
2620 2621 2622 2623 2624
		pci_unmap_single(skge->hw->pdev,
				 pci_unmap_addr(e, mapaddr),
				 pci_unmap_len(e, maplen),
				 PCI_DMA_FROMDEVICE);
		skb = e->skb;
2625
  		prefetch(skb->data);
2626
		skge_rx_setup(skge, e, nskb, skge->rx_buf_size);
2627
	}
2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664

	skb_put(skb, len);
	skb->dev = skge->netdev;
	if (skge->rx_csum) {
		skb->csum = csum;
		skb->ip_summed = CHECKSUM_HW;
	}

	skb->protocol = eth_type_trans(skb, skge->netdev);

	return skb;
error:

	if (netif_msg_rx_err(skge))
		printk(KERN_DEBUG PFX "%s: rx err, slot %td control 0x%x status 0x%x\n",
		       skge->netdev->name, e - skge->rx_ring.start,
		       control, status);

	if (skge->hw->chip_id == CHIP_ID_GENESIS) {
		if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
			skge->net_stats.rx_length_errors++;
		if (status & XMR_FS_FRA_ERR)
			skge->net_stats.rx_frame_errors++;
		if (status & XMR_FS_FCS_ERR)
			skge->net_stats.rx_crc_errors++;
	} else {
		if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
			skge->net_stats.rx_length_errors++;
		if (status & GMR_FS_FRAGMENT)
			skge->net_stats.rx_frame_errors++;
		if (status & GMR_FS_CRC_ERR)
			skge->net_stats.rx_crc_errors++;
	}

resubmit:
	skge_rx_reuse(e, skge->rx_buf_size);
	return NULL;
2665 2666
}

2667 2668 2669
static void skge_tx_done(struct skge_port *skge)
{
	struct skge_ring *ring = &skge->tx_ring;
2670
	struct skge_element *e, *last;
2671 2672

	spin_lock(&skge->tx_lock);
2673 2674
	last = ring->to_clean;
	for (e = ring->to_clean; e != ring->to_use; e = e->next) {
2675 2676
		struct skge_tx_desc *td = e->desc;

2677
		if (td->control & BMU_OWN)
2678 2679
			break;

2680 2681 2682 2683 2684 2685
		if (td->control & BMU_EOF) {
			last = e->next;
			if (unlikely(netif_msg_tx_done(skge)))
				printk(KERN_DEBUG PFX "%s: tx done slot %td\n",
				       skge->netdev->name, e - ring->start);
		}
2686
	}
2687 2688 2689

	skge_tx_complete(skge, last);

2690 2691
	skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);

2692
	if (skge_avail(&skge->tx_ring) > MAX_SKB_FRAGS + 1)
2693 2694 2695 2696
		netif_wake_queue(skge->netdev);

	spin_unlock(&skge->tx_lock);
}
2697

2698 2699 2700 2701 2702 2703
static int skge_poll(struct net_device *dev, int *budget)
{
	struct skge_port *skge = netdev_priv(dev);
	struct skge_hw *hw = skge->hw;
	struct skge_ring *ring = &skge->rx_ring;
	struct skge_element *e;
2704 2705 2706 2707
	int to_do = min(dev->quota, *budget);
	int work_done = 0;

	skge_tx_done(skge);
2708

2709
	for (e = ring->to_clean; prefetch(e->next), work_done < to_do; e = e->next) {
2710
		struct skge_rx_desc *rd = e->desc;
2711
		struct sk_buff *skb;
2712
		u32 control;
2713 2714 2715 2716 2717 2718

		rmb();
		control = rd->control;
		if (control & BMU_OWN)
			break;

2719
		skb = skge_rx_get(skge, e, control, rd->status, rd->csum2);
2720 2721 2722
		if (likely(skb)) {
			dev->last_rx = jiffies;
			netif_receive_skb(skb);
2723

2724
			++work_done;
2725
		}
2726 2727 2728 2729 2730
	}
	ring->to_clean = e;

	/* restart receiver */
	wmb();
S
Stephen Hemminger 已提交
2731
	skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START);
2732

2733 2734 2735 2736 2737
	*budget -= work_done;
	dev->quota -= work_done;

	if (work_done >=  to_do)
		return 1; /* not done */
2738

2739
	netif_rx_complete(dev);
S
Stephen Hemminger 已提交
2740 2741
	mmiowb();

