perf_event_intel_ds.c 36.0 KB
Newer Older
1 2 3
#include <linux/bitops.h>
#include <linux/types.h>
#include <linux/slab.h>
4

5
#include <asm/perf_event.h>
6
#include <asm/insn.h>
7 8

#include "perf_event.h"
9 10 11 12 13

/* The size of a BTS record in bytes: */
#define BTS_RECORD_SIZE		24

#define BTS_BUFFER_SIZE		(PAGE_SIZE << 4)
14
#define PEBS_BUFFER_SIZE	(PAGE_SIZE << 4)
15
#define PEBS_FIXUP_SIZE		PAGE_SIZE
16 17 18 19 20 21 22 23 24 25 26 27

/*
 * pebs_record_32 for p4 and core not supported

struct pebs_record_32 {
	u32 flags, ip;
	u32 ax, bc, cx, dx;
	u32 si, di, bp, sp;
};

 */

28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
union intel_x86_pebs_dse {
	u64 val;
	struct {
		unsigned int ld_dse:4;
		unsigned int ld_stlb_miss:1;
		unsigned int ld_locked:1;
		unsigned int ld_reserved:26;
	};
	struct {
		unsigned int st_l1d_hit:1;
		unsigned int st_reserved1:3;
		unsigned int st_stlb_miss:1;
		unsigned int st_locked:1;
		unsigned int st_reserved2:26;
	};
};


/*
 * Map PEBS Load Latency Data Source encodings to generic
 * memory data source information
 */
#define P(a, b) PERF_MEM_S(a, b)
#define OP_LH (P(OP, LOAD) | P(LVL, HIT))
#define SNOOP_NONE_MISS (P(SNOOP, NONE) | P(SNOOP, MISS))

static const u64 pebs_data_source[] = {
	P(OP, LOAD) | P(LVL, MISS) | P(LVL, L3) | P(SNOOP, NA),/* 0x00:ukn L3 */
	OP_LH | P(LVL, L1)  | P(SNOOP, NONE),	/* 0x01: L1 local */
	OP_LH | P(LVL, LFB) | P(SNOOP, NONE),	/* 0x02: LFB hit */
	OP_LH | P(LVL, L2)  | P(SNOOP, NONE),	/* 0x03: L2 hit */
	OP_LH | P(LVL, L3)  | P(SNOOP, NONE),	/* 0x04: L3 hit */
	OP_LH | P(LVL, L3)  | P(SNOOP, MISS),	/* 0x05: L3 hit, snoop miss */
	OP_LH | P(LVL, L3)  | P(SNOOP, HIT),	/* 0x06: L3 hit, snoop hit */
	OP_LH | P(LVL, L3)  | P(SNOOP, HITM),	/* 0x07: L3 hit, snoop hitm */
	OP_LH | P(LVL, REM_CCE1) | P(SNOOP, HIT),  /* 0x08: L3 miss snoop hit */
	OP_LH | P(LVL, REM_CCE1) | P(SNOOP, HITM), /* 0x09: L3 miss snoop hitm*/
	OP_LH | P(LVL, LOC_RAM)  | P(SNOOP, HIT),  /* 0x0a: L3 miss, shared */
	OP_LH | P(LVL, REM_RAM1) | P(SNOOP, HIT),  /* 0x0b: L3 miss, shared */
	OP_LH | P(LVL, LOC_RAM)  | SNOOP_NONE_MISS,/* 0x0c: L3 miss, excl */
	OP_LH | P(LVL, REM_RAM1) | SNOOP_NONE_MISS,/* 0x0d: L3 miss, excl */
	OP_LH | P(LVL, IO)  | P(SNOOP, NONE), /* 0x0e: I/O */
	OP_LH | P(LVL, UNC) | P(SNOOP, NONE), /* 0x0f: uncached */
};

73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
static u64 precise_store_data(u64 status)
{
	union intel_x86_pebs_dse dse;
	u64 val = P(OP, STORE) | P(SNOOP, NA) | P(LVL, L1) | P(TLB, L2);

	dse.val = status;

	/*
	 * bit 4: TLB access
	 * 1 = stored missed 2nd level TLB
	 *
	 * so it either hit the walker or the OS
	 * otherwise hit 2nd level TLB
	 */
	if (dse.st_stlb_miss)
		val |= P(TLB, MISS);
	else
		val |= P(TLB, HIT);

	/*
	 * bit 0: hit L1 data cache
	 * if not set, then all we know is that
	 * it missed L1D
	 */
	if (dse.st_l1d_hit)
		val |= P(LVL, HIT);
	else
		val |= P(LVL, MISS);

	/*
	 * bit 5: Locked prefix
	 */
	if (dse.st_locked)
		val |= P(LOCK, LOCKED);

	return val;
}

111
static u64 precise_datala_hsw(struct perf_event *event, u64 status)
112 113 114
{
	union perf_mem_data_src dse;

115 116 117 118 119 120
	dse.val = PERF_MEM_NA;

	if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW)
		dse.mem_op = PERF_MEM_OP_STORE;
	else if (event->hw.flags & PERF_X86_EVENT_PEBS_LD_HSW)
		dse.mem_op = PERF_MEM_OP_LOAD;
121 122 123 124 125 126 127 128 129

	/*
	 * L1 info only valid for following events:
	 *
	 * MEM_UOPS_RETIRED.STLB_MISS_STORES
	 * MEM_UOPS_RETIRED.LOCK_STORES
	 * MEM_UOPS_RETIRED.SPLIT_STORES
	 * MEM_UOPS_RETIRED.ALL_STORES
	 */
130 131 132 133 134 135
	if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW) {
		if (status & 1)
			dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_HIT;
		else
			dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_MISS;
	}
136 137 138
	return dse.val;
}

139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
static u64 load_latency_data(u64 status)
{
	union intel_x86_pebs_dse dse;
	u64 val;
	int model = boot_cpu_data.x86_model;
	int fam = boot_cpu_data.x86;

	dse.val = status;

	/*
	 * use the mapping table for bit 0-3
	 */
	val = pebs_data_source[dse.ld_dse];

