perf_event_intel_ds.c 34.2 KB
Newer Older
1 2 3
#include <linux/bitops.h>
#include <linux/types.h>
#include <linux/slab.h>
4

5
#include <asm/perf_event.h>
6
#include <asm/insn.h>
7 8

#include "perf_event.h"
9 10 11 12 13

/* The size of a BTS record in bytes: */
#define BTS_RECORD_SIZE		24

#define BTS_BUFFER_SIZE		(PAGE_SIZE << 4)
14
#define PEBS_BUFFER_SIZE	(PAGE_SIZE << 4)
15
#define PEBS_FIXUP_SIZE		PAGE_SIZE
16 17 18 19 20 21 22 23 24 25 26 27

/*
 * pebs_record_32 for p4 and core not supported

struct pebs_record_32 {
	u32 flags, ip;
	u32 ax, bc, cx, dx;
	u32 si, di, bp, sp;
};

 */

28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
union intel_x86_pebs_dse {
	u64 val;
	struct {
		unsigned int ld_dse:4;
		unsigned int ld_stlb_miss:1;
		unsigned int ld_locked:1;
		unsigned int ld_reserved:26;
	};
	struct {
		unsigned int st_l1d_hit:1;
		unsigned int st_reserved1:3;
		unsigned int st_stlb_miss:1;
		unsigned int st_locked:1;
		unsigned int st_reserved2:26;
	};
};


/*
 * Map PEBS Load Latency Data Source encodings to generic
 * memory data source information
 */
#define P(a, b) PERF_MEM_S(a, b)
#define OP_LH (P(OP, LOAD) | P(LVL, HIT))
#define SNOOP_NONE_MISS (P(SNOOP, NONE) | P(SNOOP, MISS))

static const u64 pebs_data_source[] = {
	P(OP, LOAD) | P(LVL, MISS) | P(LVL, L3) | P(SNOOP, NA),/* 0x00:ukn L3 */
	OP_LH | P(LVL, L1)  | P(SNOOP, NONE),	/* 0x01: L1 local */
	OP_LH | P(LVL, LFB) | P(SNOOP, NONE),	/* 0x02: LFB hit */
	OP_LH | P(LVL, L2)  | P(SNOOP, NONE),	/* 0x03: L2 hit */
	OP_LH | P(LVL, L3)  | P(SNOOP, NONE),	/* 0x04: L3 hit */
	OP_LH | P(LVL, L3)  | P(SNOOP, MISS),	/* 0x05: L3 hit, snoop miss */
	OP_LH | P(LVL, L3)  | P(SNOOP, HIT),	/* 0x06: L3 hit, snoop hit */
	OP_LH | P(LVL, L3)  | P(SNOOP, HITM),	/* 0x07: L3 hit, snoop hitm */
	OP_LH | P(LVL, REM_CCE1) | P(SNOOP, HIT),  /* 0x08: L3 miss snoop hit */
	OP_LH | P(LVL, REM_CCE1) | P(SNOOP, HITM), /* 0x09: L3 miss snoop hitm*/
	OP_LH | P(LVL, LOC_RAM)  | P(SNOOP, HIT),  /* 0x0a: L3 miss, shared */
	OP_LH | P(LVL, REM_RAM1) | P(SNOOP, HIT),  /* 0x0b: L3 miss, shared */
	OP_LH | P(LVL, LOC_RAM)  | SNOOP_NONE_MISS,/* 0x0c: L3 miss, excl */
	OP_LH | P(LVL, REM_RAM1) | SNOOP_NONE_MISS,/* 0x0d: L3 miss, excl */
	OP_LH | P(LVL, IO)  | P(SNOOP, NONE), /* 0x0e: I/O */
	OP_LH | P(LVL, UNC) | P(SNOOP, NONE), /* 0x0f: uncached */
};

73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
static u64 precise_store_data(u64 status)
{
	union intel_x86_pebs_dse dse;
	u64 val = P(OP, STORE) | P(SNOOP, NA) | P(LVL, L1) | P(TLB, L2);

	dse.val = status;

	/*
	 * bit 4: TLB access
	 * 1 = stored missed 2nd level TLB
	 *
	 * so it either hit the walker or the OS
	 * otherwise hit 2nd level TLB
	 */
	if (dse.st_stlb_miss)
		val |= P(TLB, MISS);
	else
		val |= P(TLB, HIT);

	/*
	 * bit 0: hit L1 data cache
	 * if not set, then all we know is that
	 * it missed L1D
	 */
	if (dse.st_l1d_hit)
		val |= P(LVL, HIT);
	else
		val |= P(LVL, MISS);

	/*
	 * bit 5: Locked prefix
	 */
	if (dse.st_locked)
		val |= P(LOCK, LOCKED);

	return val;
}

111
static u64 precise_datala_hsw(struct perf_event *event, u64 status)
112 113 114
{
	union perf_mem_data_src dse;

115 116 117 118 119 120
	dse.val = PERF_MEM_NA;

	if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW)
		dse.mem_op = PERF_MEM_OP_STORE;
	else if (event->hw.flags & PERF_X86_EVENT_PEBS_LD_HSW)
		dse.mem_op = PERF_MEM_OP_LOAD;
121 122 123 124 125 126 127 128 129

	/*
	 * L1 info only valid for following events:
	 *
	 * MEM_UOPS_RETIRED.STLB_MISS_STORES
	 * MEM_UOPS_RETIRED.LOCK_STORES
	 * MEM_UOPS_RETIRED.SPLIT_STORES
	 * MEM_UOPS_RETIRED.ALL_STORES
	 */
130 131 132 133 134 135
	if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW) {
		if (status & 1)
			dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_HIT;
		else
			dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_MISS;
	}
136 137 138
	return dse.val;
}

139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
static u64 load_latency_data(u64 status)
{
	union intel_x86_pebs_dse dse;
	u64 val;
	int model = boot_cpu_data.x86_model;
	int fam = boot_cpu_data.x86;

	dse.val = status;

