hda_controller.c 48.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 *
 *  Implementation of primary alsa driver code base for Intel HD Audio.
 *
 *  Copyright(c) 2004 Intel Corporation. All rights reserved.
 *
 *  Copyright (c) 2004 Takashi Iwai <tiwai@suse.de>
 *                     PeiSen Hou <pshou@realtek.com.tw>
 *
 *  This program is free software; you can redistribute it and/or modify it
 *  under the terms of the GNU General Public License as published by the Free
 *  Software Foundation; either version 2 of the License, or (at your option)
 *  any later version.
 *
 *  This program is distributed in the hope that it will be useful, but WITHOUT
 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 *  more details.
 *
 *
 */

#include <linux/clocksource.h>
#include <linux/delay.h>
25
#include <linux/interrupt.h>
26 27
#include <linux/kernel.h>
#include <linux/module.h>
28
#include <linux/pm_runtime.h>
29 30 31 32 33
#include <linux/slab.h>
#include <sound/core.h>
#include <sound/initval.h>
#include "hda_controller.h"

34
/* DSP lock helpers */
35 36 37
#define dsp_lock(dev)		snd_hdac_dsp_lock(azx_stream(dev))
#define dsp_unlock(dev)		snd_hdac_dsp_unlock(azx_stream(dev))
#define dsp_is_locked(dev)	snd_hdac_stream_is_locked(azx_stream(dev))
38

39 40 41 42 43 44 45
/*
 * AZX stream operations.
 */

/*
 * set up the SD for streaming
 */
46
static int azx_setup_controller(struct azx *chip, struct azx_dev *azx_dev)
47 48 49
{
	unsigned int val;
	/* make sure the run bit is zero for SD */
50
	snd_hdac_stream_clear(azx_stream(azx_dev));
51 52 53
	/* program the stream_tag */
	val = azx_sd_readl(chip, azx_dev, SD_CTL);
	val = (val & ~SD_CTL_STREAM_TAG_MASK) |
54
		(azx_dev->core.stream_tag << SD_CTL_STREAM_TAG_SHIFT);
55 56 57 58 59
	if (!azx_snoop(chip))
		val |= SD_CTL_TRAFFIC_PRIO;
	azx_sd_writel(chip, azx_dev, SD_CTL, val);

	/* program the length of samples in cyclic buffer */
60
	azx_sd_writel(chip, azx_dev, SD_CBL, azx_dev->core.bufsize);
61 62 63

	/* program the stream format */
	/* this value needs to be the same as the one programmed */
64
	azx_sd_writew(chip, azx_dev, SD_FORMAT, azx_dev->core.format_val);
65 66

	/* program the stream LVI (last valid index) of the BDL */
67
	azx_sd_writew(chip, azx_dev, SD_LVI, azx_dev->core.frags - 1);
68 69 70

	/* program the BDL address */
	/* lower BDL address */
71
	azx_sd_writel(chip, azx_dev, SD_BDLPL, (u32)azx_dev->core.bdl.addr);
72 73
	/* upper BDL address */
	azx_sd_writel(chip, azx_dev, SD_BDLPU,
74
		      upper_32_bits(azx_dev->core.bdl.addr));
75 76

	/* enable the position buffer */
77 78
	if (chip->get_position[0] != azx_get_pos_lpib ||
	    chip->get_position[1] != azx_get_pos_lpib) {
T
Takashi Iwai 已提交
79
		if (!(azx_readl(chip, DPLBASE) & AZX_DPLBASE_ENABLE))
80
			azx_writel(chip, DPLBASE,
T
Takashi Iwai 已提交
81
				(u32)chip->posbuf.addr | AZX_DPLBASE_ENABLE);
82 83 84 85 86 87 88 89 90 91 92 93 94
	}

	/* set the interrupt enable bits in the descriptor control register */
	azx_sd_writel(chip, azx_dev, SD_CTL,
		      azx_sd_readl(chip, azx_dev, SD_CTL) | SD_INT_MASK);

	return 0;
}

/* assign a stream for the PCM */
static inline struct azx_dev *
azx_assign_device(struct azx *chip, struct snd_pcm_substream *substream)
{
95 96 97 98 99 100
	struct hdac_stream *s;

	s = snd_hdac_stream_assign(azx_bus(chip), substream);
	if (!s)
		return NULL;
	return stream_to_azx_dev(s);
101 102 103 104 105
}

/* release the assigned stream */
static inline void azx_release_device(struct azx_dev *azx_dev)
{
106
	snd_hdac_stream_release(azx_stream(azx_dev));
107 108 109 110
}

static cycle_t azx_cc_read(const struct cyclecounter *cc)
{
111 112
	struct azx_dev *azx_dev = container_of(cc, struct azx_dev, core.cc);
	struct snd_pcm_substream *substream = azx_dev->core.substream;
113 114 115 116 117 118 119 120 121 122
	struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
	struct azx *chip = apcm->chip;

	return azx_readl(chip, WALLCLK);
}

static void azx_timecounter_init(struct snd_pcm_substream *substream,
				bool force, cycle_t last)
{
	struct azx_dev *azx_dev = get_azx_dev(substream);
123 124
	struct timecounter *tc = &azx_dev->core.tc;
	struct cyclecounter *cc = &azx_dev->core.cc;
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
	u64 nsec;

	cc->read = azx_cc_read;
	cc->mask = CLOCKSOURCE_MASK(32);

	/*
	 * Converting from 24 MHz to ns means applying a 125/3 factor.
	 * To avoid any saturation issues in intermediate operations,
	 * the 125 factor is applied first. The division is applied
	 * last after reading the timecounter value.
	 * Applying the 1/3 factor as part of the multiplication
	 * requires at least 20 bits for a decent precision, however
	 * overflows occur after about 4 hours or less, not a option.
	 */

	cc->mult = 125; /* saturation after 195 years */
	cc->shift = 0;

	nsec = 0; /* audio time is elapsed time since trigger */
	timecounter_init(tc, cc, nsec);
	if (force)
		/*
		 * force timecounter to use predefined value,
		 * used for synchronized starts
		 */
		tc->cycle_last = last;
}

153 154 155 156 157 158 159
static inline struct hda_pcm_stream *
to_hda_pcm_stream(struct snd_pcm_substream *substream)
{
	struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
	return &apcm->info->stream[substream->stream];
}

160 161 162 163
static u64 azx_adjust_codec_delay(struct snd_pcm_substream *substream,
				u64 nsec)
{
	struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
164
	struct hda_pcm_stream *hinfo = to_hda_pcm_stream(substream);
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
	u64 codec_frames, codec_nsecs;

	if (!hinfo->ops.get_delay)
		return nsec;

	codec_frames = hinfo->ops.get_delay(hinfo, apcm->codec, substream);
	codec_nsecs = div_u64(codec_frames * 1000000000LL,
			      substream->runtime->rate);

	if (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
		return nsec + codec_nsecs;

	return (nsec > codec_nsecs) ? nsec - codec_nsecs : 0;
}

/*
 * set up a BDL entry
 */
183 184 185 186
static int setup_bdle(struct azx *chip,
		      struct snd_dma_buffer *dmab,
		      struct azx_dev *azx_dev, u32 **bdlp,
		      int ofs, int size, int with_ioc)
187 188 189 190 191 192 193
{
	u32 *bdl = *bdlp;

	while (size > 0) {
		dma_addr_t addr;
		int chunk;

194
		if (azx_dev->core.frags >= AZX_MAX_BDL_ENTRIES)
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
			return -EINVAL;

		addr = snd_sgbuf_get_addr(dmab, ofs);
		/* program the address field of the BDL entry */
		bdl[0] = cpu_to_le32((u32)addr);
		bdl[1] = cpu_to_le32(upper_32_bits(addr));
		/* program the size field of the BDL entry */
		chunk = snd_sgbuf_get_chunk_size(dmab, ofs, size);
		/* one BDLE cannot cross 4K boundary on CTHDA chips */
		if (chip->driver_caps & AZX_DCAPS_4K_BDLE_BOUNDARY) {
			u32 remain = 0x1000 - (ofs & 0xfff);
			if (chunk > remain)
				chunk = remain;
		}
		bdl[2] = cpu_to_le32(chunk);
		/* program the IOC to enable interrupt
		 * only when the whole fragment is processed
		 */
		size -= chunk;
		bdl[3] = (size || !with_ioc) ? 0 : cpu_to_le32(0x01);
		bdl += 4;
216
		azx_dev->core.frags++;
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
		ofs += chunk;
	}
	*bdlp = bdl;
	return ofs;
}

/*
 * set up BDL entries
 */
static int azx_setup_periods(struct azx *chip,
			     struct snd_pcm_substream *substream,
			     struct azx_dev *azx_dev)
{
	u32 *bdl;
	int i, ofs, periods, period_bytes;
	int pos_adj = 0;

	/* reset BDL address */
	azx_sd_writel(chip, azx_dev, SD_BDLPL, 0);
	azx_sd_writel(chip, azx_dev, SD_BDLPU, 0);

