hda_controller.c 36.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 *
 *  Implementation of primary alsa driver code base for Intel HD Audio.
 *
 *  Copyright(c) 2004 Intel Corporation. All rights reserved.
 *
 *  Copyright (c) 2004 Takashi Iwai <tiwai@suse.de>
 *                     PeiSen Hou <pshou@realtek.com.tw>
 *
 *  This program is free software; you can redistribute it and/or modify it
 *  under the terms of the GNU General Public License as published by the Free
 *  Software Foundation; either version 2 of the License, or (at your option)
 *  any later version.
 *
 *  This program is distributed in the hope that it will be useful, but WITHOUT
 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 *  more details.
 *
 *
 */

#include <linux/clocksource.h>
#include <linux/delay.h>
25
#include <linux/interrupt.h>
26 27
#include <linux/kernel.h>
#include <linux/module.h>
28
#include <linux/pm_runtime.h>
29
#include <linux/slab.h>
30 31 32 33 34 35

#ifdef CONFIG_X86
/* for art-tsc conversion */
#include <asm/tsc.h>
#endif

36 37 38 39
#include <sound/core.h>
#include <sound/initval.h>
#include "hda_controller.h"

40
#define CREATE_TRACE_POINTS
41
#include "hda_controller_trace.h"
42

43
/* DSP lock helpers */
44 45 46
#define dsp_lock(dev)		snd_hdac_dsp_lock(azx_stream(dev))
#define dsp_unlock(dev)		snd_hdac_dsp_unlock(azx_stream(dev))
#define dsp_is_locked(dev)	snd_hdac_stream_is_locked(azx_stream(dev))
47

48 49 50 51
/* assign a stream for the PCM */
static inline struct azx_dev *
azx_assign_device(struct azx *chip, struct snd_pcm_substream *substream)
{
52 53 54 55 56 57
	struct hdac_stream *s;

	s = snd_hdac_stream_assign(azx_bus(chip), substream);
	if (!s)
		return NULL;
	return stream_to_azx_dev(s);
58 59 60 61 62
}

/* release the assigned stream */
static inline void azx_release_device(struct azx_dev *azx_dev)
{
63
	snd_hdac_stream_release(azx_stream(azx_dev));
64 65
}

66 67 68 69 70 71 72
static inline struct hda_pcm_stream *
to_hda_pcm_stream(struct snd_pcm_substream *substream)
{
	struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
	return &apcm->info->stream[substream->stream];
}

73 74 75 76
static u64 azx_adjust_codec_delay(struct snd_pcm_substream *substream,
				u64 nsec)
{
	struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
77
	struct hda_pcm_stream *hinfo = to_hda_pcm_stream(substream);
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
	u64 codec_frames, codec_nsecs;

	if (!hinfo->ops.get_delay)
		return nsec;

	codec_frames = hinfo->ops.get_delay(hinfo, apcm->codec, substream);
	codec_nsecs = div_u64(codec_frames * 1000000000LL,
			      substream->runtime->rate);

	if (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
		return nsec + codec_nsecs;

	return (nsec > codec_nsecs) ? nsec - codec_nsecs : 0;
}

/*
 * PCM ops
 */

static int azx_pcm_close(struct snd_pcm_substream *substream)
{
	struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
100
	struct hda_pcm_stream *hinfo = to_hda_pcm_stream(substream);
101 102 103
	struct azx *chip = apcm->chip;
	struct azx_dev *azx_dev = get_azx_dev(substream);

104
	trace_azx_pcm_close(chip, azx_dev);
105 106
	mutex_lock(&chip->open_mutex);
	azx_release_device(azx_dev);
107 108
	if (hinfo->ops.close)
		hinfo->ops.close(hinfo, apcm->codec, substream);
109 110
	snd_hda_power_down(apcm->codec);
	mutex_unlock(&chip->open_mutex);
111
	snd_hda_codec_pcm_put(apcm->info);
112 113 114 115 116 117 118 119
	return 0;
}

static int azx_pcm_hw_params(struct snd_pcm_substream *substream,
			     struct snd_pcm_hw_params *hw_params)
{
	struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
	struct azx *chip = apcm->chip;
T
Takashi Iwai 已提交
120
	struct azx_dev *azx_dev = get_azx_dev(substream);
121 122
	int ret;

123
	trace_azx_pcm_hw_params(chip, azx_dev);
T
Takashi Iwai 已提交
124 125
	dsp_lock(azx_dev);
	if (dsp_is_locked(azx_dev)) {
126 127 128 129
		ret = -EBUSY;
		goto unlock;
	}

T
Takashi Iwai 已提交
130 131 132
	azx_dev->core.bufsize = 0;
	azx_dev->core.period_bytes = 0;
	azx_dev->core.format_val = 0;
133 134 135
	ret = chip->ops->substream_alloc_pages(chip, substream,
					  params_buffer_bytes(hw_params));
unlock:
T
Takashi Iwai 已提交
136
	dsp_unlock(azx_dev);
137 138 139 140 141 142 143 144
	return ret;
}

static int azx_pcm_hw_free(struct snd_pcm_substream *substream)
{
	struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
	struct azx_dev *azx_dev = get_azx_dev(substream);
	struct azx *chip = apcm->chip;
145
	struct hda_pcm_stream *hinfo = to_hda_pcm_stream(substream);
146 147 148 149
	int err;

	/* reset BDL address */
	dsp_lock(azx_dev);
150 151
	if (!dsp_is_locked(azx_dev))
		snd_hdac_stream_cleanup(azx_stream(azx_dev));
152 153 154 155

	snd_hda_codec_cleanup(apcm->codec, hinfo, substream);

	err = chip->ops->substream_free_pages(chip, substream);
156
	azx_stream(azx_dev)->prepared = 0;
157 158 159 160 161 162 163 164 165
	dsp_unlock(azx_dev);
	return err;
}

static int azx_pcm_prepare(struct snd_pcm_substream *substream)
{
	struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
	struct azx *chip = apcm->chip;
	struct azx_dev *azx_dev = get_azx_dev(substream);
166
	struct hda_pcm_stream *hinfo = to_hda_pcm_stream(substream);
167
	struct snd_pcm_runtime *runtime = substream->runtime;
168
	unsigned int format_val, stream_tag;
169 170 171 172 173
	int err;
	struct hda_spdif_out *spdif =
		snd_hda_spdif_out_of_nid(apcm->codec, hinfo->nid);
	unsigned short ctls = spdif ? spdif->ctls : 0;

174
	trace_azx_pcm_prepare(chip, azx_dev);
175 176 177 178 179 180
	dsp_lock(azx_dev);
	if (dsp_is_locked(azx_dev)) {
		err = -EBUSY;
		goto unlock;
	}

