i915_guc_submission.c 38.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */
#include <linux/circ_buf.h>
#include "i915_drv.h"
26
#include "intel_uc.h"
27

28 29
#include <trace/events/dma_fence.h>

30
/**
A
Alex Dai 已提交
31
 * DOC: GuC-based command submission
32
 *
33 34 35 36 37 38
 * GuC client:
 * A i915_guc_client refers to a submission path through GuC. Currently, there
 * is only one of these (the execbuf_client) and this one is charged with all
 * submissions to the GuC. This struct is the owner of a doorbell, a process
 * descriptor and a workqueue (all of them inside a single gem object that
 * contains all required pages for these elements).
39
 *
40
 * GuC stage descriptor:
41 42 43
 * During initialization, the driver allocates a static pool of 1024 such
 * descriptors, and shares them with the GuC.
 * Currently, there exists a 1:1 mapping between a i915_guc_client and a
44 45 46 47
 * guc_stage_desc (via the client's stage_id), so effectively only one
 * gets used. This stage descriptor lets the GuC know about the doorbell,
 * workqueue and process descriptor. Theoretically, it also lets the GuC
 * know about our HW contexts (context ID, etc...), but we actually
48
 * employ a kind of submission where the GuC uses the LRCA sent via the work
49
 * item instead (the single guc_stage_desc associated to execbuf client
50 51
 * contains information about the default kernel context only, but this is
 * essentially unused). This is called a "proxy" submission.
52 53 54 55 56 57 58 59
 *
 * The Scratch registers:
 * There are 16 MMIO-based registers start from 0xC180. The kernel driver writes
 * a value to the action register (SOFT_SCRATCH_0) along with any data. It then
 * triggers an interrupt on the GuC via another register write (0xC4C8).
 * Firmware writes a success/fail code back to the action register after
 * processes the request. The kernel driver polls waiting for this update and
 * then proceeds.
60
 * See intel_guc_send()
61 62 63 64 65 66 67 68 69 70 71
 *
 * Doorbells:
 * Doorbells are interrupts to uKernel. A doorbell is a single cache line (QW)
 * mapped into process space.
 *
 * Work Items:
 * There are several types of work items that the host may place into a
 * workqueue, each with its own requirements and limitations. Currently only
 * WQ_TYPE_INORDER is needed to support legacy submission via GuC, which
 * represents in-order queue. The kernel driver packs ring tail pointer and an
 * ELSP context descriptor dword into Work Item.
72
 * See guc_wq_item_append()
73
 *
74 75 76 77 78 79 80
 * ADS:
 * The Additional Data Struct (ADS) has pointers for different buffers used by
 * the GuC. One single gem object contains the ADS struct itself (guc_ads), the
 * scheduling policies (guc_policies), a structure describing a collection of
 * register sets (guc_mmio_reg_state) and some extra pages for the GuC to save
 * its internal state for sleep.
 *
81 82
 */

83 84
static inline bool is_high_priority(struct i915_guc_client* client)
{
85
	return client->priority <= GUC_CLIENT_PRIORITY_HIGH;
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
}

static int __reserve_doorbell(struct i915_guc_client *client)
{
	unsigned long offset;
	unsigned long end;
	u16 id;

	GEM_BUG_ON(client->doorbell_id != GUC_DOORBELL_INVALID);

	/*
	 * The bitmap tracks which doorbell registers are currently in use.
	 * It is split into two halves; the first half is used for normal
	 * priority contexts, the second half for high-priority ones.
	 */
	offset = 0;
	end = GUC_NUM_DOORBELLS/2;
	if (is_high_priority(client)) {
		offset = end;
		end += offset;
	}

	id = find_next_zero_bit(client->guc->doorbell_bitmap, offset, end);
	if (id == end)
		return -ENOSPC;

	__set_bit(id, client->guc->doorbell_bitmap);
	client->doorbell_id = id;
	DRM_DEBUG_DRIVER("client %u (high prio=%s) reserved doorbell: %d\n",
115
			 client->stage_id, yesno(is_high_priority(client)),
116 117 118 119 120 121 122 123 124 125 126 127
			 id);
	return 0;
}

static void __unreserve_doorbell(struct i915_guc_client *client)
{
	GEM_BUG_ON(client->doorbell_id == GUC_DOORBELL_INVALID);

	__clear_bit(client->doorbell_id, client->guc->doorbell_bitmap);
	client->doorbell_id = GUC_DOORBELL_INVALID;
}

128 129 130 131
/*
 * Tell the GuC to allocate or deallocate a specific doorbell
 */

132
static int __guc_allocate_doorbell(struct intel_guc *guc, u32 stage_id)
133
{
134 135
	u32 action[] = {
		INTEL_GUC_ACTION_ALLOCATE_DOORBELL,
136
		stage_id
137
	};
138

139
	return intel_guc_send(guc, action, ARRAY_SIZE(action));
140 141
}

142
static int __guc_deallocate_doorbell(struct intel_guc *guc, u32 stage_id)
143
{
144 145
	u32 action[] = {
		INTEL_GUC_ACTION_DEALLOCATE_DOORBELL,
146
		stage_id
147
	};
148

149
	return intel_guc_send(guc, action, ARRAY_SIZE(action));
150 151
}

152
static struct guc_stage_desc *__get_stage_desc(struct i915_guc_client *client)
153
{
154
	struct guc_stage_desc *base = client->guc->stage_desc_pool_vaddr;
155

156
	return &base[client->stage_id];
157 158
}

159 160 161 162 163 164 165
/*
 * Initialise, update, or clear doorbell data shared with the GuC
 *
 * These functions modify shared data and so need access to the mapped
 * client object which contains the page being used for the doorbell
 */

166
static void __update_doorbell_desc(struct i915_guc_client *client, u16 new_id)
167
{
168
	struct guc_stage_desc *desc;
169

170
	/* Update the GuC's idea of the doorbell ID */
171
	desc = __get_stage_desc(client);
172
	desc->db_id = new_id;
173
}
174

175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
static struct guc_doorbell_info *__get_doorbell(struct i915_guc_client *client)
{
	return client->vaddr + client->doorbell_offset;
}

static bool has_doorbell(struct i915_guc_client *client)
{
	if (client->doorbell_id == GUC_DOORBELL_INVALID)
		return false;

	return test_bit(client->doorbell_id, client->guc->doorbell_bitmap);
}

static int __create_doorbell(struct i915_guc_client *client)
{
	struct guc_doorbell_info *doorbell;
	int err;

	doorbell = __get_doorbell(client);
194
	doorbell->db_status = GUC_DOORBELL_ENABLED;
195
	doorbell->cookie = client->doorbell_cookie;
196