	/*
	 * Nehalem models do not support TLB, Lock infos
	 */
	if (fam == 0x6 && (model == 26 || model == 30
	    || model == 31 || model == 46)) {
		val |= P(TLB, NA) | P(LOCK, NA);
		return val;
	}
	/*
	 * bit 4: TLB access
	 * 0 = did not miss 2nd level TLB
	 * 1 = missed 2nd level TLB
	 */
	if (dse.ld_stlb_miss)
		val |= P(TLB, MISS) | P(TLB, L2);
	else
		val |= P(TLB, HIT) | P(TLB, L1) | P(TLB, L2);

	/*
	 * bit 5: locked prefix
	 */
	if (dse.ld_locked)
		val |= P(LOCK, LOCKED);

	return val;
}

180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
struct pebs_record_core {
	u64 flags, ip;
	u64 ax, bx, cx, dx;
	u64 si, di, bp, sp;
	u64 r8,  r9,  r10, r11;
	u64 r12, r13, r14, r15;
};

struct pebs_record_nhm {
	u64 flags, ip;
	u64 ax, bx, cx, dx;
	u64 si, di, bp, sp;
	u64 r8,  r9,  r10, r11;
	u64 r12, r13, r14, r15;
	u64 status, dla, dse, lat;
};

197 198 199 200
/*
 * Same as pebs_record_nhm, with two additional fields.
 */
struct pebs_record_hsw {
201 202 203 204 205 206
	u64 flags, ip;
	u64 ax, bx, cx, dx;
	u64 si, di, bp, sp;
	u64 r8,  r9,  r10, r11;
	u64 r12, r13, r14, r15;
	u64 status, dla, dse, lat;
207
	u64 real_ip, tsx_tuning;
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
};

union hsw_tsx_tuning {
	struct {
		u32 cycles_last_block     : 32,
		    hle_abort		  : 1,
		    rtm_abort		  : 1,
		    instruction_abort     : 1,
		    non_instruction_abort : 1,
		    retry		  : 1,
		    data_conflict	  : 1,
		    capacity_writes	  : 1,
		    capacity_reads	  : 1;
	};
	u64	    value;
223 224
};

225 226
#define PEBS_HSW_TSX_FLAGS	0xff00000000ULL

227 228 229 230 231 232 233 234 235 236 237 238 239
/* Same as HSW, plus TSC */

struct pebs_record_skl {
	u64 flags, ip;
	u64 ax, bx, cx, dx;
	u64 si, di, bp, sp;
	u64 r8,  r9,  r10, r11;
	u64 r12, r13, r14, r15;
	u64 status, dla, dse, lat;
	u64 real_ip, tsx_tuning;
	u64 tsc;
};

240
void init_debug_store_on_cpu(int cpu)
241 242 243 244 245 246 247 248 249 250 251
{
	struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;

	if (!ds)
		return;

	wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA,
		     (u32)((u64)(unsigned long)ds),
		     (u32)((u64)(unsigned long)ds >> 32));
}

252
void fini_debug_store_on_cpu(int cpu)
253 254 255 256 257 258 259
{
	if (!per_cpu(cpu_hw_events, cpu).ds)
		return;

	wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 0, 0);
}

260 261
static DEFINE_PER_CPU(void *, insn_buffer);

262 263 264
static int alloc_pebs_buffer(int cpu)
{
	struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
265
	int node = cpu_to_node(cpu);
266
	int max;
267
	void *buffer, *ibuffer;
268 269 270 271

	if (!x86_pmu.pebs)
		return 0;

272
	buffer = kzalloc_node(PEBS_BUFFER_SIZE, GFP_KERNEL, node);
273 274 275
	if (unlikely(!buffer))
		return -ENOMEM;

276 277 278 279 280 281 282 283 284 285 286 287 288
	/*
	 * HSW+ already provides us the eventing ip; no need to allocate this
	 * buffer then.
	 */
	if (x86_pmu.intel_cap.pebs_format < 2) {
		ibuffer = kzalloc_node(PEBS_FIXUP_SIZE, GFP_KERNEL, node);
		if (!ibuffer) {
			kfree(buffer);
			return -ENOMEM;
		}
		per_cpu(insn_buffer, cpu) = ibuffer;
	}

289 290 291 292 293 294 295 296 297 298
	max = PEBS_BUFFER_SIZE / x86_pmu.pebs_record_size;

	ds->pebs_buffer_base = (u64)(unsigned long)buffer;
	ds->pebs_index = ds->pebs_buffer_base;
	ds->pebs_absolute_maximum = ds->pebs_buffer_base +
		max * x86_pmu.pebs_record_size;

	return 0;
}

299 300 301 302 303 304 305
static void release_pebs_buffer(int cpu)
{
	struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;

	if (!ds || !x86_pmu.pebs)
		return;

306 307 308
	kfree(per_cpu(insn_buffer, cpu));
	per_cpu(insn_buffer, cpu) = NULL;

309 310 311 312
	kfree((void *)(unsigned long)ds->pebs_buffer_base);
	ds->pebs_buffer_base = 0;
}

313 314 315
static int alloc_bts_buffer(int cpu)
{
	struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
316
	int node = cpu_to_node(cpu);
317 318 319 320 321 322
	int max, thresh;
	void *buffer;

	if (!x86_pmu.bts)
		return 0;

323 324 325
	buffer = kzalloc_node(BTS_BUFFER_SIZE, GFP_KERNEL | __GFP_NOWARN, node);
	if (unlikely(!buffer)) {
		WARN_ONCE(1, "%s: BTS buffer allocation failure\n", __func__);
326
		return -ENOMEM;
327
	}
328 329 330 331 332 333 334 335 336 337 338 339 340 341

	max = BTS_BUFFER_SIZE / BTS_RECORD_SIZE;
	thresh = max / 16;

	ds->bts_buffer_base = (u64)(unsigned long)buffer;
	ds->bts_index = ds->bts_buffer_base;
	ds->bts_absolute_maximum = ds->bts_buffer_base +
		max * BTS_RECORD_SIZE;
	ds->bts_interrupt_threshold = ds->bts_absolute_maximum -
		thresh * BTS_RECORD_SIZE;

	return 0;
}

342 343 344 345 346 347 348 349 350 351 352
static void release_bts_buffer(int cpu)
{
	struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;

	if (!ds || !x86_pmu.bts)
		return;

	kfree((void *)(unsigned long)ds->bts_buffer_base);
	ds->bts_buffer_base = 0;
}

353 354
static int alloc_ds_buffer(int cpu)
{
355
	int node = cpu_to_node(cpu);
356 357
	struct debug_store *ds;