238 239
	period_bytes = azx_dev->core.period_bytes;
	periods = azx_dev->core.bufsize / period_bytes;
240 241

	/* program the initial BDL entries */
242
	bdl = (u32 *)azx_dev->core.bdl.area;
243
	ofs = 0;
244
	azx_dev->core.frags = 0;
245 246 247

	if (chip->bdl_pos_adj)
		pos_adj = chip->bdl_pos_adj[chip->dev_index];
248
	if (!azx_dev->core.no_period_wakeup && pos_adj > 0) {
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
		struct snd_pcm_runtime *runtime = substream->runtime;
		int pos_align = pos_adj;
		pos_adj = (pos_adj * runtime->rate + 47999) / 48000;
		if (!pos_adj)
			pos_adj = pos_align;
		else
			pos_adj = ((pos_adj + pos_align - 1) / pos_align) *
				pos_align;
		pos_adj = frames_to_bytes(runtime, pos_adj);
		if (pos_adj >= period_bytes) {
			dev_warn(chip->card->dev,"Too big adjustment %d\n",
				 pos_adj);
			pos_adj = 0;
		} else {
			ofs = setup_bdle(chip, snd_pcm_get_dma_buf(substream),
					 azx_dev,
					 &bdl, ofs, pos_adj, true);
			if (ofs < 0)
				goto error;
		}
	} else
		pos_adj = 0;

	for (i = 0; i < periods; i++) {
		if (i == periods - 1 && pos_adj)
			ofs = setup_bdle(chip, snd_pcm_get_dma_buf(substream),
					 azx_dev, &bdl, ofs,
					 period_bytes - pos_adj, 0);
		else
			ofs = setup_bdle(chip, snd_pcm_get_dma_buf(substream),
					 azx_dev, &bdl, ofs,
					 period_bytes,
281
					 !azx_dev->core.no_period_wakeup);
282 283 284 285 286 287 288
		if (ofs < 0)
			goto error;
	}
	return 0;

 error:
	dev_err(chip->card->dev, "Too many BDL entries: buffer=%d, period=%d\n",
289
		azx_dev->core.bufsize, period_bytes);
290 291 292 293 294 295 296 297 298 299
	return -EINVAL;
}

/*
 * PCM ops
 */

static int azx_pcm_close(struct snd_pcm_substream *substream)
{
	struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
300
	struct hda_pcm_stream *hinfo = to_hda_pcm_stream(substream);
301 302 303 304 305 306
	struct azx *chip = apcm->chip;
	struct azx_dev *azx_dev = get_azx_dev(substream);
	unsigned long flags;

	mutex_lock(&chip->open_mutex);
	spin_lock_irqsave(&chip->reg_lock, flags);
307 308
	azx_dev->core.substream = NULL;
	azx_dev->core.running = 0;
309 310
	spin_unlock_irqrestore(&chip->reg_lock, flags);
	azx_release_device(azx_dev);
311 312
	if (hinfo->ops.close)
		hinfo->ops.close(hinfo, apcm->codec, substream);
313 314
	snd_hda_power_down(apcm->codec);
	mutex_unlock(&chip->open_mutex);
315
	snd_hda_codec_pcm_put(apcm->info);
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
	return 0;
}

static int azx_pcm_hw_params(struct snd_pcm_substream *substream,
			     struct snd_pcm_hw_params *hw_params)
{
	struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
	struct azx *chip = apcm->chip;
	int ret;

	dsp_lock(get_azx_dev(substream));
	if (dsp_is_locked(get_azx_dev(substream))) {
		ret = -EBUSY;
		goto unlock;
	}

	ret = chip->ops->substream_alloc_pages(chip, substream,
					  params_buffer_bytes(hw_params));
unlock:
	dsp_unlock(get_azx_dev(substream));
	return ret;
}

static int azx_pcm_hw_free(struct snd_pcm_substream *substream)
{
	struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
	struct azx_dev *azx_dev = get_azx_dev(substream);
	struct azx *chip = apcm->chip;
344
	struct hda_pcm_stream *hinfo = to_hda_pcm_stream(substream);
345 346 347 348 349 350 351 352
	int err;

	/* reset BDL address */
	dsp_lock(azx_dev);
	if (!dsp_is_locked(azx_dev)) {
		azx_sd_writel(chip, azx_dev, SD_BDLPL, 0);
		azx_sd_writel(chip, azx_dev, SD_BDLPU, 0);
		azx_sd_writel(chip, azx_dev, SD_CTL, 0);
353 354 355
		azx_dev->core.bufsize = 0;
		azx_dev->core.period_bytes = 0;
		azx_dev->core.format_val = 0;
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
	}

	snd_hda_codec_cleanup(apcm->codec, hinfo, substream);

	err = chip->ops->substream_free_pages(chip, substream);
	azx_dev->prepared = 0;
	dsp_unlock(azx_dev);
	return err;
}

static int azx_pcm_prepare(struct snd_pcm_substream *substream)
{
	struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
	struct azx *chip = apcm->chip;
	struct azx_dev *azx_dev = get_azx_dev(substream);
371
	struct hda_pcm_stream *hinfo = to_hda_pcm_stream(substream);
372 373 374 375 376 377 378 379 380 381 382 383 384
	struct snd_pcm_runtime *runtime = substream->runtime;
	unsigned int bufsize, period_bytes, format_val, stream_tag;
	int err;
	struct hda_spdif_out *spdif =
		snd_hda_spdif_out_of_nid(apcm->codec, hinfo->nid);
	unsigned short ctls = spdif ? spdif->ctls : 0;

	dsp_lock(azx_dev);
	if (dsp_is_locked(azx_dev)) {
		err = -EBUSY;
		goto unlock;
	}

385
	snd_hdac_stream_reset(azx_stream(azx_dev));
386 387
	format_val = snd_hda_calc_stream_format(apcm->codec,
						runtime->rate,
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
						runtime->channels,
						runtime->format,
						hinfo->maxbps,
						ctls);
	if (!format_val) {
		dev_err(chip->card->dev,
			"invalid format_val, rate=%d, ch=%d, format=%d\n",
			runtime->rate, runtime->channels, runtime->format);
		err = -EINVAL;
		goto unlock;
	}

	bufsize = snd_pcm_lib_buffer_bytes(substream);
	period_bytes = snd_pcm_lib_period_bytes(substream);

	dev_dbg(chip->card->dev, "azx_pcm_prepare: bufsize=0x%x, format=0x%x\n",
		bufsize, format_val);

406 407 408 409 410 411 412 413
	if (bufsize != azx_dev->core.bufsize ||
	    period_bytes != azx_dev->core.period_bytes ||
	    format_val != azx_dev->core.format_val ||
	    runtime->no_period_wakeup != azx_dev->core.no_period_wakeup) {
		azx_dev->core.bufsize = bufsize;
		azx_dev->core.period_bytes = period_bytes;
		azx_dev->core.format_val = format_val;
		azx_dev->core.no_period_wakeup = runtime->no_period_wakeup;
414 415 416 417 418 419 420 421 422 423
		err = azx_setup_periods(chip, substream, azx_dev);
		if (err < 0)
			goto unlock;
	}

	/* when LPIB delay correction gives a small negative value,
	 * we ignore it; currently set the threshold statically to
	 * 64 frames
	 */
	if (runtime->period_size > 64)
424
		azx_dev->core.delay_negative_threshold = -frames_to_bytes(runtime, 64);
425
	else
426
		azx_dev->core.delay_negative_threshold = 0;
427 428

	/* wallclk has 24Mhz clock source */
429
	azx_dev->core.period_wallclk = (((runtime->period_size * 24000) /
430 431 432
						runtime->rate) * 1000);
	azx_setup_controller(chip, azx_dev);
	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
433
		azx_dev->core.fifo_size =
434 435
			azx_sd_readw(chip, azx_dev, SD_FIFOSIZE) + 1;
	else
436
		azx_dev->core.fifo_size = 0;
437

438
	stream_tag = azx_dev->core.stream_tag;
439 440 441 442 443
	/* CA-IBG chips need the playback stream starting from 1 */
	if ((chip->driver_caps & AZX_DCAPS_CTX_WORKAROUND) &&
	    stream_tag > chip->capture_streams)
		stream_tag -= chip->capture_streams;
	err = snd_hda_codec_prepare(apcm->codec, hinfo, stream_tag,
444
				     azx_dev->core.format_val, substream);
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486

 unlock:
	if (!err)
		azx_dev->prepared = 1;
	dsp_unlock(azx_dev);
	return err;
}

static int azx_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
{
	struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
	struct azx *chip = apcm->chip;
	struct azx_dev *azx_dev;
	struct snd_pcm_substream *s;
	int rstart = 0, start, nsync = 0, sbits = 0;
	int nwait, timeout;

	azx_dev = get_azx_dev(substream);

	if (dsp_is_locked(azx_dev) || !azx_dev->prepared)
		return -EPIPE;

	switch (cmd) {
	case SNDRV_PCM_TRIGGER_START:
		rstart = 1;
	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
	case SNDRV_PCM_TRIGGER_RESUME:
		start = 1;
		break;
	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
	case SNDRV_PCM_TRIGGER_SUSPEND:
	case SNDRV_PCM_TRIGGER_STOP:
		start = 0;
		break;
	default:
		return -EINVAL;
	}

	snd_pcm_group_for_each_entry(s, substream) {
		if (s->pcm->card != substream->pcm->card)
			continue;
		azx_dev = get_azx_dev(s);
487
		sbits |= 1 << azx_dev->core.index;
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
		nsync++;
		snd_pcm_trigger_done(s, substream);
	}

	spin_lock(&chip->reg_lock);