181
	snd_hdac_stream_reset(azx_stream(azx_dev));
182
	format_val = snd_hdac_calc_stream_format(runtime->rate,
183 184 185 186 187 188 189 190 191 192 193 194
						runtime->channels,
						runtime->format,
						hinfo->maxbps,
						ctls);
	if (!format_val) {
		dev_err(chip->card->dev,
			"invalid format_val, rate=%d, ch=%d, format=%d\n",
			runtime->rate, runtime->channels, runtime->format);
		err = -EINVAL;
		goto unlock;
	}

195 196 197
	err = snd_hdac_stream_set_params(azx_stream(azx_dev), format_val);
	if (err < 0)
		goto unlock;
198

199
	snd_hdac_stream_setup(azx_stream(azx_dev));
200

201
	stream_tag = azx_dev->core.stream_tag;
202 203 204 205 206
	/* CA-IBG chips need the playback stream starting from 1 */
	if ((chip->driver_caps & AZX_DCAPS_CTX_WORKAROUND) &&
	    stream_tag > chip->capture_streams)
		stream_tag -= chip->capture_streams;
	err = snd_hda_codec_prepare(apcm->codec, hinfo, stream_tag,
207
				     azx_dev->core.format_val, substream);
208 209 210

 unlock:
	if (!err)
211
		azx_stream(azx_dev)->prepared = 1;
212 213 214 215 216 217 218 219
	dsp_unlock(azx_dev);
	return err;
}

static int azx_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
{
	struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
	struct azx *chip = apcm->chip;
220
	struct hdac_bus *bus = azx_bus(chip);
221 222
	struct azx_dev *azx_dev;
	struct snd_pcm_substream *s;
223 224 225 226
	struct hdac_stream *hstr;
	bool start;
	int sbits = 0;
	int sync_reg;
227 228

	azx_dev = get_azx_dev(substream);
229 230
	trace_azx_pcm_trigger(chip, azx_dev, cmd);

231 232 233 234 235
	hstr = azx_stream(azx_dev);
	if (chip->driver_caps & AZX_DCAPS_OLD_SSYNC)
		sync_reg = AZX_REG_OLD_SSYNC;
	else
		sync_reg = AZX_REG_SSYNC;
236

237
	if (dsp_is_locked(azx_dev) || !hstr->prepared)
238 239 240 241 242 243
		return -EPIPE;

	switch (cmd) {
	case SNDRV_PCM_TRIGGER_START:
	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
	case SNDRV_PCM_TRIGGER_RESUME:
244
		start = true;
245 246 247 248
		break;
	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
	case SNDRV_PCM_TRIGGER_SUSPEND:
	case SNDRV_PCM_TRIGGER_STOP:
249
		start = false;
250 251 252 253 254 255 256 257 258
		break;
	default:
		return -EINVAL;
	}

	snd_pcm_group_for_each_entry(s, substream) {
		if (s->pcm->card != substream->pcm->card)
			continue;
		azx_dev = get_azx_dev(s);
259
		sbits |= 1 << azx_dev->core.index;
260 261 262
		snd_pcm_trigger_done(s, substream);
	}

263
	spin_lock(&bus->reg_lock);
264 265

	/* first, set SYNC bits of corresponding streams */
266
	snd_hdac_stream_sync_trigger(hstr, true, sbits, sync_reg);
267 268 269 270 271 272

	snd_pcm_group_for_each_entry(s, substream) {
		if (s->pcm->card != substream->pcm->card)
			continue;
		azx_dev = get_azx_dev(s);
		if (start) {
273 274
			azx_dev->insufficient = 1;
			snd_hdac_stream_start(azx_stream(azx_dev), true);
275
		} else {
276
			snd_hdac_stream_stop(azx_stream(azx_dev));
277 278
		}
	}
279
	spin_unlock(&bus->reg_lock);
280 281 282

	snd_hdac_stream_sync(hstr, start, sbits);

283
	spin_lock(&bus->reg_lock);
284
	/* reset SYNC bits */
285 286 287
	snd_hdac_stream_sync_trigger(hstr, false, sbits, sync_reg);
	if (start)
		snd_hdac_stream_timecounter_init(hstr, sbits);
288
	spin_unlock(&bus->reg_lock);
289 290 291
	return 0;
}

292
unsigned int azx_get_pos_lpib(struct azx *chip, struct azx_dev *azx_dev)
293
{
294
	return snd_hdac_stream_get_pos_lpib(azx_stream(azx_dev));
295 296
}
EXPORT_SYMBOL_GPL(azx_get_pos_lpib);
297

298 299
unsigned int azx_get_pos_posbuf(struct azx *chip, struct azx_dev *azx_dev)
{
300
	return snd_hdac_stream_get_pos_posbuf(azx_stream(azx_dev));
301
}
302
EXPORT_SYMBOL_GPL(azx_get_pos_posbuf);
303 304

unsigned int azx_get_position(struct azx *chip,
305
			      struct azx_dev *azx_dev)
306
{
307
	struct snd_pcm_substream *substream = azx_dev->core.substream;
308 309 310 311
	unsigned int pos;
	int stream = substream->stream;
	int delay = 0;

312 313 314 315
	if (chip->get_position[stream])
		pos = chip->get_position[stream](chip, azx_dev);
	else /* use the position buffer as default */
		pos = azx_get_pos_posbuf(chip, azx_dev);
316

317
	if (pos >= azx_dev->core.bufsize)
318 319 320
		pos = 0;

	if (substream->runtime) {
321
		struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
322
		struct hda_pcm_stream *hinfo = to_hda_pcm_stream(substream);
323 324 325

		if (chip->get_delay[stream])
			delay += chip->get_delay[stream](chip, azx_dev, pos);
326 327 328 329 330 331
		if (hinfo->ops.get_delay)
			delay += hinfo->ops.get_delay(hinfo, apcm->codec,
						      substream);
		substream->runtime->delay = delay;
	}

332
	trace_azx_get_position(chip, azx_dev, pos, delay);
333 334 335 336 337 338 339 340 341 342
	return pos;
}
EXPORT_SYMBOL_GPL(azx_get_position);

static snd_pcm_uframes_t azx_pcm_pointer(struct snd_pcm_substream *substream)
{
	struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
	struct azx *chip = apcm->chip;
	struct azx_dev *azx_dev = get_azx_dev(substream);
	return bytes_to_frames(substream->runtime,
343
			       azx_get_position(chip, azx_dev));
344 345
}

346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
/*
 * azx_scale64: Scale base by mult/div while not overflowing sanely
 *
 * Derived from scale64_check_overflow in kernel/time/timekeeping.c
 *
 * The tmestamps for a 48Khz stream can overflow after (2^64/10^9)/48K which
 * is about 384307 ie ~4.5 days.
 *
 * This scales the calculation so that overflow will happen but after 2^64 /
 * 48000 secs, which is pretty large!
 *
 * In caln below:
 *	base may overflow, but since there isn’t any additional division
 *	performed on base it’s OK
 *	rem can’t overflow because both are 32-bit values
 */