358
	ds = kzalloc_node(sizeof(*ds), GFP_KERNEL, node);
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
	if (unlikely(!ds))
		return -ENOMEM;

	per_cpu(cpu_hw_events, cpu).ds = ds;

	return 0;
}

static void release_ds_buffer(int cpu)
{
	struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;

	if (!ds)
		return;

	per_cpu(cpu_hw_events, cpu).ds = NULL;
	kfree(ds);
}

378
void release_ds_buffers(void)
379 380 381 382 383 384 385 386 387 388 389
{
	int cpu;

	if (!x86_pmu.bts && !x86_pmu.pebs)
		return;

	get_online_cpus();
	for_each_online_cpu(cpu)
		fini_debug_store_on_cpu(cpu);

	for_each_possible_cpu(cpu) {
390 391
		release_pebs_buffer(cpu);
		release_bts_buffer(cpu);
392
		release_ds_buffer(cpu);
393 394 395 396
	}
	put_online_cpus();
}

397
void reserve_ds_buffers(void)
398
{
399 400 401 402 403
	int bts_err = 0, pebs_err = 0;
	int cpu;

	x86_pmu.bts_active = 0;
	x86_pmu.pebs_active = 0;
404 405

	if (!x86_pmu.bts && !x86_pmu.pebs)
406
		return;
407

408 409 410 411 412 413
	if (!x86_pmu.bts)
		bts_err = 1;

	if (!x86_pmu.pebs)
		pebs_err = 1;

414 415 416
	get_online_cpus();

	for_each_possible_cpu(cpu) {
417 418 419 420
		if (alloc_ds_buffer(cpu)) {
			bts_err = 1;
			pebs_err = 1;
		}
421

422 423 424 425 426
		if (!bts_err && alloc_bts_buffer(cpu))
			bts_err = 1;

		if (!pebs_err && alloc_pebs_buffer(cpu))
			pebs_err = 1;
427

428
		if (bts_err && pebs_err)
429
			break;
430 431 432 433 434 435
	}

	if (bts_err) {
		for_each_possible_cpu(cpu)
			release_bts_buffer(cpu);
	}
436

437 438 439
	if (pebs_err) {
		for_each_possible_cpu(cpu)
			release_pebs_buffer(cpu);
440 441
	}

442 443 444 445 446 447 448 449 450 451
	if (bts_err && pebs_err) {
		for_each_possible_cpu(cpu)
			release_ds_buffer(cpu);
	} else {
		if (x86_pmu.bts && !bts_err)
			x86_pmu.bts_active = 1;

		if (x86_pmu.pebs && !pebs_err)
			x86_pmu.pebs_active = 1;

452 453 454 455 456 457 458 459 460 461 462
		for_each_online_cpu(cpu)
			init_debug_store_on_cpu(cpu);
	}

	put_online_cpus();
}

/*
 * BTS
 */

463
struct event_constraint bts_constraint =
464
	EVENT_CONSTRAINT(0, 1ULL << INTEL_PMC_IDX_FIXED_BTS, 0);
465

466
void intel_pmu_enable_bts(u64 config)
467 468 469 470 471
{
	unsigned long debugctlmsr;

	debugctlmsr = get_debugctlmsr();

472 473
	debugctlmsr |= DEBUGCTLMSR_TR;
	debugctlmsr |= DEBUGCTLMSR_BTS;
474 475
	if (config & ARCH_PERFMON_EVENTSEL_INT)
		debugctlmsr |= DEBUGCTLMSR_BTINT;
476 477

	if (!(config & ARCH_PERFMON_EVENTSEL_OS))
478
		debugctlmsr |= DEBUGCTLMSR_BTS_OFF_OS;
479 480

	if (!(config & ARCH_PERFMON_EVENTSEL_USR))
481
		debugctlmsr |= DEBUGCTLMSR_BTS_OFF_USR;
482 483 484 485

	update_debugctlmsr(debugctlmsr);
}

486
void intel_pmu_disable_bts(void)
487
{
488
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
489 490 491 492 493 494 495 496
	unsigned long debugctlmsr;

	if (!cpuc->ds)
		return;

	debugctlmsr = get_debugctlmsr();

	debugctlmsr &=
497 498
		~(DEBUGCTLMSR_TR | DEBUGCTLMSR_BTS | DEBUGCTLMSR_BTINT |
		  DEBUGCTLMSR_BTS_OFF_OS | DEBUGCTLMSR_BTS_OFF_USR);
499 500 501 502

	update_debugctlmsr(debugctlmsr);
}

503
int intel_pmu_drain_bts_buffer(void)
504
{
505
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
506 507 508 509 510 511
	struct debug_store *ds = cpuc->ds;
	struct bts_record {
		u64	from;
		u64	to;
		u64	flags;
	};
512
	struct perf_event *event = cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
513
	struct bts_record *at, *base, *top;
514 515 516
	struct perf_output_handle handle;
	struct perf_event_header header;
	struct perf_sample_data data;
517
	unsigned long skip = 0;
518 519 520
	struct pt_regs regs;

	if (!event)
521
		return 0;
522

523
	if (!x86_pmu.bts_active)
524
		return 0;
525

526 527
	base = (struct bts_record *)(unsigned long)ds->bts_buffer_base;
	top  = (struct bts_record *)(unsigned long)ds->bts_index;
528

529
	if (top <= base)
530
		return 0;
531

532 533
	memset(&regs, 0, sizeof(regs));

534 535
	ds->bts_index = ds->bts_buffer_base;