	/* first, set SYNC bits of corresponding streams */
	if (chip->driver_caps & AZX_DCAPS_OLD_SSYNC)
		azx_writel(chip, OLD_SSYNC,
			azx_readl(chip, OLD_SSYNC) | sbits);
	else
		azx_writel(chip, SSYNC, azx_readl(chip, SSYNC) | sbits);

	snd_pcm_group_for_each_entry(s, substream) {
		if (s->pcm->card != substream->pcm->card)
			continue;
		azx_dev = get_azx_dev(s);
		if (start) {
506 507
			azx_dev->insufficient = 1;
			snd_hdac_stream_start(azx_stream(azx_dev), true);
508
		} else {
509
			snd_hdac_stream_stop(azx_stream(azx_dev));
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
		}
	}
	spin_unlock(&chip->reg_lock);
	if (start) {
		/* wait until all FIFOs get ready */
		for (timeout = 5000; timeout; timeout--) {
			nwait = 0;
			snd_pcm_group_for_each_entry(s, substream) {
				if (s->pcm->card != substream->pcm->card)
					continue;
				azx_dev = get_azx_dev(s);
				if (!(azx_sd_readb(chip, azx_dev, SD_STS) &
				      SD_STS_FIFO_READY))
					nwait++;
			}
			if (!nwait)
				break;
			cpu_relax();
		}
	} else {
		/* wait until all RUN bits are cleared */
		for (timeout = 5000; timeout; timeout--) {
			nwait = 0;
			snd_pcm_group_for_each_entry(s, substream) {
				if (s->pcm->card != substream->pcm->card)
					continue;
				azx_dev = get_azx_dev(s);
				if (azx_sd_readb(chip, azx_dev, SD_CTL) &
				    SD_CTL_DMA_START)
					nwait++;
			}
			if (!nwait)
				break;
			cpu_relax();
		}
	}
	spin_lock(&chip->reg_lock);
	/* reset SYNC bits */
	if (chip->driver_caps & AZX_DCAPS_OLD_SSYNC)
		azx_writel(chip, OLD_SSYNC,
			azx_readl(chip, OLD_SSYNC) & ~sbits);
	else
		azx_writel(chip, SSYNC, azx_readl(chip, SSYNC) & ~sbits);
	if (start) {
		azx_timecounter_init(substream, 0, 0);
555 556 557
		snd_pcm_gettime(substream->runtime, &substream->runtime->trigger_tstamp);
		substream->runtime->trigger_tstamp_latched = true;

558 559 560 561 562
		if (nsync > 1) {
			cycle_t cycle_last;

			/* same start cycle for master and group */
			azx_dev = get_azx_dev(substream);
563
			cycle_last = azx_dev->core.tc.cycle_last;
564 565 566 567 568 569 570 571 572 573 574 575

			snd_pcm_group_for_each_entry(s, substream) {
				if (s->pcm->card != substream->pcm->card)
					continue;
				azx_timecounter_init(s, 1, cycle_last);
			}
		}
	}
	spin_unlock(&chip->reg_lock);
	return 0;
}

576
unsigned int azx_get_pos_lpib(struct azx *chip, struct azx_dev *azx_dev)
577
{
578
	return snd_hdac_stream_get_pos_lpib(azx_stream(azx_dev));
579 580
}
EXPORT_SYMBOL_GPL(azx_get_pos_lpib);
581

582 583
unsigned int azx_get_pos_posbuf(struct azx *chip, struct azx_dev *azx_dev)
{
584
	return snd_hdac_stream_get_pos_posbuf(azx_stream(azx_dev));
585
}
586
EXPORT_SYMBOL_GPL(azx_get_pos_posbuf);
587 588

unsigned int azx_get_position(struct azx *chip,
589
			      struct azx_dev *azx_dev)
590
{
591
	struct snd_pcm_substream *substream = azx_dev->core.substream;
592 593 594 595
	unsigned int pos;
	int stream = substream->stream;
	int delay = 0;

596 597 598 599
	if (chip->get_position[stream])
		pos = chip->get_position[stream](chip, azx_dev);
	else /* use the position buffer as default */
		pos = azx_get_pos_posbuf(chip, azx_dev);
600

601
	if (pos >= azx_dev->core.bufsize)
602 603 604
		pos = 0;

	if (substream->runtime) {
605
		struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
606
		struct hda_pcm_stream *hinfo = to_hda_pcm_stream(substream);
607 608 609

		if (chip->get_delay[stream])
			delay += chip->get_delay[stream](chip, azx_dev, pos);
610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
		if (hinfo->ops.get_delay)
			delay += hinfo->ops.get_delay(hinfo, apcm->codec,
						      substream);
		substream->runtime->delay = delay;
	}

	return pos;
}
EXPORT_SYMBOL_GPL(azx_get_position);

static snd_pcm_uframes_t azx_pcm_pointer(struct snd_pcm_substream *substream)
{
	struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
	struct azx *chip = apcm->chip;
	struct azx_dev *azx_dev = get_azx_dev(substream);
	return bytes_to_frames(substream->runtime,
626
			       azx_get_position(chip, azx_dev));
627 628
}

629 630 631 632
static int azx_get_time_info(struct snd_pcm_substream *substream,
			struct timespec *system_ts, struct timespec *audio_ts,
			struct snd_pcm_audio_tstamp_config *audio_tstamp_config,
			struct snd_pcm_audio_tstamp_report *audio_tstamp_report)
633 634 635 636
{
	struct azx_dev *azx_dev = get_azx_dev(substream);
	u64 nsec;

637 638
	if ((substream->runtime->hw.info & SNDRV_PCM_INFO_HAS_LINK_ATIME) &&
		(audio_tstamp_config->type_requested == SNDRV_PCM_AUDIO_TSTAMP_TYPE_LINK)) {
639

640 641
		snd_pcm_gettime(substream->runtime, system_ts);

642
		nsec = timecounter_read(&azx_dev->core.tc);
643 644 645 646 647 648 649 650 651 652 653 654
		nsec = div_u64(nsec, 3); /* can be optimized */
		if (audio_tstamp_config->report_delay)
			nsec = azx_adjust_codec_delay(substream, nsec);

		*audio_ts = ns_to_timespec(nsec);

		audio_tstamp_report->actual_type = SNDRV_PCM_AUDIO_TSTAMP_TYPE_LINK;
		audio_tstamp_report->accuracy_report = 1; /* rest of structure is valid */
		audio_tstamp_report->accuracy = 42; /* 24 MHz WallClock == 42ns resolution */

	} else
		audio_tstamp_report->actual_type = SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT;
655 656 657 658 659 660 661 662 663 664 665 666 667

	return 0;
}

static struct snd_pcm_hardware azx_pcm_hw = {
	.info =			(SNDRV_PCM_INFO_MMAP |
				 SNDRV_PCM_INFO_INTERLEAVED |
				 SNDRV_PCM_INFO_BLOCK_TRANSFER |
				 SNDRV_PCM_INFO_MMAP_VALID |
				 /* No full-resume yet implemented */
				 /* SNDRV_PCM_INFO_RESUME |*/
				 SNDRV_PCM_INFO_PAUSE |
				 SNDRV_PCM_INFO_SYNC_START |
668 669
				 SNDRV_PCM_INFO_HAS_WALL_CLOCK | /* legacy */
				 SNDRV_PCM_INFO_HAS_LINK_ATIME |
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
				 SNDRV_PCM_INFO_NO_PERIOD_WAKEUP),
	.formats =		SNDRV_PCM_FMTBIT_S16_LE,
	.rates =		SNDRV_PCM_RATE_48000,
	.rate_min =		48000,
	.rate_max =		48000,
	.channels_min =		2,
	.channels_max =		2,
	.buffer_bytes_max =	AZX_MAX_BUF_SIZE,
	.period_bytes_min =	128,
	.period_bytes_max =	AZX_MAX_BUF_SIZE / 2,
	.periods_min =		2,
	.periods_max =		AZX_MAX_FRAG,
	.fifo_size =		0,
};

static int azx_pcm_open(struct snd_pcm_substream *substream)
{
	struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
688
	struct hda_pcm_stream *hinfo = to_hda_pcm_stream(substream);
689 690 691 692 693 694 695
	struct azx *chip = apcm->chip;
	struct azx_dev *azx_dev;
	struct snd_pcm_runtime *runtime = substream->runtime;
	unsigned long flags;
	int err;
	int buff_step;