2742
  	hw->intr_mask |= skge->port == 0 ? (IS_R1_F|IS_XA1_F) : (IS_R2_F|IS_XA2_F);
S
Stephen Hemminger 已提交
2743
  	skge_write32(hw, B0_IMSK, hw->intr_mask);
2744

2745
	return 0;
2746 2747
}

2748 2749 2750
/* Parity errors seem to happen when Genesis is connected to a switch
 * with no other ports present. Heartbeat error??
 */
2751 2752
static void skge_mac_parity(struct skge_hw *hw, int port)
{
2753 2754 2755 2756 2757 2758
	struct net_device *dev = hw->dev[port];

	if (dev) {
		struct skge_port *skge = netdev_priv(dev);
		++skge->net_stats.tx_heartbeat_errors;
	}
2759 2760

	if (hw->chip_id == CHIP_ID_GENESIS)
2761
		skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
2762 2763 2764
			     MFF_CLR_PERR);
	else
		/* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
2765
		skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T),
2766
			    (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
2767 2768 2769 2770 2771
			    ? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
}

static void skge_mac_intr(struct skge_hw *hw, int port)
{
2772
	if (hw->chip_id == CHIP_ID_GENESIS)
2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785
		genesis_mac_intr(hw, port);
	else
		yukon_mac_intr(hw, port);
}

/* Handle device specific framing and timeout interrupts */
static void skge_error_irq(struct skge_hw *hw)
{
	u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);

	if (hw->chip_id == CHIP_ID_GENESIS) {
		/* clear xmac errors */
		if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
2786
			skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT);
2787
		if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
2788
			skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT);
2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810
	} else {
		/* Timestamp (unused) overflow */
		if (hwstatus & IS_IRQ_TIST_OV)
			skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
	}

	if (hwstatus & IS_RAM_RD_PAR) {
		printk(KERN_ERR PFX "Ram read data parity error\n");
		skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
	}

	if (hwstatus & IS_RAM_WR_PAR) {
		printk(KERN_ERR PFX "Ram write data parity error\n");
		skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
	}

	if (hwstatus & IS_M1_PAR_ERR)
		skge_mac_parity(hw, 0);

	if (hwstatus & IS_M2_PAR_ERR)
		skge_mac_parity(hw, 1);

2811 2812 2813
	if (hwstatus & IS_R1_PAR_ERR) {
		printk(KERN_ERR PFX "%s: receive queue parity error\n",
		       hw->dev[0]->name);
2814
		skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
2815
	}
2816

2817 2818 2819
	if (hwstatus & IS_R2_PAR_ERR) {
		printk(KERN_ERR PFX "%s: receive queue parity error\n",
		       hw->dev[1]->name);
2820
		skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
2821
	}
2822 2823

	if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
2824 2825 2826 2827
		u16 pci_status, pci_cmd;

		pci_read_config_word(hw->pdev, PCI_COMMAND, &pci_cmd);
		pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
2828

2829 2830 2831 2832 2833 2834 2835 2836 2837 2838
		printk(KERN_ERR PFX "%s: PCI error cmd=%#x status=%#x\n",
			       pci_name(hw->pdev), pci_cmd, pci_status);

		/* Write the error bits back to clear them. */
		pci_status &= PCI_STATUS_ERROR_BITS;
		skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
		pci_write_config_word(hw->pdev, PCI_COMMAND,
				      pci_cmd | PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
		pci_write_config_word(hw->pdev, PCI_STATUS, pci_status);
		skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
2839

2840
		/* if error still set then just ignore it */
2841 2842
		hwstatus = skge_read32(hw, B0_HWE_ISRC);
		if (hwstatus & IS_IRQ_STAT) {
2843
			printk(KERN_INFO PFX "unable to clear error (so ignoring them)\n");
2844 2845 2846 2847 2848 2849
			hw->intr_mask &= ~IS_HW_ERR;
		}
	}
}

/*
S
Stephen Hemminger 已提交
2850
 * Interrupt from PHY are handled in tasklet (soft irq)
2851 2852 2853 2854 2855 2856 2857 2858 2859
 * because accessing phy registers requires spin wait which might
 * cause excess interrupt latency.
 */
static void skge_extirq(unsigned long data)
{
	struct skge_hw *hw = (struct skge_hw *) data;
	int port;

	spin_lock(&hw->phy_lock);
2860
	for (port = 0; port < hw->ports; port++) {
2861
		struct net_device *dev = hw->dev[port];
2862
		struct skge_port *skge = netdev_priv(dev);
2863