536
	perf_sample_data_init(&data, 0, event->hw.last_period);
537

538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
	/*
	 * BTS leaks kernel addresses in branches across the cpl boundary,
	 * such as traps or system calls, so unless the user is asking for
	 * kernel tracing (and right now it's not possible), we'd need to
	 * filter them out. But first we need to count how many of those we
	 * have in the current batch. This is an extra O(n) pass, however,
	 * it's much faster than the other one especially considering that
	 * n <= 2560 (BTS_BUFFER_SIZE / BTS_RECORD_SIZE * 15/16; see the
	 * alloc_bts_buffer()).
	 */
	for (at = base; at < top; at++) {
		/*
		 * Note that right now *this* BTS code only works if
		 * attr::exclude_kernel is set, but let's keep this extra
		 * check here in case that changes.
		 */
		if (event->attr.exclude_kernel &&
		    (kernel_ip(at->from) || kernel_ip(at->to)))
			skip++;
	}

559 560 561 562 563 564 565
	/*
	 * Prepare a generic sample, i.e. fill in the invariant fields.
	 * We will overwrite the from and to address before we output
	 * the sample.
	 */
	perf_prepare_sample(&header, &data, event, &regs);

566 567
	if (perf_output_begin(&handle, event, header.size *
			      (top - base - skip)))
568
		return 1;
569

570 571 572 573 574 575
	for (at = base; at < top; at++) {
		/* Filter out any records that contain kernel addresses. */
		if (event->attr.exclude_kernel &&
		    (kernel_ip(at->from) || kernel_ip(at->to)))
			continue;

576 577 578 579 580 581 582 583 584 585 586
		data.ip		= at->from;
		data.addr	= at->to;

		perf_output_sample(&handle, &header, &data, event);
	}

	perf_output_end(&handle);

	/* There's new data available. */
	event->hw.interrupts++;
	event->pending_kill = POLL_IN;
587
	return 1;
588 589
}

590 591 592 593 594 595 596 597 598 599 600 601 602
static inline void intel_pmu_drain_pebs_buffer(void)
{
	struct pt_regs regs;

	x86_pmu.drain_pebs(&regs);
}

void intel_pmu_pebs_sched_task(struct perf_event_context *ctx, bool sched_in)
{
	if (!sched_in)
		intel_pmu_drain_pebs_buffer();
}

603 604 605
/*
 * PEBS
 */
606
struct event_constraint intel_core2_pebs_event_constraints[] = {
607 608 609 610 611
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
	INTEL_FLAGS_UEVENT_CONSTRAINT(0xfec1, 0x1), /* X87_OPS_RETIRED.ANY */
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* BR_INST_RETIRED.MISPRED */
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x1fc7, 0x1), /* SIMD_INST_RETURED.ANY */
	INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1),    /* MEM_LOAD_RETIRED.* */
612 613
	/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
	INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x01),
614 615 616
	EVENT_CONSTRAINT_END
};

617
struct event_constraint intel_atom_pebs_event_constraints[] = {
618 619 620
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* MISPREDICTED_BRANCH_RETIRED */
	INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1),    /* MEM_LOAD_RETIRED.* */
621 622
	/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
	INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x01),
623 624
	/* Allow all events as PEBS with no flags */
	INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
625 626 627
	EVENT_CONSTRAINT_END
};

628
struct event_constraint intel_slm_pebs_event_constraints[] = {
629 630
	/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
	INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x1),
631 632
	/* Allow all events as PEBS with no flags */
	INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
633 634 635
	EVENT_CONSTRAINT_END
};

636
struct event_constraint intel_nehalem_pebs_event_constraints[] = {
637
	INTEL_PLD_CONSTRAINT(0x100b, 0xf),      /* MEM_INST_RETIRED.* */
638 639 640
	INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf),    /* MEM_UNCORE_RETIRED.* */
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
	INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf),    /* INST_RETIRED.ANY */
641
	INTEL_EVENT_CONSTRAINT(0xc2, 0xf),    /* UOPS_RETIRED.* */
642 643 644 645 646 647
	INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf),    /* BR_INST_RETIRED.* */
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x02c5, 0xf), /* BR_MISP_RETIRED.NEAR_CALL */
	INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf),    /* SSEX_UOPS_RETIRED.* */
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
	INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf),    /* MEM_LOAD_RETIRED.* */
	INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf),    /* FP_ASSIST.* */
648 649
	/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
	INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x0f),
650 651 652
	EVENT_CONSTRAINT_END
};

653
struct event_constraint intel_westmere_pebs_event_constraints[] = {
654
	INTEL_PLD_CONSTRAINT(0x100b, 0xf),      /* MEM_INST_RETIRED.* */
655 656 657
	INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf),    /* MEM_UNCORE_RETIRED.* */
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
	INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf),    /* INSTR_RETIRED.* */
658
	INTEL_EVENT_CONSTRAINT(0xc2, 0xf),    /* UOPS_RETIRED.* */
659 660 661 662 663 664
	INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf),    /* BR_INST_RETIRED.* */
	INTEL_FLAGS_EVENT_CONSTRAINT(0xc5, 0xf),    /* BR_MISP_RETIRED.* */
	INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf),    /* SSEX_UOPS_RETIRED.* */
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
	INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf),    /* MEM_LOAD_RETIRED.* */
	INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf),    /* FP_ASSIST.* */
665 666
	/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
	INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x0f),
667 668 669
	EVENT_CONSTRAINT_END
};

670
struct event_constraint intel_snb_pebs_event_constraints[] = {
671
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
672
	INTEL_PLD_CONSTRAINT(0x01cd, 0x8),    /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
673
	INTEL_PST_CONSTRAINT(0x02cd, 0x8),    /* MEM_TRANS_RETIRED.PRECISE_STORES */
674 675
	/* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
	INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
676 677 678 679
        INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf),    /* MEM_UOP_RETIRED.* */
        INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
        INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf),    /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
        INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf),    /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
680 681
	/* Allow all events as PEBS with no flags */
	INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
682 683 684
	EVENT_CONSTRAINT_END
};

685
struct event_constraint intel_ivb_pebs_event_constraints[] = {
686
        INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
687
        INTEL_PLD_CONSTRAINT(0x01cd, 0x8),    /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
688
	INTEL_PST_CONSTRAINT(0x02cd, 0x8),    /* MEM_TRANS_RETIRED.PRECISE_STORES */
689 690
	/* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
	INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
691 692
	/* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
	INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c0, 0x2),
693 694 695 696
	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf),    /* MEM_UOP_RETIRED.* */
	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf),    /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf),    /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
697 698
	/* Allow all events as PEBS with no flags */
	INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
699 700 701
        EVENT_CONSTRAINT_END
};