696
	snd_hda_codec_pcm_get(apcm->info);
697 698 699
	mutex_lock(&chip->open_mutex);
	azx_dev = azx_assign_device(chip, substream);
	if (azx_dev == NULL) {
700 701
		err = -EBUSY;
		goto unlock;
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
	}
	runtime->hw = azx_pcm_hw;
	runtime->hw.channels_min = hinfo->channels_min;
	runtime->hw.channels_max = hinfo->channels_max;
	runtime->hw.formats = hinfo->formats;
	runtime->hw.rates = hinfo->rates;
	snd_pcm_limit_hw_rates(runtime);
	snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS);

	/* avoid wrap-around with wall-clock */
	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_TIME,
				     20,
				     178000000);

	if (chip->align_buffer_size)
		/* constrain buffer sizes to be multiple of 128
		   bytes. This is more efficient in terms of memory
		   access but isn't required by the HDA spec and
		   prevents users from specifying exact period/buffer
		   sizes. For example for 44.1kHz, a period size set
		   to 20ms will be rounded to 19.59ms. */
		buff_step = 128;
	else
		/* Don't enforce steps on buffer sizes, still need to
		   be multiple of 4 bytes (HDA spec). Tested on Intel
		   HDA controllers, may not work on all devices where
		   option needs to be disabled */
		buff_step = 4;

	snd_pcm_hw_constraint_step(runtime, 0, SNDRV_PCM_HW_PARAM_BUFFER_BYTES,
				   buff_step);
	snd_pcm_hw_constraint_step(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_BYTES,
				   buff_step);
735
	snd_hda_power_up(apcm->codec);
736 737 738 739
	if (hinfo->ops.open)
		err = hinfo->ops.open(hinfo, apcm->codec, substream);
	else
		err = -ENODEV;
740 741
	if (err < 0) {
		azx_release_device(azx_dev);
742
		goto powerdown;
743 744 745 746 747 748 749 750
	}
	snd_pcm_limit_hw_rates(runtime);
	/* sanity check */
	if (snd_BUG_ON(!runtime->hw.channels_min) ||
	    snd_BUG_ON(!runtime->hw.channels_max) ||
	    snd_BUG_ON(!runtime->hw.formats) ||
	    snd_BUG_ON(!runtime->hw.rates)) {
		azx_release_device(azx_dev);
751 752 753 754
		if (hinfo->ops.close)
			hinfo->ops.close(hinfo, apcm->codec, substream);
		err = -EINVAL;
		goto powerdown;
755 756
	}

757
	/* disable LINK_ATIME timestamps for capture streams
758
	   until we figure out how to handle digital inputs */
759 760 761 762
	if (substream->stream == SNDRV_PCM_STREAM_CAPTURE) {
		runtime->hw.info &= ~SNDRV_PCM_INFO_HAS_WALL_CLOCK; /* legacy */
		runtime->hw.info &= ~SNDRV_PCM_INFO_HAS_LINK_ATIME;
	}
763 764

	spin_lock_irqsave(&chip->reg_lock, flags);
765 766
	azx_dev->core.substream = substream;
	azx_dev->core.running = 0;
767 768 769 770 771 772
	spin_unlock_irqrestore(&chip->reg_lock, flags);

	runtime->private_data = azx_dev;
	snd_pcm_set_sync(substream);
	mutex_unlock(&chip->open_mutex);
	return 0;
773 774 775 776 777

 powerdown:
	snd_hda_power_down(apcm->codec);
 unlock:
	mutex_unlock(&chip->open_mutex);
778
	snd_hda_codec_pcm_put(apcm->info);
779
	return err;
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
}

static int azx_pcm_mmap(struct snd_pcm_substream *substream,
			struct vm_area_struct *area)
{
	struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
	struct azx *chip = apcm->chip;
	if (chip->ops->pcm_mmap_prepare)
		chip->ops->pcm_mmap_prepare(substream, area);
	return snd_pcm_lib_default_mmap(substream, area);
}

static struct snd_pcm_ops azx_pcm_ops = {
	.open = azx_pcm_open,
	.close = azx_pcm_close,
	.ioctl = snd_pcm_lib_ioctl,
	.hw_params = azx_pcm_hw_params,
	.hw_free = azx_pcm_hw_free,
	.prepare = azx_pcm_prepare,
	.trigger = azx_pcm_trigger,
	.pointer = azx_pcm_pointer,
801
	.get_time_info =  azx_get_time_info,
802 803 804 805 806 807 808 809 810
	.mmap = azx_pcm_mmap,
	.page = snd_pcm_sgbuf_ops_page,
};

static void azx_pcm_free(struct snd_pcm *pcm)
{
	struct azx_pcm *apcm = pcm->private_data;
	if (apcm) {
		list_del(&apcm->list);
811
		apcm->info->pcm = NULL;
812 813 814 815 816 817
		kfree(apcm);
	}
}

#define MAX_PREALLOC_SIZE	(32 * 1024 * 1024)

818 819
static int azx_attach_pcm_stream(struct hda_bus *bus, struct hda_codec *codec,
				 struct hda_pcm *cpcm)
820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
{
	struct azx *chip = bus->private_data;
	struct snd_pcm *pcm;
	struct azx_pcm *apcm;
	int pcm_dev = cpcm->device;
	unsigned int size;
	int s, err;

	list_for_each_entry(apcm, &chip->pcm_list, list) {
		if (apcm->pcm->device == pcm_dev) {
			dev_err(chip->card->dev, "PCM %d already exists\n",
				pcm_dev);
			return -EBUSY;
		}
	}
	err = snd_pcm_new(chip->card, cpcm->name, pcm_dev,
			  cpcm->stream[SNDRV_PCM_STREAM_PLAYBACK].substreams,
			  cpcm->stream[SNDRV_PCM_STREAM_CAPTURE].substreams,
			  &pcm);
	if (err < 0)
		return err;
	strlcpy(pcm->name, cpcm->name, sizeof(pcm->name));
	apcm = kzalloc(sizeof(*apcm), GFP_KERNEL);
	if (apcm == NULL)
		return -ENOMEM;
	apcm->chip = chip;
	apcm->pcm = pcm;
	apcm->codec = codec;
848
	apcm->info = cpcm;
849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
	pcm->private_data = apcm;
	pcm->private_free = azx_pcm_free;
	if (cpcm->pcm_type == HDA_PCM_TYPE_MODEM)
		pcm->dev_class = SNDRV_PCM_CLASS_MODEM;
	list_add_tail(&apcm->list, &chip->pcm_list);
	cpcm->pcm = pcm;
	for (s = 0; s < 2; s++) {
		if (cpcm->stream[s].substreams)
			snd_pcm_set_ops(pcm, s, &azx_pcm_ops);
	}
	/* buffer pre-allocation */
	size = CONFIG_SND_HDA_PREALLOC_SIZE * 1024;
	if (size > MAX_PREALLOC_SIZE)
		size = MAX_PREALLOC_SIZE;
	snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV_SG,
					      chip->card->dev,
					      size, MAX_PREALLOC_SIZE);
	return 0;
}

869 870 871
/*
 * CORB / RIRB interface
 */
872
static int azx_alloc_cmd_io(struct azx *chip)
873 874
{
	/* single page (at least 4096 bytes) must suffice for both ringbuffes */
875 876
	return chip->io_ops->dma_alloc_pages(azx_bus(chip), SNDRV_DMA_TYPE_DEV,
					     PAGE_SIZE, &chip->rb);
877 878
}

879
static void azx_init_cmd_io(struct azx *chip)
880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
{
	int timeout;

	spin_lock_irq(&chip->reg_lock);
	/* CORB set up */
	chip->corb.addr = chip->rb.addr;
	chip->corb.buf = (u32 *)chip->rb.area;
	azx_writel(chip, CORBLBASE, (u32)chip->corb.addr);
	azx_writel(chip, CORBUBASE, upper_32_bits(chip->corb.addr));

	/* set the corb size to 256 entries (ULI requires explicitly) */
	azx_writeb(chip, CORBSIZE, 0x02);
	/* set the corb write pointer to 0 */
	azx_writew(chip, CORBWP, 0);

	/* reset the corb hw read pointer */
T
Takashi Iwai 已提交
896
	azx_writew(chip, CORBRP, AZX_CORBRP_RST);
897 898
	if (!(chip->driver_caps & AZX_DCAPS_CORBRP_SELF_CLEAR)) {
		for (timeout = 1000; timeout > 0; timeout--) {
T
Takashi Iwai 已提交
899
			if ((azx_readw(chip, CORBRP) & AZX_CORBRP_RST) == AZX_CORBRP_RST)
900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
				break;
			udelay(1);
		}
		if (timeout <= 0)
			dev_err(chip->card->dev, "CORB reset timeout#1, CORBRP = %d\n",
				azx_readw(chip, CORBRP));

		azx_writew(chip, CORBRP, 0);
		for (timeout = 1000; timeout > 0; timeout--) {
			if (azx_readw(chip, CORBRP) == 0)
				break;
			udelay(1);
		}
		if (timeout <= 0)
			dev_err(chip->card->dev, "CORB reset timeout#2, CORBRP = %d\n",
				azx_readw(chip, CORBRP));
916 917 918
	}