#ifdef CONFIG_X86
static u64 azx_scale64(u64 base, u32 num, u32 den)
{
	u64 rem;

	rem = do_div(base, den);

	base *= num;
	rem *= num;

	do_div(rem, den);

	return base + rem;
}

static int azx_get_sync_time(ktime_t *device,
		struct system_counterval_t *system, void *ctx)
{
	struct snd_pcm_substream *substream = ctx;
	struct azx_dev *azx_dev = get_azx_dev(substream);
	struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
	struct azx *chip = apcm->chip;
	struct snd_pcm_runtime *runtime;
	u64 ll_counter, ll_counter_l, ll_counter_h;
	u64 tsc_counter, tsc_counter_l, tsc_counter_h;
	u32 wallclk_ctr, wallclk_cycles;
	bool direction;
	u32 dma_select;
	u32 timeout = 200;
	u32 retry_count = 0;

	runtime = substream->runtime;

	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
		direction = 1;
	else
		direction = 0;

	/* 0th stream tag is not used, so DMA ch 0 is for 1st stream tag */
	do {
		timeout = 100;
		dma_select = (direction << GTSCC_CDMAS_DMA_DIR_SHIFT) |
					(azx_dev->core.stream_tag - 1);
		snd_hdac_chip_writel(azx_bus(chip), GTSCC, dma_select);

		/* Enable the capture */
		snd_hdac_chip_updatel(azx_bus(chip), GTSCC, 0, GTSCC_TSCCI_MASK);

		while (timeout) {
			if (snd_hdac_chip_readl(azx_bus(chip), GTSCC) &
						GTSCC_TSCCD_MASK)
				break;

			timeout--;
		}

		if (!timeout) {
			dev_err(chip->card->dev, "GTSCC capture Timedout!\n");
			return -EIO;
		}

		/* Read wall clock counter */
		wallclk_ctr = snd_hdac_chip_readl(azx_bus(chip), WALFCC);

		/* Read TSC counter */
		tsc_counter_l = snd_hdac_chip_readl(azx_bus(chip), TSCCL);
		tsc_counter_h = snd_hdac_chip_readl(azx_bus(chip), TSCCU);

		/* Read Link counter */
		ll_counter_l = snd_hdac_chip_readl(azx_bus(chip), LLPCL);
		ll_counter_h = snd_hdac_chip_readl(azx_bus(chip), LLPCU);

		/* Ack: registers read done */
		snd_hdac_chip_writel(azx_bus(chip), GTSCC, GTSCC_TSCCD_SHIFT);

		tsc_counter = (tsc_counter_h << TSCCU_CCU_SHIFT) |
						tsc_counter_l;

		ll_counter = (ll_counter_h << LLPC_CCU_SHIFT) |	ll_counter_l;
		wallclk_cycles = wallclk_ctr & WALFCC_CIF_MASK;

		/*
		 * An error occurs near frame "rollover". The clocks in
		 * frame value indicates whether this error may have
		 * occurred. Here we use the value of 10 i.e.,
		 * HDA_MAX_CYCLE_OFFSET
		 */
		if (wallclk_cycles < HDA_MAX_CYCLE_VALUE - HDA_MAX_CYCLE_OFFSET
					&& wallclk_cycles > HDA_MAX_CYCLE_OFFSET)
			break;

		/*
		 * Sleep before we read again, else we may again get
		 * value near to MAX_CYCLE. Try to sleep for different
		 * amount of time so we dont hit the same number again
		 */
		udelay(retry_count++);

	} while (retry_count != HDA_MAX_CYCLE_READ_RETRY);

	if (retry_count == HDA_MAX_CYCLE_READ_RETRY) {
		dev_err_ratelimited(chip->card->dev,
			"Error in WALFCC cycle count\n");
		return -EIO;
	}

	*device = ns_to_ktime(azx_scale64(ll_counter,
				NSEC_PER_SEC, runtime->rate));
	*device = ktime_add_ns(*device, (wallclk_cycles * NSEC_PER_SEC) /
			       ((HDA_MAX_CYCLE_VALUE + 1) * runtime->rate));

	*system = convert_art_to_tsc(tsc_counter);

	return 0;
}

#else
static int azx_get_sync_time(ktime_t *device,
		struct system_counterval_t *system, void *ctx)
{
	return -ENXIO;
}
#endif

static int azx_get_crosststamp(struct snd_pcm_substream *substream,
			      struct system_device_crosststamp *xtstamp)
{
	return get_device_system_crosststamp(azx_get_sync_time,
					substream, NULL, xtstamp);
}

static inline bool is_link_time_supported(struct snd_pcm_runtime *runtime,
				struct snd_pcm_audio_tstamp_config *ts)
{
	if (runtime->hw.info & SNDRV_PCM_INFO_HAS_LINK_SYNCHRONIZED_ATIME)
		if (ts->type_requested == SNDRV_PCM_AUDIO_TSTAMP_TYPE_LINK_SYNCHRONIZED)
			return true;

	return false;
}

504 505 506 507
static int azx_get_time_info(struct snd_pcm_substream *substream,
			struct timespec *system_ts, struct timespec *audio_ts,
			struct snd_pcm_audio_tstamp_config *audio_tstamp_config,
			struct snd_pcm_audio_tstamp_report *audio_tstamp_report)
508 509
{
	struct azx_dev *azx_dev = get_azx_dev(substream);
510 511 512
	struct snd_pcm_runtime *runtime = substream->runtime;
	struct system_device_crosststamp xtstamp;
	int ret;
513 514
	u64 nsec;

515 516
	if ((substream->runtime->hw.info & SNDRV_PCM_INFO_HAS_LINK_ATIME) &&
		(audio_tstamp_config->type_requested == SNDRV_PCM_AUDIO_TSTAMP_TYPE_LINK)) {
517

518 519
		snd_pcm_gettime(substream->runtime, system_ts);

520
		nsec = timecounter_read(&azx_dev->core.tc);
521 522 523 524 525 526 527 528 529 530
		nsec = div_u64(nsec, 3); /* can be optimized */
		if (audio_tstamp_config->report_delay)
			nsec = azx_adjust_codec_delay(substream, nsec);

		*audio_ts = ns_to_timespec(nsec);

		audio_tstamp_report->actual_type = SNDRV_PCM_AUDIO_TSTAMP_TYPE_LINK;
		audio_tstamp_report->accuracy_report = 1; /* rest of structure is valid */
		audio_tstamp_report->accuracy = 42; /* 24 MHz WallClock == 42ns resolution */