2864
		if (netif_running(dev)) {
2865 2866
			if (hw->chip_id != CHIP_ID_GENESIS)
				yukon_phy_intr(skge);
2867
			else
2868
				bcom_phy_intr(skge);
2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
		}
	}
	spin_unlock(&hw->phy_lock);

	hw->intr_mask |= IS_EXT_REG;
	skge_write32(hw, B0_IMSK, hw->intr_mask);
}

static irqreturn_t skge_intr(int irq, void *dev_id, struct pt_regs *regs)
{
	struct skge_hw *hw = dev_id;
2880
	u32 status;
2881

2882 2883 2884
	/* Reading this register masks IRQ */
	status = skge_read32(hw, B0_SP_ISRC);
	if (status == 0)
2885 2886
		return IRQ_NONE;

2887 2888 2889 2890 2891
	if (status & IS_EXT_REG) {
		hw->intr_mask &= ~IS_EXT_REG;
		tasklet_schedule(&hw->ext_tasklet);
	}

2892
	if (status & (IS_R1_F|IS_XA1_F)) {
S
Stephen Hemminger 已提交
2893
		skge_write8(hw, Q_ADDR(Q_R1, Q_CSR), CSR_IRQ_CL_F);
2894
		hw->intr_mask &= ~(IS_R1_F|IS_XA1_F);
S
Stephen Hemminger 已提交
2895
		netif_rx_schedule(hw->dev[0]);
2896 2897
	}

2898
	if (status & (IS_R2_F|IS_XA2_F)) {
S
Stephen Hemminger 已提交
2899
		skge_write8(hw, Q_ADDR(Q_R2, Q_CSR), CSR_IRQ_CL_F);
2900
		hw->intr_mask &= ~(IS_R2_F|IS_XA2_F);
S
Stephen Hemminger 已提交
2901
		netif_rx_schedule(hw->dev[1]);
2902 2903
	}

2904 2905 2906
	if (likely((status & hw->intr_mask) == 0))
		return IRQ_HANDLED;

2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924
	if (status & IS_PA_TO_RX1) {
		struct skge_port *skge = netdev_priv(hw->dev[0]);
		++skge->net_stats.rx_over_errors;
		skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1);
	}

	if (status & IS_PA_TO_RX2) {
		struct skge_port *skge = netdev_priv(hw->dev[1]);
		++skge->net_stats.rx_over_errors;
		skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2);
	}

	if (status & IS_PA_TO_TX1)
		skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1);

	if (status & IS_PA_TO_TX2)
		skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2);

2925 2926
	if (status & IS_MAC1)
		skge_mac_intr(hw, 0);
2927

2928 2929 2930 2931 2932 2933
	if (status & IS_MAC2)
		skge_mac_intr(hw, 1);

	if (status & IS_HW_ERR)
		skge_error_irq(hw);

2934
	skge_write32(hw, B0_IMSK, hw->intr_mask);
2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952

	return IRQ_HANDLED;
}

#ifdef CONFIG_NET_POLL_CONTROLLER
static void skge_netpoll(struct net_device *dev)
{
	struct skge_port *skge = netdev_priv(dev);

	disable_irq(dev->irq);
	skge_intr(dev->irq, skge->hw, NULL);
	enable_irq(dev->irq);
}
#endif

static int skge_set_mac_address(struct net_device *dev, void *p)
{
	struct skge_port *skge = netdev_priv(dev);
2953 2954 2955
	struct skge_hw *hw = skge->hw;
	unsigned port = skge->port;
	const struct sockaddr *addr = p;
2956 2957 2958 2959

	if (!is_valid_ether_addr(addr->sa_data))
		return -EADDRNOTAVAIL;