	/*
	 * use the mapping table for bit 0-3
	 */
	val = pebs_data_source[dse.ld_dse];

	/*
	 * Nehalem models do not support TLB, Lock infos
	 */
	if (fam == 0x6 && (model == 26 || model == 30
	    || model == 31 || model == 46)) {
		val |= P(TLB, NA) | P(LOCK, NA);
		return val;
	}
	/*
	 * bit 4: TLB access
	 * 0 = did not miss 2nd level TLB
	 * 1 = missed 2nd level TLB
	 */
	if (dse.ld_stlb_miss)
		val |= P(TLB, MISS) | P(TLB, L2);
	else
		val |= P(TLB, HIT) | P(TLB, L1) | P(TLB, L2);

	/*
	 * bit 5: locked prefix
	 */
	if (dse.ld_locked)
		val |= P(LOCK, LOCKED);

	return val;
}

180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
struct pebs_record_core {
	u64 flags, ip;
	u64 ax, bx, cx, dx;
	u64 si, di, bp, sp;
	u64 r8,  r9,  r10, r11;
	u64 r12, r13, r14, r15;
};

struct pebs_record_nhm {
	u64 flags, ip;
	u64 ax, bx, cx, dx;
	u64 si, di, bp, sp;
	u64 r8,  r9,  r10, r11;
	u64 r12, r13, r14, r15;
	u64 status, dla, dse, lat;
};

197 198 199 200
/*
 * Same as pebs_record_nhm, with two additional fields.
 */
struct pebs_record_hsw {
201 202 203 204 205 206
	u64 flags, ip;
	u64 ax, bx, cx, dx;
	u64 si, di, bp, sp;
	u64 r8,  r9,  r10, r11;
	u64 r12, r13, r14, r15;
	u64 status, dla, dse, lat;
207
	u64 real_ip, tsx_tuning;
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
};

union hsw_tsx_tuning {
	struct {
		u32 cycles_last_block     : 32,
		    hle_abort		  : 1,
		    rtm_abort		  : 1,
		    instruction_abort     : 1,
		    non_instruction_abort : 1,
		    retry		  : 1,
		    data_conflict	  : 1,
		    capacity_writes	  : 1,
		    capacity_reads	  : 1;
	};
	u64	    value;
223 224
};

225 226
#define PEBS_HSW_TSX_FLAGS	0xff00000000ULL

227 228 229 230 231 232 233 234 235 236 237 238 239
/* Same as HSW, plus TSC */

struct pebs_record_skl {
	u64 flags, ip;
	u64 ax, bx, cx, dx;
	u64 si, di, bp, sp;
	u64 r8,  r9,  r10, r11;
	u64 r12, r13, r14, r15;
	u64 status, dla, dse, lat;
	u64 real_ip, tsx_tuning;
	u64 tsc;
};

240
void init_debug_store_on_cpu(int cpu)
241 242 243 244 245 246 247 248 249 250 251
{
	struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;

	if (!ds)
		return;

	wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA,
		     (u32)((u64)(unsigned long)ds),
		     (u32)((u64)(unsigned long)ds >> 32));
}

252
void fini_debug_store_on_cpu(int cpu)
253 254 255 256 257 258 259
{
	if (!per_cpu(cpu_hw_events, cpu).ds)
		return;

	wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 0, 0);
}

260 261
static DEFINE_PER_CPU(void *, insn_buffer);

262 263 264
static int alloc_pebs_buffer(int cpu)
{
	struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
265
	int node = cpu_to_node(cpu);
266
	int max;
267
	void *buffer, *ibuffer;
268 269 270 271

	if (!x86_pmu.pebs)
		return 0;

272
	buffer = kzalloc_node(PEBS_BUFFER_SIZE, GFP_KERNEL, node);
273 274 275
	if (unlikely(!buffer))
		return -ENOMEM;

276 277 278 279 280 281 282 283 284 285 286 287 288
	/*
	 * HSW+ already provides us the eventing ip; no need to allocate this
	 * buffer then.
	 */
	if (x86_pmu.intel_cap.pebs_format < 2) {
		ibuffer = kzalloc_node(PEBS_FIXUP_SIZE, GFP_KERNEL, node);
		if (!ibuffer) {
			kfree(buffer);
			return -ENOMEM;
		}
		per_cpu(insn_buffer, cpu) = ibuffer;
	}

289 290 291 292 293 294 295 296 297 298
	max = PEBS_BUFFER_SIZE / x86_pmu.pebs_record_size;

	ds->pebs_buffer_base = (u64)(unsigned long)buffer;
	ds->pebs_index = ds->pebs_buffer_base;
	ds->pebs_absolute_maximum = ds->pebs_buffer_base +
		max * x86_pmu.pebs_record_size;

	return 0;
}

299 300 301 302 303 304 305
static void release_pebs_buffer(int cpu)
{
	struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;

	if (!ds || !x86_pmu.pebs)
		return;

306 307 308
	kfree(per_cpu(insn_buffer, cpu));
	per_cpu(insn_buffer, cpu) = NULL;

309 310 311 312
	kfree((void *)(unsigned long)ds->pebs_buffer_base);
	ds->pebs_buffer_base = 0;
}

313 314 315
static int alloc_bts_buffer(int cpu)
{
	struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
316
	int node = cpu_to_node(cpu);
317 318 319 320 321 322
	int max, thresh;
	void *buffer;

	if (!x86_pmu.bts)
		return 0;