197
	err = __guc_allocate_doorbell(client->guc, client->stage_id);
198 199 200 201 202
	if (err) {
		doorbell->db_status = GUC_DOORBELL_DISABLED;
		doorbell->cookie = 0;
	}
	return err;
203 204
}

205
static int __destroy_doorbell(struct i915_guc_client *client)
206
{
207
	struct drm_i915_private *dev_priv = guc_to_i915(client->guc);
208
	struct guc_doorbell_info *doorbell;
209 210 211
	u16 db_id = client->doorbell_id;

	GEM_BUG_ON(db_id >= GUC_DOORBELL_INVALID);
212

213 214 215 216
	doorbell = __get_doorbell(client);
	doorbell->db_status = GUC_DOORBELL_DISABLED;
	doorbell->cookie = 0;

217 218 219 220 221 222
	/* Doorbell release flow requires that we wait for GEN8_DRB_VALID bit
	 * to go to zero after updating db_status before we call the GuC to
	 * release the doorbell */
	if (wait_for_us(!(I915_READ(GEN8_DRBREGL(db_id)) & GEN8_DRB_VALID), 10))
		WARN_ONCE(true, "Doorbell never became invalid after disable\n");

223
	return __guc_deallocate_doorbell(client->guc, client->stage_id);
224 225
}

226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
static int create_doorbell(struct i915_guc_client *client)
{
	int ret;

	ret = __reserve_doorbell(client);
	if (ret)
		return ret;

	__update_doorbell_desc(client, client->doorbell_id);

	ret = __create_doorbell(client);
	if (ret)
		goto err;

	return 0;

err:
	__update_doorbell_desc(client, GUC_DOORBELL_INVALID);
	__unreserve_doorbell(client);
	return ret;
}

248
static int destroy_doorbell(struct i915_guc_client *client)
249
{
250
	int err;
251

252 253 254 255
	GEM_BUG_ON(!has_doorbell(client));

	/* XXX: wait for any interrupts */
	/* XXX: wait for workqueue to drain */
256

257 258 259
	err = __destroy_doorbell(client);
	if (err)
		return err;
260

261
	__update_doorbell_desc(client, GUC_DOORBELL_INVALID);
262

263 264 265 266
	__unreserve_doorbell(client);

	return 0;
}
267

268
static unsigned long __select_cacheline(struct intel_guc* guc)
269
{
270
	unsigned long offset;
271 272 273 274 275

	/* Doorbell uses a single cache line within a page */
	offset = offset_in_page(guc->db_cacheline);

	/* Moving to next cache line to reduce contention */
276
	guc->db_cacheline += cache_line_size();
277

278 279
	DRM_DEBUG_DRIVER("reserved cacheline 0x%lx, next 0x%x, linesize %u\n",
			offset, guc->db_cacheline, cache_line_size());
280 281 282
	return offset;
}

283 284 285 286 287 288
static inline struct guc_process_desc *
__get_process_desc(struct i915_guc_client *client)
{
	return client->vaddr + client->proc_desc_offset;
}

289 290 291
/*
 * Initialise the process descriptor shared with the GuC firmware.
 */
292
static void guc_proc_desc_init(struct intel_guc *guc,
293 294 295 296
			       struct i915_guc_client *client)
{
	struct guc_process_desc *desc;

297
	desc = memset(__get_process_desc(client), 0, sizeof(*desc));
298 299 300 301 302 303 304 305 306 307

	/*
	 * XXX: pDoorbell and WQVBaseAddress are pointers in process address
	 * space for ring3 clients (set them as in mmap_ioctl) or kernel
	 * space for kernel clients (map on demand instead? May make debug
	 * easier to have it mapped).
	 */
	desc->wq_base_addr = 0;
	desc->db_base_addr = 0;

308
	desc->stage_id = client->stage_id;
309 310 311 312 313 314
	desc->wq_size_bytes = client->wq_size;
	desc->wq_status = WQ_STATUS_ACTIVE;
	desc->priority = client->priority;
}

/*
315
 * Initialise/clear the stage descriptor shared with the GuC firmware.
316 317 318 319 320
 *
 * This descriptor tells the GuC where (in GGTT space) to find the important
 * data structures relating to this client (doorbell, process descriptor,
 * write queue, etc).
 */
321 322
static void guc_stage_desc_init(struct intel_guc *guc,
				struct i915_guc_client *client)
323
{
324
	struct drm_i915_private *dev_priv = guc_to_i915(guc);
325
	struct intel_engine_cs *engine;
326
	struct i915_gem_context *ctx = client->owner;
327
	struct guc_stage_desc *desc;
328
	unsigned int tmp;
329
	u32 gfx_addr;
330

331
	desc = __get_stage_desc(client);
332
	memset(desc, 0, sizeof(*desc));
333

334 335
	desc->attribute = GUC_STAGE_DESC_ATTR_ACTIVE | GUC_STAGE_DESC_ATTR_KERNEL;
	desc->stage_id = client->stage_id;
336 337
	desc->priority = client->priority;
	desc->db_id = client->doorbell_id;
338

339
	for_each_engine_masked(engine, dev_priv, client->engines, tmp) {
340
		struct intel_context *ce = &ctx->engine[engine->id];
341
		uint32_t guc_engine_id = engine->guc_id;
342
		struct guc_execlist_context *lrc = &desc->lrc[guc_engine_id];
343 344 345 346 347 348 349 350

		/* TODO: We have a design issue to be solved here. Only when we
		 * receive the first batch, we know which engine is used by the
		 * user. But here GuC expects the lrc and ring to be pinned. It
		 * is not an issue for default context, which is the only one
		 * for now who owns a GuC client. But for future owner of GuC
		 * client, need to make sure lrc is pinned prior to enter here.
		 */
351
		if (!ce->state)
352 353
			break;	/* XXX: continue? */

354
		/*
355
		 * XXX: When this is a GUC_STAGE_DESC_ATTR_KERNEL client (proxy
356 357 358 359 360
		 * submission or, in other words, not using a direct submission
		 * model) the KMD's LRCA is not used for any work submission.
		 * Instead, the GuC uses the LRCA of the user mode context (see
		 * guc_wq_item_append below).
		 */
361
		lrc->context_desc = lower_32_bits(ce->lrc_desc);
362 363

