e1000_82575.c 76.6 KB
Newer Older
1 2 3
/*******************************************************************************

  Intel(R) Gigabit Ethernet Linux driver
4
  Copyright(c) 2007-2013 Intel Corporation.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

/* e1000_82575
 * e1000_82576
 */

32 33
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

34
#include <linux/types.h>
A
Alexander Duyck 已提交
35
#include <linux/if_ether.h>
C
Carolyn Wyborny 已提交
36
#include <linux/i2c.h>
37 38 39

#include "e1000_mac.h"
#include "e1000_82575.h"
40
#include "e1000_i210.h"
41 42 43 44 45 46 47 48 49 50 51

static s32  igb_get_invariants_82575(struct e1000_hw *);
static s32  igb_acquire_phy_82575(struct e1000_hw *);
static void igb_release_phy_82575(struct e1000_hw *);
static s32  igb_acquire_nvm_82575(struct e1000_hw *);
static void igb_release_nvm_82575(struct e1000_hw *);
static s32  igb_check_for_link_82575(struct e1000_hw *);
static s32  igb_get_cfg_done_82575(struct e1000_hw *);
static s32  igb_init_hw_82575(struct e1000_hw *);
static s32  igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
static s32  igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
A
Alexander Duyck 已提交
52 53
static s32  igb_read_phy_reg_82580(struct e1000_hw *, u32, u16 *);
static s32  igb_write_phy_reg_82580(struct e1000_hw *, u32, u16);
54
static s32  igb_reset_hw_82575(struct e1000_hw *);
A
Alexander Duyck 已提交
55
static s32  igb_reset_hw_82580(struct e1000_hw *);
56
static s32  igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
57 58
static s32  igb_set_d0_lplu_state_82580(struct e1000_hw *, bool);
static s32  igb_set_d3_lplu_state_82580(struct e1000_hw *, bool);
59
static s32  igb_setup_copper_link_82575(struct e1000_hw *);
60
static s32  igb_setup_serdes_link_82575(struct e1000_hw *);
61 62 63 64 65 66 67 68 69 70
static s32  igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
static s32  igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
static s32  igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
						 u16 *);
static s32  igb_get_phy_id_82575(struct e1000_hw *);
static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
static bool igb_sgmii_active_82575(struct e1000_hw *);
static s32  igb_reset_init_script_82575(struct e1000_hw *);
static s32  igb_read_mac_addr_82575(struct e1000_hw *);
71
static s32  igb_set_pcie_completion_timeout(struct e1000_hw *hw);
72
static s32  igb_reset_mdicnfg_82580(struct e1000_hw *hw);
73 74 75 76
static s32  igb_validate_nvm_checksum_82580(struct e1000_hw *hw);
static s32  igb_update_nvm_checksum_82580(struct e1000_hw *hw);
static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw);
static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw);
A
Alexander Duyck 已提交
77 78 79 80 81 82
static const u16 e1000_82580_rxpbs_table[] =
	{ 36, 72, 144, 1, 2, 4, 8, 16,
	  35, 70, 140 };
#define E1000_82580_RXPBS_TABLE_SIZE \
	(sizeof(e1000_82580_rxpbs_table)/sizeof(u16))

83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
/**
 *  igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
 *  @hw: pointer to the HW structure
 *
 *  Called to determine if the I2C pins are being used for I2C or as an
 *  external MDIO interface since the two options are mutually exclusive.
 **/
static bool igb_sgmii_uses_mdio_82575(struct e1000_hw *hw)
{
	u32 reg = 0;
	bool ext_mdio = false;

	switch (hw->mac.type) {
	case e1000_82575:
	case e1000_82576:
		reg = rd32(E1000_MDIC);
		ext_mdio = !!(reg & E1000_MDIC_DEST);
		break;
	case e1000_82580:
	case e1000_i350:
103
	case e1000_i354:
104 105
	case e1000_i210:
	case e1000_i211:
106 107 108 109 110 111 112 113 114
		reg = rd32(E1000_MDICNFG);
		ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
		break;
	default:
		break;
	}
	return ext_mdio;
}

115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
/**
 *  igb_check_for_link_media_swap - Check which M88E1112 interface linked
 *  @hw: pointer to the HW structure
 *
 *  Poll the M88E1112 interfaces to see which interface achieved link.
 */
static s32 igb_check_for_link_media_swap(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 data;
	u8 port = 0;

	/* Check the copper medium. */
	ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
	if (ret_val)
		return ret_val;

	ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
	if (ret_val)
		return ret_val;

	if (data & E1000_M88E1112_STATUS_LINK)
		port = E1000_MEDIA_PORT_COPPER;

	/* Check the other medium. */
	ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 1);
	if (ret_val)
		return ret_val;

	ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
	if (ret_val)
		return ret_val;

	/* reset page to 0 */
	ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
	if (ret_val)
		return ret_val;

	if (data & E1000_M88E1112_STATUS_LINK)
		port = E1000_MEDIA_PORT_OTHER;

	/* Determine if a swap needs to happen. */
	if (port && (hw->dev_spec._82575.media_port != port)) {
		hw->dev_spec._82575.media_port = port;
		hw->dev_spec._82575.media_changed = true;
	} else {
		ret_val = igb_check_for_link_82575(hw);
	}

	return E1000_SUCCESS;
}

168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
/**
 *  igb_init_phy_params_82575 - Init PHY func ptrs.
 *  @hw: pointer to the HW structure
 **/
static s32 igb_init_phy_params_82575(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val = 0;
	u32 ctrl_ext;

	if (hw->phy.media_type != e1000_media_type_copper) {
		phy->type = e1000_phy_none;
		goto out;
	}

	phy->autoneg_mask	= AUTONEG_ADVERTISE_SPEED_DEFAULT;
	phy->reset_delay_us	= 100;

	ctrl_ext = rd32(E1000_CTRL_EXT);

	if (igb_sgmii_active_82575(hw)) {
		phy->ops.reset = igb_phy_hw_reset_sgmii_82575;
		ctrl_ext |= E1000_CTRL_I2C_ENA;
	} else {
		phy->ops.reset = igb_phy_hw_reset;
		ctrl_ext &= ~E1000_CTRL_I2C_ENA;
	}

	wr32(E1000_CTRL_EXT, ctrl_ext);
	igb_reset_mdicnfg_82580(hw);

	if (igb_sgmii_active_82575(hw) && !igb_sgmii_uses_mdio_82575(hw)) {
		phy->ops.read_reg = igb_read_phy_reg_sgmii_82575;
		phy->ops.write_reg = igb_write_phy_reg_sgmii_82575;
	} else {
		switch (hw->mac.type) {
		case e1000_82580:
		case e1000_i350:
206
		case e1000_i354:
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
			phy->ops.read_reg = igb_read_phy_reg_82580;
			phy->ops.write_reg = igb_write_phy_reg_82580;
			break;
		case e1000_i210:
		case e1000_i211:
			phy->ops.read_reg = igb_read_phy_reg_gs40g;
			phy->ops.write_reg = igb_write_phy_reg_gs40g;
			break;
		default:
			phy->ops.read_reg = igb_read_phy_reg_igp;
			phy->ops.write_reg = igb_write_phy_reg_igp;
		}
	}

	/* set lan id */
	hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >>
			E1000_STATUS_FUNC_SHIFT;

	/* Set phy->phy_addr and phy->id. */
	ret_val = igb_get_phy_id_82575(hw);
	if (ret_val)
		return ret_val;

	/* Verify phy id and set remaining function pointers */
	switch (phy->id) {
232
	case M88E1543_E_PHY_ID:
233 234 235 236
	case I347AT4_E_PHY_ID:
	case M88E1112_E_PHY_ID:
	case M88E1111_I_PHY_ID:
		phy->type		= e1000_phy_m88;
237
		phy->ops.check_polarity	= igb_check_polarity_m88;
238
		phy->ops.get_phy_info	= igb_get_phy_info_m88;
239
		if (phy->id != M88E1111_I_PHY_ID)
240 241 242 243 244
			phy->ops.get_cable_length =
					 igb_get_cable_length_m88_gen2;
		else
			phy->ops.get_cable_length = igb_get_cable_length_m88;
		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
		/* Check if this PHY is confgured for media swap. */
		if (phy->id == M88E1112_E_PHY_ID) {
			u16 data;

			ret_val = phy->ops.write_reg(hw,
						     E1000_M88E1112_PAGE_ADDR,
						     2);
			if (ret_val)
				goto out;

			ret_val = phy->ops.read_reg(hw,
						    E1000_M88E1112_MAC_CTRL_1,
						    &data);
			if (ret_val)
				goto out;

			data = (data & E1000_M88E1112_MAC_CTRL_1_MODE_MASK) >>
			       E1000_M88E1112_MAC_CTRL_1_MODE_SHIFT;
			if (data == E1000_M88E1112_AUTO_COPPER_SGMII ||
			    data == E1000_M88E1112_AUTO_COPPER_BASEX)
				hw->mac.ops.check_for_link =
						igb_check_for_link_media_swap;
		}
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
		break;
	case IGP03E1000_E_PHY_ID:
		phy->type = e1000_phy_igp_3;
		phy->ops.get_phy_info = igb_get_phy_info_igp;
		phy->ops.get_cable_length = igb_get_cable_length_igp_2;
		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575;
		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state;
		break;
	case I82580_I_PHY_ID:
	case I350_I_PHY_ID:
		phy->type = e1000_phy_82580;
		phy->ops.force_speed_duplex =
					 igb_phy_force_speed_duplex_82580;
		phy->ops.get_cable_length = igb_get_cable_length_82580;
		phy->ops.get_phy_info = igb_get_phy_info_82580;
		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
		break;
	case I210_I_PHY_ID:
		phy->type		= e1000_phy_i210;
		phy->ops.check_polarity	= igb_check_polarity_m88;
		phy->ops.get_phy_info	= igb_get_phy_info_m88;
		phy->ops.get_cable_length = igb_get_cable_length_m88_gen2;
		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
		break;
	default:
		ret_val = -E1000_ERR_PHY;
		goto out;
	}

out:
	return ret_val;
}

305 306 307 308
/**
 *  igb_init_nvm_params_82575 - Init NVM func ptrs.
 *  @hw: pointer to the HW structure
 **/
309
static s32 igb_init_nvm_params_82575(struct e1000_hw *hw)
310 311 312 313 314 315 316
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	u32 eecd = rd32(E1000_EECD);
	u16 size;

	size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
		     E1000_EECD_SIZE_EX_SHIFT);
317