2960
	spin_lock_bh(&hw->phy_lock);
2961
	memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
2962
	memcpy_toio(hw->regs + B2_MAC_1 + port*8,
2963
		    dev->dev_addr, ETH_ALEN);
2964
	memcpy_toio(hw->regs + B2_MAC_2 + port*8,
2965
		    dev->dev_addr, ETH_ALEN);
2966 2967 2968 2969 2970 2971 2972 2973 2974 2975

	if (hw->chip_id == CHIP_ID_GENESIS)
		xm_outaddr(hw, port, XM_SA, dev->dev_addr);
	else {
		gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
		gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
	}
	spin_unlock_bh(&hw->phy_lock);

	return 0;
2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007
}

static const struct {
	u8 id;
	const char *name;
} skge_chips[] = {
	{ CHIP_ID_GENESIS,	"Genesis" },
	{ CHIP_ID_YUKON,	 "Yukon" },
	{ CHIP_ID_YUKON_LITE,	 "Yukon-Lite"},
	{ CHIP_ID_YUKON_LP,	 "Yukon-LP"},
};

static const char *skge_board_name(const struct skge_hw *hw)
{
	int i;
	static char buf[16];

	for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
		if (skge_chips[i].id == hw->chip_id)
			return skge_chips[i].name;

	snprintf(buf, sizeof buf, "chipid 0x%x", hw->chip_id);
	return buf;
}


/*
 * Setup the board data structure, but don't bring up
 * the port(s)
 */
static int skge_reset(struct skge_hw *hw)
{
3008
	u32 reg;
3009
	u16 ctst, pci_status;
3010
	u8 t8, mac_cfg, pmd_type, phy_type;
3011
	int i;
3012 3013 3014 3015 3016 3017 3018 3019

	ctst = skge_read16(hw, B0_CTST);

	/* do a SW reset */
	skge_write8(hw, B0_CTST, CS_RST_SET);
	skge_write8(hw, B0_CTST, CS_RST_CLR);

	/* clear PCI errors, if any */
3020 3021
	skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
	skge_write8(hw, B2_TST_CTRL2, 0);
3022

3023 3024 3025 3026
	pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
	pci_write_config_word(hw->pdev, PCI_STATUS,
			      pci_status | PCI_STATUS_ERROR_BITS);
	skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3027 3028 3029 3030 3031 3032 3033
	skge_write8(hw, B0_CTST, CS_MRST_CLR);

	/* restore CLK_RUN bits (for Yukon-Lite) */
	skge_write16(hw, B0_CTST,
		     ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));

	hw->chip_id = skge_read8(hw, B2_CHIP_ID);
3034 3035 3036
	phy_type = skge_read8(hw, B2_E_1) & 0xf;
	pmd_type = skge_read8(hw, B2_PMD_TYP);
	hw->copper = (pmd_type == 'T' || pmd_type == '1');
3037

3038
	switch (hw->chip_id) {
3039
	case CHIP_ID_GENESIS:
3040
		switch (phy_type) {
3041 3042 3043 3044 3045
		case SK_PHY_BCOM:
			hw->phy_addr = PHY_ADDR_BCOM;
			break;
		default:
			printk(KERN_ERR PFX "%s: unsupported phy type 0x%x\n",
3046
			       pci_name(hw->pdev), phy_type);
3047 3048 3049 3050 3051 3052 3053
			return -EOPNOTSUPP;
		}
		break;

	case CHIP_ID_YUKON:
	case CHIP_ID_YUKON_LITE:
	case CHIP_ID_YUKON_LP:
3054 3055
		if (phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S')
			hw->copper = 1;
3056 3057 3058 3059 3060 3061 3062 3063 3064 3065

		hw->phy_addr = PHY_ADDR_MARV;
		break;

	default:
		printk(KERN_ERR PFX "%s: unsupported chip type 0x%x\n",
		       pci_name(hw->pdev), hw->chip_id);
		return -EOPNOTSUPP;
	}

3066 3067 3068
	mac_cfg = skge_read8(hw, B2_MAC_CFG);
	hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
	hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084

	/* read the adapters RAM size */
	t8 = skge_read8(hw, B2_E_0);
	if (hw->chip_id == CHIP_ID_GENESIS) {
		if (t8 == 3) {
			/* special case: 4 x 64k x 36, offset = 0x80000 */
			hw->ram_size = 0x100000;
			hw->ram_offset = 0x80000;
		} else
			hw->ram_size = t8 * 512;
	}
	else if (t8 == 0)
		hw->ram_size = 0x20000;
	else
		hw->ram_size = t8 * 4096;

3085 3086 3087 3088
	hw->intr_mask = IS_HW_ERR | IS_EXT_REG | IS_PORT_1;
	if (hw->ports > 1)
		hw->intr_mask |= IS_PORT_2;