702
struct event_constraint intel_hsw_pebs_event_constraints[] = {
703
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
704 705 706
	INTEL_PLD_CONSTRAINT(0x01cd, 0xf),    /* MEM_TRANS_RETIRED.* */
	/* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
	INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
707 708
	/* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
	INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c0, 0x2),
709
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
710 711 712 713 714 715 716 717 718 719
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd2, 0xf),    /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd3, 0xf),    /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
720 721 722 723 724 725 726
	/* Allow all events as PEBS with no flags */
	INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
	EVENT_CONSTRAINT_END
};

struct event_constraint intel_skl_pebs_event_constraints[] = {
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x1c0, 0x2),	/* INST_RETIRED.PREC_DIST */
727 728
	/* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
	INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c0, 0x2),
729 730
	/* INST_RETIRED.TOTAL_CYCLES_PS (inv=1, cmask=16) (cycles:p). */
	INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x0f),
731 732 733 734 735 736 737 738 739 740 741 742
	INTEL_PLD_CONSTRAINT(0x1cd, 0xf),		      /* MEM_TRANS_RETIRED.* */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x22d0, 0xf), /* MEM_INST_RETIRED.LOCK_STORES */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */
	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf),    /* MEM_LOAD_RETIRED.* */
	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf),    /* MEM_LOAD_L3_HIT_RETIRED.* */
	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf),    /* MEM_LOAD_L3_MISS_RETIRED.* */
743 744
	/* Allow all events as PEBS with no flags */
	INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
745 746 747
	EVENT_CONSTRAINT_END
};

748
struct event_constraint *intel_pebs_constraints(struct perf_event *event)
749 750 751
{
	struct event_constraint *c;

P
Peter Zijlstra 已提交
752
	if (!event->attr.precise_ip)
753 754 755 756
		return NULL;

	if (x86_pmu.pebs_constraints) {
		for_each_event_constraint(c, x86_pmu.pebs_constraints) {
757 758
			if ((event->hw.config & c->cmask) == c->code) {
				event->hw.flags |= c->flags;
759
				return c;
760
			}
761 762 763 764 765 766
		}
	}

	return &emptyconstraint;
}

767 768 769 770 771
static inline bool pebs_is_enabled(struct cpu_hw_events *cpuc)
{
	return (cpuc->pebs_enabled & ((1ULL << MAX_PEBS_EVENTS) - 1));
}

772
void intel_pmu_pebs_enable(struct perf_event *event)
773
{
774
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
775
	struct hw_perf_event *hwc = &event->hw;
776
	struct debug_store *ds = cpuc->ds;
777 778
	bool first_pebs;
	u64 threshold;
779 780 781

	hwc->config &= ~ARCH_PERFMON_EVENTSEL_INT;

782
	first_pebs = !pebs_is_enabled(cpuc);
783
	cpuc->pebs_enabled |= 1ULL << hwc->idx;
784 785 786

	if (event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT)
		cpuc->pebs_enabled |= 1ULL << (hwc->idx + 32);
787 788
	else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
		cpuc->pebs_enabled |= 1ULL << 63;
789

790 791 792 793 794 795 796
	/*
	 * When the event is constrained enough we can use a larger
	 * threshold and run the event with less frequent PMI.
	 */
	if (hwc->flags & PERF_X86_EVENT_FREERUNNING) {
		threshold = ds->pebs_absolute_maximum -
			x86_pmu.max_pebs_events * x86_pmu.pebs_record_size;
797 798 799

		if (first_pebs)
			perf_sched_cb_inc(event->ctx->pmu);
800 801
	} else {
		threshold = ds->pebs_buffer_base + x86_pmu.pebs_record_size;
802 803 804 805 806 807 808 809

		/*
		 * If not all events can use larger buffer,
		 * roll back to threshold = 1
		 */
		if (!first_pebs &&
		    (ds->pebs_interrupt_threshold > threshold))
			perf_sched_cb_dec(event->ctx->pmu);
810 811
	}

812 813 814 815 816
	/* Use auto-reload if possible to save a MSR write in the PMI */
	if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) {
		ds->pebs_event_reset[hwc->idx] =
			(u64)(-hwc->sample_period) & x86_pmu.cntval_mask;
	}
817 818 819

	if (first_pebs || ds->pebs_interrupt_threshold > threshold)
		ds->pebs_interrupt_threshold = threshold;
820 821
}

822
void intel_pmu_pebs_disable(struct perf_event *event)
823
{
824
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
825
	struct hw_perf_event *hwc = &event->hw;
826
	struct debug_store *ds = cpuc->ds;
827 828 829 830 831
	bool large_pebs = ds->pebs_interrupt_threshold >
		ds->pebs_buffer_base + x86_pmu.pebs_record_size;

	if (large_pebs)
		intel_pmu_drain_pebs_buffer();
832

833
	cpuc->pebs_enabled &= ~(1ULL << hwc->idx);
834

835
	if (event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT)
836
		cpuc->pebs_enabled &= ~(1ULL << (hwc->idx + 32));
837
	else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
838 839
		cpuc->pebs_enabled &= ~(1ULL << 63);

840 841
	if (large_pebs && !pebs_is_enabled(cpuc))
		perf_sched_cb_dec(event->ctx->pmu);
842

843
	if (cpuc->enabled)
844
		wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
845 846 847 848

	hwc->config |= ARCH_PERFMON_EVENTSEL_INT;
}

849
void intel_pmu_pebs_enable_all(void)
850
{
851
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
852 853 854 855 856

	if (cpuc->pebs_enabled)
		wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
}

857
void intel_pmu_pebs_disable_all(void)
858
{
859
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
860 861 862 863 864

	if (cpuc->pebs_enabled)
		wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
}

865 866
static int intel_pmu_pebs_fixup_ip(struct pt_regs *regs)
{
867
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
868 869 870
	unsigned long from = cpuc->lbr_entries[0].from;
	unsigned long old_to, to = cpuc->lbr_entries[0].to;
	unsigned long ip = regs->ip;
871
	int is_64bit = 0;
872
	void *kaddr;
873
	int size;
874