323 324 325
	buffer = kzalloc_node(BTS_BUFFER_SIZE, GFP_KERNEL | __GFP_NOWARN, node);
	if (unlikely(!buffer)) {
		WARN_ONCE(1, "%s: BTS buffer allocation failure\n", __func__);
326
		return -ENOMEM;
327
	}
328 329 330 331 332 333 334 335 336 337 338 339 340 341

	max = BTS_BUFFER_SIZE / BTS_RECORD_SIZE;
	thresh = max / 16;

	ds->bts_buffer_base = (u64)(unsigned long)buffer;
	ds->bts_index = ds->bts_buffer_base;
	ds->bts_absolute_maximum = ds->bts_buffer_base +
		max * BTS_RECORD_SIZE;
	ds->bts_interrupt_threshold = ds->bts_absolute_maximum -
		thresh * BTS_RECORD_SIZE;

	return 0;
}

342 343 344 345 346 347 348 349 350 351 352
static void release_bts_buffer(int cpu)
{
	struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;

	if (!ds || !x86_pmu.bts)
		return;

	kfree((void *)(unsigned long)ds->bts_buffer_base);
	ds->bts_buffer_base = 0;
}

353 354
static int alloc_ds_buffer(int cpu)
{
355
	int node = cpu_to_node(cpu);
356 357
	struct debug_store *ds;

358
	ds = kzalloc_node(sizeof(*ds), GFP_KERNEL, node);
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
	if (unlikely(!ds))
		return -ENOMEM;

	per_cpu(cpu_hw_events, cpu).ds = ds;

	return 0;
}

static void release_ds_buffer(int cpu)
{
	struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;

	if (!ds)
		return;

	per_cpu(cpu_hw_events, cpu).ds = NULL;
	kfree(ds);
}

378
void release_ds_buffers(void)
379 380 381 382 383 384 385 386 387 388 389
{
	int cpu;

	if (!x86_pmu.bts && !x86_pmu.pebs)
		return;

	get_online_cpus();
	for_each_online_cpu(cpu)
		fini_debug_store_on_cpu(cpu);

	for_each_possible_cpu(cpu) {
390 391
		release_pebs_buffer(cpu);
		release_bts_buffer(cpu);
392
		release_ds_buffer(cpu);
393 394 395 396
	}
	put_online_cpus();
}

397
void reserve_ds_buffers(void)
398
{
399 400 401 402 403
	int bts_err = 0, pebs_err = 0;
	int cpu;

	x86_pmu.bts_active = 0;
	x86_pmu.pebs_active = 0;
404 405

	if (!x86_pmu.bts && !x86_pmu.pebs)
406
		return;
407

408 409 410 411 412 413
	if (!x86_pmu.bts)
		bts_err = 1;

	if (!x86_pmu.pebs)
		pebs_err = 1;

414 415 416
	get_online_cpus();

	for_each_possible_cpu(cpu) {
417 418 419 420
		if (alloc_ds_buffer(cpu)) {
			bts_err = 1;
			pebs_err = 1;
		}
421

422 423 424 425 426
		if (!bts_err && alloc_bts_buffer(cpu))
			bts_err = 1;

		if (!pebs_err && alloc_pebs_buffer(cpu))
			pebs_err = 1;
427

428
		if (bts_err && pebs_err)
429
			break;
430 431 432 433 434 435
	}

	if (bts_err) {
		for_each_possible_cpu(cpu)
			release_bts_buffer(cpu);
	}
436

437 438 439
	if (pebs_err) {
		for_each_possible_cpu(cpu)
			release_pebs_buffer(cpu);
440 441
	}

442 443 444 445 446 447 448 449 450 451
	if (bts_err && pebs_err) {
		for_each_possible_cpu(cpu)
			release_ds_buffer(cpu);
	} else {
		if (x86_pmu.bts && !bts_err)
			x86_pmu.bts_active = 1;

		if (x86_pmu.pebs && !pebs_err)
			x86_pmu.pebs_active = 1;

452 453 454 455 456 457 458 459 460 461 462
		for_each_online_cpu(cpu)
			init_debug_store_on_cpu(cpu);
	}

	put_online_cpus();
}

/*
 * BTS
 */

463
struct event_constraint bts_constraint =
464
	EVENT_CONSTRAINT(0, 1ULL << INTEL_PMC_IDX_FIXED_BTS, 0);
465

466
void intel_pmu_enable_bts(u64 config)
467 468 469 470 471
{
	unsigned long debugctlmsr;

	debugctlmsr = get_debugctlmsr();

472 473
	debugctlmsr |= DEBUGCTLMSR_TR;
	debugctlmsr |= DEBUGCTLMSR_BTS;
474 475
	if (config & ARCH_PERFMON_EVENTSEL_INT)
		debugctlmsr |= DEBUGCTLMSR_BTINT;
476 477

	if (!(config & ARCH_PERFMON_EVENTSEL_OS))
478
		debugctlmsr |= DEBUGCTLMSR_BTS_OFF_OS;
479 480

	if (!(config & ARCH_PERFMON_EVENTSEL_USR))
481
		debugctlmsr |= DEBUGCTLMSR_BTS_OFF_USR;
482 483 484 485

	update_debugctlmsr(debugctlmsr);
}

486
void intel_pmu_disable_bts(void)
487
{
488
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
489 490 491 492 493 494 495 496
	unsigned long debugctlmsr;

	if (!cpuc->ds)
		return;

	debugctlmsr = get_debugctlmsr();

	debugctlmsr &=
497 498
		~(DEBUGCTLMSR_TR | DEBUGCTLMSR_BTS | DEBUGCTLMSR_BTINT |
		  DEBUGCTLMSR_BTS_OFF_OS | DEBUGCTLMSR_BTS_OFF_USR);
499 500 501 502

	update_debugctlmsr(debugctlmsr);
}

503
int intel_pmu_drain_bts_buffer(void)
504
{
505
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
506 507 508 509 510 511
	struct debug_store *ds = cpuc->ds;
	struct bts_record {
		u64	from;
		u64	to;
		u64	flags;
	};
512
	struct perf_event *event = cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
513 514 515 516 517 518 519
	struct bts_record *at, *top;
	struct perf_output_handle handle;
	struct perf_event_header header;
	struct perf_sample_data data;
	struct pt_regs regs;

	if (!event)
520
		return 0;
521

522
	if (!x86_pmu.bts_active)
523
		return 0;
524 525 526 527 528

	at  = (struct bts_record *)(unsigned long)ds->bts_buffer_base;
	top = (struct bts_record *)(unsigned long)ds->bts_index;

	if (top <= at)
529
		return 0;
530

531 532
	memset(&regs, 0, sizeof(regs));