3089 3090 3091 3092 3093 3094
	if (hw->chip_id == CHIP_ID_GENESIS)
		genesis_init(hw);
	else {
		/* switch power to VCC (WA for VAUX problem) */
		skge_write8(hw, B0_POWER_CTRL,
			    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
3095

3096 3097 3098 3099 3100 3101 3102
		/* avoid boards with stuck Hardware error bits */
		if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) &&
		    (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) {
			printk(KERN_WARNING PFX "stuck hardware sensor bit\n");
			hw->intr_mask &= ~IS_HW_ERR;
		}

3103 3104 3105 3106 3107 3108 3109 3110
		/* Clear PHY COMA */
		skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
		pci_read_config_dword(hw->pdev, PCI_DEV_REG1, &reg);
		reg &= ~PCI_PHY_COMA;
		pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg);
		skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);


3111
		for (i = 0; i < hw->ports; i++) {
3112 3113
			skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
			skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
3114 3115 3116 3117 3118 3119 3120 3121 3122
		}
	}

	/* turn off hardware timer (unused) */
	skge_write8(hw, B2_TI_CTRL, TIM_STOP);
	skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
	skge_write8(hw, B0_LED, LED_STAT_ON);

	/* enable the Tx Arbiters */
3123
	for (i = 0; i < hw->ports; i++)
3124
		skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153

	/* Initialize ram interface */
	skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);

	skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
	skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
	skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
	skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
	skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
	skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
	skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
	skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
	skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
	skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
	skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
	skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);

	skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);

	/* Set interrupt moderation for Transmit only
	 * Receive interrupts avoided by NAPI
	 */
	skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
	skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
	skge_write32(hw, B2_IRQM_CTRL, TIM_START);

	skge_write32(hw, B0_IMSK, hw->intr_mask);

	spin_lock_bh(&hw->phy_lock);
3154
	for (i = 0; i < hw->ports; i++) {
3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165
		if (hw->chip_id == CHIP_ID_GENESIS)
			genesis_reset(hw, i);
		else
			yukon_reset(hw, i);
	}
	spin_unlock_bh(&hw->phy_lock);

	return 0;
}

/* Initialize network device */
3166 3167
static struct net_device *skge_devinit(struct skge_hw *hw, int port,
				       int highmem)
3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180
{
	struct skge_port *skge;
	struct net_device *dev = alloc_etherdev(sizeof(*skge));

	if (!dev) {
		printk(KERN_ERR "skge etherdev alloc failed");
		return NULL;
	}

	SET_MODULE_OWNER(dev);
	SET_NETDEV_DEV(dev, &hw->pdev->dev);
	dev->open = skge_up;
	dev->stop = skge_down;
3181
	dev->do_ioctl = skge_ioctl;
3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200
	dev->hard_start_xmit = skge_xmit_frame;
	dev->get_stats = skge_get_stats;
	if (hw->chip_id == CHIP_ID_GENESIS)
		dev->set_multicast_list = genesis_set_multicast;
	else
		dev->set_multicast_list = yukon_set_multicast;

	dev->set_mac_address = skge_set_mac_address;
	dev->change_mtu = skge_change_mtu;
	SET_ETHTOOL_OPS(dev, &skge_ethtool_ops);
	dev->tx_timeout = skge_tx_timeout;
	dev->watchdog_timeo = TX_WATCHDOG;
	dev->poll = skge_poll;
	dev->weight = NAPI_WEIGHT;
#ifdef CONFIG_NET_POLL_CONTROLLER
	dev->poll_controller = skge_netpoll;
#endif
	dev->irq = hw->pdev->irq;
	dev->features = NETIF_F_LLTX;
3201 3202
	if (highmem)
		dev->features |= NETIF_F_HIGHDMA;
3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215

	skge = netdev_priv(dev);
	skge->netdev = dev;
	skge->hw = hw;
	skge->msg_enable = netif_msg_init(debug, default_msg);
	skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
	skge->rx_ring.count = DEFAULT_RX_RING_SIZE;