318 319 320 321 322 323 324 325 326 327 328 329
	/* Added to a constant, "size" becomes the left-shift value
	 * for setting word_size.
	 */
	size += NVM_WORD_SIZE_BASE_SHIFT;

	/* Just in case size is out of range, cap it to the largest
	 * EEPROM size supported
	 */
	if (size > 15)
		size = 15;

	nvm->word_size = 1 << size;
330 331
	nvm->opcode_bits = 8;
	nvm->delay_usec = 1;
332

333 334 335 336 337 338 339 340 341 342 343 344 345 346
	switch (nvm->override) {
	case e1000_nvm_override_spi_large:
		nvm->page_size = 32;
		nvm->address_bits = 16;
		break;
	case e1000_nvm_override_spi_small:
		nvm->page_size = 8;
		nvm->address_bits = 8;
		break;
	default:
		nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ?
				    16 : 8;
		break;
347
	}
348 349 350 351
	if (nvm->word_size == (1 << 15))
		nvm->page_size = 128;

	nvm->type = e1000_nvm_eeprom_spi;
352 353

	/* NVM Function Pointers */
354 355 356 357 358 359 360 361 362 363 364
	nvm->ops.acquire = igb_acquire_nvm_82575;
	nvm->ops.release = igb_release_nvm_82575;
	nvm->ops.write = igb_write_nvm_spi;
	nvm->ops.validate = igb_validate_nvm_checksum;
	nvm->ops.update = igb_update_nvm_checksum;
	if (nvm->word_size < (1 << 15))
		nvm->ops.read = igb_read_nvm_eerd;
	else
		nvm->ops.read = igb_read_nvm_spi;

	/* override generic family function pointers for specific descendants */
365 366 367 368 369
	switch (hw->mac.type) {
	case e1000_82580:
		nvm->ops.validate = igb_validate_nvm_checksum_82580;
		nvm->ops.update = igb_update_nvm_checksum_82580;
		break;
370
	case e1000_i354:
371 372 373 374 375 376 377 378 379 380 381
	case e1000_i350:
		nvm->ops.validate = igb_validate_nvm_checksum_i350;
		nvm->ops.update = igb_update_nvm_checksum_i350;
		break;
	default:
		break;
	}

	return 0;
}

382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
/**
 *  igb_init_mac_params_82575 - Init MAC func ptrs.
 *  @hw: pointer to the HW structure
 **/
static s32 igb_init_mac_params_82575(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;

	/* Set mta register count */
	mac->mta_reg_count = 128;
	/* Set rar entry count */
	switch (mac->type) {
	case e1000_82576:
		mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
		break;
	case e1000_82580:
		mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
		break;
	case e1000_i350:
402
	case e1000_i354:
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
		mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
		break;
	default:
		mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
		break;
	}
	/* reset */
	if (mac->type >= e1000_82580)
		mac->ops.reset_hw = igb_reset_hw_82580;
	else
		mac->ops.reset_hw = igb_reset_hw_82575;

	if (mac->type >= e1000_i210) {
		mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_i210;
		mac->ops.release_swfw_sync = igb_release_swfw_sync_i210;

	} else {
		mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_82575;
		mac->ops.release_swfw_sync = igb_release_swfw_sync_82575;
	}

	/* Set if part includes ASF firmware */
	mac->asf_firmware_present = true;
	/* Set if manageability features are enabled. */
	mac->arc_subsystem_valid =
		(rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
			? true : false;
	/* enable EEE on i350 parts and later parts */
	if (mac->type >= e1000_i350)
		dev_spec->eee_disable = false;
	else
		dev_spec->eee_disable = true;
435 436 437
	/* Allow a single clear of the SW semaphore on I210 and newer */
	if (mac->type >= e1000_i210)
		dev_spec->clear_semaphore_once = true;
438 439 440 441 442 443
	/* physical interface link setup */
	mac->ops.setup_physical_interface =
		(hw->phy.media_type == e1000_media_type_copper)
			? igb_setup_copper_link_82575
			: igb_setup_serdes_link_82575;

444 445 446 447 448 449 450 451 452 453 454 455 456
	if (mac->type == e1000_82580) {
		switch (hw->device_id) {
		/* feature not supported on these id's */
		case E1000_DEV_ID_DH89XXCC_SGMII:
		case E1000_DEV_ID_DH89XXCC_SERDES:
		case E1000_DEV_ID_DH89XXCC_BACKPLANE:
		case E1000_DEV_ID_DH89XXCC_SFP:
			break;
		default:
			hw->dev_spec._82575.mas_capable = true;
			break;
		}
	}
457 458 459
	return 0;
}

460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
/**
 *  igb_set_sfp_media_type_82575 - derives SFP module media type.
 *  @hw: pointer to the HW structure
 *
 *  The media type is chosen based on SFP module.
 *  compatibility flags retrieved from SFP ID EEPROM.
 **/
static s32 igb_set_sfp_media_type_82575(struct e1000_hw *hw)
{
	s32 ret_val = E1000_ERR_CONFIG;
	u32 ctrl_ext = 0;
	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
	struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
	u8 tranceiver_type = 0;
	s32 timeout = 3;

	/* Turn I2C interface ON and power on sfp cage */
	ctrl_ext = rd32(E1000_CTRL_EXT);
	ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
	wr32(E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_I2C_ENA);

	wrfl();

	/* Read SFP module data */
	while (timeout) {
		ret_val = igb_read_sfp_data_byte(hw,
			E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_IDENTIFIER_OFFSET),
			&tranceiver_type);
		if (ret_val == 0)
			break;
		msleep(100);
		timeout--;
	}
	if (ret_val != 0)
		goto out;

	ret_val = igb_read_sfp_data_byte(hw,
			E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_ETH_FLAGS_OFFSET),
			(u8 *)eth_flags);
	if (ret_val != 0)
		goto out;

	/* Check if there is some SFP module plugged and powered */
	if ((tranceiver_type == E1000_SFF_IDENTIFIER_SFP) ||
	    (tranceiver_type == E1000_SFF_IDENTIFIER_SFF)) {
		dev_spec->module_plugged = true;
		if (eth_flags->e1000_base_lx || eth_flags->e1000_base_sx) {
			hw->phy.media_type = e1000_media_type_internal_serdes;
		} else if (eth_flags->e100_base_fx) {
			dev_spec->sgmii_active = true;
			hw->phy.media_type = e1000_media_type_internal_serdes;
		} else if (eth_flags->e1000_base_t) {
			dev_spec->sgmii_active = true;
			hw->phy.media_type = e1000_media_type_copper;
		} else {
			hw->phy.media_type = e1000_media_type_unknown;
			hw_dbg("PHY module has not been recognized\n");
			goto out;
		}
	} else {
		hw->phy.media_type = e1000_media_type_unknown;
	}
	ret_val = 0;
out:
	/* Restore I2C interface setting */
	wr32(E1000_CTRL_EXT, ctrl_ext);
	return ret_val;
}

529 530 531
static s32 igb_get_invariants_82575(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
532
	struct e1000_dev_spec_82575 * dev_spec = &hw->dev_spec._82575;
533 534
	s32 ret_val;
	u32 ctrl_ext = 0;
535
	u32 link_mode = 0;
536 537 538 539 540 541 542

	switch (hw->device_id) {
	case E1000_DEV_ID_82575EB_COPPER:
	case E1000_DEV_ID_82575EB_FIBER_SERDES:
	case E1000_DEV_ID_82575GB_QUAD_COPPER:
		mac->type = e1000_82575;
		break;
A
Alexander Duyck 已提交
543
	case E1000_DEV_ID_82576:
544
	case E1000_DEV_ID_82576_NS:
545
	case E1000_DEV_ID_82576_NS_SERDES:
A
Alexander Duyck 已提交
546 547
	case E1000_DEV_ID_82576_FIBER:
	case E1000_DEV_ID_82576_SERDES:
548
	case E1000_DEV_ID_82576_QUAD_COPPER:
549
	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
550
	case E1000_DEV_ID_82576_SERDES_QUAD:
A
Alexander Duyck 已提交
551 552
		mac->type = e1000_82576;
		break;
A
Alexander Duyck 已提交
553 554
	case E1000_DEV_ID_82580_COPPER:
	case E1000_DEV_ID_82580_FIBER:
555
	case E1000_DEV_ID_82580_QUAD_FIBER:
A
Alexander Duyck 已提交
556 557 558
	case E1000_DEV_ID_82580_SERDES:
	case E1000_DEV_ID_82580_SGMII:
	case E1000_DEV_ID_82580_COPPER_DUAL:
559 560
	case E1000_DEV_ID_DH89XXCC_SGMII:
	case E1000_DEV_ID_DH89XXCC_SERDES:
G
Gasparakis, Joseph 已提交
561 562
	case E1000_DEV_ID_DH89XXCC_BACKPLANE:
	case E1000_DEV_ID_DH89XXCC_SFP:
A
Alexander Duyck 已提交
563 564
		mac->type = e1000_82580;
		break;
565 566 567 568 569 570
	case E1000_DEV_ID_I350_COPPER:
	case E1000_DEV_ID_I350_FIBER:
	case E1000_DEV_ID_I350_SERDES:
	case E1000_DEV_ID_I350_SGMII:
		mac->type = e1000_i350;
		break;
571 572 573 574
	case E1000_DEV_ID_I210_COPPER:
	case E1000_DEV_ID_I210_FIBER:
	case E1000_DEV_ID_I210_SERDES:
	case E1000_DEV_ID_I210_SGMII:
575 576
	case E1000_DEV_ID_I210_COPPER_FLASHLESS:
	case E1000_DEV_ID_I210_SERDES_FLASHLESS:
577 578 579 580 581
		mac->type = e1000_i210;
		break;
	case E1000_DEV_ID_I211_COPPER:
		mac->type = e1000_i211;
		break;
582 583 584 585 586
	case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
	case E1000_DEV_ID_I354_SGMII:
	case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
		mac->type = e1000_i354;
		break;
587 588 589 590 591 592
	default:
		return -E1000_ERR_MAC_INIT;
		break;
	}