	/* enable corb dma */
T
Takashi Iwai 已提交
919
	azx_writeb(chip, CORBCTL, AZX_CORBCTL_RUN);
920 921 922 923 924 925 926 927 928 929 930 931

	/* RIRB set up */
	chip->rirb.addr = chip->rb.addr + 2048;
	chip->rirb.buf = (u32 *)(chip->rb.area + 2048);
	chip->rirb.wp = chip->rirb.rp = 0;
	memset(chip->rirb.cmds, 0, sizeof(chip->rirb.cmds));
	azx_writel(chip, RIRBLBASE, (u32)chip->rirb.addr);
	azx_writel(chip, RIRBUBASE, upper_32_bits(chip->rirb.addr));

	/* set the rirb size to 256 entries (ULI requires explicitly) */
	azx_writeb(chip, RIRBSIZE, 0x02);
	/* reset the rirb hw write pointer */
T
Takashi Iwai 已提交
932
	azx_writew(chip, RIRBWP, AZX_RIRBWP_RST);
933 934 935 936 937 938
	/* set N=1, get RIRB response interrupt for new entry */
	if (chip->driver_caps & AZX_DCAPS_CTX_WORKAROUND)
		azx_writew(chip, RINTCNT, 0xc0);
	else
		azx_writew(chip, RINTCNT, 1);
	/* enable rirb dma and response irq */
T
Takashi Iwai 已提交
939
	azx_writeb(chip, RIRBCTL, AZX_RBCTL_DMA_EN | AZX_RBCTL_IRQ_EN);
940 941 942
	spin_unlock_irq(&chip->reg_lock);
}

943
static void azx_free_cmd_io(struct azx *chip)
944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
{
	spin_lock_irq(&chip->reg_lock);
	/* disable ringbuffer DMAs */
	azx_writeb(chip, RIRBCTL, 0);
	azx_writeb(chip, CORBCTL, 0);
	spin_unlock_irq(&chip->reg_lock);
}

static unsigned int azx_command_addr(u32 cmd)
{
	unsigned int addr = cmd >> 28;

	if (addr >= AZX_MAX_CODECS) {
		snd_BUG();
		addr = 0;
	}

	return addr;
}

/* send a command */
static int azx_corb_send_cmd(struct hda_bus *bus, u32 val)
{
	struct azx *chip = bus->private_data;
	unsigned int addr = azx_command_addr(val);
	unsigned int wp, rp;

	spin_lock_irq(&chip->reg_lock);

	/* add command to corb */
	wp = azx_readw(chip, CORBWP);
	if (wp == 0xffff) {
		/* something wrong, controller likely turned to D3 */
		spin_unlock_irq(&chip->reg_lock);
		return -EIO;
	}
	wp++;
T
Takashi Iwai 已提交
981
	wp %= AZX_MAX_CORB_ENTRIES;
982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998

	rp = azx_readw(chip, CORBRP);
	if (wp == rp) {
		/* oops, it's full */
		spin_unlock_irq(&chip->reg_lock);
		return -EAGAIN;
	}

	chip->rirb.cmds[addr]++;
	chip->corb.buf[wp] = cpu_to_le32(val);
	azx_writew(chip, CORBWP, wp);

	spin_unlock_irq(&chip->reg_lock);

	return 0;
}

T
Takashi Iwai 已提交
999
#define AZX_RIRB_EX_UNSOL_EV	(1<<4)
1000 1001

/* retrieve RIRB entry - called from interrupt handler */
1002
static void azx_update_rirb(struct azx *chip)
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
{
	unsigned int rp, wp;
	unsigned int addr;
	u32 res, res_ex;

	wp = azx_readw(chip, RIRBWP);
	if (wp == 0xffff) {
		/* something wrong, controller likely turned to D3 */
		return;
	}

	if (wp == chip->rirb.wp)
		return;
	chip->rirb.wp = wp;

	while (chip->rirb.rp != wp) {
		chip->rirb.rp++;
T
Takashi Iwai 已提交
1020
		chip->rirb.rp %= AZX_MAX_RIRB_ENTRIES;
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030

		rp = chip->rirb.rp << 1; /* an RIRB entry is 8-bytes */
		res_ex = le32_to_cpu(chip->rirb.buf[rp + 1]);
		res = le32_to_cpu(chip->rirb.buf[rp]);
		addr = res_ex & 0xf;
		if ((addr >= AZX_MAX_CODECS) || !(chip->codec_mask & (1 << addr))) {
			dev_err(chip->card->dev, "spurious response %#x:%#x, rp = %d, wp = %d",
				res, res_ex,
				chip->rirb.rp, wp);
			snd_BUG();
T
Takashi Iwai 已提交
1031
		} else if (res_ex & AZX_RIRB_EX_UNSOL_EV)
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
			snd_hda_queue_unsol_event(chip->bus, res, res_ex);
		else if (chip->rirb.cmds[addr]) {
			chip->rirb.res[addr] = res;
			smp_wmb();
			chip->rirb.cmds[addr]--;
		} else if (printk_ratelimit()) {
			dev_err(chip->card->dev, "spurious response %#x:%#x, last cmd=%#08x\n",
				res, res_ex,
				chip->last_cmd[addr]);
		}
	}
}

/* receive a response */
1046 1047
static int azx_rirb_get_response(struct hda_bus *bus, unsigned int addr,
				 unsigned int *res)
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
{
	struct azx *chip = bus->private_data;
	unsigned long timeout;
	unsigned long loopcounter;
	int do_poll = 0;

 again:
	timeout = jiffies + msecs_to_jiffies(1000);

	for (loopcounter = 0;; loopcounter++) {
		if (chip->polling_mode || do_poll) {
			spin_lock_irq(&chip->reg_lock);
			azx_update_rirb(chip);
			spin_unlock_irq(&chip->reg_lock);
		}
		if (!chip->rirb.cmds[addr]) {
			smp_rmb();

			if (!do_poll)
				chip->poll_count = 0;
1068 1069 1070
			if (res)
				*res = chip->rirb.res[addr]; /* the last value */
			return 0;
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
		}
		if (time_after(jiffies, timeout))
			break;
		if (bus->needs_damn_long_delay || loopcounter > 3000)
			msleep(2); /* temporary workaround */
		else {
			udelay(10);
			cond_resched();
		}
	}

1082
	if (bus->no_response_fallback)
1083
		return -EIO;
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107

	if (!chip->polling_mode && chip->poll_count < 2) {
		dev_dbg(chip->card->dev,
			"azx_get_response timeout, polling the codec once: last cmd=0x%08x\n",
			chip->last_cmd[addr]);
		do_poll = 1;
		chip->poll_count++;
		goto again;
	}


	if (!chip->polling_mode) {
		dev_warn(chip->card->dev,
			 "azx_get_response timeout, switching to polling mode: last cmd=0x%08x\n",
			 chip->last_cmd[addr]);
		chip->polling_mode = 1;
		goto again;
	}

	if (chip->msi) {
		dev_warn(chip->card->dev,
			 "No response from codec, disabling MSI: last cmd=0x%08x\n",
			 chip->last_cmd[addr]);
		if (chip->ops->disable_msi_reset_irq(chip) &&
1108 1109
		    chip->ops->disable_msi_reset_irq(chip) < 0)
			return -EIO;
1110 1111 1112 1113 1114 1115 1116 1117
		goto again;
	}

	if (chip->probing) {
		/* If this critical timeout happens during the codec probing
		 * phase, this is likely an access to a non-existing codec
		 * slot.  Better to return an error and reset the system.
		 */
1118
		return -EIO;
1119 1120 1121 1122 1123 1124 1125
	}

	/* a fatal communication error; need either to reset or to fallback
	 * to the single_cmd mode
	 */
	if (bus->allow_bus_reset && !bus->response_reset && !bus->in_reset) {
		bus->response_reset = 1;
1126
		return -EAGAIN; /* give a chance to retry */
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
	}

	dev_err(chip->card->dev,
		"azx_get_response timeout, switching to single_cmd mode: last cmd=0x%08x\n",
		chip->last_cmd[addr]);
	chip->single_cmd = 1;
	bus->response_reset = 0;
	/* release CORB/RIRB */
	azx_free_cmd_io(chip);
	/* disable unsolicited responses */
T
Takashi Iwai 已提交
1137
	azx_writel(chip, GCTL, azx_readl(chip, GCTL) & ~AZX_GCTL_UNSOL);
1138
	return -EIO;
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
}