875 876 877 878 879 880
	/*
	 * We don't need to fixup if the PEBS assist is fault like
	 */
	if (!x86_pmu.intel_cap.pebs_trap)
		return 1;

P
Peter Zijlstra 已提交
881 882 883
	/*
	 * No LBR entry, no basic block, no rewinding
	 */
884 885 886
	if (!cpuc->lbr_stack.nr || !from || !to)
		return 0;

P
Peter Zijlstra 已提交
887 888 889 890 891 892 893 894 895 896
	/*
	 * Basic blocks should never cross user/kernel boundaries
	 */
	if (kernel_ip(ip) != kernel_ip(to))
		return 0;

	/*
	 * unsigned math, either ip is before the start (impossible) or
	 * the basic block is larger than 1 page (sanity)
	 */
897
	if ((ip - to) > PEBS_FIXUP_SIZE)
898 899 900 901 902 903
		return 0;

	/*
	 * We sampled a branch insn, rewind using the LBR stack
	 */
	if (ip == to) {
904
		set_linear_ip(regs, from);
905 906 907
		return 1;
	}

908
	size = ip - to;
909
	if (!kernel_ip(ip)) {
910
		int bytes;
911 912
		u8 *buf = this_cpu_read(insn_buffer);

913
		/* 'size' must fit our buffer, see above */
914
		bytes = copy_from_user_nmi(buf, (void __user *)to, size);
915
		if (bytes != 0)
916 917 918 919 920 921 922
			return 0;

		kaddr = buf;
	} else {
		kaddr = (void *)to;
	}

923 924 925 926 927
	do {
		struct insn insn;

		old_to = to;

928 929 930
#ifdef CONFIG_X86_64
		is_64bit = kernel_ip(to) || !test_thread_flag(TIF_IA32);
#endif
931
		insn_init(&insn, kaddr, size, is_64bit);
932
		insn_get_length(&insn);
933 934 935 936 937 938 939 940
		/*
		 * Make sure there was not a problem decoding the
		 * instruction and getting the length.  This is
		 * doubly important because we have an infinite
		 * loop if insn.length=0.
		 */
		if (!insn.length)
			break;
941

942
		to += insn.length;
943
		kaddr += insn.length;
944
		size -= insn.length;
945 946 947
	} while (to < ip);

	if (to == ip) {
948
		set_linear_ip(regs, old_to);
949 950 951
		return 1;
	}

P
Peter Zijlstra 已提交
952 953 954 955
	/*
	 * Even though we decoded the basic block, the instruction stream
	 * never matched the given IP, either the TO or the IP got corrupted.
	 */
956 957 958
	return 0;
}

959
static inline u64 intel_hsw_weight(struct pebs_record_skl *pebs)
960 961 962 963 964 965 966 967
{
	if (pebs->tsx_tuning) {
		union hsw_tsx_tuning tsx = { .value = pebs->tsx_tuning };
		return tsx.cycles_last_block;
	}
	return 0;
}

968
static inline u64 intel_hsw_transaction(struct pebs_record_skl *pebs)
969 970 971 972 973 974 975 976 977
{
	u64 txn = (pebs->tsx_tuning & PEBS_HSW_TSX_FLAGS) >> 32;

	/* For RTM XABORTs also log the abort code from AX */
	if ((txn & PERF_TXN_TRANSACTION) && (pebs->ax & 1))
		txn |= ((pebs->ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
	return txn;
}

978 979 980 981
static void setup_pebs_sample_data(struct perf_event *event,
				   struct pt_regs *iregs, void *__pebs,
				   struct perf_sample_data *data,
				   struct pt_regs *regs)
982
{
983 984 985 986
#define PERF_X86_EVENT_PEBS_HSW_PREC \
		(PERF_X86_EVENT_PEBS_ST_HSW | \
		 PERF_X86_EVENT_PEBS_LD_HSW | \
		 PERF_X86_EVENT_PEBS_NA_HSW)
987
	/*
988 989
	 * We cast to the biggest pebs_record but are careful not to
	 * unconditionally access the 'extra' entries.
990
	 */
991
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
992
	struct pebs_record_skl *pebs = __pebs;
993
	u64 sample_type;
994 995
	int fll, fst, dsrc;
	int fl = event->hw.flags;
996

997 998 999
	if (pebs == NULL)
		return;

1000 1001 1002 1003 1004
	sample_type = event->attr.sample_type;
	dsrc = sample_type & PERF_SAMPLE_DATA_SRC;

	fll = fl & PERF_X86_EVENT_PEBS_LDLAT;
	fst = fl & (PERF_X86_EVENT_PEBS_ST | PERF_X86_EVENT_PEBS_HSW_PREC);
1005

1006
	perf_sample_data_init(data, 0, event->hw.last_period);
1007

1008
	data->period = event->hw.last_period;
1009 1010

	/*
1011
	 * Use latency for weight (only avail with PEBS-LL)
1012
	 */
1013
	if (fll && (sample_type & PERF_SAMPLE_WEIGHT))
1014
		data->weight = pebs->lat;
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026

	/*
	 * data.data_src encodes the data source
	 */
	if (dsrc) {
		u64 val = PERF_MEM_NA;
		if (fll)
			val = load_latency_data(pebs->dse);
		else if (fst && (fl & PERF_X86_EVENT_PEBS_HSW_PREC))
			val = precise_datala_hsw(event, pebs->dse);
		else if (fst)
			val = precise_store_data(pebs->dse);
1027
		data->data_src.val = val;
1028 1029
	}

1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
	/*
	 * We use the interrupt regs as a base because the PEBS record
	 * does not contain a full regs set, specifically it seems to
	 * lack segment descriptors, which get used by things like
	 * user_mode().
	 *
	 * In the simple case fix up only the IP and BP,SP regs, for
	 * PERF_SAMPLE_IP and PERF_SAMPLE_CALLCHAIN to function properly.
	 * A possible PERF_SAMPLE_REGS will have to transfer all regs.
	 */
1040 1041 1042 1043 1044
	*regs = *iregs;
	regs->flags = pebs->flags;
	set_linear_ip(regs, pebs->ip);
	regs->bp = pebs->bp;
	regs->sp = pebs->sp;
1045