533 534
	ds->bts_index = ds->bts_buffer_base;

535
	perf_sample_data_init(&data, 0, event->hw.last_period);
536 537 538 539 540 541 542 543

	/*
	 * Prepare a generic sample, i.e. fill in the invariant fields.
	 * We will overwrite the from and to address before we output
	 * the sample.
	 */
	perf_prepare_sample(&header, &data, event, &regs);

544
	if (perf_output_begin(&handle, event, header.size * (top - at)))
545
		return 1;
546 547 548 549 550 551 552 553 554 555 556 557 558

	for (; at < top; at++) {
		data.ip		= at->from;
		data.addr	= at->to;

		perf_output_sample(&handle, &header, &data, event);
	}

	perf_output_end(&handle);

	/* There's new data available. */
	event->hw.interrupts++;
	event->pending_kill = POLL_IN;
559
	return 1;
560 561
}

562 563 564 565 566 567 568 569 570 571 572 573 574
static inline void intel_pmu_drain_pebs_buffer(void)
{
	struct pt_regs regs;

	x86_pmu.drain_pebs(&regs);
}

void intel_pmu_pebs_sched_task(struct perf_event_context *ctx, bool sched_in)
{
	if (!sched_in)
		intel_pmu_drain_pebs_buffer();
}

575 576 577
/*
 * PEBS
 */
578
struct event_constraint intel_core2_pebs_event_constraints[] = {
579 580 581 582 583
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
	INTEL_FLAGS_UEVENT_CONSTRAINT(0xfec1, 0x1), /* X87_OPS_RETIRED.ANY */
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* BR_INST_RETIRED.MISPRED */
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x1fc7, 0x1), /* SIMD_INST_RETURED.ANY */
	INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1),    /* MEM_LOAD_RETIRED.* */
584 585
	/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
	INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x01),
586 587 588
	EVENT_CONSTRAINT_END
};

589
struct event_constraint intel_atom_pebs_event_constraints[] = {
590 591 592
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* MISPREDICTED_BRANCH_RETIRED */
	INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1),    /* MEM_LOAD_RETIRED.* */
593 594
	/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
	INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x01),
595 596 597
	EVENT_CONSTRAINT_END
};

598
struct event_constraint intel_slm_pebs_event_constraints[] = {
599 600
	/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
	INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x1),
601 602
	/* Allow all events as PEBS with no flags */
	INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
603 604 605
	EVENT_CONSTRAINT_END
};

606
struct event_constraint intel_nehalem_pebs_event_constraints[] = {
607
	INTEL_PLD_CONSTRAINT(0x100b, 0xf),      /* MEM_INST_RETIRED.* */
608 609 610
	INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf),    /* MEM_UNCORE_RETIRED.* */
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
	INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf),    /* INST_RETIRED.ANY */
611
	INTEL_EVENT_CONSTRAINT(0xc2, 0xf),    /* UOPS_RETIRED.* */
612 613 614 615 616 617
	INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf),    /* BR_INST_RETIRED.* */
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x02c5, 0xf), /* BR_MISP_RETIRED.NEAR_CALL */
	INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf),    /* SSEX_UOPS_RETIRED.* */
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
	INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf),    /* MEM_LOAD_RETIRED.* */
	INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf),    /* FP_ASSIST.* */
618 619
	/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
	INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x0f),
620 621 622
	EVENT_CONSTRAINT_END
};

623
struct event_constraint intel_westmere_pebs_event_constraints[] = {
624
	INTEL_PLD_CONSTRAINT(0x100b, 0xf),      /* MEM_INST_RETIRED.* */
625 626 627
	INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf),    /* MEM_UNCORE_RETIRED.* */
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
	INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf),    /* INSTR_RETIRED.* */
628
	INTEL_EVENT_CONSTRAINT(0xc2, 0xf),    /* UOPS_RETIRED.* */
629 630 631 632 633 634
	INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf),    /* BR_INST_RETIRED.* */
	INTEL_FLAGS_EVENT_CONSTRAINT(0xc5, 0xf),    /* BR_MISP_RETIRED.* */
	INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf),    /* SSEX_UOPS_RETIRED.* */
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
	INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf),    /* MEM_LOAD_RETIRED.* */
	INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf),    /* FP_ASSIST.* */
635 636
	/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
	INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x0f),
637 638 639
	EVENT_CONSTRAINT_END
};

640
struct event_constraint intel_snb_pebs_event_constraints[] = {
641
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
642
	INTEL_PLD_CONSTRAINT(0x01cd, 0x8),    /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
643
	INTEL_PST_CONSTRAINT(0x02cd, 0x8),    /* MEM_TRANS_RETIRED.PRECISE_STORES */
644 645
	/* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
	INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
646 647 648 649
        INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf),    /* MEM_UOP_RETIRED.* */
        INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
        INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf),    /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
        INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf),    /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
650 651
	/* Allow all events as PEBS with no flags */
	INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
652 653 654
	EVENT_CONSTRAINT_END
};

655
struct event_constraint intel_ivb_pebs_event_constraints[] = {
656
        INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
657
        INTEL_PLD_CONSTRAINT(0x01cd, 0x8),    /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
658
	INTEL_PST_CONSTRAINT(0x02cd, 0x8),    /* MEM_TRANS_RETIRED.PRECISE_STORES */
659 660
	/* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
	INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
661 662 663 664
	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf),    /* MEM_UOP_RETIRED.* */
	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf),    /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf),    /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
665 666
	/* Allow all events as PEBS with no flags */
	INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
667 668 669
        EVENT_CONSTRAINT_END
};