	/* Auto speed and flow control */
	skge->autoneg = AUTONEG_ENABLE;
	skge->flow_control = FLOW_MODE_SYMMETRIC;
	skge->duplex = -1;
	skge->speed = -1;
3216
	skge->advertising = skge_supported_modes(hw);
3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230

	hw->dev[port] = dev;

	skge->port = port;

	spin_lock_init(&skge->tx_lock);

	if (hw->chip_id != CHIP_ID_GENESIS) {
		dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
		skge->rx_csum = 1;
	}

	/* read the mac address */
	memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
3231
	memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257

	/* device is off until link detection */
	netif_carrier_off(dev);
	netif_stop_queue(dev);

	return dev;
}

static void __devinit skge_show_addr(struct net_device *dev)
{
	const struct skge_port *skge = netdev_priv(dev);

	if (netif_msg_probe(skge))
		printk(KERN_INFO PFX "%s: addr %02x:%02x:%02x:%02x:%02x:%02x\n",
		       dev->name,
		       dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
		       dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
}

static int __devinit skge_probe(struct pci_dev *pdev,
				const struct pci_device_id *ent)
{
	struct net_device *dev, *dev1;
	struct skge_hw *hw;
	int err, using_dac = 0;

3258 3259
	err = pci_enable_device(pdev);
	if (err) {
3260 3261 3262 3263 3264
		printk(KERN_ERR PFX "%s cannot enable PCI device\n",
		       pci_name(pdev));
		goto err_out;
	}

3265 3266
	err = pci_request_regions(pdev, DRV_NAME);
	if (err) {
3267 3268 3269 3270 3271 3272 3273
		printk(KERN_ERR PFX "%s cannot obtain PCI resources\n",
		       pci_name(pdev));
		goto err_out_disable_pdev;
	}

	pci_set_master(pdev);

3274
	if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
3275
		using_dac = 1;
3276
		err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
3277 3278 3279 3280 3281 3282 3283 3284 3285
	} else if (!(err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
		using_dac = 0;
		err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
	}

	if (err) {
		printk(KERN_ERR PFX "%s no usable DMA configuration\n",
		       pci_name(pdev));
		goto err_out_free_regions;
3286 3287 3288
	}

#ifdef __BIG_ENDIAN
S
Stephen Hemminger 已提交
3289
	/* byte swap descriptors in hardware */
3290 3291 3292 3293 3294 3295 3296 3297 3298 3299
	{
		u32 reg;

		pci_read_config_dword(pdev, PCI_DEV_REG2, &reg);
		reg |= PCI_REV_DESC;
		pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
	}
#endif

	err = -ENOMEM;
S
Stephen Hemminger 已提交
3300
	hw = kzalloc(sizeof(*hw), GFP_KERNEL);
3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317
	if (!hw) {
		printk(KERN_ERR PFX "%s: cannot allocate hardware struct\n",
		       pci_name(pdev));
		goto err_out_free_regions;
	}

	hw->pdev = pdev;
	spin_lock_init(&hw->phy_lock);
	tasklet_init(&hw->ext_tasklet, skge_extirq, (unsigned long) hw);

	hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
	if (!hw->regs) {
		printk(KERN_ERR PFX "%s: cannot map device registers\n",
		       pci_name(pdev));
		goto err_out_free_hw;
	}

3318 3319
	err = request_irq(pdev->irq, skge_intr, SA_SHIRQ, DRV_NAME, hw);
	if (err) {
3320 3321 3322 3323 3324 3325 3326 3327 3328 3329
		printk(KERN_ERR PFX "%s: cannot assign irq %d\n",
		       pci_name(pdev), pdev->irq);
		goto err_out_iounmap;
	}
	pci_set_drvdata(pdev, hw);

	err = skge_reset(hw);
	if (err)
		goto err_out_free_irq;

3330
	printk(KERN_INFO PFX DRV_VERSION " addr 0x%lx irq %d chip %s rev %d\n",
3331
	       pci_resource_start(pdev, 0), pdev->irq,
3332
	       skge_board_name(hw), hw->chip_rev);
3333

3334
	if ((dev = skge_devinit(hw, 0, using_dac)) == NULL)
3335 3336
		goto err_out_led_off;

3337 3338
	err = register_netdev(dev);
	if (err) {
3339 3340 3341 3342 3343 3344 3345
		printk(KERN_ERR PFX "%s: cannot register net device\n",
		       pci_name(pdev));
		goto err_out_free_netdev;
	}

	skge_show_addr(dev);