/*
 * Use the single immediate command instead of CORB/RIRB for simplicity
 *
 * Note: according to Intel, this is not preferred use.  The command was
 *       intended for the BIOS only, and may get confused with unsolicited
 *       responses.  So, we shouldn't use it for normal operation from the
 *       driver.
 *       I left the codes, however, for debugging/testing purposes.
 */

/* receive a response */
static int azx_single_wait_for_response(struct azx *chip, unsigned int addr)
{
	int timeout = 50;

	while (timeout--) {
		/* check IRV busy bit */
T
Takashi Iwai 已提交
1158
		if (azx_readw(chip, IRS) & AZX_IRS_VALID) {
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
			/* reuse rirb.res as the response return value */
			chip->rirb.res[addr] = azx_readl(chip, IR);
			return 0;
		}
		udelay(1);
	}
	if (printk_ratelimit())
		dev_dbg(chip->card->dev, "get_response timeout: IRS=0x%x\n",
			azx_readw(chip, IRS));
	chip->rirb.res[addr] = -1;
	return -EIO;
}

/* send a command */
static int azx_single_send_cmd(struct hda_bus *bus, u32 val)
{
	struct azx *chip = bus->private_data;
	unsigned int addr = azx_command_addr(val);
	int timeout = 50;

	while (timeout--) {
		/* check ICB busy bit */
T
Takashi Iwai 已提交
1181
		if (!((azx_readw(chip, IRS) & AZX_IRS_BUSY))) {
1182 1183
			/* Clear IRV valid bit */
			azx_writew(chip, IRS, azx_readw(chip, IRS) |
T
Takashi Iwai 已提交
1184
				   AZX_IRS_VALID);
1185 1186
			azx_writel(chip, IC, val);
			azx_writew(chip, IRS, azx_readw(chip, IRS) |
T
Takashi Iwai 已提交
1187
				   AZX_IRS_BUSY);
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
			return azx_single_wait_for_response(chip, addr);
		}
		udelay(1);
	}
	if (printk_ratelimit())
		dev_dbg(chip->card->dev,
			"send_cmd timeout: IRS=0x%x, val=0x%x\n",
			azx_readw(chip, IRS), val);
	return -EIO;
}

/* receive a response */
1200 1201
static int azx_single_get_response(struct hda_bus *bus, unsigned int addr,
				   unsigned int *res)
1202 1203
{
	struct azx *chip = bus->private_data;
1204 1205 1206 1207

	if (res)
		*res = chip->rirb.res[addr];
	return 0;
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
}

/*
 * The below are the main callbacks from hda_codec.
 *
 * They are just the skeleton to call sub-callbacks according to the
 * current setting of chip->single_cmd.
 */

/* send a command */
1218
static int azx_send_cmd(struct hdac_bus *_bus, unsigned int val)
1219
{
1220
	struct hda_bus *bus = to_hda_bus(_bus);
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
	struct azx *chip = bus->private_data;

	if (chip->disabled)
		return 0;
	chip->last_cmd[azx_command_addr(val)] = val;
	if (chip->single_cmd)
		return azx_single_send_cmd(bus, val);
	else
		return azx_corb_send_cmd(bus, val);
}

/* get a response */
1233
static int azx_get_response(struct hdac_bus *_bus, unsigned int addr,
1234
			    unsigned int *res)
1235
{
1236
	struct hda_bus *bus = to_hda_bus(_bus);
1237 1238 1239 1240
	struct azx *chip = bus->private_data;
	if (chip->disabled)
		return 0;
	if (chip->single_cmd)
1241
		return azx_single_get_response(bus, addr, res);
1242
	else
1243
		return azx_rirb_get_response(bus, addr, res);
1244 1245
}

1246 1247 1248 1249 1250
static const struct hdac_bus_ops bus_core_ops = {
	.command = azx_send_cmd,
	.get_response = azx_get_response,
};

1251 1252 1253 1254 1255 1256 1257 1258 1259
#ifdef CONFIG_SND_HDA_DSP_LOADER
/*
 * DSP loading code (e.g. for CA0132)
 */

/* use the first stream for loading DSP */
static struct azx_dev *
azx_get_dsp_loader_dev(struct azx *chip)
{
1260 1261 1262 1263 1264 1265 1266 1267
	struct hdac_bus *bus = azx_bus(chip);
	struct hdac_stream *s;

	list_for_each_entry(s, &bus->stream_list, list)
		if (s->index == chip->playback_index_offset)
			return stream_to_azx_dev(s);

	return NULL;
1268 1269
}

1270 1271 1272
static int azx_load_dsp_prepare(struct hda_bus *bus, unsigned int format,
				unsigned int byte_size,
				struct snd_dma_buffer *bufp)
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
{
	u32 *bdl;
	struct azx *chip = bus->private_data;
	struct azx_dev *azx_dev;
	int err;

	azx_dev = azx_get_dsp_loader_dev(chip);

	dsp_lock(azx_dev);
	spin_lock_irq(&chip->reg_lock);
1283
	if (azx_dev->core.running || azx_dev->core.locked) {
1284 1285 1286 1287 1288 1289
		spin_unlock_irq(&chip->reg_lock);
		err = -EBUSY;
		goto unlock;
	}
	azx_dev->prepared = 0;
	chip->saved_azx_dev = *azx_dev;
1290
	azx_dev->core.locked = 1;
1291 1292
	spin_unlock_irq(&chip->reg_lock);

1293 1294
	err = chip->io_ops->dma_alloc_pages(&bus->core, SNDRV_DMA_TYPE_DEV_SG,
					    byte_size, bufp);
1295 1296 1297
	if (err < 0)
		goto err_alloc;

1298 1299 1300
	azx_dev->core.bufsize = byte_size;
	azx_dev->core.period_bytes = byte_size;
	azx_dev->core.format_val = format;
1301

1302
	snd_hdac_stream_reset(azx_stream(azx_dev));
1303 1304 1305 1306 1307

	/* reset BDL address */
	azx_sd_writel(chip, azx_dev, SD_BDLPL, 0);
	azx_sd_writel(chip, azx_dev, SD_BDLPU, 0);

1308 1309
	azx_dev->core.frags = 0;
	bdl = (u32 *)azx_dev->core.bdl.area;
1310 1311 1312 1313 1314 1315
	err = setup_bdle(chip, bufp, azx_dev, &bdl, 0, byte_size, 0);
	if (err < 0)
		goto error;

	azx_setup_controller(chip, azx_dev);
	dsp_unlock(azx_dev);
1316
	return azx_dev->core.stream_tag;
1317 1318

 error:
1319
	chip->io_ops->dma_free_pages(&bus->core, bufp);
1320 1321
 err_alloc:
	spin_lock_irq(&chip->reg_lock);
1322
	if (azx_dev->core.opened)
1323
		*azx_dev = chip->saved_azx_dev;
1324
	azx_dev->core.locked = 0;
1325 1326 1327 1328 1329 1330
	spin_unlock_irq(&chip->reg_lock);
 unlock:
	dsp_unlock(azx_dev);
	return err;
}

1331
static void azx_load_dsp_trigger(struct hda_bus *bus, bool start)
1332 1333 1334 1335 1336
{
	struct azx *chip = bus->private_data;
	struct azx_dev *azx_dev = azx_get_dsp_loader_dev(chip);

	if (start)
1337
		snd_hdac_stream_start(azx_stream(azx_dev), false);
1338
	else
1339
		snd_hdac_stream_stop(azx_stream(azx_dev));
1340 1341
}

1342 1343
static void azx_load_dsp_cleanup(struct hda_bus *bus,
				 struct snd_dma_buffer *dmab)
1344 1345 1346 1347
{
	struct azx *chip = bus->private_data;
	struct azx_dev *azx_dev = azx_get_dsp_loader_dev(chip);

1348
	if (!dmab->area || !azx_dev->core.locked)
1349 1350 1351 1352 1353 1354 1355
		return;

	dsp_lock(azx_dev);
	/* reset BDL address */
	azx_sd_writel(chip, azx_dev, SD_BDLPL, 0);
	azx_sd_writel(chip, azx_dev, SD_BDLPU, 0);
	azx_sd_writel(chip, azx_dev, SD_CTL, 0);
1356 1357 1358
	azx_dev->core.bufsize = 0;
	azx_dev->core.period_bytes = 0;
	azx_dev->core.format_val = 0;
1359

1360
	chip->io_ops->dma_free_pages(&bus->core, dmab);
1361 1362 1363
	dmab->area = NULL;

	spin_lock_irq(&chip->reg_lock);
1364
	if (azx_dev->core.opened)
1365
		*azx_dev = chip->saved_azx_dev;
1366
	azx_dev->core.locked = 0;
1367 1368 1369 1370 1371
	spin_unlock_irq(&chip->reg_lock);
	dsp_unlock(azx_dev);
}
#endif /* CONFIG_SND_HDA_DSP_LOADER */