		/* The state page is after PPHWSP */
364
		lrc->ring_lrca =
365
			guc_ggtt_offset(ce->state) + LRC_STATE_PN * PAGE_SIZE;
366 367 368 369

		/* XXX: In direct submission, the GuC wants the HW context id
		 * here. In proxy submission, it wants the stage id */
		lrc->context_id = (client->stage_id << GUC_ELC_CTXID_OFFSET) |
370
				(guc_engine_id << GUC_ELC_ENGINE_OFFSET);
371

372
		lrc->ring_begin = guc_ggtt_offset(ce->ring->vma);
373 374
		lrc->ring_end = lrc->ring_begin + ce->ring->size - 1;
		lrc->ring_next_free_location = lrc->ring_begin;
375 376
		lrc->ring_current_tail_pointer_value = 0;

377
		desc->engines_used |= (1 << guc_engine_id);
378 379
	}

380
	DRM_DEBUG_DRIVER("Host engines 0x%x => GuC engines used 0x%x\n",
381 382
			client->engines, desc->engines_used);
	WARN_ON(desc->engines_used == 0);
383

384
	/*
385 386
	 * The doorbell, process descriptor, and workqueue are all parts
	 * of the client object, which the GuC will reference via the GGTT
387
	 */
388
	gfx_addr = guc_ggtt_offset(client->vma);
389
	desc->db_trigger_phy = sg_dma_address(client->vma->pages->sgl) +
390
				client->doorbell_offset;
391 392 393 394 395
	desc->db_trigger_cpu = (uintptr_t)__get_doorbell(client);
	desc->db_trigger_uk = gfx_addr + client->doorbell_offset;
	desc->process_desc = gfx_addr + client->proc_desc_offset;
	desc->wq_addr = gfx_addr + client->wq_offset;
	desc->wq_size = client->wq_size;
396

397
	desc->desc_private = (uintptr_t)client;
398 399
}

400 401
static void guc_stage_desc_fini(struct intel_guc *guc,
				struct i915_guc_client *client)
402
{
403
	struct guc_stage_desc *desc;
404

405
	desc = __get_stage_desc(client);
406
	memset(desc, 0, sizeof(*desc));
407 408
}

409
/**
410
 * i915_guc_wq_reserve() - reserve space in the GuC's workqueue
411 412 413 414 415 416 417
 * @request:	request associated with the commands
 *
 * Return:	0 if space is available
 *		-EAGAIN if space is not currently available
 *
 * This function must be called (and must return 0) before a request
 * is submitted to the GuC via i915_guc_submit() below. Once a result
418 419
 * of 0 has been returned, it must be balanced by a corresponding
 * call to submit().
420
 *
421
 * Reservation allows the caller to determine in advance that space
422 423 424
 * will be available for the next submission before committing resources
 * to it, and helps avoid late failures with complicated recovery paths.
 */
425
int i915_guc_wq_reserve(struct drm_i915_gem_request *request)
426
{
427
	const size_t wqi_size = sizeof(struct guc_wq_item);
428
	struct i915_guc_client *client = request->i915->guc.execbuf_client;
429
	struct guc_process_desc *desc = __get_process_desc(client);
430
	u32 freespace;
431
	int ret;
432

433
	spin_lock_irq(&client->wq_lock);
434 435
	freespace = CIRC_SPACE(client->wq_tail, desc->head, client->wq_size);
	freespace -= client->wq_rsvd;
436
	if (likely(freespace >= wqi_size)) {
437
		client->wq_rsvd += wqi_size;
438 439
		ret = 0;
	} else {
440
		client->no_wq_space++;
441 442
		ret = -EAGAIN;
	}
443
	spin_unlock_irq(&client->wq_lock);
444

445
	return ret;
446 447
}

448 449 450 451 452 453 454 455 456
static void guc_client_update_wq_rsvd(struct i915_guc_client *client, int size)
{
	unsigned long flags;

	spin_lock_irqsave(&client->wq_lock, flags);
	client->wq_rsvd += size;
	spin_unlock_irqrestore(&client->wq_lock, flags);
}

457 458
void i915_guc_wq_unreserve(struct drm_i915_gem_request *request)
{
459
	const int wqi_size = sizeof(struct guc_wq_item);
460
	struct i915_guc_client *client = request->i915->guc.execbuf_client;
461

462
	GEM_BUG_ON(READ_ONCE(client->wq_rsvd) < wqi_size);
463
	guc_client_update_wq_rsvd(client, -wqi_size);
464 465
}

466
/* Construct a Work Item and append it to the GuC's Work Queue */
467
static void guc_wq_item_append(struct i915_guc_client *client,
468
			       struct drm_i915_gem_request *rq)
469
{
470 471 472
	/* wqi_len is in DWords, and does not include the one-word header */
	const size_t wqi_size = sizeof(struct guc_wq_item);
	const u32 wqi_len = wqi_size/sizeof(u32) - 1;
473
	struct intel_engine_cs *engine = rq->engine;
474
	struct guc_process_desc *desc = __get_process_desc(client);
475
	struct guc_wq_item *wqi;
476
	u32 freespace, tail, wq_off;
477

478
	/* Free space is guaranteed, see i915_guc_wq_reserve() above */
479
	freespace = CIRC_SPACE(client->wq_tail, desc->head, client->wq_size);
480 481 482 483
	GEM_BUG_ON(freespace < wqi_size);

	/* The GuC firmware wants the tail index in QWords, not bytes */
	tail = rq->tail;
484
	assert_ring_tail_valid(rq->ring, rq->tail);
485 486
	tail >>= 3;
	GEM_BUG_ON(tail > WQ_RING_TAIL_MAX);
487 488 489 490 491 492 493 494

	/* For now workqueue item is 4 DWs; workqueue buffer is 2 pages. So we
	 * should not have the case where structure wqi is across page, neither
	 * wrapped to the beginning. This simplifies the implementation below.
	 *
	 * XXX: if not the case, we need save data to a temp wqi and copy it to
	 * workqueue buffer dw by dw.
	 */
495
	BUILD_BUG_ON(wqi_size != 16);
496
	GEM_BUG_ON(client->wq_rsvd < wqi_size);
497