	/* Set media type */
593
	/* The 82575 uses bits 22:23 for link mode. The mode can be changed
594 595 596 597 598
	 * based on the EEPROM. We cannot rely upon device ID. There
	 * is no distinguishable difference between fiber and internal
	 * SerDes mode on the 82575. There can be an external PHY attached
	 * on the SGMII interface. For this, we'll set sgmii_active to true.
	 */
599
	hw->phy.media_type = e1000_media_type_copper;
600
	dev_spec->sgmii_active = false;
601
	dev_spec->module_plugged = false;
602 603

	ctrl_ext = rd32(E1000_CTRL_EXT);
604 605 606

	link_mode = ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK;
	switch (link_mode) {
A
Alexander Duyck 已提交
607
	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
608
		hw->phy.media_type = e1000_media_type_internal_serdes;
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
		break;
	case E1000_CTRL_EXT_LINK_MODE_SGMII:
		/* Get phy control interface type set (MDIO vs. I2C)*/
		if (igb_sgmii_uses_mdio_82575(hw)) {
			hw->phy.media_type = e1000_media_type_copper;
			dev_spec->sgmii_active = true;
			break;
		}
		/* fall through for I2C based SGMII */
	case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
		/* read media type from SFP EEPROM */
		ret_val = igb_set_sfp_media_type_82575(hw);
		if ((ret_val != 0) ||
		    (hw->phy.media_type == e1000_media_type_unknown)) {
			/* If media type was not identified then return media
			 * type defined by the CTRL_EXT settings.
			 */
			hw->phy.media_type = e1000_media_type_internal_serdes;

			if (link_mode == E1000_CTRL_EXT_LINK_MODE_SGMII) {
				hw->phy.media_type = e1000_media_type_copper;
				dev_spec->sgmii_active = true;
			}

			break;
		}

		/* do not change link mode for 100BaseFX */
		if (dev_spec->eth_flags.e100_base_fx)
			break;

		/* change current link mode setting */
		ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK;

		if (hw->phy.media_type == e1000_media_type_copper)
			ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_SGMII;
		else
			ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;

		wr32(E1000_CTRL_EXT, ctrl_ext);

650 651 652
		break;
	default:
		break;
653
	}
654

655 656 657 658
	/* mac initialization and operations */
	ret_val = igb_init_mac_params_82575(hw);
	if (ret_val)
		goto out;
659 660

	/* NVM initialization */
661
	ret_val = igb_init_nvm_params_82575(hw);
662 663 664 665 666 667 668 669 670
	switch (hw->mac.type) {
	case e1000_i210:
	case e1000_i211:
		ret_val = igb_init_nvm_params_i210(hw);
		break;
	default:
		break;
	}

671 672
	if (ret_val)
		goto out;
673

674 675 676 677
	/* if part supports SR-IOV then initialize mailbox parameters */
	switch (mac->type) {
	case e1000_82576:
	case e1000_i350:
678
		igb_init_mbx_params_pf(hw);
679 680 681 682
		break;
	default:
		break;
	}
683

684
	/* setup PHY parameters */
685
	ret_val = igb_init_phy_params_82575(hw);
686

687 688
out:
	return ret_val;
689 690 691
}

/**
692
 *  igb_acquire_phy_82575 - Acquire rights to access PHY
693 694 695 696 697 698 699
 *  @hw: pointer to the HW structure
 *
 *  Acquire access rights to the correct PHY.  This is a
 *  function pointer entry point called by the api module.
 **/
static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
{
700
	u16 mask = E1000_SWFW_PHY0_SM;
701

702 703
	if (hw->bus.func == E1000_FUNC_1)
		mask = E1000_SWFW_PHY1_SM;
704 705 706 707
	else if (hw->bus.func == E1000_FUNC_2)
		mask = E1000_SWFW_PHY2_SM;
	else if (hw->bus.func == E1000_FUNC_3)
		mask = E1000_SWFW_PHY3_SM;
708

709
	return hw->mac.ops.acquire_swfw_sync(hw, mask);
710 711 712
}

/**
713
 *  igb_release_phy_82575 - Release rights to access PHY
714 715 716 717 718 719 720
 *  @hw: pointer to the HW structure
 *
 *  A wrapper to release access rights to the correct PHY.  This is a
 *  function pointer entry point called by the api module.
 **/
static void igb_release_phy_82575(struct e1000_hw *hw)
{
721 722 723 724
	u16 mask = E1000_SWFW_PHY0_SM;

	if (hw->bus.func == E1000_FUNC_1)
		mask = E1000_SWFW_PHY1_SM;
725 726 727 728
	else if (hw->bus.func == E1000_FUNC_2)
		mask = E1000_SWFW_PHY2_SM;
	else if (hw->bus.func == E1000_FUNC_3)
		mask = E1000_SWFW_PHY3_SM;
729

730
	hw->mac.ops.release_swfw_sync(hw, mask);
731 732 733
}

/**
734
 *  igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
735 736 737 738 739 740 741 742 743 744
 *  @hw: pointer to the HW structure
 *  @offset: register offset to be read
 *  @data: pointer to the read data
 *
 *  Reads the PHY register at offset using the serial gigabit media independent
 *  interface and stores the retrieved information in data.
 **/
static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
					  u16 *data)
{
745
	s32 ret_val = -E1000_ERR_PARAM;
746 747

	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
748
		hw_dbg("PHY Address %u is out of range\n", offset);
749
		goto out;
750 751
	}

752 753 754
	ret_val = hw->phy.ops.acquire(hw);
	if (ret_val)
		goto out;
755

756
	ret_val = igb_read_phy_reg_i2c(hw, offset, data);
757

758 759 760 761
	hw->phy.ops.release(hw);

out:
	return ret_val;
762 763 764
}

/**
765
 *  igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
766 767 768 769 770 771 772 773 774 775
 *  @hw: pointer to the HW structure
 *  @offset: register offset to write to
 *  @data: data to write at register offset
 *
 *  Writes the data to PHY register at the offset using the serial gigabit
 *  media independent interface.
 **/
static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
					   u16 data)
{
776 777
	s32 ret_val = -E1000_ERR_PARAM;

778 779

	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
780
		hw_dbg("PHY Address %d is out of range\n", offset);
781
		goto out;
782 783
	}

784 785 786
	ret_val = hw->phy.ops.acquire(hw);
	if (ret_val)
		goto out;
787

788
	ret_val = igb_write_phy_reg_i2c(hw, offset, data);
789

790 791 792 793
	hw->phy.ops.release(hw);

out:
	return ret_val;
794 795 796
}

/**
797
 *  igb_get_phy_id_82575 - Retrieve PHY addr and id
798 799
 *  @hw: pointer to the HW structure
 *
800
 *  Retrieves the PHY address and ID for both PHY's which do and do not use
801 802 803 804 805 806 807
 *  sgmi interface.
 **/
static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32  ret_val = 0;
	u16 phy_id;
808
	u32 ctrl_ext;
809
	u32 mdic;
810

811 812 813 814
	/* Extra read required for some PHY's on i354 */
	if (hw->mac.type == e1000_i354)
		igb_get_phy_id(hw);

815
	/* For SGMII PHYs, we try the list of possible addresses until
816 817 818 819 820 821 822 823 824 825 826
	 * we find one that works.  For non-SGMII PHYs
	 * (e.g. integrated copper PHYs), an address of 1 should
	 * work.  The result of this function should mean phy->phy_addr
	 * and phy->id are set correctly.
	 */
	if (!(igb_sgmii_active_82575(hw))) {
		phy->addr = 1;
		ret_val = igb_get_phy_id(hw);
		goto out;
	}

827 828 829 830 831 832 833 834 835 836
	if (igb_sgmii_uses_mdio_82575(hw)) {
		switch (hw->mac.type) {
		case e1000_82575:
		case e1000_82576:
			mdic = rd32(E1000_MDIC);
			mdic &= E1000_MDIC_PHY_MASK;
			phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
			break;
		case e1000_82580:
		case e1000_i350:
837
		case e1000_i354:
838 839
		case e1000_i210:
		case e1000_i211:
840 841 842 843 844 845 846 847 848 849 850 851 852
			mdic = rd32(E1000_MDICNFG);
			mdic &= E1000_MDICNFG_PHY_MASK;
			phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
			break;
		default:
			ret_val = -E1000_ERR_PHY;
			goto out;
			break;
		}
		ret_val = igb_get_phy_id(hw);
		goto out;
	}

853 854 855 856 857 858
	/* Power on sgmii phy if it is disabled */
	ctrl_ext = rd32(E1000_CTRL_EXT);
	wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
	wrfl();
	msleep(300);

859
	/* The address field in the I2CCMD register is 3 bits and 0 is invalid.
860 861 862 863 864
	 * Therefore, we need to test 1-7
	 */
	for (phy->addr = 1; phy->addr < 8; phy->addr++) {
		ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
		if (ret_val == 0) {
865 866
			hw_dbg("Vendor ID 0x%08X read at address %u\n",
			       phy_id, phy->addr);
867
			/* At the time of this writing, The M88 part is
868 869 870 871 872
			 * the only supported SGMII PHY product.
			 */
			if (phy_id == M88_VENDOR)
				break;
		} else {
873
			hw_dbg("PHY address %u was unreadable\n", phy->addr);
874 875 876 877 878 879 880 881
		}
	}

	/* A valid PHY type couldn't be found. */
	if (phy->addr == 8) {
		phy->addr = 0;
		ret_val = -E1000_ERR_PHY;
		goto out;
882 883
	} else {
		ret_val = igb_get_phy_id(hw);
884 885
	}