670
struct event_constraint intel_hsw_pebs_event_constraints[] = {
671
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
672 673 674 675
	INTEL_PLD_CONSTRAINT(0x01cd, 0xf),    /* MEM_TRANS_RETIRED.* */
	/* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
	INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
676 677 678 679 680 681 682 683 684 685
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd2, 0xf),    /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd3, 0xf),    /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
	/* Allow all events as PEBS with no flags */
	INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
	EVENT_CONSTRAINT_END
};

struct event_constraint intel_skl_pebs_event_constraints[] = {
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x1c0, 0x2),	/* INST_RETIRED.PREC_DIST */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
	/* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
	INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
	INTEL_PLD_CONSTRAINT(0x1cd, 0xf),		      /* MEM_TRANS_RETIRED.* */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x22d0, 0xf), /* MEM_INST_RETIRED.LOCK_STORES */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */
	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf),    /* MEM_LOAD_RETIRED.* */
	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf),    /* MEM_LOAD_L3_HIT_RETIRED.* */
	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf),    /* MEM_LOAD_L3_MISS_RETIRED.* */
708 709
	/* Allow all events as PEBS with no flags */
	INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
710 711 712
	EVENT_CONSTRAINT_END
};

713
struct event_constraint *intel_pebs_constraints(struct perf_event *event)
714 715 716
{
	struct event_constraint *c;

P
Peter Zijlstra 已提交
717
	if (!event->attr.precise_ip)
718 719 720 721
		return NULL;

	if (x86_pmu.pebs_constraints) {
		for_each_event_constraint(c, x86_pmu.pebs_constraints) {
722 723
			if ((event->hw.config & c->cmask) == c->code) {
				event->hw.flags |= c->flags;
724
				return c;
725
			}
726 727 728 729 730 731
		}
	}

	return &emptyconstraint;
}

732 733 734 735 736
static inline bool pebs_is_enabled(struct cpu_hw_events *cpuc)
{
	return (cpuc->pebs_enabled & ((1ULL << MAX_PEBS_EVENTS) - 1));
}

737
void intel_pmu_pebs_enable(struct perf_event *event)
738
{
739
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
740
	struct hw_perf_event *hwc = &event->hw;
741
	struct debug_store *ds = cpuc->ds;
742 743
	bool first_pebs;
	u64 threshold;
744 745 746

	hwc->config &= ~ARCH_PERFMON_EVENTSEL_INT;

747
	first_pebs = !pebs_is_enabled(cpuc);
748
	cpuc->pebs_enabled |= 1ULL << hwc->idx;
749 750 751

	if (event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT)
		cpuc->pebs_enabled |= 1ULL << (hwc->idx + 32);
752 753
	else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
		cpuc->pebs_enabled |= 1ULL << 63;
754

755 756 757 758 759 760 761
	/*
	 * When the event is constrained enough we can use a larger
	 * threshold and run the event with less frequent PMI.
	 */
	if (hwc->flags & PERF_X86_EVENT_FREERUNNING) {
		threshold = ds->pebs_absolute_maximum -
			x86_pmu.max_pebs_events * x86_pmu.pebs_record_size;
762 763 764

		if (first_pebs)
			perf_sched_cb_inc(event->ctx->pmu);
765 766
	} else {
		threshold = ds->pebs_buffer_base + x86_pmu.pebs_record_size;
767 768 769 770 771 772 773 774

		/*
		 * If not all events can use larger buffer,
		 * roll back to threshold = 1
		 */
		if (!first_pebs &&
		    (ds->pebs_interrupt_threshold > threshold))
			perf_sched_cb_dec(event->ctx->pmu);
775 776
	}

777 778 779 780 781
	/* Use auto-reload if possible to save a MSR write in the PMI */
	if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) {
		ds->pebs_event_reset[hwc->idx] =
			(u64)(-hwc->sample_period) & x86_pmu.cntval_mask;
	}
782 783 784

	if (first_pebs || ds->pebs_interrupt_threshold > threshold)
		ds->pebs_interrupt_threshold = threshold;
785 786
}

787
void intel_pmu_pebs_disable(struct perf_event *event)
788
{
789
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
790
	struct hw_perf_event *hwc = &event->hw;
791
	struct debug_store *ds = cpuc->ds;
792 793 794 795 796
	bool large_pebs = ds->pebs_interrupt_threshold >
		ds->pebs_buffer_base + x86_pmu.pebs_record_size;

	if (large_pebs)
		intel_pmu_drain_pebs_buffer();
797

798
	cpuc->pebs_enabled &= ~(1ULL << hwc->idx);
799

800
	if (event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT)
801
		cpuc->pebs_enabled &= ~(1ULL << (hwc->idx + 32));
802
	else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
803 804
		cpuc->pebs_enabled &= ~(1ULL << 63);

805 806
	if (large_pebs && !pebs_is_enabled(cpuc))
		perf_sched_cb_dec(event->ctx->pmu);
807

808
	if (cpuc->enabled)
809
		wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
810 811 812 813

	hwc->config |= ARCH_PERFMON_EVENTSEL_INT;
}

814
void intel_pmu_pebs_enable_all(void)
815
{
816
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
817 818 819 820 821

	if (cpuc->pebs_enabled)
		wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
}

822
void intel_pmu_pebs_disable_all(void)
823
{
824
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
825 826 827 828 829

	if (cpuc->pebs_enabled)
		wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
}

830 831
static int intel_pmu_pebs_fixup_ip(struct pt_regs *regs)
{
832
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
833 834 835
	unsigned long from = cpuc->lbr_entries[0].from;
	unsigned long old_to, to = cpuc->lbr_entries[0].to;
	unsigned long ip = regs->ip;
836
	int is_64bit = 0;
837
	void *kaddr;
838
	int size;
839