1372 1373
int azx_alloc_stream_pages(struct azx *chip)
{
1374 1375 1376
	struct hdac_bus *bus = azx_bus(chip);
	struct hdac_stream *s;
	int err;
1377

1378
	list_for_each_entry(s, &bus->stream_list, list) {
1379
		/* allocate memory for the BDL for each stream */
1380
		err = chip->io_ops->dma_alloc_pages(azx_bus(chip), SNDRV_DMA_TYPE_DEV,
1381
						 BDL_SIZE, &s->bdl);
1382
		if (err < 0)
1383 1384
			return -ENOMEM;
	}
1385

1386
	/* allocate memory for the position buffer */
1387
	err = chip->io_ops->dma_alloc_pages(azx_bus(chip), SNDRV_DMA_TYPE_DEV,
1388
					 chip->num_streams * 8, &chip->posbuf);
1389
	if (err < 0)
1390
		return -ENOMEM;
1391 1392 1393 1394 1395

	/* allocate CORB/RIRB */
	err = azx_alloc_cmd_io(chip);
	if (err < 0)
		return err;
1396 1397 1398 1399 1400 1401
	return 0;
}
EXPORT_SYMBOL_GPL(azx_alloc_stream_pages);

void azx_free_stream_pages(struct azx *chip)
{
1402 1403 1404 1405 1406 1407 1408
	struct hdac_bus *bus = azx_bus(chip);
	struct hdac_stream *s, *next;

	list_for_each_entry_safe(s, next, &bus->stream_list, list) {
		if (s->bdl.area)
			chip->io_ops->dma_free_pages(azx_bus(chip), &s->bdl);
		kfree(s);
1409
	}
1410

1411
	if (chip->rb.area)
1412
		chip->io_ops->dma_free_pages(azx_bus(chip), &chip->rb);
1413
	if (chip->posbuf.area)
1414
		chip->io_ops->dma_free_pages(azx_bus(chip), &chip->posbuf);
1415 1416 1417
}
EXPORT_SYMBOL_GPL(azx_free_stream_pages);

1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
/*
 * Lowlevel interface
 */

/* enter link reset */
void azx_enter_link_reset(struct azx *chip)
{
	unsigned long timeout;

	/* reset controller */
T
Takashi Iwai 已提交
1428
	azx_writel(chip, GCTL, azx_readl(chip, GCTL) & ~AZX_GCTL_RESET);
1429 1430

	timeout = jiffies + msecs_to_jiffies(100);
T
Takashi Iwai 已提交
1431
	while ((azx_readb(chip, GCTL) & AZX_GCTL_RESET) &&
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
			time_before(jiffies, timeout))
		usleep_range(500, 1000);
}
EXPORT_SYMBOL_GPL(azx_enter_link_reset);

/* exit link reset */
static void azx_exit_link_reset(struct azx *chip)
{
	unsigned long timeout;

T
Takashi Iwai 已提交
1442
	azx_writeb(chip, GCTL, azx_readb(chip, GCTL) | AZX_GCTL_RESET);
1443 1444 1445 1446 1447 1448 1449 1450

	timeout = jiffies + msecs_to_jiffies(100);
	while (!azx_readb(chip, GCTL) &&
			time_before(jiffies, timeout))
		usleep_range(500, 1000);
}

/* reset codec link */
1451
static int azx_reset(struct azx *chip, bool full_reset)
1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
{
	if (!full_reset)
		goto __skip;

	/* clear STATESTS */
	azx_writew(chip, STATESTS, STATESTS_INT_MASK);

	/* reset controller */
	azx_enter_link_reset(chip);

	/* delay for >= 100us for codec PLL to settle per spec
	 * Rev 0.9 section 5.5.1
	 */
	usleep_range(500, 1000);

	/* Bring controller out of reset */
	azx_exit_link_reset(chip);

	/* Brent Chartrand said to wait >= 540us for codecs to initialize */
	usleep_range(1000, 1200);

      __skip:
	/* check to see if controller is ready */
	if (!azx_readb(chip, GCTL)) {
		dev_dbg(chip->card->dev, "azx_reset: controller not ready!\n");
		return -EBUSY;
	}

	/* Accept unsolicited responses */
	if (!chip->single_cmd)
		azx_writel(chip, GCTL, azx_readl(chip, GCTL) |
T
Takashi Iwai 已提交
1483
			   AZX_GCTL_UNSOL);
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499

	/* detect codecs */
	if (!chip->codec_mask) {
		chip->codec_mask = azx_readw(chip, STATESTS);
		dev_dbg(chip->card->dev, "codec_mask = 0x%x\n",
			chip->codec_mask);
	}

	return 0;
}

/* enable interrupts */
static void azx_int_enable(struct azx *chip)
{
	/* enable controller CIE and GIE */
	azx_writel(chip, INTCTL, azx_readl(chip, INTCTL) |
T
Takashi Iwai 已提交
1500
		   AZX_INT_CTRL_EN | AZX_INT_GLOBAL_EN);
1501 1502 1503 1504 1505
}

/* disable interrupts */
static void azx_int_disable(struct azx *chip)
{
1506 1507
	struct hdac_bus *bus = azx_bus(chip);
	struct hdac_stream *s;
1508 1509

	/* disable interrupts in stream descriptor */
1510 1511
	list_for_each_entry(s, &bus->stream_list, list)
		snd_hdac_stream_updateb(s, SD_CTL, SD_INT_MASK, 0);
1512 1513 1514 1515 1516 1517

	/* disable SIE for all streams */
	azx_writeb(chip, INTCTL, 0);

	/* disable controller CIE and GIE */
	azx_writel(chip, INTCTL, azx_readl(chip, INTCTL) &
T
Takashi Iwai 已提交
1518
		   ~(AZX_INT_CTRL_EN | AZX_INT_GLOBAL_EN));
1519 1520 1521 1522 1523
}

/* clear interrupts */
static void azx_int_clear(struct azx *chip)
{
1524 1525
	struct hdac_bus *bus = azx_bus(chip);
	struct hdac_stream *s;
1526 1527

	/* clear stream status */
1528 1529
	list_for_each_entry(s, &bus->stream_list, list)
		snd_hdac_stream_writeb(s, SD_STS, SD_INT_MASK);
1530 1531 1532 1533 1534 1535 1536 1537

	/* clear STATESTS */
	azx_writew(chip, STATESTS, STATESTS_INT_MASK);

	/* clear rirb status */
	azx_writeb(chip, RIRBSTS, RIRB_INT_MASK);

	/* clear int status */
T
Takashi Iwai 已提交
1538
	azx_writel(chip, INTSTS, AZX_INT_CTRL_EN | AZX_INT_ALL_STREAM);
1539 1540 1541 1542 1543
}

/*
 * reset and start the controller registers
 */
1544
void azx_init_chip(struct azx *chip, bool full_reset)
1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
{
	if (chip->initialized)
		return;

	/* reset controller */
	azx_reset(chip, full_reset);

	/* initialize interrupts */
	azx_int_clear(chip);
	azx_int_enable(chip);

	/* initialize the codec command I/O */
	if (!chip->single_cmd)
		azx_init_cmd_io(chip);

	/* program the position buffer */
	azx_writel(chip, DPLBASE, (u32)chip->posbuf.addr);
	azx_writel(chip, DPUBASE, upper_32_bits(chip->posbuf.addr));

	chip->initialized = 1;
}
EXPORT_SYMBOL_GPL(azx_init_chip);

1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
void azx_stop_all_streams(struct azx *chip)
{
	struct hdac_bus *bus = azx_bus(chip);
	struct hdac_stream *s;

	list_for_each_entry(s, &bus->stream_list, list)
		snd_hdac_stream_stop(s);
}
EXPORT_SYMBOL_GPL(azx_stop_all_streams);

1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
void azx_stop_chip(struct azx *chip)
{
	if (!chip->initialized)
		return;

	/* disable interrupts */
	azx_int_disable(chip);
	azx_int_clear(chip);

	/* disable CORB/RIRB */
	azx_free_cmd_io(chip);

	/* disable position buffer */
	azx_writel(chip, DPLBASE, 0);
	azx_writel(chip, DPUBASE, 0);

	chip->initialized = 0;
}
1596
EXPORT_SYMBOL_GPL(azx_stop_chip);
1597

1598 1599 1600
/*
 * interrupt handler
 */
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
static void stream_update(struct hdac_bus *bus, struct hdac_stream *s)
{
	struct hda_bus *hbus = container_of(bus, struct hda_bus, core);
	struct azx *chip = hbus->private_data;
	struct azx_dev *azx_dev = stream_to_azx_dev(s);

	/* check whether this IRQ is really acceptable */
	if (!chip->ops->position_check ||
	    chip->ops->position_check(chip, azx_dev)) {
		spin_unlock(&chip->reg_lock);
		snd_pcm_period_elapsed(azx_dev->core.substream);
		spin_lock(&chip->reg_lock);
	}
}

1616 1617 1618
irqreturn_t azx_interrupt(int irq, void *dev_id)
{
	struct azx *chip = dev_id;
1619
	struct hdac_bus *bus = azx_bus(chip);
1620 1621
	u32 status;