886 887
	/* restore previous sfp cage power state */
	wr32(E1000_CTRL_EXT, ctrl_ext);
888 889 890 891 892 893

out:
	return ret_val;
}

/**
894
 *  igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
895 896 897 898 899 900 901 902
 *  @hw: pointer to the HW structure
 *
 *  Resets the PHY using the serial gigabit media independent interface.
 **/
static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
{
	s32 ret_val;

903
	/* This isn't a true "hard" reset, but is the only reset
904 905 906
	 * available to us at this time.
	 */

907
	hw_dbg("Soft resetting SGMII attached PHY...\n");
908

909
	/* SFP documentation requires the following to configure the SPF module
910 911
	 * to work on SGMII.  No further documentation is given.
	 */
A
Alexander Duyck 已提交
912
	ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
913 914 915 916 917 918 919 920 921 922
	if (ret_val)
		goto out;

	ret_val = igb_phy_sw_reset(hw);

out:
	return ret_val;
}

/**
923
 *  igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940
 *  @hw: pointer to the HW structure
 *  @active: true to enable LPLU, false to disable
 *
 *  Sets the LPLU D0 state according to the active flag.  When
 *  activating LPLU this function also disables smart speed
 *  and vice versa.  LPLU will not be activated unless the
 *  device autonegotiation advertisement meets standards of
 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
 *  This is a function pointer entry point only called by
 *  PHY setup routines.
 **/
static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 data;

A
Alexander Duyck 已提交
941
	ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
942 943 944 945 946
	if (ret_val)
		goto out;

	if (active) {
		data |= IGP02E1000_PM_D0_LPLU;
A
Alexander Duyck 已提交
947
		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
948
						 data);
949 950 951 952
		if (ret_val)
			goto out;

		/* When LPLU is enabled, we should disable SmartSpeed */
A
Alexander Duyck 已提交
953
		ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
954
						&data);
955
		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
A
Alexander Duyck 已提交
956
		ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
957
						 data);
958 959 960 961
		if (ret_val)
			goto out;
	} else {
		data &= ~IGP02E1000_PM_D0_LPLU;
A
Alexander Duyck 已提交
962
		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
963
						 data);
964
		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
965 966 967 968 969
		 * during Dx states where the power conservation is most
		 * important.  During driver activity we should enable
		 * SmartSpeed, so performance is maintained.
		 */
		if (phy->smart_speed == e1000_smart_speed_on) {
A
Alexander Duyck 已提交
970
			ret_val = phy->ops.read_reg(hw,
971
					IGP01E1000_PHY_PORT_CONFIG, &data);
972 973 974 975
			if (ret_val)
				goto out;

			data |= IGP01E1000_PSCFR_SMART_SPEED;
A
Alexander Duyck 已提交
976
			ret_val = phy->ops.write_reg(hw,
977
					IGP01E1000_PHY_PORT_CONFIG, data);
978 979 980
			if (ret_val)
				goto out;
		} else if (phy->smart_speed == e1000_smart_speed_off) {
A
Alexander Duyck 已提交
981
			ret_val = phy->ops.read_reg(hw,
982
					IGP01E1000_PHY_PORT_CONFIG, &data);
983 984 985 986
			if (ret_val)
				goto out;

			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
A
Alexander Duyck 已提交
987
			ret_val = phy->ops.write_reg(hw,
988
					IGP01E1000_PHY_PORT_CONFIG, data);
989 990 991 992 993 994 995 996 997
			if (ret_val)
				goto out;
		}
	}

out:
	return ret_val;
}

998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
/**
 *  igb_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state
 *  @hw: pointer to the HW structure
 *  @active: true to enable LPLU, false to disable
 *
 *  Sets the LPLU D0 state according to the active flag.  When
 *  activating LPLU this function also disables smart speed
 *  and vice versa.  LPLU will not be activated unless the
 *  device autonegotiation advertisement meets standards of
 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
 *  This is a function pointer entry point only called by
 *  PHY setup routines.
 **/
static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val = 0;
	u16 data;

	data = rd32(E1000_82580_PHY_POWER_MGMT);

	if (active) {
		data |= E1000_82580_PM_D0_LPLU;

		/* When LPLU is enabled, we should disable SmartSpeed */
		data &= ~E1000_82580_PM_SPD;
	} else {
		data &= ~E1000_82580_PM_D0_LPLU;

1027
		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
		 * during Dx states where the power conservation is most
		 * important.  During driver activity we should enable
		 * SmartSpeed, so performance is maintained.
		 */
		if (phy->smart_speed == e1000_smart_speed_on)
			data |= E1000_82580_PM_SPD;
		else if (phy->smart_speed == e1000_smart_speed_off)
			data &= ~E1000_82580_PM_SPD; }

	wr32(E1000_82580_PHY_POWER_MGMT, data);
	return ret_val;
}

/**
 *  igb_set_d3_lplu_state_82580 - Sets low power link up state for D3
 *  @hw: pointer to the HW structure
 *  @active: boolean used to enable/disable lplu
 *
 *  Success returns 0, Failure returns 1
 *
 *  The low power link up (lplu) state is set to the power management level D3
 *  and SmartSpeed is disabled when active is true, else clear lplu for D3
 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
 *  is used during Dx states where the power conservation is most important.
 *  During driver activity, SmartSpeed should be enabled so performance is
 *  maintained.
 **/
1055
static s32 igb_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active)
1056 1057 1058 1059 1060 1061 1062 1063 1064
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val = 0;
	u16 data;

	data = rd32(E1000_82580_PHY_POWER_MGMT);

	if (!active) {
		data &= ~E1000_82580_PM_D3_LPLU;
1065
		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
		 * during Dx states where the power conservation is most
		 * important.  During driver activity we should enable
		 * SmartSpeed, so performance is maintained.
		 */
		if (phy->smart_speed == e1000_smart_speed_on)
			data |= E1000_82580_PM_SPD;
		else if (phy->smart_speed == e1000_smart_speed_off)
			data &= ~E1000_82580_PM_SPD;
	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
		data |= E1000_82580_PM_D3_LPLU;
		/* When LPLU is enabled, we should disable SmartSpeed */
		data &= ~E1000_82580_PM_SPD;
	}

	wr32(E1000_82580_PHY_POWER_MGMT, data);
	return ret_val;
}

1086
/**
1087
 *  igb_acquire_nvm_82575 - Request for access to EEPROM
1088 1089
 *  @hw: pointer to the HW structure
 *
1090
 *  Acquire the necessary semaphores for exclusive access to the EEPROM.
1091 1092 1093 1094 1095 1096 1097 1098
 *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
 *  Return successful if access grant bit set, else clear the request for
 *  EEPROM access and return -E1000_ERR_NVM (-1).
 **/
static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
{
	s32 ret_val;

1099
	ret_val = hw->mac.ops.acquire_swfw_sync(hw, E1000_SWFW_EEP_SM);
1100 1101 1102 1103 1104 1105
	if (ret_val)
		goto out;

	ret_val = igb_acquire_nvm(hw);

	if (ret_val)
1106
		hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
1107 1108 1109 1110 1111 1112

out:
	return ret_val;
}

/**
1113
 *  igb_release_nvm_82575 - Release exclusive access to EEPROM
1114 1115 1116 1117 1118 1119 1120 1121
 *  @hw: pointer to the HW structure
 *
 *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
 *  then release the semaphores acquired.
 **/
static void igb_release_nvm_82575(struct e1000_hw *hw)
{
	igb_release_nvm(hw);
1122
	hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
1123 1124 1125
}

/**
1126
 *  igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
 *  @hw: pointer to the HW structure
 *  @mask: specifies which semaphore to acquire
 *
 *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
 *  will also specify which port we're acquiring the lock for.
 **/
static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
{
	u32 swfw_sync;
	u32 swmask = mask;
	u32 fwmask = mask << 16;
	s32 ret_val = 0;
	s32 i = 0, timeout = 200; /* FIXME: find real value to use here */

	while (i < timeout) {
		if (igb_get_hw_semaphore(hw)) {
			ret_val = -E1000_ERR_SWFW_SYNC;
			goto out;
		}

		swfw_sync = rd32(E1000_SW_FW_SYNC);
		if (!(swfw_sync & (fwmask | swmask)))
			break;

1151
		/* Firmware currently using resource (fwmask)
1152 1153 1154 1155 1156 1157 1158 1159
		 * or other software thread using resource (swmask)
		 */
		igb_put_hw_semaphore(hw);
		mdelay(5);
		i++;
	}

	if (i == timeout) {
1160
		hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
		ret_val = -E1000_ERR_SWFW_SYNC;
		goto out;
	}

	swfw_sync |= swmask;
	wr32(E1000_SW_FW_SYNC, swfw_sync);

	igb_put_hw_semaphore(hw);

out:
	return ret_val;
}

/**
1175
 *  igb_release_swfw_sync_82575 - Release SW/FW semaphore
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
 *  @hw: pointer to the HW structure
 *  @mask: specifies which semaphore to acquire
 *
 *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
 *  will also specify which port we're releasing the lock for.
 **/
static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
{
	u32 swfw_sync;

	while (igb_get_hw_semaphore(hw) != 0);
	/* Empty */

	swfw_sync = rd32(E1000_SW_FW_SYNC);
	swfw_sync &= ~mask;
	wr32(E1000_SW_FW_SYNC, swfw_sync);

	igb_put_hw_semaphore(hw);
}

/**
1197
 *  igb_get_cfg_done_82575 - Read config done bit
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
 *  @hw: pointer to the HW structure
 *
 *  Read the management control register for the config done bit for
 *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
 *  to read the config done bit, so an error is *ONLY* logged and returns
 *  0.  If we were to return with error, EEPROM-less silicon
 *  would not be able to be reset or change link.
 **/
static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
{
	s32 timeout = PHY_CFG_TIMEOUT;
	s32 ret_val = 0;
	u32 mask = E1000_NVM_CFG_DONE_PORT_0;

	if (hw->bus.func == 1)
		mask = E1000_NVM_CFG_DONE_PORT_1;
A
Alexander Duyck 已提交
1214 1215 1216 1217
	else if (hw->bus.func == E1000_FUNC_2)
		mask = E1000_NVM_CFG_DONE_PORT_2;
	else if (hw->bus.func == E1000_FUNC_3)
		mask = E1000_NVM_CFG_DONE_PORT_3;
1218 1219 1220 1221 1222 1223 1224 1225

	while (timeout) {
		if (rd32(E1000_EEMNGCTL) & mask)
			break;
		msleep(1);
		timeout--;
	}
	if (!timeout)
1226
		hw_dbg("MNG configuration cycle has not completed.\n");
1227 1228 1229 1230 1231 1232 1233 1234 1235