840 841 842 843 844 845
	/*
	 * We don't need to fixup if the PEBS assist is fault like
	 */
	if (!x86_pmu.intel_cap.pebs_trap)
		return 1;

P
Peter Zijlstra 已提交
846 847 848
	/*
	 * No LBR entry, no basic block, no rewinding
	 */
849 850 851
	if (!cpuc->lbr_stack.nr || !from || !to)
		return 0;

P
Peter Zijlstra 已提交
852 853 854 855 856 857 858 859 860 861
	/*
	 * Basic blocks should never cross user/kernel boundaries
	 */
	if (kernel_ip(ip) != kernel_ip(to))
		return 0;

	/*
	 * unsigned math, either ip is before the start (impossible) or
	 * the basic block is larger than 1 page (sanity)
	 */
862
	if ((ip - to) > PEBS_FIXUP_SIZE)
863 864 865 866 867 868
		return 0;

	/*
	 * We sampled a branch insn, rewind using the LBR stack
	 */
	if (ip == to) {
869
		set_linear_ip(regs, from);
870 871 872
		return 1;
	}

873
	size = ip - to;
874
	if (!kernel_ip(ip)) {
875
		int bytes;
876 877
		u8 *buf = this_cpu_read(insn_buffer);

878
		/* 'size' must fit our buffer, see above */
879
		bytes = copy_from_user_nmi(buf, (void __user *)to, size);
880
		if (bytes != 0)
881 882 883 884 885 886 887
			return 0;

		kaddr = buf;
	} else {
		kaddr = (void *)to;
	}

888 889 890 891 892
	do {
		struct insn insn;

		old_to = to;

893 894 895
#ifdef CONFIG_X86_64
		is_64bit = kernel_ip(to) || !test_thread_flag(TIF_IA32);
#endif
896
		insn_init(&insn, kaddr, size, is_64bit);
897
		insn_get_length(&insn);
898 899 900 901 902 903 904 905
		/*
		 * Make sure there was not a problem decoding the
		 * instruction and getting the length.  This is
		 * doubly important because we have an infinite
		 * loop if insn.length=0.
		 */
		if (!insn.length)
			break;
906

907
		to += insn.length;
908
		kaddr += insn.length;
909
		size -= insn.length;
910 911 912
	} while (to < ip);

	if (to == ip) {
913
		set_linear_ip(regs, old_to);
914 915 916
		return 1;
	}

P
Peter Zijlstra 已提交
917 918 919 920
	/*
	 * Even though we decoded the basic block, the instruction stream
	 * never matched the given IP, either the TO or the IP got corrupted.
	 */
921 922 923
	return 0;
}

924
static inline u64 intel_hsw_weight(struct pebs_record_skl *pebs)
925 926 927 928 929 930 931 932
{
	if (pebs->tsx_tuning) {
		union hsw_tsx_tuning tsx = { .value = pebs->tsx_tuning };
		return tsx.cycles_last_block;
	}
	return 0;
}

933
static inline u64 intel_hsw_transaction(struct pebs_record_skl *pebs)
934 935 936 937 938 939 940 941 942
{
	u64 txn = (pebs->tsx_tuning & PEBS_HSW_TSX_FLAGS) >> 32;

	/* For RTM XABORTs also log the abort code from AX */
	if ((txn & PERF_TXN_TRANSACTION) && (pebs->ax & 1))
		txn |= ((pebs->ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
	return txn;
}

943 944 945 946
static void setup_pebs_sample_data(struct perf_event *event,
				   struct pt_regs *iregs, void *__pebs,
				   struct perf_sample_data *data,
				   struct pt_regs *regs)
947
{
948 949 950 951
#define PERF_X86_EVENT_PEBS_HSW_PREC \
		(PERF_X86_EVENT_PEBS_ST_HSW | \
		 PERF_X86_EVENT_PEBS_LD_HSW | \
		 PERF_X86_EVENT_PEBS_NA_HSW)
952
	/*
953 954
	 * We cast to the biggest pebs_record but are careful not to
	 * unconditionally access the 'extra' entries.
955
	 */
956
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
957
	struct pebs_record_skl *pebs = __pebs;
958
	u64 sample_type;
959 960
	int fll, fst, dsrc;
	int fl = event->hw.flags;
961

962 963 964
	if (pebs == NULL)
		return;

965 966 967 968 969
	sample_type = event->attr.sample_type;
	dsrc = sample_type & PERF_SAMPLE_DATA_SRC;

	fll = fl & PERF_X86_EVENT_PEBS_LDLAT;
	fst = fl & (PERF_X86_EVENT_PEBS_ST | PERF_X86_EVENT_PEBS_HSW_PREC);
970

971
	perf_sample_data_init(data, 0, event->hw.last_period);
972

973
	data->period = event->hw.last_period;
974 975

	/*
976
	 * Use latency for weight (only avail with PEBS-LL)
977
	 */
978
	if (fll && (sample_type & PERF_SAMPLE_WEIGHT))
979
		data->weight = pebs->lat;
980 981 982 983 984 985 986 987 988 989 990 991

	/*
	 * data.data_src encodes the data source
	 */
	if (dsrc) {
		u64 val = PERF_MEM_NA;
		if (fll)
			val = load_latency_data(pebs->dse);
		else if (fst && (fl & PERF_X86_EVENT_PEBS_HSW_PREC))
			val = precise_datala_hsw(event, pebs->dse);
		else if (fst)
			val = precise_store_data(pebs->dse);
992
		data->data_src.val = val;
993 994
	}

995 996 997 998 999 1000 1001 1002 1003 1004
	/*
	 * We use the interrupt regs as a base because the PEBS record
	 * does not contain a full regs set, specifically it seems to
	 * lack segment descriptors, which get used by things like
	 * user_mode().
	 *
	 * In the simple case fix up only the IP and BP,SP regs, for
	 * PERF_SAMPLE_IP and PERF_SAMPLE_CALLCHAIN to function properly.
	 * A possible PERF_SAMPLE_REGS will have to transfer all regs.
	 */
1005 1006 1007 1008 1009
	*regs = *iregs;
	regs->flags = pebs->flags;
	set_linear_ip(regs, pebs->ip);
	regs->bp = pebs->bp;
	regs->sp = pebs->sp;
1010