498
	/* postincrement WQ tail for next time */
499
	wq_off = client->wq_tail;
500
	GEM_BUG_ON(wq_off & (wqi_size - 1));
501 502 503
	client->wq_tail += wqi_size;
	client->wq_tail &= client->wq_size - 1;
	client->wq_rsvd -= wqi_size;
504 505

	/* WQ starts from the page after doorbell / process_desc */
506
	wqi = client->vaddr + wq_off + GUC_DB_SIZE;
507

508
	/* Now fill in the 4-word work queue item */
509
	wqi->header = WQ_TYPE_INORDER |
510
			(wqi_len << WQ_LEN_SHIFT) |
511
			(engine->guc_id << WQ_TARGET_SHIFT) |
512 513 514
			WQ_NO_WCFLUSH_WAIT;

	/* The GuC wants only the low-order word of the context descriptor */
515
	wqi->context_desc = (u32)intel_lr_context_descriptor(rq->ctx, engine);
516

517
	wqi->submit_element_info = tail << WQ_RING_TAIL_SHIFT;
518
	wqi->fence_id = rq->global_seqno;
519 520
}

521 522
static void guc_reset_wq(struct i915_guc_client *client)
{
523
	struct guc_process_desc *desc = __get_process_desc(client);
524 525 526 527 528 529 530

	desc->head = 0;
	desc->tail = 0;

	client->wq_tail = 0;
}

531
static int guc_ring_doorbell(struct i915_guc_client *client)
532
{
533
	struct guc_process_desc *desc = __get_process_desc(client);
534 535 536 537 538
	union guc_doorbell_qw db_cmp, db_exc, db_ret;
	union guc_doorbell_qw *db;
	int attempt = 2, ret = -EAGAIN;

	/* Update the tail so it is visible to GuC */
539
	desc->tail = client->wq_tail;
540 541 542

	/* current cookie */
	db_cmp.db_status = GUC_DOORBELL_ENABLED;
543
	db_cmp.cookie = client->doorbell_cookie;
544 545 546

	/* cookie to be updated */
	db_exc.db_status = GUC_DOORBELL_ENABLED;
547
	db_exc.cookie = client->doorbell_cookie + 1;
548 549 550 551
	if (db_exc.cookie == 0)
		db_exc.cookie = 1;

	/* pointer of current doorbell cacheline */
552
	db = (union guc_doorbell_qw *)__get_doorbell(client);
553 554 555 556 557 558 559 560 561

	while (attempt--) {
		/* lets ring the doorbell */
		db_ret.value_qw = atomic64_cmpxchg((atomic64_t *)db,
			db_cmp.value_qw, db_exc.value_qw);

		/* if the exchange was successfully executed */
		if (db_ret.value_qw == db_cmp.value_qw) {
			/* db was successfully rung */
562
			client->doorbell_cookie = db_exc.cookie;
563 564 565 566 567 568 569 570
			ret = 0;
			break;
		}

		/* XXX: doorbell was lost and need to acquire it again */
		if (db_ret.db_status == GUC_DOORBELL_DISABLED)
			break;

571 572
		DRM_WARN("Cookie mismatch. Expected %d, found %d\n",
			 db_cmp.cookie, db_ret.cookie);
573 574 575 576 577 578 579 580 581 582 583

		/* update the cookie to newly read cookie from GuC */
		db_cmp.cookie = db_ret.cookie;
		db_exc.cookie = db_ret.cookie + 1;
		if (db_exc.cookie == 0)
			db_exc.cookie = 1;
	}

	return ret;
}

584
/**
585
 * __i915_guc_submit() - Submit commands through GuC
A
Alex Dai 已提交
586
 * @rq:		request associated with the commands
587
 *
588 589 590
 * The caller must have already called i915_guc_wq_reserve() above with
 * a result of 0 (success), guaranteeing that there is space in the work
 * queue for the new request, so enqueuing the item cannot fail.
591 592
 *
 * Bad Things Will Happen if the caller violates this protocol e.g. calls
593 594
 * submit() when _reserve() says there's no space, or calls _submit()
 * a different number of times from (successful) calls to _reserve().
595 596 597
 *
 * The only error here arises if the doorbell hardware isn't functioning
 * as expected, which really shouln't happen.
598
 */
599
static void __i915_guc_submit(struct drm_i915_gem_request *rq)
600
{
601
	struct drm_i915_private *dev_priv = rq->i915;
602 603
	struct intel_engine_cs *engine = rq->engine;
	unsigned int engine_id = engine->id;
604 605
	struct intel_guc *guc = &rq->i915->guc;
	struct i915_guc_client *client = guc->execbuf_client;
606
	unsigned long flags;
607
	int b_ret;
608

609 610 611 612
	/* WA to flush out the pending GMADR writes to ring buffer. */
	if (i915_vma_is_map_and_fenceable(rq->ring->vma))
		POSTING_READ_FW(GUC_STATUS);

613
	spin_lock_irqsave(&client->wq_lock, flags);
614 615

	guc_wq_item_append(client, rq);
616
	b_ret = guc_ring_doorbell(client);
617

618
	client->submissions[engine_id] += 1;
619 620
	client->retcode = b_ret;
	if (b_ret)
621
		client->b_fail += 1;
622

623
	guc->submissions[engine_id] += 1;
624
	guc->last_seqno[engine_id] = rq->global_seqno;
625

626
	spin_unlock_irqrestore(&client->wq_lock, flags);
627 628
}

629 630
static void i915_guc_submit(struct drm_i915_gem_request *rq)
{
631
	__i915_gem_request_submit(rq);
632 633 634
	__i915_guc_submit(rq);
}

635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
static void nested_enable_signaling(struct drm_i915_gem_request *rq)
{
	/* If we use dma_fence_enable_sw_signaling() directly, lockdep
	 * detects an ordering issue between the fence lockclass and the
	 * global_timeline. This circular dependency can only occur via 2
	 * different fences (but same fence lockclass), so we use the nesting
	 * annotation here to prevent the warn, equivalent to the nesting
	 * inside i915_gem_request_submit() for when we also enable the
	 * signaler.
	 */

	if (test_and_set_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
			     &rq->fence.flags))
		return;

	GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags));
	trace_dma_fence_enable_signal(&rq->fence);

	spin_lock_nested(&rq->lock, SINGLE_DEPTH_NESTING);
	intel_engine_enable_signaling(rq);
	spin_unlock(&rq->lock);
}

static bool i915_guc_dequeue(struct intel_engine_cs *engine)
{
	struct execlist_port *port = engine->execlist_port;
	struct drm_i915_gem_request *last = port[0].request;
	struct rb_node *rb;
	bool submit = false;