	/* If EEPROM is not marked present, init the PHY manually */
	if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
	    (hw->phy.type == e1000_phy_igp_3))
		igb_phy_init_script_igp3(hw);

	return ret_val;
}

1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
/**
 *  igb_get_link_up_info_82575 - Get link speed/duplex info
 *  @hw: pointer to the HW structure
 *  @speed: stores the current speed
 *  @duplex: stores the current duplex
 *
 *  This is a wrapper function, if using the serial gigabit media independent
 *  interface, use PCS to retrieve the link speed and duplex information.
 *  Otherwise, use the generic function to get the link speed and duplex info.
 **/
static s32 igb_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed,
					u16 *duplex)
{
	s32 ret_val;

	if (hw->phy.media_type != e1000_media_type_copper)
		ret_val = igb_get_pcs_speed_and_duplex_82575(hw, speed,
							       duplex);
	else
		ret_val = igb_get_speed_and_duplex_copper(hw, speed,
								    duplex);

	return ret_val;
}

1261
/**
1262
 *  igb_check_for_link_82575 - Check for link
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
 *  @hw: pointer to the HW structure
 *
 *  If sgmii is enabled, then use the pcs register to determine link, otherwise
 *  use the generic interface for determining link.
 **/
static s32 igb_check_for_link_82575(struct e1000_hw *hw)
{
	s32 ret_val;
	u16 speed, duplex;

1273
	if (hw->phy.media_type != e1000_media_type_copper) {
1274
		ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
A
Alexander Duyck 已提交
1275
		                                             &duplex);
1276
		/* Use this flag to determine if link needs to be checked or
1277 1278 1279 1280
		 * not.  If  we have link clear the flag so that we do not
		 * continue to check for link.
		 */
		hw->mac.get_link_status = !hw->mac.serdes_has_link;
1281 1282 1283 1284 1285 1286 1287 1288 1289

		/* Configure Flow Control now that Auto-Neg has completed.
		 * First, we need to restore the desired flow control
		 * settings because we may have had to re-autoneg with a
		 * different link partner.
		 */
		ret_val = igb_config_fc_after_link_up(hw);
		if (ret_val)
			hw_dbg("Error configuring flow control\n");
1290
	} else {
1291
		ret_val = igb_check_for_copper_link(hw);
1292
	}
1293 1294 1295

	return ret_val;
}
1296

1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
/**
 *  igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown
 *  @hw: pointer to the HW structure
 **/
void igb_power_up_serdes_link_82575(struct e1000_hw *hw)
{
	u32 reg;


	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
	    !igb_sgmii_active_82575(hw))
		return;

	/* Enable PCS to turn on link */
	reg = rd32(E1000_PCS_CFG0);
	reg |= E1000_PCS_CFG_PCS_EN;
	wr32(E1000_PCS_CFG0, reg);

	/* Power up the laser */
	reg = rd32(E1000_CTRL_EXT);
	reg &= ~E1000_CTRL_EXT_SDP3_DATA;
	wr32(E1000_CTRL_EXT, reg);

	/* flush the write to verify completion */
	wrfl();
	msleep(1);
}

1325
/**
1326
 *  igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
1327 1328 1329 1330
 *  @hw: pointer to the HW structure
 *  @speed: stores the current speed
 *  @duplex: stores the current duplex
 *
1331
 *  Using the physical coding sub-layer (PCS), retrieve the current speed and
1332 1333 1334 1335 1336 1337
 *  duplex, then store the values in the pointers provided.
 **/
static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
						u16 *duplex)
{
	struct e1000_mac_info *mac = &hw->mac;
1338
	u32 pcs, status;
1339 1340 1341 1342 1343 1344

	/* Set up defaults for the return values of this function */
	mac->serdes_has_link = false;
	*speed = 0;
	*duplex = 0;

1345
	/* Read the PCS Status register for link state. For non-copper mode,
1346 1347 1348 1349 1350
	 * the status register is not accurate. The PCS status register is
	 * used instead.
	 */
	pcs = rd32(E1000_PCS_LSTAT);

1351
	/* The link up bit determines when link is up on autoneg. The sync ok
1352 1353 1354 1355 1356 1357 1358
	 * gets set once both sides sync up and agree upon link. Stable link
	 * can be determined by checking for both link up and link sync ok
	 */
	if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
		mac->serdes_has_link = true;

		/* Detect and store PCS speed */
1359
		if (pcs & E1000_PCS_LSTS_SPEED_1000)
1360
			*speed = SPEED_1000;
1361
		else if (pcs & E1000_PCS_LSTS_SPEED_100)
1362
			*speed = SPEED_100;
1363
		else
1364 1365 1366
			*speed = SPEED_10;

		/* Detect and store PCS duplex */
1367
		if (pcs & E1000_PCS_LSTS_DUPLEX_FULL)
1368
			*duplex = FULL_DUPLEX;
1369
		else
1370
			*duplex = HALF_DUPLEX;
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381

	/* Check if it is an I354 2.5Gb backplane connection. */
		if (mac->type == e1000_i354) {
			status = rd32(E1000_STATUS);
			if ((status & E1000_STATUS_2P5_SKU) &&
			    !(status & E1000_STATUS_2P5_SKU_OVER)) {
				*speed = SPEED_2500;
				*duplex = FULL_DUPLEX;
				hw_dbg("2500 Mbs, ");
				hw_dbg("Full Duplex\n");
			}
1382
		}
1383

1384 1385 1386 1387 1388
	}

	return 0;
}

A
Alexander Duyck 已提交
1389
/**
1390
 *  igb_shutdown_serdes_link_82575 - Remove link during power down
1391 1392
 *  @hw: pointer to the HW structure
 *
A
Alexander Duyck 已提交
1393 1394
 *  In the case of fiber serdes, shut down optics and PCS on driver unload
 *  when management pass thru is not enabled.
1395
 **/
1396
void igb_shutdown_serdes_link_82575(struct e1000_hw *hw)
1397
{
A
Alexander Duyck 已提交
1398 1399
	u32 reg;

1400
	if (hw->phy.media_type != e1000_media_type_internal_serdes &&
1401
	    igb_sgmii_active_82575(hw))
A
Alexander Duyck 已提交
1402 1403
		return;

1404
	if (!igb_enable_mng_pass_thru(hw)) {
A
Alexander Duyck 已提交
1405 1406 1407 1408 1409 1410 1411
		/* Disable PCS to turn off link */
		reg = rd32(E1000_PCS_CFG0);
		reg &= ~E1000_PCS_CFG_PCS_EN;
		wr32(E1000_PCS_CFG0, reg);

		/* shutdown the laser */
		reg = rd32(E1000_CTRL_EXT);
1412
		reg |= E1000_CTRL_EXT_SDP3_DATA;
A
Alexander Duyck 已提交
1413 1414 1415 1416 1417 1418
		wr32(E1000_CTRL_EXT, reg);

		/* flush the write to verify completion */
		wrfl();
		msleep(1);
	}
1419 1420 1421
}

/**
1422
 *  igb_reset_hw_82575 - Reset hardware
1423 1424 1425 1426 1427 1428 1429
 *  @hw: pointer to the HW structure
 *
 *  This resets the hardware into a known state.  This is a
 *  function pointer entry point called by the api module.
 **/
static s32 igb_reset_hw_82575(struct e1000_hw *hw)
{
1430
	u32 ctrl;
1431 1432
	s32 ret_val;

1433
	/* Prevent the PCI-E bus from sticking if there is no TLP connection
1434 1435 1436 1437
	 * on the last TLP read/write transaction when MAC is reset.
	 */
	ret_val = igb_disable_pcie_master(hw);
	if (ret_val)
1438
		hw_dbg("PCI-E Master disable polling has failed.\n");
1439

1440 1441 1442 1443 1444 1445
	/* set the completion timeout for interface */
	ret_val = igb_set_pcie_completion_timeout(hw);
	if (ret_val) {
		hw_dbg("PCI-E Set completion timeout has failed.\n");
	}

1446
	hw_dbg("Masking off all interrupts\n");
1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
	wr32(E1000_IMC, 0xffffffff);

	wr32(E1000_RCTL, 0);
	wr32(E1000_TCTL, E1000_TCTL_PSP);
	wrfl();

	msleep(10);

	ctrl = rd32(E1000_CTRL);

1457
	hw_dbg("Issuing a global reset to MAC\n");
1458 1459 1460 1461
	wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);

	ret_val = igb_get_auto_rd_done(hw);
	if (ret_val) {
1462
		/* When auto config read does not complete, do not
1463 1464 1465
		 * return with an error. This can happen in situations
		 * where there is no eeprom and prevents getting link.
		 */
1466
		hw_dbg("Auto Read Done did not complete\n");
1467 1468 1469 1470 1471 1472 1473 1474
	}

	/* If EEPROM is not present, run manual init scripts */
	if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
		igb_reset_init_script_82575(hw);

	/* Clear any pending interrupt events. */
	wr32(E1000_IMC, 0xffffffff);
1475
	rd32(E1000_ICR);
1476