1011
	if (sample_type & PERF_SAMPLE_REGS_INTR) {
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
		regs->ax = pebs->ax;
		regs->bx = pebs->bx;
		regs->cx = pebs->cx;
		regs->dx = pebs->dx;
		regs->si = pebs->si;
		regs->di = pebs->di;
		regs->bp = pebs->bp;
		regs->sp = pebs->sp;

		regs->flags = pebs->flags;
1022
#ifndef CONFIG_X86_32
1023 1024 1025 1026 1027 1028 1029 1030
		regs->r8 = pebs->r8;
		regs->r9 = pebs->r9;
		regs->r10 = pebs->r10;
		regs->r11 = pebs->r11;
		regs->r12 = pebs->r12;
		regs->r13 = pebs->r13;
		regs->r14 = pebs->r14;
		regs->r15 = pebs->r15;
1031 1032 1033
#endif
	}

1034
	if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format >= 2) {
1035 1036 1037 1038
		regs->ip = pebs->real_ip;
		regs->flags |= PERF_EFLAGS_EXACT;
	} else if (event->attr.precise_ip > 1 && intel_pmu_pebs_fixup_ip(regs))
		regs->flags |= PERF_EFLAGS_EXACT;
1039
	else
1040
		regs->flags &= ~PERF_EFLAGS_EXACT;
1041

1042
	if ((sample_type & PERF_SAMPLE_ADDR) &&
1043
	    x86_pmu.intel_cap.pebs_format >= 1)
1044
		data->addr = pebs->dla;
1045

1046 1047
	if (x86_pmu.intel_cap.pebs_format >= 2) {
		/* Only set the TSX weight when no memory weight. */
1048
		if ((sample_type & PERF_SAMPLE_WEIGHT) && !fll)
1049
			data->weight = intel_hsw_weight(pebs);
1050

1051
		if (sample_type & PERF_SAMPLE_TRANSACTION)
1052
			data->txn = intel_hsw_transaction(pebs);
1053
	}
1054

1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
	/*
	 * v3 supplies an accurate time stamp, so we use that
	 * for the time stamp.
	 *
	 * We can only do this for the default trace clock.
	 */
	if (x86_pmu.intel_cap.pebs_format >= 3 &&
		event->attr.use_clockid == 0)
		data->time = native_sched_clock_from_tsc(pebs->tsc);

1065
	if (has_branch_stack(event))
1066 1067 1068
		data->br_stack = &cpuc->lbr_stack;
}

1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
static inline void *
get_next_pebs_record_by_bit(void *base, void *top, int bit)
{
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
	void *at;
	u64 pebs_status;

	if (base == NULL)
		return NULL;

	for (at = base; at < top; at += x86_pmu.pebs_record_size) {
		struct pebs_record_nhm *p = at;

		if (test_bit(bit, (unsigned long *)&p->status)) {
1083 1084 1085
			/* PEBS v3 has accurate status bits */
			if (x86_pmu.intel_cap.pebs_format >= 3)
				return at;
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099

			if (p->status == (1 << bit))
				return at;

			/* clear non-PEBS bit and re-check */
			pebs_status = p->status & cpuc->pebs_enabled;
			pebs_status &= (1ULL << MAX_PEBS_EVENTS) - 1;
			if (pebs_status == (1 << bit))
				return at;
		}
	}
	return NULL;
}

1100
static void __intel_pmu_pebs_event(struct perf_event *event,
1101 1102 1103
				   struct pt_regs *iregs,
				   void *base, void *top,
				   int bit, int count)
1104 1105 1106
{
	struct perf_sample_data data;
	struct pt_regs regs;
1107
	void *at = get_next_pebs_record_by_bit(base, top, bit);
1108

1109 1110
	if (!intel_pmu_save_and_restart(event) &&
	    !(event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD))
1111 1112
		return;

1113 1114 1115 1116 1117 1118
	while (count > 1) {
		setup_pebs_sample_data(event, iregs, at, &data, &regs);
		perf_event_output(event, &data, &regs);
		at += x86_pmu.pebs_record_size;
		at = get_next_pebs_record_by_bit(at, top, bit);
		count--;
1119 1120 1121
	}

	setup_pebs_sample_data(event, iregs, at, &data, &regs);
1122

1123 1124 1125 1126 1127
	/*
	 * All but the last records are processed.
	 * The last one is left to be able to call the overflow handler.
	 */
	if (perf_event_overflow(event, &data, &regs)) {
P
Peter Zijlstra 已提交
1128
		x86_pmu_stop(event, 0);
1129 1130 1131
		return;
	}

1132 1133
}

1134 1135
static void intel_pmu_drain_pebs_core(struct pt_regs *iregs)
{
1136
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1137 1138 1139 1140 1141
	struct debug_store *ds = cpuc->ds;
	struct perf_event *event = cpuc->events[0]; /* PMC0 only */
	struct pebs_record_core *at, *top;
	int n;

1142
	if (!x86_pmu.pebs_active)
1143 1144 1145 1146 1147
		return;

	at  = (struct pebs_record_core *)(unsigned long)ds->pebs_buffer_base;
	top = (struct pebs_record_core *)(unsigned long)ds->pebs_index;

1148 1149 1150 1151 1152 1153
	/*
	 * Whatever else happens, drain the thing
	 */
	ds->pebs_index = ds->pebs_buffer_base;

	if (!test_bit(0, cpuc->active_mask))
P
Peter Zijlstra 已提交
1154
		return;
1155

1156 1157
	WARN_ON_ONCE(!event);

P
Peter Zijlstra 已提交
1158
	if (!event->attr.precise_ip)
1159 1160
		return;