665
	spin_lock_irq(&engine->timeline->lock);
666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
	rb = engine->execlist_first;
	while (rb) {
		struct drm_i915_gem_request *rq =
			rb_entry(rb, typeof(*rq), priotree.node);

		if (last && rq->ctx != last->ctx) {
			if (port != engine->execlist_port)
				break;

			i915_gem_request_assign(&port->request, last);
			nested_enable_signaling(last);
			port++;
		}

		rb = rb_next(rb);
		rb_erase(&rq->priotree.node, &engine->execlist_queue);
		RB_CLEAR_NODE(&rq->priotree.node);
		rq->priotree.priority = INT_MAX;

		i915_guc_submit(rq);
686
		trace_i915_gem_request_in(rq, port - engine->execlist_port);
687 688 689 690 691 692 693 694
		last = rq;
		submit = true;
	}
	if (submit) {
		i915_gem_request_assign(&port->request, last);
		nested_enable_signaling(last);
		engine->execlist_first = rb;
	}
695
	spin_unlock_irq(&engine->timeline->lock);
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722

	return submit;
}

static void i915_guc_irq_handler(unsigned long data)
{
	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
	struct execlist_port *port = engine->execlist_port;
	struct drm_i915_gem_request *rq;
	bool submit;

	do {
		rq = port[0].request;
		while (rq && i915_gem_request_completed(rq)) {
			trace_i915_gem_request_out(rq);
			i915_gem_request_put(rq);
			port[0].request = port[1].request;
			port[1].request = NULL;
			rq = port[0].request;
		}

		submit = false;
		if (!port[1].request)
			submit = i915_guc_dequeue(engine);
	} while (submit);
}

723 724 725 726 727 728
/*
 * Everything below here is concerned with setup & teardown, and is
 * therefore not part of the somewhat time-critical batch-submission
 * path of i915_guc_submit() above.
 */

729
/**
730
 * intel_guc_allocate_vma() - Allocate a GGTT VMA for GuC usage
731 732
 * @guc:	the guc
 * @size:	size of area to allocate (both virtual space and memory)
733
 *
734 735 736 737 738
 * This is a wrapper to create an object for use with the GuC. In order to
 * use it inside the GuC, an object needs to be pinned lifetime, so we allocate
 * both some backing storage and a range inside the Global GTT. We must pin
 * it in the GGTT somewhere other than than [0, GUC_WOPCM_TOP) because that
 * range is reserved inside GuC.
739
 *
740
 * Return:	A i915_vma if successful, otherwise an ERR_PTR.
741
 */
742
struct i915_vma *intel_guc_allocate_vma(struct intel_guc *guc, u32 size)
743
{
744
	struct drm_i915_private *dev_priv = guc_to_i915(guc);
745
	struct drm_i915_gem_object *obj;
746 747
	struct i915_vma *vma;
	int ret;
748

749
	obj = i915_gem_object_create(dev_priv, size);
750
	if (IS_ERR(obj))
751
		return ERR_CAST(obj);
752

753
	vma = i915_vma_instance(obj, &dev_priv->ggtt.base, NULL);
754 755
	if (IS_ERR(vma))
		goto err;
756

757 758 759 760 761
	ret = i915_vma_pin(vma, 0, PAGE_SIZE,
			   PIN_GLOBAL | PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
	if (ret) {
		vma = ERR_PTR(ret);
		goto err;
762 763
	}

764 765 766 767 768
	return vma;

err:
	i915_gem_object_put(obj);
	return vma;
769 770
}

771
/* Check that a doorbell register is in the expected state */
772
static bool doorbell_ok(struct intel_guc *guc, u16 db_id)
773 774
{
	struct drm_i915_private *dev_priv = guc_to_i915(guc);
775 776 777 778 779 780 781
	u32 drbregl;
	bool valid;

	GEM_BUG_ON(db_id >= GUC_DOORBELL_INVALID);

	drbregl = I915_READ(GEN8_DRBREGL(db_id));
	valid = drbregl & GEN8_DRB_VALID;
782

783
	if (test_bit(db_id, guc->doorbell_bitmap) == valid)
784 785
		return true;

786 787
	DRM_DEBUG_DRIVER("Doorbell %d has unexpected state (0x%x): valid=%s\n",
			 db_id, drbregl, yesno(valid));
788 789 790 791

	return false;
}

792 793 794 795 796 797 798 799 800
/*
 * If the GuC thinks that the doorbell is unassigned (e.g. because we reset and
 * reloaded the GuC FW) we can use this function to tell the GuC to reassign the
 * doorbell to the rightful owner.
 */
static int __reset_doorbell(struct i915_guc_client* client, u16 db_id)
{
	int err;

801 802
	__update_doorbell_desc(client, db_id);
	err = __create_doorbell(client);
803 804 805 806 807 808
	if (!err)
		err = __destroy_doorbell(client);

	return err;
}

809
/*
810 811 812 813 814
 * Set up & tear down each unused doorbell in turn, to ensure that all doorbell
 * HW is (re)initialised. For that end, we might have to borrow the first
 * client. Also, tell GuC about all the doorbells in use by all clients.
 * We do this because the KMD, the GuC and the doorbell HW can easily go out of
 * sync (e.g. we can reset the GuC, but not the doorbel HW).
815
 */
816
static int guc_init_doorbell_hw(struct intel_guc *guc)
817 818
{
	struct i915_guc_client *client = guc->execbuf_client;
819 820 821
	bool recreate_first_client = false;
	u16 db_id;
	int ret;
822

823 824 825
	/* For unused doorbells, make sure they are disabled */
	for_each_clear_bit(db_id, guc->doorbell_bitmap, GUC_NUM_DOORBELLS) {
		if (doorbell_ok(guc, db_id))
826 827
			continue;

828 829 830 831 832 833 834 835
		if (has_doorbell(client)) {
			/* Borrow execbuf_client (we will recreate it later) */
			destroy_doorbell(client);
			recreate_first_client = true;
		}

		ret = __reset_doorbell(client, db_id);
		WARN(ret, "Doorbell %u reset failed, err %d\n", db_id, ret);
836 837
	}