1477 1478
	/* Install any alternate MAC address into RAR0 */
	ret_val = igb_check_alt_mac_addr(hw);
1479 1480 1481 1482 1483

	return ret_val;
}

/**
1484
 *  igb_init_hw_82575 - Initialize hardware
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
 *  @hw: pointer to the HW structure
 *
 *  This inits the hardware readying it for operation.
 **/
static s32 igb_init_hw_82575(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	s32 ret_val;
	u16 i, rar_count = mac->rar_entry_count;

	/* Initialize identification LED */
	ret_val = igb_id_led_init(hw);
	if (ret_val) {
1498
		hw_dbg("Error initializing identification LED\n");
1499 1500 1501 1502
		/* This is not fatal and we should not stop init due to this */
	}

	/* Disabling VLAN filtering */
1503
	hw_dbg("Initializing the IEEE VLAN\n");
1504
	if ((hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i354))
1505 1506 1507
		igb_clear_vfta_i350(hw);
	else
		igb_clear_vfta(hw);
1508 1509

	/* Setup the receive address */
1510 1511
	igb_init_rx_addrs(hw, rar_count);

1512
	/* Zero out the Multicast HASH table */
1513
	hw_dbg("Zeroing the MTA\n");
1514 1515 1516
	for (i = 0; i < mac->mta_reg_count; i++)
		array_wr32(E1000_MTA, i, 0);

1517 1518 1519 1520 1521
	/* Zero out the Unicast HASH table */
	hw_dbg("Zeroing the UTA\n");
	for (i = 0; i < mac->uta_reg_count; i++)
		array_wr32(E1000_UTA, i, 0);

1522 1523 1524
	/* Setup link and flow control */
	ret_val = igb_setup_link(hw);

1525
	/* Clear all of the statistics registers (clear on read).  It is
1526 1527 1528 1529 1530 1531 1532 1533 1534
	 * important that we do this after we have tried to establish link
	 * because the symbol error count will increment wildly if there
	 * is no link.
	 */
	igb_clear_hw_cntrs_82575(hw);
	return ret_val;
}

/**
1535
 *  igb_setup_copper_link_82575 - Configure copper link settings
1536 1537 1538 1539 1540 1541 1542 1543
 *  @hw: pointer to the HW structure
 *
 *  Configures the link for auto-neg or forced speed and duplex.  Then we check
 *  for link, once link is established calls to configure collision distance
 *  and flow control are called.
 **/
static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
{
1544
	u32 ctrl;
1545
	s32  ret_val;
1546
	u32 phpm_reg;
1547 1548 1549 1550 1551 1552

	ctrl = rd32(E1000_CTRL);
	ctrl |= E1000_CTRL_SLU;
	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
	wr32(E1000_CTRL, ctrl);

1553 1554 1555 1556 1557 1558
	/* Clear Go Link Disconnect bit on supported devices */
	switch (hw->mac.type) {
	case e1000_82580:
	case e1000_i350:
	case e1000_i210:
	case e1000_i211:
1559 1560 1561
		phpm_reg = rd32(E1000_82580_PHY_POWER_MGMT);
		phpm_reg &= ~E1000_82580_PM_GO_LINKD;
		wr32(E1000_82580_PHY_POWER_MGMT, phpm_reg);
1562 1563 1564
		break;
	default:
		break;
1565 1566
	}

1567 1568 1569 1570 1571
	ret_val = igb_setup_serdes_link_82575(hw);
	if (ret_val)
		goto out;

	if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
A
Alexander Duyck 已提交
1572 1573 1574
		/* allow time for SFP cage time to power up phy */
		msleep(300);

1575 1576 1577 1578 1579 1580
		ret_val = hw->phy.ops.reset(hw);
		if (ret_val) {
			hw_dbg("Error resetting the PHY.\n");
			goto out;
		}
	}
1581
	switch (hw->phy.type) {
1582
	case e1000_phy_i210:
1583
	case e1000_phy_m88:
1584 1585 1586
		switch (hw->phy.id) {
		case I347AT4_E_PHY_ID:
		case M88E1112_E_PHY_ID:
1587
		case M88E1543_E_PHY_ID:
1588
		case I210_I_PHY_ID:
1589
			ret_val = igb_copper_link_setup_m88_gen2(hw);
1590 1591
			break;
		default:
1592
			ret_val = igb_copper_link_setup_m88(hw);
1593 1594
			break;
		}
1595 1596 1597 1598
		break;
	case e1000_phy_igp_3:
		ret_val = igb_copper_link_setup_igp(hw);
		break;
A
Alexander Duyck 已提交
1599 1600 1601
	case e1000_phy_82580:
		ret_val = igb_copper_link_setup_82580(hw);
		break;
1602 1603 1604 1605 1606 1607 1608 1609
	default:
		ret_val = -E1000_ERR_PHY;
		break;
	}

	if (ret_val)
		goto out;

1610
	ret_val = igb_setup_copper_link(hw);
1611 1612 1613 1614 1615
out:
	return ret_val;
}

/**
1616
 *  igb_setup_serdes_link_82575 - Setup link for serdes
1617 1618
 *  @hw: pointer to the HW structure
 *
1619 1620 1621 1622
 *  Configure the physical coding sub-layer (PCS) link.  The PCS link is
 *  used on copper connections where the serialized gigabit media independent
 *  interface (sgmii), or serdes fiber is being used.  Configures the link
 *  for auto-negotiation or forces speed/duplex.
1623
 **/
1624
static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw)
1625
{
1626
	u32 ctrl_ext, ctrl_reg, reg, anadv_reg;
A
Alexander Duyck 已提交
1627
	bool pcs_autoneg;
1628 1629
	s32 ret_val = E1000_SUCCESS;
	u16 data;
1630 1631 1632

	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
	    !igb_sgmii_active_82575(hw))
1633 1634
		return ret_val;

1635

1636
	/* On the 82575, SerDes loopback mode persists until it is
1637 1638 1639 1640 1641 1642
	 * explicitly turned off or a power cycle is performed.  A read to
	 * the register does not indicate its status.  Therefore, we ensure
	 * loopback mode is disabled during initialization.
	 */
	wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);

1643
	/* power on the sfp cage if present and turn on I2C */
A
Alexander Duyck 已提交
1644 1645
	ctrl_ext = rd32(E1000_CTRL_EXT);
	ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
1646
	ctrl_ext |= E1000_CTRL_I2C_ENA;
A
Alexander Duyck 已提交
1647
	wr32(E1000_CTRL_EXT, ctrl_ext);
1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663

	ctrl_reg = rd32(E1000_CTRL);
	ctrl_reg |= E1000_CTRL_SLU;

	if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) {
		/* set both sw defined pins */
		ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;

		/* Set switch control to serdes energy detect */
		reg = rd32(E1000_CONNSW);
		reg |= E1000_CONNSW_ENRGSRC;
		wr32(E1000_CONNSW, reg);
	}

	reg = rd32(E1000_PCS_LCTL);

A
Alexander Duyck 已提交
1664 1665
	/* default pcs_autoneg to the same setting as mac autoneg */
	pcs_autoneg = hw->mac.autoneg;
1666

A
Alexander Duyck 已提交
1667 1668 1669 1670 1671
	switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
	case E1000_CTRL_EXT_LINK_MODE_SGMII:
		/* sgmii mode lets the phy handle forcing speed/duplex */
		pcs_autoneg = true;
		/* autoneg time out should be disabled for SGMII mode */
1672
		reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
A
Alexander Duyck 已提交
1673 1674 1675 1676 1677
		break;
	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
		/* disable PCS autoneg and support parallel detect only */
		pcs_autoneg = false;
	default:
1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
		if (hw->mac.type == e1000_82575 ||
		    hw->mac.type == e1000_82576) {
			ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data);
			if (ret_val) {
				printk(KERN_DEBUG "NVM Read Error\n\n");
				return ret_val;
			}

			if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT)
				pcs_autoneg = false;
		}

1690
		/* non-SGMII modes only supports a speed of 1000/Full for the
A
Alexander Duyck 已提交
1691 1692 1693
		 * link so it is best to just force the MAC and let the pcs
		 * link either autoneg or be forced to 1000/Full
		 */
1694 1695
		ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
		            E1000_CTRL_FD | E1000_CTRL_FRCDPX;
A
Alexander Duyck 已提交
1696 1697 1698 1699

		/* set speed of 1000/Full if speed/duplex is forced */
		reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
		break;
1700 1701
	}

1702
	wr32(E1000_CTRL, ctrl_reg);
1703

1704
	/* New SerDes mode allows for forcing speed or autonegotiating speed
1705 1706 1707 1708 1709 1710 1711
	 * at 1gb. Autoneg should be default set by most drivers. This is the
	 * mode that will be compatible with older link partners and switches.
	 * However, both are supported by the hardware and some drivers/tools.
	 */
	reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
		E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);

A
Alexander Duyck 已提交
1712
	if (pcs_autoneg) {
1713
		/* Set PCS register for autoneg */
A
Alexander Duyck 已提交
1714
		reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1715
		       E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736

		/* Disable force flow control for autoneg */
		reg &= ~E1000_PCS_LCTL_FORCE_FCTRL;

		/* Configure flow control advertisement for autoneg */
		anadv_reg = rd32(E1000_PCS_ANADV);
		anadv_reg &= ~(E1000_TXCW_ASM_DIR | E1000_TXCW_PAUSE);
		switch (hw->fc.requested_mode) {
		case e1000_fc_full:
		case e1000_fc_rx_pause:
			anadv_reg |= E1000_TXCW_ASM_DIR;
			anadv_reg |= E1000_TXCW_PAUSE;
			break;
		case e1000_fc_tx_pause:
			anadv_reg |= E1000_TXCW_ASM_DIR;
			break;
		default:
			break;
		}
		wr32(E1000_PCS_ANADV, anadv_reg);

A
Alexander Duyck 已提交
1737
		hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
1738
	} else {
A
Alexander Duyck 已提交
1739
		/* Set PCS register for forced link */
1740
		reg |= E1000_PCS_LCTL_FSD;        /* Force Speed */
A
Alexander Duyck 已提交
1741

1742 1743 1744
		/* Force flow control for forced link */
		reg |= E1000_PCS_LCTL_FORCE_FCTRL;