3346
	if (hw->ports > 1 && (dev1 = skge_devinit(hw, 1, using_dac))) {
3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382
		if (register_netdev(dev1) == 0)
			skge_show_addr(dev1);
		else {
			/* Failure to register second port need not be fatal */
			printk(KERN_WARNING PFX "register of second port failed\n");
			hw->dev[1] = NULL;
			free_netdev(dev1);
		}
	}

	return 0;

err_out_free_netdev:
	free_netdev(dev);
err_out_led_off:
	skge_write16(hw, B0_LED, LED_STAT_OFF);
err_out_free_irq:
	free_irq(pdev->irq, hw);
err_out_iounmap:
	iounmap(hw->regs);
err_out_free_hw:
	kfree(hw);
err_out_free_regions:
	pci_release_regions(pdev);
err_out_disable_pdev:
	pci_disable_device(pdev);
	pci_set_drvdata(pdev, NULL);
err_out:
	return err;
}

static void __devexit skge_remove(struct pci_dev *pdev)
{
	struct skge_hw *hw  = pci_get_drvdata(pdev);
	struct net_device *dev0, *dev1;

3383
	if (!hw)
3384 3385 3386 3387 3388 3389 3390
		return;

	if ((dev1 = hw->dev[1]))
		unregister_netdev(dev1);
	dev0 = hw->dev[0];
	unregister_netdev(dev0);

3391 3392 3393 3394
	skge_write32(hw, B0_IMSK, 0);
	skge_write16(hw, B0_LED, LED_STAT_OFF);
	skge_write8(hw, B0_CTST, CS_RST_SET);

3395 3396 3397 3398 3399 3400 3401 3402
	tasklet_kill(&hw->ext_tasklet);

	free_irq(pdev->irq, hw);
	pci_release_regions(pdev);
	pci_disable_device(pdev);
	if (dev1)
		free_netdev(dev1);
	free_netdev(dev0);
3403

3404 3405 3406 3407 3408 3409
	iounmap(hw->regs);
	kfree(hw);
	pci_set_drvdata(pdev, NULL);
}

#ifdef CONFIG_PM
3410
static int skge_suspend(struct pci_dev *pdev, pm_message_t state)
3411 3412 3413 3414
{
	struct skge_hw *hw  = pci_get_drvdata(pdev);
	int i, wol = 0;

3415
	for (i = 0; i < 2; i++) {
3416 3417 3418 3419 3420 3421
		struct net_device *dev = hw->dev[i];

		if (dev) {
			struct skge_port *skge = netdev_priv(dev);
			if (netif_running(dev)) {
				netif_carrier_off(dev);
3422 3423 3424 3425
				if (skge->wol)
					netif_stop_queue(dev);
				else
					skge_down(dev);
3426 3427 3428 3429 3430 3431 3432
			}
			netif_device_detach(dev);
			wol |= skge->wol;
		}
	}

	pci_save_state(pdev);
3433
	pci_enable_wake(pdev, pci_choose_state(pdev, state), wol);
3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450
	pci_disable_device(pdev);
	pci_set_power_state(pdev, pci_choose_state(pdev, state));

	return 0;
}

static int skge_resume(struct pci_dev *pdev)
{
	struct skge_hw *hw  = pci_get_drvdata(pdev);
	int i;

	pci_set_power_state(pdev, PCI_D0);
	pci_restore_state(pdev);
	pci_enable_wake(pdev, PCI_D0, 0);

	skge_reset(hw);

3451
	for (i = 0; i < 2; i++) {
3452 3453 3454
		struct net_device *dev = hw->dev[i];
		if (dev) {
			netif_device_attach(dev);
3455 3456
			if (netif_running(dev) && skge_up(dev))
				dev_close(dev);
3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485
		}
	}
	return 0;
}
#endif

static struct pci_driver skge_driver = {
	.name =         DRV_NAME,
	.id_table =     skge_id_table,
	.probe =        skge_probe,
	.remove =       __devexit_p(skge_remove),
#ifdef CONFIG_PM
	.suspend = 	skge_suspend,
	.resume = 	skge_resume,
#endif
};

static int __init skge_init_module(void)
{
	return pci_module_init(&skge_driver);
}

static void __exit skge_cleanup_module(void)
{
	pci_unregister_driver(&skge_driver);
}

module_init(skge_init_module);
module_exit(skge_cleanup_module);