531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
	} else if (is_link_time_supported(runtime, audio_tstamp_config)) {

		ret = azx_get_crosststamp(substream, &xtstamp);
		if (ret)
			return ret;

		switch (runtime->tstamp_type) {
		case SNDRV_PCM_TSTAMP_TYPE_MONOTONIC:
			return -EINVAL;

		case SNDRV_PCM_TSTAMP_TYPE_MONOTONIC_RAW:
			*system_ts = ktime_to_timespec(xtstamp.sys_monoraw);
			break;

		default:
			*system_ts = ktime_to_timespec(xtstamp.sys_realtime);
			break;

		}

		*audio_ts = ktime_to_timespec(xtstamp.device);

		audio_tstamp_report->actual_type =
			SNDRV_PCM_AUDIO_TSTAMP_TYPE_LINK_SYNCHRONIZED;
		audio_tstamp_report->accuracy_report = 1;
		/* 24 MHz WallClock == 42ns resolution */
		audio_tstamp_report->accuracy = 42;

	} else {
560
		audio_tstamp_report->actual_type = SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT;
561
	}
562 563 564 565 566 567 568 569 570 571 572 573 574

	return 0;
}

static struct snd_pcm_hardware azx_pcm_hw = {
	.info =			(SNDRV_PCM_INFO_MMAP |
				 SNDRV_PCM_INFO_INTERLEAVED |
				 SNDRV_PCM_INFO_BLOCK_TRANSFER |
				 SNDRV_PCM_INFO_MMAP_VALID |
				 /* No full-resume yet implemented */
				 /* SNDRV_PCM_INFO_RESUME |*/
				 SNDRV_PCM_INFO_PAUSE |
				 SNDRV_PCM_INFO_SYNC_START |
575 576
				 SNDRV_PCM_INFO_HAS_WALL_CLOCK | /* legacy */
				 SNDRV_PCM_INFO_HAS_LINK_ATIME |
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
				 SNDRV_PCM_INFO_NO_PERIOD_WAKEUP),
	.formats =		SNDRV_PCM_FMTBIT_S16_LE,
	.rates =		SNDRV_PCM_RATE_48000,
	.rate_min =		48000,
	.rate_max =		48000,
	.channels_min =		2,
	.channels_max =		2,
	.buffer_bytes_max =	AZX_MAX_BUF_SIZE,
	.period_bytes_min =	128,
	.period_bytes_max =	AZX_MAX_BUF_SIZE / 2,
	.periods_min =		2,
	.periods_max =		AZX_MAX_FRAG,
	.fifo_size =		0,
};

static int azx_pcm_open(struct snd_pcm_substream *substream)
{
	struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
595
	struct hda_pcm_stream *hinfo = to_hda_pcm_stream(substream);
596 597 598 599 600 601
	struct azx *chip = apcm->chip;
	struct azx_dev *azx_dev;
	struct snd_pcm_runtime *runtime = substream->runtime;
	int err;
	int buff_step;

602
	snd_hda_codec_pcm_get(apcm->info);
603 604
	mutex_lock(&chip->open_mutex);
	azx_dev = azx_assign_device(chip, substream);
605
	trace_azx_pcm_open(chip, azx_dev);
606
	if (azx_dev == NULL) {
607 608
		err = -EBUSY;
		goto unlock;
609
	}
610
	runtime->private_data = azx_dev;
611 612 613 614 615

	if (chip->gts_present)
		azx_pcm_hw.info = azx_pcm_hw.info |
			SNDRV_PCM_INFO_HAS_LINK_SYNCHRONIZED_ATIME;

616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
	runtime->hw = azx_pcm_hw;
	runtime->hw.channels_min = hinfo->channels_min;
	runtime->hw.channels_max = hinfo->channels_max;
	runtime->hw.formats = hinfo->formats;
	runtime->hw.rates = hinfo->rates;
	snd_pcm_limit_hw_rates(runtime);
	snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS);

	/* avoid wrap-around with wall-clock */
	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_TIME,
				     20,
				     178000000);

	if (chip->align_buffer_size)
		/* constrain buffer sizes to be multiple of 128
		   bytes. This is more efficient in terms of memory
		   access but isn't required by the HDA spec and
		   prevents users from specifying exact period/buffer
		   sizes. For example for 44.1kHz, a period size set
		   to 20ms will be rounded to 19.59ms. */
		buff_step = 128;
	else
		/* Don't enforce steps on buffer sizes, still need to
		   be multiple of 4 bytes (HDA spec). Tested on Intel
		   HDA controllers, may not work on all devices where
		   option needs to be disabled */
		buff_step = 4;

	snd_pcm_hw_constraint_step(runtime, 0, SNDRV_PCM_HW_PARAM_BUFFER_BYTES,
				   buff_step);
	snd_pcm_hw_constraint_step(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_BYTES,
				   buff_step);
648
	snd_hda_power_up(apcm->codec);
649 650 651 652
	if (hinfo->ops.open)
		err = hinfo->ops.open(hinfo, apcm->codec, substream);
	else
		err = -ENODEV;
653 654
	if (err < 0) {
		azx_release_device(azx_dev);
655
		goto powerdown;
656 657 658 659 660 661 662 663
	}
	snd_pcm_limit_hw_rates(runtime);
	/* sanity check */
	if (snd_BUG_ON(!runtime->hw.channels_min) ||
	    snd_BUG_ON(!runtime->hw.channels_max) ||
	    snd_BUG_ON(!runtime->hw.formats) ||
	    snd_BUG_ON(!runtime->hw.rates)) {
		azx_release_device(azx_dev);
664 665 666 667
		if (hinfo->ops.close)
			hinfo->ops.close(hinfo, apcm->codec, substream);
		err = -EINVAL;
		goto powerdown;
668 669
	}

670
	/* disable LINK_ATIME timestamps for capture streams
671
	   until we figure out how to handle digital inputs */
672 673 674 675
	if (substream->stream == SNDRV_PCM_STREAM_CAPTURE) {
		runtime->hw.info &= ~SNDRV_PCM_INFO_HAS_WALL_CLOCK; /* legacy */
		runtime->hw.info &= ~SNDRV_PCM_INFO_HAS_LINK_ATIME;
	}
676 677 678 679

	snd_pcm_set_sync(substream);
	mutex_unlock(&chip->open_mutex);
	return 0;
680 681 682 683 684

 powerdown:
	snd_hda_power_down(apcm->codec);
 unlock:
	mutex_unlock(&chip->open_mutex);
685
	snd_hda_codec_pcm_put(apcm->info);
686
	return err;
687 688 689 690 691 692 693 694 695 696 697 698
}

static int azx_pcm_mmap(struct snd_pcm_substream *substream,
			struct vm_area_struct *area)
{
	struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
	struct azx *chip = apcm->chip;
	if (chip->ops->pcm_mmap_prepare)
		chip->ops->pcm_mmap_prepare(substream, area);
	return snd_pcm_lib_default_mmap(substream, area);
}