1046
	if (sample_type & PERF_SAMPLE_REGS_INTR) {
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
		regs->ax = pebs->ax;
		regs->bx = pebs->bx;
		regs->cx = pebs->cx;
		regs->dx = pebs->dx;
		regs->si = pebs->si;
		regs->di = pebs->di;
		regs->bp = pebs->bp;
		regs->sp = pebs->sp;

		regs->flags = pebs->flags;
1057
#ifndef CONFIG_X86_32
1058 1059 1060 1061 1062 1063 1064 1065
		regs->r8 = pebs->r8;
		regs->r9 = pebs->r9;
		regs->r10 = pebs->r10;
		regs->r11 = pebs->r11;
		regs->r12 = pebs->r12;
		regs->r13 = pebs->r13;
		regs->r14 = pebs->r14;
		regs->r15 = pebs->r15;
1066 1067 1068
#endif
	}

1069
	if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format >= 2) {
1070 1071 1072 1073
		regs->ip = pebs->real_ip;
		regs->flags |= PERF_EFLAGS_EXACT;
	} else if (event->attr.precise_ip > 1 && intel_pmu_pebs_fixup_ip(regs))
		regs->flags |= PERF_EFLAGS_EXACT;
1074
	else
1075
		regs->flags &= ~PERF_EFLAGS_EXACT;
1076

1077
	if ((sample_type & PERF_SAMPLE_ADDR) &&
1078
	    x86_pmu.intel_cap.pebs_format >= 1)
1079
		data->addr = pebs->dla;
1080

1081 1082
	if (x86_pmu.intel_cap.pebs_format >= 2) {
		/* Only set the TSX weight when no memory weight. */
1083
		if ((sample_type & PERF_SAMPLE_WEIGHT) && !fll)
1084
			data->weight = intel_hsw_weight(pebs);
1085

1086
		if (sample_type & PERF_SAMPLE_TRANSACTION)
1087
			data->txn = intel_hsw_transaction(pebs);
1088
	}
1089

1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
	/*
	 * v3 supplies an accurate time stamp, so we use that
	 * for the time stamp.
	 *
	 * We can only do this for the default trace clock.
	 */
	if (x86_pmu.intel_cap.pebs_format >= 3 &&
		event->attr.use_clockid == 0)
		data->time = native_sched_clock_from_tsc(pebs->tsc);

1100
	if (has_branch_stack(event))
1101 1102 1103
		data->br_stack = &cpuc->lbr_stack;
}

1104 1105 1106 1107 1108 1109 1110
static inline void *
get_next_pebs_record_by_bit(void *base, void *top, int bit)
{
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
	void *at;
	u64 pebs_status;

1111 1112 1113 1114 1115 1116 1117
	/*
	 * fmt0 does not have a status bitfield (does not use
	 * perf_record_nhm format)
	 */
	if (x86_pmu.intel_cap.pebs_format < 1)
		return base;

1118 1119 1120 1121 1122 1123 1124
	if (base == NULL)
		return NULL;

	for (at = base; at < top; at += x86_pmu.pebs_record_size) {
		struct pebs_record_nhm *p = at;

		if (test_bit(bit, (unsigned long *)&p->status)) {
1125 1126 1127
			/* PEBS v3 has accurate status bits */
			if (x86_pmu.intel_cap.pebs_format >= 3)
				return at;
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141

			if (p->status == (1 << bit))
				return at;

			/* clear non-PEBS bit and re-check */
			pebs_status = p->status & cpuc->pebs_enabled;
			pebs_status &= (1ULL << MAX_PEBS_EVENTS) - 1;
			if (pebs_status == (1 << bit))
				return at;
		}
	}
	return NULL;
}

1142
static void __intel_pmu_pebs_event(struct perf_event *event,
1143 1144 1145
				   struct pt_regs *iregs,
				   void *base, void *top,
				   int bit, int count)
1146 1147 1148
{
	struct perf_sample_data data;
	struct pt_regs regs;
1149
	void *at = get_next_pebs_record_by_bit(base, top, bit);
1150

1151 1152
	if (!intel_pmu_save_and_restart(event) &&
	    !(event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD))
1153 1154
		return;

1155 1156 1157 1158 1159 1160
	while (count > 1) {
		setup_pebs_sample_data(event, iregs, at, &data, &regs);
		perf_event_output(event, &data, &regs);
		at += x86_pmu.pebs_record_size;
		at = get_next_pebs_record_by_bit(at, top, bit);
		count--;
1161 1162 1163
	}

	setup_pebs_sample_data(event, iregs, at, &data, &regs);
1164

1165 1166 1167 1168 1169
	/*
	 * All but the last records are processed.
	 * The last one is left to be able to call the overflow handler.
	 */
	if (perf_event_overflow(event, &data, &regs)) {
P
Peter Zijlstra 已提交
1170
		x86_pmu_stop(event, 0);
1171 1172 1173
		return;
	}

1174 1175
}

1176 1177
static void intel_pmu_drain_pebs_core(struct pt_regs *iregs)
{
1178
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1179 1180 1181 1182 1183
	struct debug_store *ds = cpuc->ds;
	struct perf_event *event = cpuc->events[0]; /* PMC0 only */
	struct pebs_record_core *at, *top;
	int n;

1184
	if (!x86_pmu.pebs_active)
1185 1186 1187 1188 1189
		return;

	at  = (struct pebs_record_core *)(unsigned long)ds->pebs_buffer_base;
	top = (struct pebs_record_core *)(unsigned long)ds->pebs_index;

1190 1191 1192 1193 1194 1195
	/*
	 * Whatever else happens, drain the thing
	 */
	ds->pebs_index = ds->pebs_buffer_base;

	if (!test_bit(0, cpuc->active_mask))
P
Peter Zijlstra 已提交
1196
		return;
1197

1198 1199
	WARN_ON_ONCE(!event);

P
Peter Zijlstra 已提交
1200
	if (!event->attr.precise_ip)
1201 1202
		return;