838 839 840 841 842 843
	if (recreate_first_client) {
		ret = __reserve_doorbell(client);
		if (unlikely(ret)) {
			DRM_ERROR("Couldn't re-reserve first client db: %d\n", ret);
			return ret;
		}
844

845 846
		__update_doorbell_desc(client, client->doorbell_id);
	}
847

848 849 850 851 852 853 854
	/* Now for every client (and not only execbuf_client) make sure their
	 * doorbells are known by the GuC */
	//for (client = client_list; client != NULL; client = client->next)
	{
		ret = __create_doorbell(client);
		if (ret) {
			DRM_ERROR("Couldn't recreate client %u doorbell: %d\n",
855
				client->stage_id, ret);
856 857 858
			return ret;
		}
	}
859

860 861 862
	/* Read back & verify all (used & unused) doorbell registers */
	for (db_id = 0; db_id < GUC_NUM_DOORBELLS; ++db_id)
		WARN_ON(!doorbell_ok(guc, db_id));
863 864

	return 0;
865 866
}

867 868
/**
 * guc_client_alloc() - Allocate an i915_guc_client
869
 * @dev_priv:	driver private data structure
870
 * @engines:	The set of engines to enable for this client
871 872 873 874
 * @priority:	four levels priority _CRITICAL, _HIGH, _NORMAL and _LOW
 * 		The kernel client to replace ExecList submission is created with
 * 		NORMAL priority. Priority of a client for scheduler can be HIGH,
 * 		while a preemption context can use CRITICAL.
A
Alex Dai 已提交
875 876
 * @ctx:	the context that owns the client (we use the default render
 * 		context)
877
 *
878
 * Return:	An i915_guc_client object if success, else NULL.
879
 */
880 881
static struct i915_guc_client *
guc_client_alloc(struct drm_i915_private *dev_priv,
882
		 uint32_t engines,
883 884
		 uint32_t priority,
		 struct i915_gem_context *ctx)
885 886 887
{
	struct i915_guc_client *client;
	struct intel_guc *guc = &dev_priv->guc;
888
	struct i915_vma *vma;
889
	void *vaddr;
890
	int ret;
891 892 893

	client = kzalloc(sizeof(*client), GFP_KERNEL);
	if (!client)
894
		return ERR_PTR(-ENOMEM);
895 896

	client->guc = guc;
897
	client->owner = ctx;
898 899
	client->engines = engines;
	client->priority = priority;
900 901 902 903
	client->doorbell_id = GUC_DOORBELL_INVALID;
	client->wq_offset = GUC_DB_SIZE;
	client->wq_size = GUC_WQ_SIZE;
	spin_lock_init(&client->wq_lock);
904

905
	ret = ida_simple_get(&guc->stage_ids, 0, GUC_MAX_STAGE_DESCRIPTORS,
906 907 908 909
				GFP_KERNEL);
	if (ret < 0)
		goto err_client;

910
	client->stage_id = ret;
911 912

	/* The first page is doorbell/proc_desc. Two followed pages are wq. */
913
	vma = intel_guc_allocate_vma(guc, GUC_DB_SIZE + GUC_WQ_SIZE);
914 915 916 917
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err_id;
	}
918

919
	/* We'll keep just the first (doorbell/proc) page permanently kmap'd. */
920
	client->vma = vma;
921 922

	vaddr = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
923 924 925 926
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		goto err_vma;
	}
927
	client->vaddr = vaddr;
928

929
	client->doorbell_offset = __select_cacheline(guc);
930 931 932 933 934 935 936 937 938 939 940

	/*
	 * Since the doorbell only requires a single cacheline, we can save
	 * space by putting the application process descriptor in the same
	 * page. Use the half of the page that doesn't include the doorbell.
	 */
	if (client->doorbell_offset >= (GUC_DB_SIZE / 2))
		client->proc_desc_offset = 0;
	else
		client->proc_desc_offset = (GUC_DB_SIZE / 2);

941
	guc_proc_desc_init(guc, client);
942
	guc_stage_desc_init(guc, client);
943

944 945 946
	ret = create_doorbell(client);
	if (ret)
		goto err_vaddr;
947

948 949
	DRM_DEBUG_DRIVER("new priority %u client %p for engine(s) 0x%x: stage_id %u\n",
			 priority, client, client->engines, client->stage_id);
950 951
	DRM_DEBUG_DRIVER("doorbell id %u, cacheline offset 0x%lx\n",
			 client->doorbell_id, client->doorbell_offset);
952 953

	return client;
954 955 956

err_vaddr:
	i915_gem_object_unpin_map(client->vma->obj);
957 958 959
err_vma:
	i915_vma_unpin_and_release(&client->vma);
err_id:
960
	ida_simple_remove(&guc->stage_ids, client->stage_id);
961 962 963
err_client:
	kfree(client);
	return ERR_PTR(ret);
964 965
}

966 967 968 969 970 971 972 973 974 975 976
static void guc_client_free(struct i915_guc_client *client)
{
	/*
	 * XXX: wait for any outstanding submissions before freeing memory.
	 * Be sure to drop any locks
	 */

	/* FIXME: in many cases, by the time we get here the GuC has been
	 * reset, so we cannot destroy the doorbell properly. Ignore the
	 * error message for now */
	destroy_doorbell(client);
977
	guc_stage_desc_fini(client->guc, client);
978 979
	i915_gem_object_unpin_map(client->vma->obj);
	i915_vma_unpin_and_release(&client->vma);
980
	ida_simple_remove(&client->guc->stage_ids, client->stage_id);
981 982 983
	kfree(client);
}

984
static void guc_policies_init(struct guc_policies *policies)
985 986 987 988 989 990 991
{
	struct guc_policy *policy;
	u32 p, i;

	policies->dpc_promote_time = 500000;
	policies->max_num_work_items = POLICY_MAX_NUM_WI;

992
	for (p = 0; p < GUC_CLIENT_PRIORITY_NUM; p++) {
993
		for (i = GUC_RENDER_ENGINE; i < GUC_MAX_ENGINES_NUM; i++) {
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
			policy = &policies->policy[p][i];

			policy->execution_quantum = 1000000;
			policy->preemption_time = 500000;
			policy->fault_time = 250000;
			policy->policy_flags = 0;
		}
	}

	policies->is_valid = 1;
}

1006
static int guc_ads_create(struct intel_guc *guc)
1007 1008
{
	struct drm_i915_private *dev_priv = guc_to_i915(guc);
1009
	struct i915_vma *vma;
1010 1011
	struct page *page;
	/* The ads obj includes the struct itself and buffers passed to GuC */
1012 1013 1014 1015 1016 1017 1018 1019 1020
	struct {
		struct guc_ads ads;
		struct guc_policies policies;
		struct guc_mmio_reg_state reg_state;
		u8 reg_state_buffer[GUC_S3_SAVE_SPACE_PAGES * PAGE_SIZE];
	} __packed *blob;
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	u32 base;
1021