699
static const struct snd_pcm_ops azx_pcm_ops = {
700 701 702 703 704 705 706 707
	.open = azx_pcm_open,
	.close = azx_pcm_close,
	.ioctl = snd_pcm_lib_ioctl,
	.hw_params = azx_pcm_hw_params,
	.hw_free = azx_pcm_hw_free,
	.prepare = azx_pcm_prepare,
	.trigger = azx_pcm_trigger,
	.pointer = azx_pcm_pointer,
708
	.get_time_info =  azx_get_time_info,
709 710 711 712 713 714 715 716 717
	.mmap = azx_pcm_mmap,
	.page = snd_pcm_sgbuf_ops_page,
};

static void azx_pcm_free(struct snd_pcm *pcm)
{
	struct azx_pcm *apcm = pcm->private_data;
	if (apcm) {
		list_del(&apcm->list);
718
		apcm->info->pcm = NULL;
719 720 721 722 723 724
		kfree(apcm);
	}
}

#define MAX_PREALLOC_SIZE	(32 * 1024 * 1024)

725 726
int snd_hda_attach_pcm_stream(struct hda_bus *_bus, struct hda_codec *codec,
			      struct hda_pcm *cpcm)
727
{
728 729
	struct hdac_bus *bus = &_bus->core;
	struct azx *chip = bus_to_azx(bus);
730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
	struct snd_pcm *pcm;
	struct azx_pcm *apcm;
	int pcm_dev = cpcm->device;
	unsigned int size;
	int s, err;

	list_for_each_entry(apcm, &chip->pcm_list, list) {
		if (apcm->pcm->device == pcm_dev) {
			dev_err(chip->card->dev, "PCM %d already exists\n",
				pcm_dev);
			return -EBUSY;
		}
	}
	err = snd_pcm_new(chip->card, cpcm->name, pcm_dev,
			  cpcm->stream[SNDRV_PCM_STREAM_PLAYBACK].substreams,
			  cpcm->stream[SNDRV_PCM_STREAM_CAPTURE].substreams,
			  &pcm);
	if (err < 0)
		return err;
	strlcpy(pcm->name, cpcm->name, sizeof(pcm->name));
	apcm = kzalloc(sizeof(*apcm), GFP_KERNEL);
751 752
	if (apcm == NULL) {
		snd_device_free(chip->card, pcm);
753
		return -ENOMEM;
754
	}
755 756 757
	apcm->chip = chip;
	apcm->pcm = pcm;
	apcm->codec = codec;
758
	apcm->info = cpcm;
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
	pcm->private_data = apcm;
	pcm->private_free = azx_pcm_free;
	if (cpcm->pcm_type == HDA_PCM_TYPE_MODEM)
		pcm->dev_class = SNDRV_PCM_CLASS_MODEM;
	list_add_tail(&apcm->list, &chip->pcm_list);
	cpcm->pcm = pcm;
	for (s = 0; s < 2; s++) {
		if (cpcm->stream[s].substreams)
			snd_pcm_set_ops(pcm, s, &azx_pcm_ops);
	}
	/* buffer pre-allocation */
	size = CONFIG_SND_HDA_PREALLOC_SIZE * 1024;
	if (size > MAX_PREALLOC_SIZE)
		size = MAX_PREALLOC_SIZE;
	snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV_SG,
					      chip->card->dev,
					      size, MAX_PREALLOC_SIZE);
	return 0;
}

779 780 781 782 783 784 785 786 787 788 789 790 791
static unsigned int azx_command_addr(u32 cmd)
{
	unsigned int addr = cmd >> 28;

	if (addr >= AZX_MAX_CODECS) {
		snd_BUG();
		addr = 0;
	}

	return addr;
}

/* receive a response */
792
static int azx_rirb_get_response(struct hdac_bus *bus, unsigned int addr,
793
				 unsigned int *res)
794
{
795 796
	struct azx *chip = bus_to_azx(bus);
	struct hda_bus *hbus = &chip->bus;
797 798 799 800 801 802 803 804
	unsigned long timeout;
	unsigned long loopcounter;
	int do_poll = 0;

 again:
	timeout = jiffies + msecs_to_jiffies(1000);

	for (loopcounter = 0;; loopcounter++) {
805 806 807 808
		spin_lock_irq(&bus->reg_lock);
		if (chip->polling_mode || do_poll)
			snd_hdac_bus_update_rirb(bus);
		if (!bus->rirb.cmds[addr]) {
809 810
			if (!do_poll)
				chip->poll_count = 0;
811
			if (res)
812 813
				*res = bus->rirb.res[addr]; /* the last value */
			spin_unlock_irq(&bus->reg_lock);
814
			return 0;
815
		}
816
		spin_unlock_irq(&bus->reg_lock);
817 818
		if (time_after(jiffies, timeout))
			break;
819
		if (hbus->needs_damn_long_delay || loopcounter > 3000)
820 821 822 823 824 825 826
			msleep(2); /* temporary workaround */
		else {
			udelay(10);
			cond_resched();
		}
	}

827
	if (hbus->no_response_fallback)
828
		return -EIO;
829 830 831 832

	if (!chip->polling_mode && chip->poll_count < 2) {
		dev_dbg(chip->card->dev,
			"azx_get_response timeout, polling the codec once: last cmd=0x%08x\n",
833
			bus->last_cmd[addr]);
834 835 836 837 838 839 840 841 842
		do_poll = 1;
		chip->poll_count++;
		goto again;
	}


	if (!chip->polling_mode) {
		dev_warn(chip->card->dev,
			 "azx_get_response timeout, switching to polling mode: last cmd=0x%08x\n",
843
			 bus->last_cmd[addr]);
844 845 846 847 848 849 850
		chip->polling_mode = 1;
		goto again;
	}

	if (chip->msi) {
		dev_warn(chip->card->dev,
			 "No response from codec, disabling MSI: last cmd=0x%08x\n",
851 852
			 bus->last_cmd[addr]);
		if (chip->ops->disable_msi_reset_irq &&
853 854
		    chip->ops->disable_msi_reset_irq(chip) < 0)
			return -EIO;
855 856 857 858 859 860 861 862
		goto again;
	}

	if (chip->probing) {
		/* If this critical timeout happens during the codec probing
		 * phase, this is likely an access to a non-existing codec
		 * slot.  Better to return an error and reset the system.
		 */
863
		return -EIO;
864 865
	}

866 867 868 869
	/* no fallback mechanism? */
	if (!chip->fallback_to_single_cmd)
		return -EIO;

870 871 872
	/* a fatal communication error; need either to reset or to fallback
	 * to the single_cmd mode
	 */
873 874
	if (hbus->allow_bus_reset && !hbus->response_reset && !hbus->in_reset) {
		hbus->response_reset = 1;
875
		return -EAGAIN; /* give a chance to retry */
876 877 878 879
	}

	dev_err(chip->card->dev,
		"azx_get_response timeout, switching to single_cmd mode: last cmd=0x%08x\n",
880
		bus->last_cmd[addr]);
881
	chip->single_cmd = 1;
882 883
	hbus->response_reset = 0;
	snd_hdac_bus_stop_cmd_io(bus);
884
	return -EIO;
885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
}