1203
	n = top - at;
1204 1205
	if (n <= 0)
		return;
1206

1207
	__intel_pmu_pebs_event(event, iregs, at, top, 0, n);
1208 1209
}

1210
static void intel_pmu_drain_pebs_nhm(struct pt_regs *iregs)
1211
{
1212
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1213
	struct debug_store *ds = cpuc->ds;
1214 1215 1216
	struct perf_event *event;
	void *base, *at, *top;
	short counts[MAX_PEBS_EVENTS] = {};
1217
	short error[MAX_PEBS_EVENTS] = {};
1218
	int bit, i;
1219 1220 1221 1222

	if (!x86_pmu.pebs_active)
		return;

1223
	base = (struct pebs_record_nhm *)(unsigned long)ds->pebs_buffer_base;
1224
	top = (struct pebs_record_nhm *)(unsigned long)ds->pebs_index;
1225 1226 1227

	ds->pebs_index = ds->pebs_buffer_base;

1228
	if (unlikely(base >= top))
1229 1230
		return;

1231
	for (at = base; at < top; at += x86_pmu.pebs_record_size) {
1232
		struct pebs_record_nhm *p = at;
1233
		u64 pebs_status;
1234

1235 1236 1237 1238 1239 1240 1241 1242 1243
		/* PEBS v3 has accurate status bits */
		if (x86_pmu.intel_cap.pebs_format >= 3) {
			for_each_set_bit(bit, (unsigned long *)&p->status,
					 MAX_PEBS_EVENTS)
				counts[bit]++;

			continue;
		}

1244 1245 1246
		pebs_status = p->status & cpuc->pebs_enabled;
		pebs_status &= (1ULL << x86_pmu.max_pebs_events) - 1;

1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
		/*
		 * On some CPUs the PEBS status can be zero when PEBS is
		 * racing with clearing of GLOBAL_STATUS.
		 *
		 * Normally we would drop that record, but in the
		 * case when there is only a single active PEBS event
		 * we can assume it's for that event.
		 */
		if (!pebs_status && cpuc->pebs_enabled &&
			!(cpuc->pebs_enabled & (cpuc->pebs_enabled-1)))
			pebs_status = cpuc->pebs_enabled;

1259
		bit = find_first_bit((unsigned long *)&pebs_status,
1260
					x86_pmu.max_pebs_events);
1261
		if (bit >= x86_pmu.max_pebs_events)
1262
			continue;
1263

1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
		/*
		 * The PEBS hardware does not deal well with the situation
		 * when events happen near to each other and multiple bits
		 * are set. But it should happen rarely.
		 *
		 * If these events include one PEBS and multiple non-PEBS
		 * events, it doesn't impact PEBS record. The record will
		 * be handled normally. (slow path)
		 *
		 * If these events include two or more PEBS events, the
		 * records for the events can be collapsed into a single
		 * one, and it's not possible to reconstruct all events
		 * that caused the PEBS record. It's called collision.
		 * If collision happened, the record will be dropped.
		 */
1279 1280 1281 1282 1283
		if (p->status != (1ULL << bit)) {
			for_each_set_bit(i, (unsigned long *)&pebs_status,
					 x86_pmu.max_pebs_events)
				error[i]++;
			continue;
1284
		}
1285

1286 1287
		counts[bit]++;
	}
1288

1289
	for (bit = 0; bit < x86_pmu.max_pebs_events; bit++) {
1290
		if ((counts[bit] == 0) && (error[bit] == 0))
1291
			continue;
1292

1293 1294 1295
		event = cpuc->events[bit];
		WARN_ON_ONCE(!event);
		WARN_ON_ONCE(!event->attr.precise_ip);
1296

1297 1298 1299 1300 1301 1302 1303 1304
		/* log dropped samples number */
		if (error[bit])
			perf_log_lost_samples(event, error[bit]);

		if (counts[bit]) {
			__intel_pmu_pebs_event(event, iregs, base,
					       top, bit, counts[bit]);
		}
1305 1306 1307 1308 1309 1310 1311
	}
}

/*
 * BTS, PEBS probe and setup
 */

1312
void __init intel_ds_init(void)
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
{
	/*
	 * No support for 32bit formats
	 */
	if (!boot_cpu_has(X86_FEATURE_DTES64))
		return;

	x86_pmu.bts  = boot_cpu_has(X86_FEATURE_BTS);
	x86_pmu.pebs = boot_cpu_has(X86_FEATURE_PEBS);
	if (x86_pmu.pebs) {
1323 1324
		char pebs_type = x86_pmu.intel_cap.pebs_trap ?  '+' : '-';
		int format = x86_pmu.intel_cap.pebs_format;
1325 1326 1327

		switch (format) {
		case 0:
1328
			pr_cont("PEBS fmt0%c, ", pebs_type);
1329 1330 1331 1332 1333
			x86_pmu.pebs_record_size = sizeof(struct pebs_record_core);
			x86_pmu.drain_pebs = intel_pmu_drain_pebs_core;
			break;

		case 1:
1334
			pr_cont("PEBS fmt1%c, ", pebs_type);
1335 1336 1337 1338
			x86_pmu.pebs_record_size = sizeof(struct pebs_record_nhm);
			x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
			break;

1339 1340 1341
		case 2:
			pr_cont("PEBS fmt2%c, ", pebs_type);
			x86_pmu.pebs_record_size = sizeof(struct pebs_record_hsw);
1342
			x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
1343 1344
			break;

1345 1346 1347 1348 1349
		case 3:
			pr_cont("PEBS fmt3%c, ", pebs_type);
			x86_pmu.pebs_record_size =
						sizeof(struct pebs_record_skl);
			x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
1350
			x86_pmu.free_running_flags |= PERF_SAMPLE_TIME;
1351 1352
			break;

1353
		default:
1354
			pr_cont("no PEBS fmt%d%c, ", format, pebs_type);
1355 1356 1357 1358
			x86_pmu.pebs = 0;
		}
	}
}
1359 1360 1361

void perf_restore_debug_store(void)
{
1362 1363
	struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);

1364 1365 1366
	if (!x86_pmu.bts && !x86_pmu.pebs)
		return;

1367
	wrmsrl(MSR_IA32_DS_AREA, (unsigned long)ds);
1368
}