1022
	GEM_BUG_ON(guc->ads_vma);
1023

1024 1025 1026 1027 1028
	vma = intel_guc_allocate_vma(guc, PAGE_ALIGN(sizeof(*blob)));
	if (IS_ERR(vma))
		return PTR_ERR(vma);

	guc->ads_vma = vma;
1029

1030
	page = i915_vma_first_page(vma);
1031
	blob = kmap(page);
1032

1033
	/* GuC scheduling policies */
1034
	guc_policies_init(&blob->policies);
1035

1036
	/* MMIO reg state */
1037
	for_each_engine(engine, dev_priv, id) {
1038
		blob->reg_state.white_list[engine->guc_id].mmio_start =
1039
			engine->mmio_base + GUC_MMIO_WHITE_LIST_START;
1040 1041

		/* Nothing to be saved or restored for now. */
1042
		blob->reg_state.white_list[engine->guc_id].count = 0;
1043 1044
	}

1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
	/*
	 * The GuC requires a "Golden Context" when it reinitialises
	 * engines after a reset. Here we use the Render ring default
	 * context, which must already exist and be pinned in the GGTT,
	 * so its address won't change after we've told the GuC where
	 * to find it.
	 */
	blob->ads.golden_context_lrca =
		dev_priv->engine[RCS]->status_page.ggtt_offset;

	for_each_engine(engine, dev_priv, id)
		blob->ads.eng_state_size[engine->guc_id] =
			intel_lr_context_size(engine);
1058

1059 1060 1061 1062
	base = guc_ggtt_offset(vma);
	blob->ads.scheduler_policies = base + ptr_offset(blob, policies);
	blob->ads.reg_state_buffer = base + ptr_offset(blob, reg_state_buffer);
	blob->ads.reg_state_addr = base + ptr_offset(blob, reg_state);
1063

1064
	kunmap(page);
1065 1066 1067 1068

	return 0;
}

1069
static void guc_ads_destroy(struct intel_guc *guc)
1070 1071
{
	i915_vma_unpin_and_release(&guc->ads_vma);
1072 1073
}

1074
/*
1075 1076
 * Set up the memory resources to be shared with the GuC (via the GGTT)
 * at firmware loading time.
1077
 */
1078
int i915_guc_submission_init(struct drm_i915_private *dev_priv)
1079 1080
{
	struct intel_guc *guc = &dev_priv->guc;
1081
	struct i915_vma *vma;
1082
	void *vaddr;
1083
	int ret;
1084

1085
	if (guc->stage_desc_pool)
1086
		return 0;
1087

1088 1089 1090
	vma = intel_guc_allocate_vma(guc,
				PAGE_ALIGN(sizeof(struct guc_stage_desc) *
					GUC_MAX_STAGE_DESCRIPTORS));
1091 1092
	if (IS_ERR(vma))
		return PTR_ERR(vma);
1093

1094
	guc->stage_desc_pool = vma;
1095

1096
	vaddr = i915_gem_object_pin_map(guc->stage_desc_pool->obj, I915_MAP_WB);
1097 1098 1099 1100
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		goto err_vma;
	}
1101

1102
	guc->stage_desc_pool_vaddr = vaddr;
1103

1104 1105 1106 1107
	ret = intel_guc_log_create(guc);
	if (ret < 0)
		goto err_vaddr;

1108
	ret = guc_ads_create(guc);
1109 1110 1111
	if (ret < 0)
		goto err_log;

1112
	ida_init(&guc->stage_ids);
1113

1114
	return 0;
1115

1116 1117 1118
err_log:
	intel_guc_log_destroy(guc);
err_vaddr:
1119
	i915_gem_object_unpin_map(guc->stage_desc_pool->obj);
1120
err_vma:
1121
	i915_vma_unpin_and_release(&guc->stage_desc_pool);
1122 1123 1124 1125 1126 1127 1128
	return ret;
}

void i915_guc_submission_fini(struct drm_i915_private *dev_priv)
{
	struct intel_guc *guc = &dev_priv->guc;

1129
	ida_destroy(&guc->stage_ids);
1130
	guc_ads_destroy(guc);
1131
	intel_guc_log_destroy(guc);
1132 1133
	i915_gem_object_unpin_map(guc->stage_desc_pool->obj);
	i915_vma_unpin_and_release(&guc->stage_desc_pool);
1134 1135
}

1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
static void guc_interrupts_capture(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int irqs;

	/* tell all command streamers to forward interrupts (but not vblank) to GuC */
	irqs = _MASKED_BIT_ENABLE(GFX_INTERRUPT_STEERING);
	for_each_engine(engine, dev_priv, id)
		I915_WRITE(RING_MODE_GEN7(engine), irqs);

	/* route USER_INTERRUPT to Host, all others are sent to GuC. */
	irqs = GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
	       GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
	/* These three registers have the same bit definitions */
	I915_WRITE(GUC_BCS_RCS_IER, ~irqs);
	I915_WRITE(GUC_VCS2_VCS1_IER, ~irqs);
	I915_WRITE(GUC_WD_VECS_IER, ~irqs);
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174

	/*
	 * The REDIRECT_TO_GUC bit of the PMINTRMSK register directs all
	 * (unmasked) PM interrupts to the GuC. All other bits of this
	 * register *disable* generation of a specific interrupt.
	 *
	 * 'pm_intrmsk_mbz' indicates bits that are NOT to be set when
	 * writing to the PM interrupt mask register, i.e. interrupts
	 * that must not be disabled.
	 *
	 * If the GuC is handling these interrupts, then we must not let
	 * the PM code disable ANY interrupt that the GuC is expecting.
	 * So for each ENABLED (0) bit in this register, we must SET the
	 * bit in pm_intrmsk_mbz so that it's left enabled for the GuC.
	 * GuC needs ARAT expired interrupt unmasked hence it is set in
	 * pm_intrmsk_mbz.
	 *
	 * Here we CLEAR REDIRECT_TO_GUC bit in pm_intrmsk_mbz, which will
	 * result in the register bit being left SET!
	 */
	dev_priv->rps.pm_intrmsk_mbz |= ARAT_EXPIRED_INTRMSK;
1175
	dev_priv->rps.pm_intrmsk_mbz &= ~GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
1176 1177
}