/*
 * Use the single immediate command instead of CORB/RIRB for simplicity
 *
 * Note: according to Intel, this is not preferred use.  The command was
 *       intended for the BIOS only, and may get confused with unsolicited
 *       responses.  So, we shouldn't use it for normal operation from the
 *       driver.
 *       I left the codes, however, for debugging/testing purposes.
 */

/* receive a response */
static int azx_single_wait_for_response(struct azx *chip, unsigned int addr)
{
	int timeout = 50;

	while (timeout--) {
		/* check IRV busy bit */
T
Takashi Iwai 已提交
904
		if (azx_readw(chip, IRS) & AZX_IRS_VALID) {
905
			/* reuse rirb.res as the response return value */
906
			azx_bus(chip)->rirb.res[addr] = azx_readl(chip, IR);
907 908 909 910 911 912 913
			return 0;
		}
		udelay(1);
	}
	if (printk_ratelimit())
		dev_dbg(chip->card->dev, "get_response timeout: IRS=0x%x\n",
			azx_readw(chip, IRS));
914
	azx_bus(chip)->rirb.res[addr] = -1;
915 916 917 918
	return -EIO;
}

/* send a command */
919
static int azx_single_send_cmd(struct hdac_bus *bus, u32 val)
920
{
921
	struct azx *chip = bus_to_azx(bus);
922 923 924
	unsigned int addr = azx_command_addr(val);
	int timeout = 50;

925
	bus->last_cmd[azx_command_addr(val)] = val;
926 927
	while (timeout--) {
		/* check ICB busy bit */
T
Takashi Iwai 已提交
928
		if (!((azx_readw(chip, IRS) & AZX_IRS_BUSY))) {
929 930
			/* Clear IRV valid bit */
			azx_writew(chip, IRS, azx_readw(chip, IRS) |
T
Takashi Iwai 已提交
931
				   AZX_IRS_VALID);
932 933
			azx_writel(chip, IC, val);
			azx_writew(chip, IRS, azx_readw(chip, IRS) |
T
Takashi Iwai 已提交
934
				   AZX_IRS_BUSY);
935 936 937 938 939 940 941 942 943 944 945 946
			return azx_single_wait_for_response(chip, addr);
		}
		udelay(1);
	}
	if (printk_ratelimit())
		dev_dbg(chip->card->dev,
			"send_cmd timeout: IRS=0x%x, val=0x%x\n",
			azx_readw(chip, IRS), val);
	return -EIO;
}

/* receive a response */
947
static int azx_single_get_response(struct hdac_bus *bus, unsigned int addr,
948
				   unsigned int *res)
949
{
950
	if (res)
951
		*res = bus->rirb.res[addr];
952
	return 0;
953 954 955 956 957 958 959 960 961 962
}

/*
 * The below are the main callbacks from hda_codec.
 *
 * They are just the skeleton to call sub-callbacks according to the
 * current setting of chip->single_cmd.
 */

/* send a command */
963
static int azx_send_cmd(struct hdac_bus *bus, unsigned int val)
964
{
965
	struct azx *chip = bus_to_azx(bus);
966 967 968 969 970 971

	if (chip->disabled)
		return 0;
	if (chip->single_cmd)
		return azx_single_send_cmd(bus, val);
	else
972
		return snd_hdac_bus_send_cmd(bus, val);
973 974 975
}

/* get a response */
976
static int azx_get_response(struct hdac_bus *bus, unsigned int addr,
977
			    unsigned int *res)
978
{
979 980
	struct azx *chip = bus_to_azx(bus);

981 982 983
	if (chip->disabled)
		return 0;
	if (chip->single_cmd)
984
		return azx_single_get_response(bus, addr, res);
985
	else
986
		return azx_rirb_get_response(bus, addr, res);
987 988
}

989 990 991 992 993 994 995 996 997 998
static int azx_link_power(struct hdac_bus *bus, bool enable)
{
	struct azx *chip = bus_to_azx(bus);

	if (chip->ops->link_power)
		return chip->ops->link_power(chip, enable);
	else
		return -EINVAL;
}

999 1000 1001
static const struct hdac_bus_ops bus_core_ops = {
	.command = azx_send_cmd,
	.get_response = azx_get_response,
1002
	.link_power = azx_link_power,
1003 1004
};

1005 1006 1007 1008 1009 1010 1011 1012 1013
#ifdef CONFIG_SND_HDA_DSP_LOADER
/*
 * DSP loading code (e.g. for CA0132)
 */

/* use the first stream for loading DSP */
static struct azx_dev *
azx_get_dsp_loader_dev(struct azx *chip)
{
1014 1015 1016 1017 1018 1019 1020 1021
	struct hdac_bus *bus = azx_bus(chip);
	struct hdac_stream *s;

	list_for_each_entry(s, &bus->stream_list, list)
		if (s->index == chip->playback_index_offset)
			return stream_to_azx_dev(s);

	return NULL;
1022 1023
}

1024 1025 1026
int snd_hda_codec_load_dsp_prepare(struct hda_codec *codec, unsigned int format,
				   unsigned int byte_size,
				   struct snd_dma_buffer *bufp)
1027
{
1028
	struct hdac_bus *bus = &codec->bus->core;
1029
	struct azx *chip = bus_to_azx(bus);
1030
	struct azx_dev *azx_dev;
1031 1032
	struct hdac_stream *hstr;
	bool saved = false;
1033 1034 1035
	int err;

	azx_dev = azx_get_dsp_loader_dev(chip);
1036
	hstr = azx_stream(azx_dev);
1037
	spin_lock_irq(&bus->reg_lock);
1038 1039 1040
	if (hstr->opened) {
		chip->saved_azx_dev = *azx_dev;
		saved = true;
1041
	}
1042
	spin_unlock_irq(&bus->reg_lock);
1043

1044 1045
	err = snd_hdac_dsp_prepare(hstr, format, byte_size, bufp);
	if (err < 0) {
1046
		spin_lock_irq(&bus->reg_lock);
1047 1048
		if (saved)
			*azx_dev = chip->saved_azx_dev;
1049
		spin_unlock_irq(&bus->reg_lock);
1050 1051
		return err;
	}
1052

1053
	hstr->prepared = 0;
1054 1055
	return err;
}
1056
EXPORT_SYMBOL_GPL(snd_hda_codec_load_dsp_prepare);
1057

1058
void snd_hda_codec_load_dsp_trigger(struct hda_codec *codec, bool start)
1059
{
1060
	struct hdac_bus *bus = &codec->bus->core;
1061
	struct azx *chip = bus_to_azx(bus);
1062 1063
	struct azx_dev *azx_dev = azx_get_dsp_loader_dev(chip);