1622
#ifdef CONFIG_PM
1623
	if (azx_has_pm_runtime(chip))
1624
		if (!pm_runtime_active(chip->card->dev))
1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
			return IRQ_NONE;
#endif

	spin_lock(&chip->reg_lock);

	if (chip->disabled) {
		spin_unlock(&chip->reg_lock);
		return IRQ_NONE;
	}

	status = azx_readl(chip, INTSTS);
	if (status == 0 || status == 0xffffffff) {
		spin_unlock(&chip->reg_lock);
		return IRQ_NONE;
	}

1641
	snd_hdac_bus_handle_stream_irq(bus, status, stream_update);
1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659

	/* clear rirb int */
	status = azx_readb(chip, RIRBSTS);
	if (status & RIRB_INT_MASK) {
		if (status & RIRB_INT_RESPONSE) {
			if (chip->driver_caps & AZX_DCAPS_RIRB_PRE_DELAY)
				udelay(80);
			azx_update_rirb(chip);
		}
		azx_writeb(chip, RIRBSTS, RIRB_INT_MASK);
	}

	spin_unlock(&chip->reg_lock);

	return IRQ_HANDLED;
}
EXPORT_SYMBOL_GPL(azx_interrupt);

1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
/*
 * Codec initerface
 */

/*
 * Probe the given codec address
 */
static int probe_codec(struct azx *chip, int addr)
{
	unsigned int cmd = (addr << 28) | (AC_NODE_ROOT << 20) |
		(AC_VERB_PARAMETERS << 8) | AC_PAR_VENDOR_ID;
1671
	struct hdac_bus *bus = azx_bus(chip);
1672
	int err;
1673 1674
	unsigned int res;

1675
	mutex_lock(&bus->cmd_mutex);
1676
	chip->probing = 1;
1677 1678
	azx_send_cmd(bus, cmd);
	err = azx_get_response(bus, addr, &res);
1679
	chip->probing = 0;
1680
	mutex_unlock(&bus->cmd_mutex);
1681
	if (err < 0 || res == -1)
1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
		return -EIO;
	dev_dbg(chip->card->dev, "codec #%d probed OK\n", addr);
	return 0;
}

static void azx_bus_reset(struct hda_bus *bus)
{
	struct azx *chip = bus->private_data;

	bus->in_reset = 1;
	azx_stop_chip(chip);
1693
	azx_init_chip(chip, true);
1694 1695
	if (chip->initialized)
		snd_hda_bus_reset(chip->bus);
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
	bus->in_reset = 0;
}

static int get_jackpoll_interval(struct azx *chip)
{
	int i;
	unsigned int j;

	if (!chip->jackpoll_ms)
		return 0;

	i = chip->jackpoll_ms[chip->dev_index];
	if (i == 0)
		return 0;
	if (i < 50 || i > 60000)
		j = 0;
	else
		j = msecs_to_jiffies(i);
	if (j == 0)
		dev_warn(chip->card->dev,
			 "jackpoll_ms value out of range: %d\n", i);
	return j;
}

1720 1721 1722 1723 1724 1725 1726 1727 1728 1729
static struct hda_bus_ops bus_ops = {
	.attach_pcm = azx_attach_pcm_stream,
	.bus_reset = azx_bus_reset,
#ifdef CONFIG_SND_HDA_DSP_LOADER
	.load_dsp_prepare = azx_load_dsp_prepare,
	.load_dsp_trigger = azx_load_dsp_trigger,
	.load_dsp_cleanup = azx_load_dsp_cleanup,
#endif
};

1730
/* HD-audio bus initialization */
1731
int azx_bus_create(struct azx *chip, const char *model)
1732
{
1733
	struct hda_bus *bus;
1734
	int err;
1735

1736
	err = snd_hda_bus_new(chip->card, &bus_core_ops, chip->io_ops, &bus);
1737 1738 1739
	if (err < 0)
		return err;

1740 1741 1742 1743 1744 1745
	chip->bus = bus;
	bus->private_data = chip;
	bus->pci = chip->pci;
	bus->modelname = model;
	bus->ops = bus_ops;

1746 1747
	if (chip->driver_caps & AZX_DCAPS_RIRB_DELAY) {
		dev_dbg(chip->card->dev, "Enable delay in RIRB handling\n");
1748
		bus->needs_damn_long_delay = 1;
1749 1750
	}

1751 1752 1753 1754 1755 1756
	/* AMD chipsets often cause the communication stalls upon certain
	 * sequence like the pin-detection.  It seems that forcing the synced
	 * access works around the stall.  Grrr...
	 */
	if (chip->driver_caps & AZX_DCAPS_SYNC_WRITE) {
		dev_dbg(chip->card->dev, "Enable sync_write for stable communication\n");
1757
		bus->core.sync_write = 1;
1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770
		bus->allow_bus_reset = 1;
	}

	return 0;
}
EXPORT_SYMBOL_GPL(azx_bus_create);

/* Probe codecs */
int azx_probe_codecs(struct azx *chip, unsigned int max_slots)
{
	struct hda_bus *bus = chip->bus;
	int c, codecs, err;

1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792
	codecs = 0;
	if (!max_slots)
		max_slots = AZX_DEFAULT_CODECS;

	/* First try to probe all given codec slots */
	for (c = 0; c < max_slots; c++) {
		if ((chip->codec_mask & (1 << c)) & chip->codec_probe_mask) {
			if (probe_codec(chip, c) < 0) {
				/* Some BIOSen give you wrong codec addresses
				 * that don't exist
				 */
				dev_warn(chip->card->dev,
					 "Codec #%d probe error; disabling it...\n", c);
				chip->codec_mask &= ~(1 << c);
				/* More badly, accessing to a non-existing
				 * codec often screws up the controller chip,
				 * and disturbs the further communications.
				 * Thus if an error occurs during probing,
				 * better to reset the controller chip to
				 * get back to the sanity state.
				 */
				azx_stop_chip(chip);
1793
				azx_init_chip(chip, true);
1794 1795 1796 1797 1798 1799 1800 1801
			}
		}
	}

	/* Then create codec instances */
	for (c = 0; c < max_slots; c++) {
		if ((chip->codec_mask & (1 << c)) & chip->codec_probe_mask) {
			struct hda_codec *codec;
1802
			err = snd_hda_codec_new(bus, bus->card, c, &codec);
1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815
			if (err < 0)
				continue;
			codec->jackpoll_interval = get_jackpoll_interval(chip);
			codec->beep_mode = chip->beep_mode;
			codecs++;
		}
	}
	if (!codecs) {
		dev_err(chip->card->dev, "no codecs initialized\n");
		return -ENXIO;
	}
	return 0;
}
1816
EXPORT_SYMBOL_GPL(azx_probe_codecs);
1817 1818 1819 1820 1821

/* configure each codec instance */
int azx_codec_configure(struct azx *chip)
{
	struct hda_codec *codec;
1822
	list_for_each_codec(codec, chip->bus) {
1823 1824 1825 1826 1827 1828
		snd_hda_codec_configure(codec);
	}
	return 0;
}
EXPORT_SYMBOL_GPL(azx_codec_configure);

1829
static int stream_direction(struct azx *chip, unsigned char index)
1830
{
1831 1832 1833 1834
	if (index >= chip->capture_index_offset &&
	    index < chip->capture_index_offset + chip->capture_streams)
		return SNDRV_PCM_STREAM_CAPTURE;
	return SNDRV_PCM_STREAM_PLAYBACK;
1835 1836
}

1837 1838 1839 1840
/* initialize SD streams */
int azx_init_stream(struct azx *chip)
{
	int i;
1841
	int stream_tags[2] = { 0, 0 };
1842 1843 1844 1845 1846 1847

	/* initialize each stream (aka device)
	 * assign the starting bdl address to each stream (device)
	 * and initialize
	 */
	for (i = 0; i < chip->num_streams; i++) {
1848 1849 1850 1851 1852
		struct azx_dev *azx_dev = kzalloc(sizeof(*azx_dev), GFP_KERNEL);
		int dir, tag;

		if (!azx_dev)
			return -ENOMEM;
1853

1854
		dir = stream_direction(chip, i);
1855 1856 1857 1858 1859 1860 1861
		/* stream tag must be unique throughout
		 * the stream direction group,
		 * valid values 1...15
		 * use separate stream tag if the flag
		 * AZX_DCAPS_SEPARATE_STREAM_TAG is used
		 */
		if (chip->driver_caps & AZX_DCAPS_SEPARATE_STREAM_TAG)
1862
			tag = ++stream_tags[dir];
1863
		else
1864 1865 1866
			tag = i + 1;
		snd_hdac_stream_init(azx_bus(chip), azx_stream(azx_dev),
				     i, dir, tag);
1867 1868 1869 1870 1871
	}

	return 0;
}
EXPORT_SYMBOL_GPL(azx_init_stream);