A
Alexander Duyck 已提交
1745
		hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
1746
	}
1747

1748 1749
	wr32(E1000_PCS_LCTL, reg);

1750
	if (!pcs_autoneg && !igb_sgmii_active_82575(hw))
1751
		igb_force_mac_fc(hw);
1752

1753
	return ret_val;
1754 1755 1756
}

/**
1757
 *  igb_sgmii_active_82575 - Return sgmii state
1758 1759 1760 1761 1762 1763 1764 1765
 *  @hw: pointer to the HW structure
 *
 *  82575 silicon has a serialized gigabit media independent interface (sgmii)
 *  which can be enabled for use in the embedded applications.  Simply
 *  return the current state of the sgmii interface.
 **/
static bool igb_sgmii_active_82575(struct e1000_hw *hw)
{
1766 1767
	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
	return dev_spec->sgmii_active;
1768 1769 1770
}

/**
1771
 *  igb_reset_init_script_82575 - Inits HW defaults after reset
1772 1773 1774 1775 1776 1777 1778 1779
 *  @hw: pointer to the HW structure
 *
 *  Inits recommended HW defaults after a reset when there is no EEPROM
 *  detected. This is only for the 82575.
 **/
static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
{
	if (hw->mac.type == e1000_82575) {
1780
		hw_dbg("Running reset init script for 82575\n");
1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
		/* SerDes configuration via SERDESCTRL */
		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);

		/* CCM configuration via CCMCTL register */
		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);

		/* PCIe lanes configuration */
		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);

		/* PCIe PLL Configuration */
		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
	}

	return 0;
}

/**
1807
 *  igb_read_mac_addr_82575 - Read device MAC address
1808 1809 1810 1811 1812 1813
 *  @hw: pointer to the HW structure
 **/
static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
{
	s32 ret_val = 0;

1814
	/* If there's an alternate MAC address place it in RAR0
1815 1816 1817 1818 1819 1820 1821 1822
	 * so that it will override the Si installed default perm
	 * address.
	 */
	ret_val = igb_check_alt_mac_addr(hw);
	if (ret_val)
		goto out;

	ret_val = igb_read_mac_addr(hw);
1823

1824
out:
1825 1826 1827
	return ret_val;
}

1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
/**
 * igb_power_down_phy_copper_82575 - Remove link during PHY power down
 * @hw: pointer to the HW structure
 *
 * In the case of a PHY power down to save power, or to turn off link during a
 * driver unload, or wake on lan is not enabled, remove the link.
 **/
void igb_power_down_phy_copper_82575(struct e1000_hw *hw)
{
	/* If the management interface is not enabled, then power down */
	if (!(igb_enable_mng_pass_thru(hw) || igb_check_reset_block(hw)))
		igb_power_down_phy_copper(hw);
}

1842
/**
1843
 *  igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1844 1845 1846 1847 1848 1849 1850 1851
 *  @hw: pointer to the HW structure
 *
 *  Clears the hardware counters by reading the counter registers.
 **/
static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
{
	igb_clear_hw_cntrs_base(hw);

1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
	rd32(E1000_PRC64);
	rd32(E1000_PRC127);
	rd32(E1000_PRC255);
	rd32(E1000_PRC511);
	rd32(E1000_PRC1023);
	rd32(E1000_PRC1522);
	rd32(E1000_PTC64);
	rd32(E1000_PTC127);
	rd32(E1000_PTC255);
	rd32(E1000_PTC511);
	rd32(E1000_PTC1023);
	rd32(E1000_PTC1522);

	rd32(E1000_ALGNERRC);
	rd32(E1000_RXERRC);
	rd32(E1000_TNCRS);
	rd32(E1000_CEXTERR);
	rd32(E1000_TSCTC);
	rd32(E1000_TSCTFC);

	rd32(E1000_MGTPRC);
	rd32(E1000_MGTPDC);
	rd32(E1000_MGTPTC);

	rd32(E1000_IAC);
	rd32(E1000_ICRXOC);

	rd32(E1000_ICRXPTC);
	rd32(E1000_ICRXATC);
	rd32(E1000_ICTXPTC);
	rd32(E1000_ICTXATC);
	rd32(E1000_ICTXQEC);
	rd32(E1000_ICTXQMTC);
	rd32(E1000_ICRXDMTC);

	rd32(E1000_CBTMPC);
	rd32(E1000_HTDPMC);
	rd32(E1000_CBRMPC);
	rd32(E1000_RPTHC);
	rd32(E1000_HGPTC);
	rd32(E1000_HTCBDPC);
	rd32(E1000_HGORCL);
	rd32(E1000_HGORCH);
	rd32(E1000_HGOTCL);
	rd32(E1000_HGOTCH);
	rd32(E1000_LENERRS);
1898 1899

	/* This register should not be read in copper configurations */
1900 1901
	if (hw->phy.media_type == e1000_media_type_internal_serdes ||
	    igb_sgmii_active_82575(hw))
1902
		rd32(E1000_SCVPC);
1903 1904
}

1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
/**
 *  igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
 *  @hw: pointer to the HW structure
 *
 *  After rx enable if managability is enabled then there is likely some
 *  bad data at the start of the fifo and possibly in the DMA fifo.  This
 *  function clears the fifos and flushes any packets that came in as rx was
 *  being enabled.
 **/
void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
{
	u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
	int i, ms_wait;

	if (hw->mac.type != e1000_82575 ||
	    !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
		return;

	/* Disable all RX queues */
	for (i = 0; i < 4; i++) {
		rxdctl[i] = rd32(E1000_RXDCTL(i));
		wr32(E1000_RXDCTL(i),
		     rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
	}
	/* Poll all queues to verify they have shut down */
	for (ms_wait = 0; ms_wait < 10; ms_wait++) {
		msleep(1);
		rx_enabled = 0;
		for (i = 0; i < 4; i++)
			rx_enabled |= rd32(E1000_RXDCTL(i));
		if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
			break;
	}

	if (ms_wait == 10)
		hw_dbg("Queue disable timed out after 10ms\n");

	/* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
	 * incoming packets are rejected.  Set enable and wait 2ms so that
	 * any packet that was coming in as RCTL.EN was set is flushed
	 */
	rfctl = rd32(E1000_RFCTL);
	wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);

	rlpml = rd32(E1000_RLPML);
	wr32(E1000_RLPML, 0);

	rctl = rd32(E1000_RCTL);
	temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
	temp_rctl |= E1000_RCTL_LPE;

	wr32(E1000_RCTL, temp_rctl);
	wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
	wrfl();
	msleep(2);

	/* Enable RX queues that were previously enabled and restore our
	 * previous state
	 */
	for (i = 0; i < 4; i++)
		wr32(E1000_RXDCTL(i), rxdctl[i]);
	wr32(E1000_RCTL, rctl);
	wrfl();

	wr32(E1000_RLPML, rlpml);
	wr32(E1000_RFCTL, rfctl);

	/* Flush receive errors generated by workaround */
	rd32(E1000_ROC);
	rd32(E1000_RNBC);
	rd32(E1000_MPC);
}

1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
/**
 *  igb_set_pcie_completion_timeout - set pci-e completion timeout
 *  @hw: pointer to the HW structure
 *
 *  The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
 *  however the hardware default for these parts is 500us to 1ms which is less
 *  than the 10ms recommended by the pci-e spec.  To address this we need to
 *  increase the value to either 10ms to 200ms for capability version 1 config,
 *  or 16ms to 55ms for version 2.
 **/
static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw)
{
	u32 gcr = rd32(E1000_GCR);
	s32 ret_val = 0;
	u16 pcie_devctl2;

	/* only take action if timeout value is defaulted to 0 */
	if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
		goto out;

1998
	/* if capabilities version is type 1 we can write the
1999 2000 2001 2002 2003 2004 2005
	 * timeout of 10ms to 200ms through the GCR register
	 */
	if (!(gcr & E1000_GCR_CAP_VER2)) {
		gcr |= E1000_GCR_CMPL_TMOUT_10ms;
		goto out;
	}

2006
	/* for version 2 capabilities we need to write the config space
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
	 * directly in order to set the completion timeout value for
	 * 16ms to 55ms
	 */
	ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
	                                &pcie_devctl2);
	if (ret_val)
		goto out;

	pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;

	ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
	                                 &pcie_devctl2);
out:
	/* disable completion timeout resend */
	gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;

	wr32(E1000_GCR, gcr);
	return ret_val;
}

G
Greg Rose 已提交
2027 2028 2029 2030 2031 2032 2033 2034 2035 2036
/**
 *  igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
 *  @hw: pointer to the hardware struct
 *  @enable: state to enter, either enabled or disabled
 *  @pf: Physical Function pool - do not set anti-spoofing for the PF
 *
 *  enables/disables L2 switch anti-spoofing functionality.
 **/
void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
{
L
Lior Levy 已提交
2037
	u32 reg_val, reg_offset;
G
Greg Rose 已提交
2038 2039 2040

	switch (hw->mac.type) {
	case e1000_82576:
L
Lior Levy 已提交
2041 2042
		reg_offset = E1000_DTXSWC;
		break;
G
Greg Rose 已提交
2043
	case e1000_i350:
2044
	case e1000_i354:
L
Lior Levy 已提交
2045
		reg_offset = E1000_TXSWC;
G
Greg Rose 已提交
2046 2047
		break;
	default:
L
Lior Levy 已提交
2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061
		return;
	}

	reg_val = rd32(reg_offset);
	if (enable) {
		reg_val |= (E1000_DTXSWC_MAC_SPOOF_MASK |
			     E1000_DTXSWC_VLAN_SPOOF_MASK);
		/* The PF can spoof - it has to in order to
		 * support emulation mode NICs
		 */
		reg_val ^= (1 << pf | 1 << (pf + MAX_NUM_VFS));
	} else {
		reg_val &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
			     E1000_DTXSWC_VLAN_SPOOF_MASK);
G
Greg Rose 已提交
2062
	}
L
Lior Levy 已提交
2063
	wr32(reg_offset, reg_val);
G
Greg Rose 已提交
2064 2065
}