1064
	snd_hdac_dsp_trigger(azx_stream(azx_dev), start);
1065
}
1066
EXPORT_SYMBOL_GPL(snd_hda_codec_load_dsp_trigger);
1067

1068 1069
void snd_hda_codec_load_dsp_cleanup(struct hda_codec *codec,
				    struct snd_dma_buffer *dmab)
1070
{
1071
	struct hdac_bus *bus = &codec->bus->core;
1072
	struct azx *chip = bus_to_azx(bus);
1073
	struct azx_dev *azx_dev = azx_get_dsp_loader_dev(chip);
1074
	struct hdac_stream *hstr = azx_stream(azx_dev);
1075

1076
	if (!dmab->area || !hstr->locked)
1077 1078
		return;

1079
	snd_hdac_dsp_cleanup(hstr, dmab);
1080
	spin_lock_irq(&bus->reg_lock);
1081
	if (hstr->opened)
1082
		*azx_dev = chip->saved_azx_dev;
1083
	hstr->locked = false;
1084
	spin_unlock_irq(&bus->reg_lock);
1085
}
1086
EXPORT_SYMBOL_GPL(snd_hda_codec_load_dsp_cleanup);
1087 1088
#endif /* CONFIG_SND_HDA_DSP_LOADER */

1089 1090 1091
/*
 * reset and start the controller registers
 */
1092
void azx_init_chip(struct azx *chip, bool full_reset)
1093
{
1094 1095 1096 1097 1098
	if (snd_hdac_bus_init_chip(azx_bus(chip), full_reset)) {
		/* correct RINTCNT for CXT */
		if (chip->driver_caps & AZX_DCAPS_CTX_WORKAROUND)
			azx_writew(chip, RINTCNT, 0xc0);
	}
1099 1100 1101
}
EXPORT_SYMBOL_GPL(azx_init_chip);

1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
void azx_stop_all_streams(struct azx *chip)
{
	struct hdac_bus *bus = azx_bus(chip);
	struct hdac_stream *s;

	list_for_each_entry(s, &bus->stream_list, list)
		snd_hdac_stream_stop(s);
}
EXPORT_SYMBOL_GPL(azx_stop_all_streams);

1112 1113
void azx_stop_chip(struct azx *chip)
{
1114
	snd_hdac_bus_stop_chip(azx_bus(chip));
1115
}
1116
EXPORT_SYMBOL_GPL(azx_stop_chip);
1117

1118 1119 1120
/*
 * interrupt handler
 */
1121 1122
static void stream_update(struct hdac_bus *bus, struct hdac_stream *s)
{
1123
	struct azx *chip = bus_to_azx(bus);
1124 1125 1126 1127 1128
	struct azx_dev *azx_dev = stream_to_azx_dev(s);

	/* check whether this IRQ is really acceptable */
	if (!chip->ops->position_check ||
	    chip->ops->position_check(chip, azx_dev)) {
1129 1130 1131
		spin_unlock(&bus->reg_lock);
		snd_pcm_period_elapsed(azx_stream(azx_dev)->substream);
		spin_lock(&bus->reg_lock);
1132 1133 1134
	}
}

1135 1136 1137
irqreturn_t azx_interrupt(int irq, void *dev_id)
{
	struct azx *chip = dev_id;
1138
	struct hdac_bus *bus = azx_bus(chip);
1139
	u32 status;
1140 1141
	bool active, handled = false;
	int repeat = 0; /* count for avoiding endless loop */
1142

1143
#ifdef CONFIG_PM
1144
	if (azx_has_pm_runtime(chip))
1145
		if (!pm_runtime_active(chip->card->dev))
1146 1147 1148
			return IRQ_NONE;
#endif

1149
	spin_lock(&bus->reg_lock);
1150

1151 1152
	if (chip->disabled)
		goto unlock;
1153

1154 1155 1156 1157
	do {
		status = azx_readl(chip, INTSTS);
		if (status == 0 || status == 0xffffffff)
			break;
1158

1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
		handled = true;
		active = false;
		if (snd_hdac_bus_handle_stream_irq(bus, status, stream_update))
			active = true;

		/* clear rirb int */
		status = azx_readb(chip, RIRBSTS);
		if (status & RIRB_INT_MASK) {
			active = true;
			if (status & RIRB_INT_RESPONSE) {
				if (chip->driver_caps & AZX_DCAPS_CTX_WORKAROUND)
					udelay(80);
				snd_hdac_bus_update_rirb(bus);
			}
			azx_writeb(chip, RIRBSTS, RIRB_INT_MASK);
1174
		}
1175
	} while (active && ++repeat < 10);
1176

1177
 unlock:
1178
	spin_unlock(&bus->reg_lock);
1179

1180
	return IRQ_RETVAL(handled);
1181 1182 1183
}
EXPORT_SYMBOL_GPL(azx_interrupt);

1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
/*
 * Codec initerface
 */

/*
 * Probe the given codec address
 */
static int probe_codec(struct azx *chip, int addr)
{
	unsigned int cmd = (addr << 28) | (AC_NODE_ROOT << 20) |
		(AC_VERB_PARAMETERS << 8) | AC_PAR_VENDOR_ID;
1195
	struct hdac_bus *bus = azx_bus(chip);
1196
	int err;
1197
	unsigned int res = -1;
1198

1199
	mutex_lock(&bus->cmd_mutex);
1200
	chip->probing = 1;
1201 1202
	azx_send_cmd(bus, cmd);
	err = azx_get_response(bus, addr, &res);
1203
	chip->probing = 0;
1204
	mutex_unlock(&bus->cmd_mutex);
1205
	if (err < 0 || res == -1)
1206 1207 1208 1209 1210
		return -EIO;
	dev_dbg(chip->card->dev, "codec #%d probed OK\n", addr);
	return 0;
}

1211
void snd_hda_bus_reset(struct hda_bus *bus)
1212
{
1213
	struct azx *chip = bus_to_azx(&bus->core);
1214 1215 1216

	bus->in_reset = 1;
	azx_stop_chip(chip);
1217
	azx_init_chip(chip, true);
1218
	if (bus->core.chip_init)
1219
		snd_hda_bus_reset_codecs(bus);
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
	bus->in_reset = 0;
}

static int get_jackpoll_interval(struct azx *chip)
{
	int i;
	unsigned int j;

	if (!chip->jackpoll_ms)
		return 0;

	i = chip->jackpoll_ms[chip->dev_index];
	if (i == 0)
		return 0;
	if (i < 50 || i > 60000)
		j = 0;
	else
		j = msecs_to_jiffies(i);
	if (j == 0)
		dev_warn(chip->card->dev,
			 "jackpoll_ms value out of range: %d\n", i);
	return j;
}