1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
static void guc_interrupts_release(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int irqs;

	/*
	 * tell all command streamers NOT to forward interrupts or vblank
	 * to GuC.
	 */
	irqs = _MASKED_FIELD(GFX_FORWARD_VBLANK_MASK, GFX_FORWARD_VBLANK_NEVER);
	irqs |= _MASKED_BIT_DISABLE(GFX_INTERRUPT_STEERING);
	for_each_engine(engine, dev_priv, id)
		I915_WRITE(RING_MODE_GEN7(engine), irqs);

	/* route all GT interrupts to the host */
	I915_WRITE(GUC_BCS_RCS_IER, 0);
	I915_WRITE(GUC_VCS2_VCS1_IER, 0);
	I915_WRITE(GUC_WD_VECS_IER, 0);

	dev_priv->rps.pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
	dev_priv->rps.pm_intrmsk_mbz &= ~ARAT_EXPIRED_INTRMSK;
}

1202
int i915_guc_submission_enable(struct drm_i915_private *dev_priv)
1203 1204
{
	struct intel_guc *guc = &dev_priv->guc;
1205
	struct i915_guc_client *client = guc->execbuf_client;
1206
	struct intel_engine_cs *engine;
1207
	enum intel_engine_id id;
1208
	int err;
1209

1210 1211 1212
	if (!client) {
		client = guc_client_alloc(dev_priv,
					  INTEL_INFO(dev_priv)->ring_mask,
1213
					  GUC_CLIENT_PRIORITY_KMD_NORMAL,
1214 1215 1216 1217 1218 1219 1220 1221
					  dev_priv->kernel_context);
		if (IS_ERR(client)) {
			DRM_ERROR("Failed to create GuC client for execbuf!\n");
			return PTR_ERR(client);
		}

		guc->execbuf_client = client;
	}
1222

1223 1224
	err = intel_guc_sample_forcewake(guc);
	if (err)
1225
		goto err_execbuf_client;
1226 1227

	guc_reset_wq(client);
1228

1229 1230
	err = guc_init_doorbell_hw(guc);
	if (err)
1231
		goto err_execbuf_client;
A
Alex Dai 已提交
1232

1233
	/* Take over from manual control of ELSP (execlists) */
1234 1235 1236 1237 1238
	guc_interrupts_capture(dev_priv);

	for_each_engine(engine, dev_priv, id) {
		const int wqi_size = sizeof(struct guc_wq_item);
		struct drm_i915_gem_request *rq;
1239

1240 1241 1242 1243 1244 1245 1246 1247 1248
		/* The tasklet was initialised by execlists, and may be in
		 * a state of flux (across a reset) and so we just want to
		 * take over the callback without changing any other state
		 * in the tasklet.
		 */
		engine->irq_tasklet.func = i915_guc_irq_handler;
		clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);

		/* Replay the current set of previously submitted requests */
1249
		spin_lock_irq(&engine->timeline->lock);
1250
		list_for_each_entry(rq, &engine->timeline->requests, link) {
1251
			guc_client_update_wq_rsvd(client, wqi_size);
1252
			__i915_guc_submit(rq);
1253
		}
1254
		spin_unlock_irq(&engine->timeline->lock);
1255 1256
	}

1257
	return 0;
1258 1259 1260 1261 1262

err_execbuf_client:
	guc_client_free(guc->execbuf_client);
	guc->execbuf_client = NULL;
	return err;
1263 1264
}

1265
void i915_guc_submission_disable(struct drm_i915_private *dev_priv)
1266 1267 1268
{
	struct intel_guc *guc = &dev_priv->guc;

1269 1270
	guc_interrupts_release(dev_priv);

1271
	/* Revert back to manual ELSP submission */
1272
	intel_engines_reset_default_submission(dev_priv);
1273 1274 1275

	guc_client_free(guc->execbuf_client);
	guc->execbuf_client = NULL;
1276 1277
}

1278 1279
/**
 * intel_guc_suspend() - notify GuC entering suspend state
1280
 * @dev_priv:	i915 device private
1281
 */
1282
int intel_guc_suspend(struct drm_i915_private *dev_priv)
1283 1284
{
	struct intel_guc *guc = &dev_priv->guc;
1285
	struct i915_gem_context *ctx;
1286 1287
	u32 data[3];

1288
	if (guc->fw.load_status != INTEL_UC_FIRMWARE_SUCCESS)
1289 1290
		return 0;

1291 1292
	gen9_disable_guc_interrupts(dev_priv);

1293
	ctx = dev_priv->kernel_context;
1294

1295
	data[0] = INTEL_GUC_ACTION_ENTER_S_STATE;
1296 1297 1298
	/* any value greater than GUC_POWER_D0 */
	data[1] = GUC_POWER_D1;
	/* first page is shared data with GuC */
1299
	data[2] = guc_ggtt_offset(ctx->engine[RCS].state);
1300

1301
	return intel_guc_send(guc, data, ARRAY_SIZE(data));
1302 1303 1304 1305
}

/**
 * intel_guc_resume() - notify GuC resuming from suspend state
1306
 * @dev_priv:	i915 device private
1307
 */
1308
int intel_guc_resume(struct drm_i915_private *dev_priv)
1309 1310
{
	struct intel_guc *guc = &dev_priv->guc;
1311
	struct i915_gem_context *ctx;
1312 1313
	u32 data[3];

1314
	if (guc->fw.load_status != INTEL_UC_FIRMWARE_SUCCESS)
1315 1316
		return 0;

1317 1318 1319
	if (i915.guc_log_level >= 0)
		gen9_enable_guc_interrupts(dev_priv);

1320
	ctx = dev_priv->kernel_context;
1321

1322
	data[0] = INTEL_GUC_ACTION_EXIT_S_STATE;
1323 1324
	data[1] = GUC_POWER_D0;
	/* first page is shared data with GuC */
1325
	data[2] = guc_ggtt_offset(ctx->engine[RCS].state);
1326

1327
	return intel_guc_send(guc, data, ARRAY_SIZE(data));
1328
}