1161
	n = (top - at) / x86_pmu.pebs_record_size;
1162 1163
	if (n <= 0)
		return;
1164

1165
	__intel_pmu_pebs_event(event, iregs, at, top, 0, n);
1166 1167
}

1168
static void intel_pmu_drain_pebs_nhm(struct pt_regs *iregs)
1169
{
1170
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1171
	struct debug_store *ds = cpuc->ds;
1172 1173 1174
	struct perf_event *event;
	void *base, *at, *top;
	short counts[MAX_PEBS_EVENTS] = {};
1175
	short error[MAX_PEBS_EVENTS] = {};
1176
	int bit, i;
1177 1178 1179 1180

	if (!x86_pmu.pebs_active)
		return;

1181
	base = (struct pebs_record_nhm *)(unsigned long)ds->pebs_buffer_base;
1182
	top = (struct pebs_record_nhm *)(unsigned long)ds->pebs_index;
1183 1184 1185

	ds->pebs_index = ds->pebs_buffer_base;

1186
	if (unlikely(base >= top))
1187 1188
		return;

1189
	for (at = base; at < top; at += x86_pmu.pebs_record_size) {
1190
		struct pebs_record_nhm *p = at;
1191

1192 1193 1194 1195 1196 1197 1198 1199 1200
		/* PEBS v3 has accurate status bits */
		if (x86_pmu.intel_cap.pebs_format >= 3) {
			for_each_set_bit(bit, (unsigned long *)&p->status,
					 MAX_PEBS_EVENTS)
				counts[bit]++;

			continue;
		}

1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
		bit = find_first_bit((unsigned long *)&p->status,
					x86_pmu.max_pebs_events);
		if (bit >= x86_pmu.max_pebs_events)
			continue;
		if (!test_bit(bit, cpuc->active_mask))
			continue;
		/*
		 * The PEBS hardware does not deal well with the situation
		 * when events happen near to each other and multiple bits
		 * are set. But it should happen rarely.
		 *
		 * If these events include one PEBS and multiple non-PEBS
		 * events, it doesn't impact PEBS record. The record will
		 * be handled normally. (slow path)
		 *
		 * If these events include two or more PEBS events, the
		 * records for the events can be collapsed into a single
		 * one, and it's not possible to reconstruct all events
		 * that caused the PEBS record. It's called collision.
		 * If collision happened, the record will be dropped.
		 *
		 */
		if (p->status != (1 << bit)) {
			u64 pebs_status;
1225

1226 1227 1228
			/* slow path */
			pebs_status = p->status & cpuc->pebs_enabled;
			pebs_status &= (1ULL << MAX_PEBS_EVENTS) - 1;
1229 1230 1231 1232
			if (pebs_status != (1 << bit)) {
				for_each_set_bit(i, (unsigned long *)&pebs_status,
						 MAX_PEBS_EVENTS)
					error[i]++;
1233
				continue;
1234
			}
1235
		}
1236 1237
		counts[bit]++;
	}
1238

1239
	for (bit = 0; bit < x86_pmu.max_pebs_events; bit++) {
1240
		if ((counts[bit] == 0) && (error[bit] == 0))
1241
			continue;
1242 1243 1244
		event = cpuc->events[bit];
		WARN_ON_ONCE(!event);
		WARN_ON_ONCE(!event->attr.precise_ip);
1245

1246 1247 1248 1249 1250 1251 1252 1253
		/* log dropped samples number */
		if (error[bit])
			perf_log_lost_samples(event, error[bit]);

		if (counts[bit]) {
			__intel_pmu_pebs_event(event, iregs, base,
					       top, bit, counts[bit]);
		}
1254 1255 1256 1257 1258 1259 1260
	}
}

/*
 * BTS, PEBS probe and setup
 */

1261
void __init intel_ds_init(void)
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
{
	/*
	 * No support for 32bit formats
	 */
	if (!boot_cpu_has(X86_FEATURE_DTES64))
		return;

	x86_pmu.bts  = boot_cpu_has(X86_FEATURE_BTS);
	x86_pmu.pebs = boot_cpu_has(X86_FEATURE_PEBS);
	if (x86_pmu.pebs) {
1272 1273
		char pebs_type = x86_pmu.intel_cap.pebs_trap ?  '+' : '-';
		int format = x86_pmu.intel_cap.pebs_format;
1274 1275 1276

		switch (format) {
		case 0:
1277
			printk(KERN_CONT "PEBS fmt0%c, ", pebs_type);
1278 1279 1280 1281 1282
			x86_pmu.pebs_record_size = sizeof(struct pebs_record_core);
			x86_pmu.drain_pebs = intel_pmu_drain_pebs_core;
			break;

		case 1:
1283
			printk(KERN_CONT "PEBS fmt1%c, ", pebs_type);
1284 1285 1286 1287
			x86_pmu.pebs_record_size = sizeof(struct pebs_record_nhm);
			x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
			break;

1288 1289 1290
		case 2:
			pr_cont("PEBS fmt2%c, ", pebs_type);
			x86_pmu.pebs_record_size = sizeof(struct pebs_record_hsw);
1291
			x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
1292 1293
			break;

1294 1295 1296 1297 1298
		case 3:
			pr_cont("PEBS fmt3%c, ", pebs_type);
			x86_pmu.pebs_record_size =
						sizeof(struct pebs_record_skl);
			x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
1299
			x86_pmu.free_running_flags |= PERF_SAMPLE_TIME;
1300 1301
			break;

1302
		default:
1303
			printk(KERN_CONT "no PEBS fmt%d%c, ", format, pebs_type);
1304 1305 1306 1307
			x86_pmu.pebs = 0;
		}
	}
}
1308 1309 1310

void perf_restore_debug_store(void)
{
1311 1312
	struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);

1313 1314 1315
	if (!x86_pmu.bts && !x86_pmu.pebs)
		return;

1316
	wrmsrl(MSR_IA32_DS_AREA, (unsigned long)ds);
1317
}