1244
/* HD-audio bus initialization */
1245 1246
int azx_bus_init(struct azx *chip, const char *model,
		 const struct hdac_io_ops *io_ops)
1247
{
1248
	struct hda_bus *bus = &chip->bus;
1249
	int err;
1250

1251 1252
	err = snd_hdac_bus_init(&bus->core, chip->card->dev, &bus_core_ops,
				io_ops);
1253 1254 1255
	if (err < 0)
		return err;

1256 1257
	bus->card = chip->card;
	mutex_init(&bus->prepare_mutex);
1258 1259
	bus->pci = chip->pci;
	bus->modelname = model;
1260
	bus->mixer_assigned = -1;
1261 1262 1263 1264
	bus->core.snoop = azx_snoop(chip);
	if (chip->get_position[0] != azx_get_pos_lpib ||
	    chip->get_position[1] != azx_get_pos_lpib)
		bus->core.use_posbuf = true;
1265
	bus->core.bdl_pos_adj = chip->bdl_pos_adj;
1266 1267
	if (chip->driver_caps & AZX_DCAPS_CORBRP_SELF_CLEAR)
		bus->core.corbrp_self_clear = true;
1268

1269 1270 1271
	if (chip->driver_caps & AZX_DCAPS_4K_BDLE_BOUNDARY)
		bus->core.align_bdle_4k = true;

1272 1273 1274 1275 1276 1277
	/* AMD chipsets often cause the communication stalls upon certain
	 * sequence like the pin-detection.  It seems that forcing the synced
	 * access works around the stall.  Grrr...
	 */
	if (chip->driver_caps & AZX_DCAPS_SYNC_WRITE) {
		dev_dbg(chip->card->dev, "Enable sync_write for stable communication\n");
1278
		bus->core.sync_write = 1;
1279 1280 1281 1282 1283
		bus->allow_bus_reset = 1;
	}

	return 0;
}
1284
EXPORT_SYMBOL_GPL(azx_bus_init);
1285 1286 1287 1288

/* Probe codecs */
int azx_probe_codecs(struct azx *chip, unsigned int max_slots)
{
1289
	struct hdac_bus *bus = azx_bus(chip);
1290 1291
	int c, codecs, err;

1292 1293 1294 1295 1296 1297
	codecs = 0;
	if (!max_slots)
		max_slots = AZX_DEFAULT_CODECS;

	/* First try to probe all given codec slots */
	for (c = 0; c < max_slots; c++) {
1298
		if ((bus->codec_mask & (1 << c)) & chip->codec_probe_mask) {
1299 1300 1301 1302 1303 1304
			if (probe_codec(chip, c) < 0) {
				/* Some BIOSen give you wrong codec addresses
				 * that don't exist
				 */
				dev_warn(chip->card->dev,
					 "Codec #%d probe error; disabling it...\n", c);
1305
				bus->codec_mask &= ~(1 << c);
1306 1307 1308 1309 1310 1311 1312 1313
				/* More badly, accessing to a non-existing
				 * codec often screws up the controller chip,
				 * and disturbs the further communications.
				 * Thus if an error occurs during probing,
				 * better to reset the controller chip to
				 * get back to the sanity state.
				 */
				azx_stop_chip(chip);
1314
				azx_init_chip(chip, true);
1315 1316 1317 1318 1319 1320
			}
		}
	}

	/* Then create codec instances */
	for (c = 0; c < max_slots; c++) {
1321
		if ((bus->codec_mask & (1 << c)) & chip->codec_probe_mask) {
1322
			struct hda_codec *codec;
1323
			err = snd_hda_codec_new(&chip->bus, chip->card, c, &codec);
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
			if (err < 0)
				continue;
			codec->jackpoll_interval = get_jackpoll_interval(chip);
			codec->beep_mode = chip->beep_mode;
			codecs++;
		}
	}
	if (!codecs) {
		dev_err(chip->card->dev, "no codecs initialized\n");
		return -ENXIO;
	}
	return 0;
}
1337
EXPORT_SYMBOL_GPL(azx_probe_codecs);
1338 1339 1340 1341

/* configure each codec instance */
int azx_codec_configure(struct azx *chip)
{
1342 1343 1344 1345 1346 1347
	struct hda_codec *codec, *next;

	/* use _safe version here since snd_hda_codec_configure() deregisters
	 * the device upon error and deletes itself from the bus list.
	 */
	list_for_each_codec_safe(codec, next, &chip->bus) {
1348 1349
		snd_hda_codec_configure(codec);
	}
1350 1351 1352

	if (!azx_bus(chip)->num_codecs)
		return -ENODEV;
1353 1354 1355 1356
	return 0;
}
EXPORT_SYMBOL_GPL(azx_codec_configure);

1357
static int stream_direction(struct azx *chip, unsigned char index)
1358
{
1359 1360 1361 1362
	if (index >= chip->capture_index_offset &&
	    index < chip->capture_index_offset + chip->capture_streams)
		return SNDRV_PCM_STREAM_CAPTURE;
	return SNDRV_PCM_STREAM_PLAYBACK;
1363 1364
}

1365
/* initialize SD streams */
1366
int azx_init_streams(struct azx *chip)
1367 1368
{
	int i;
1369
	int stream_tags[2] = { 0, 0 };
1370 1371 1372 1373 1374 1375

	/* initialize each stream (aka device)
	 * assign the starting bdl address to each stream (device)
	 * and initialize
	 */
	for (i = 0; i < chip->num_streams; i++) {
1376 1377 1378 1379 1380
		struct azx_dev *azx_dev = kzalloc(sizeof(*azx_dev), GFP_KERNEL);
		int dir, tag;

		if (!azx_dev)
			return -ENOMEM;
1381

1382
		dir = stream_direction(chip, i);
1383 1384 1385 1386 1387 1388 1389
		/* stream tag must be unique throughout
		 * the stream direction group,
		 * valid values 1...15
		 * use separate stream tag if the flag
		 * AZX_DCAPS_SEPARATE_STREAM_TAG is used
		 */
		if (chip->driver_caps & AZX_DCAPS_SEPARATE_STREAM_TAG)
1390
			tag = ++stream_tags[dir];
1391
		else
1392 1393 1394
			tag = i + 1;
		snd_hdac_stream_init(azx_bus(chip), azx_stream(azx_dev),
				     i, dir, tag);
1395 1396 1397 1398
	}

	return 0;
}
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
EXPORT_SYMBOL_GPL(azx_init_streams);

void azx_free_streams(struct azx *chip)
{
	struct hdac_bus *bus = azx_bus(chip);
	struct hdac_stream *s;

	while (!list_empty(&bus->stream_list)) {
		s = list_first_entry(&bus->stream_list, struct hdac_stream, list);
		list_del(&s->list);
		kfree(stream_to_azx_dev(s));
	}
}
EXPORT_SYMBOL_GPL(azx_free_streams);