2066 2067 2068 2069 2070 2071 2072 2073 2074
/**
 *  igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
 *  @hw: pointer to the hardware struct
 *  @enable: state to enter, either enabled or disabled
 *
 *  enables/disables L2 switch loopback functionality.
 **/
void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
{
2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
	u32 dtxswc;

	switch (hw->mac.type) {
	case e1000_82576:
		dtxswc = rd32(E1000_DTXSWC);
		if (enable)
			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
		else
			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
		wr32(E1000_DTXSWC, dtxswc);
		break;
2086
	case e1000_i354:
2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098
	case e1000_i350:
		dtxswc = rd32(E1000_TXSWC);
		if (enable)
			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
		else
			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
		wr32(E1000_TXSWC, dtxswc);
		break;
	default:
		/* Currently no other hardware supports loopback */
		break;
	}
2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120

}

/**
 *  igb_vmdq_set_replication_pf - enable or disable vmdq replication
 *  @hw: pointer to the hardware struct
 *  @enable: state to enter, either enabled or disabled
 *
 *  enables/disables replication of packets across multiple pools.
 **/
void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
{
	u32 vt_ctl = rd32(E1000_VT_CTL);

	if (enable)
		vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
	else
		vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;

	wr32(E1000_VT_CTL, vt_ctl);
}

A
Alexander Duyck 已提交
2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170
/**
 *  igb_read_phy_reg_82580 - Read 82580 MDI control register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to be read
 *  @data: pointer to the read data
 *
 *  Reads the MDI control register in the PHY at offset and stores the
 *  information read to data.
 **/
static s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
{
	s32 ret_val;

	ret_val = hw->phy.ops.acquire(hw);
	if (ret_val)
		goto out;

	ret_val = igb_read_phy_reg_mdic(hw, offset, data);

	hw->phy.ops.release(hw);

out:
	return ret_val;
}

/**
 *  igb_write_phy_reg_82580 - Write 82580 MDI control register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to write to
 *  @data: data to write to register at offset
 *
 *  Writes data to MDI control register in the PHY at offset.
 **/
static s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
{
	s32 ret_val;


	ret_val = hw->phy.ops.acquire(hw);
	if (ret_val)
		goto out;

	ret_val = igb_write_phy_reg_mdic(hw, offset, data);

	hw->phy.ops.release(hw);

out:
	return ret_val;
}

2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182
/**
 *  igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
 *  @hw: pointer to the HW structure
 *
 *  This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
 *  the values found in the EEPROM.  This addresses an issue in which these
 *  bits are not restored from EEPROM after reset.
 **/
static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw)
{
	s32 ret_val = 0;
	u32 mdicnfg;
G
Gasparakis, Joseph 已提交
2183
	u16 nvm_data = 0;
2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207

	if (hw->mac.type != e1000_82580)
		goto out;
	if (!igb_sgmii_active_82575(hw))
		goto out;

	ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
				   NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
				   &nvm_data);
	if (ret_val) {
		hw_dbg("NVM Read Error\n");
		goto out;
	}

	mdicnfg = rd32(E1000_MDICNFG);
	if (nvm_data & NVM_WORD24_EXT_MDIO)
		mdicnfg |= E1000_MDICNFG_EXT_MDIO;
	if (nvm_data & NVM_WORD24_COM_MDIO)
		mdicnfg |= E1000_MDICNFG_COM_MDIO;
	wr32(E1000_MDICNFG, mdicnfg);
out:
	return ret_val;
}

A
Alexander Duyck 已提交
2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219
/**
 *  igb_reset_hw_82580 - Reset hardware
 *  @hw: pointer to the HW structure
 *
 *  This resets function or entire device (all ports, etc.)
 *  to a known state.
 **/
static s32 igb_reset_hw_82580(struct e1000_hw *hw)
{
	s32 ret_val = 0;
	/* BH SW mailbox bit in SW_FW_SYNC */
	u16 swmbsw_mask = E1000_SW_SYNCH_MB;
2220
	u32 ctrl;
A
Alexander Duyck 已提交
2221 2222 2223 2224
	bool global_device_reset = hw->dev_spec._82575.global_device_reset;

	hw->dev_spec._82575.global_device_reset = false;

2225 2226 2227 2228 2229 2230
	/* due to hw errata, global device reset doesn't always
	 * work on 82580
	 */
	if (hw->mac.type == e1000_82580)
		global_device_reset = false;

A
Alexander Duyck 已提交
2231 2232 2233
	/* Get current control state. */
	ctrl = rd32(E1000_CTRL);

2234
	/* Prevent the PCI-E bus from sticking if there is no TLP connection
A
Alexander Duyck 已提交
2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250
	 * on the last TLP read/write transaction when MAC is reset.
	 */
	ret_val = igb_disable_pcie_master(hw);
	if (ret_val)
		hw_dbg("PCI-E Master disable polling has failed.\n");

	hw_dbg("Masking off all interrupts\n");
	wr32(E1000_IMC, 0xffffffff);
	wr32(E1000_RCTL, 0);
	wr32(E1000_TCTL, E1000_TCTL_PSP);
	wrfl();

	msleep(10);

	/* Determine whether or not a global dev reset is requested */
	if (global_device_reset &&
2251
		hw->mac.ops.acquire_swfw_sync(hw, swmbsw_mask))
A
Alexander Duyck 已提交
2252 2253 2254 2255 2256 2257 2258 2259 2260
			global_device_reset = false;

	if (global_device_reset &&
		!(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET))
		ctrl |= E1000_CTRL_DEV_RST;
	else
		ctrl |= E1000_CTRL_RST;

	wr32(E1000_CTRL, ctrl);
2261
	wrfl();
A
Alexander Duyck 已提交
2262 2263 2264 2265 2266 2267 2268

	/* Add delay to insure DEV_RST has time to complete */
	if (global_device_reset)
		msleep(5);

	ret_val = igb_get_auto_rd_done(hw);
	if (ret_val) {
2269
		/* When auto config read does not complete, do not
A
Alexander Duyck 已提交
2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280
		 * return with an error. This can happen in situations
		 * where there is no eeprom and prevents getting link.
		 */
		hw_dbg("Auto Read Done did not complete\n");
	}

	/* clear global device reset status bit */
	wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET);

	/* Clear any pending interrupt events. */
	wr32(E1000_IMC, 0xffffffff);
2281
	rd32(E1000_ICR);
A
Alexander Duyck 已提交
2282

2283 2284 2285 2286
	ret_val = igb_reset_mdicnfg_82580(hw);
	if (ret_val)
		hw_dbg("Could not reset MDICNFG based on EEPROM\n");

A
Alexander Duyck 已提交
2287 2288 2289 2290 2291
	/* Install any alternate MAC address into RAR0 */
	ret_val = igb_check_alt_mac_addr(hw);

	/* Release semaphore */
	if (global_device_reset)
2292
		hw->mac.ops.release_swfw_sync(hw, swmbsw_mask);
A
Alexander Duyck 已提交
2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316

	return ret_val;
}

/**
 *  igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
 *  @data: data received by reading RXPBS register
 *
 *  The 82580 uses a table based approach for packet buffer allocation sizes.
 *  This function converts the retrieved value into the correct table value
 *     0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
 *  0x0 36  72 144   1   2   4   8  16
 *  0x8 35  70 140 rsv rsv rsv rsv rsv
 */
u16 igb_rxpbs_adjust_82580(u32 data)
{
	u16 ret_val = 0;

	if (data < E1000_82580_RXPBS_TABLE_SIZE)
		ret_val = e1000_82580_rxpbs_table[data];

	return ret_val;
}

2317 2318 2319 2320 2321 2322 2323 2324 2325
/**
 *  igb_validate_nvm_checksum_with_offset - Validate EEPROM
 *  checksum
 *  @hw: pointer to the HW structure
 *  @offset: offset in words of the checksum protected region
 *
 *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
 *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
 **/
2326 2327
static s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
						 u16 offset)
2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361
{
	s32 ret_val = 0;
	u16 checksum = 0;
	u16 i, nvm_data;

	for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
		if (ret_val) {
			hw_dbg("NVM Read Error\n");
			goto out;
		}
		checksum += nvm_data;
	}

	if (checksum != (u16) NVM_SUM) {
		hw_dbg("NVM Checksum Invalid\n");
		ret_val = -E1000_ERR_NVM;
		goto out;
	}

out:
	return ret_val;
}

/**
 *  igb_update_nvm_checksum_with_offset - Update EEPROM
 *  checksum
 *  @hw: pointer to the HW structure
 *  @offset: offset in words of the checksum protected region
 *
 *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
 *  up to the checksum.  Then calculates the EEPROM checksum and writes the
 *  value to the EEPROM.
 **/
2362
static s32 igb_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407
{
	s32 ret_val;
	u16 checksum = 0;
	u16 i, nvm_data;

	for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
		if (ret_val) {
			hw_dbg("NVM Read Error while updating checksum.\n");
			goto out;
		}
		checksum += nvm_data;
	}
	checksum = (u16) NVM_SUM - checksum;
	ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
				&checksum);
	if (ret_val)
		hw_dbg("NVM Write Error while updating checksum.\n");

out:
	return ret_val;
}

/**
 *  igb_validate_nvm_checksum_82580 - Validate EEPROM checksum
 *  @hw: pointer to the HW structure
 *
 *  Calculates the EEPROM section checksum by reading/adding each word of
 *  the EEPROM and then verifies that the sum of the EEPROM is
 *  equal to 0xBABA.
 **/
static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw)
{
	s32 ret_val = 0;
	u16 eeprom_regions_count = 1;
	u16 j, nvm_data;
	u16 nvm_offset;

	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
	if (ret_val) {
		hw_dbg("NVM Read Error\n");
		goto out;
	}

	if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) {
2408
		/* if checksums compatibility bit is set validate checksums
2409 2410
		 * for all 4 ports.
		 */
2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519
		eeprom_regions_count = 4;
	}

	for (j = 0; j < eeprom_regions_count; j++) {
		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
		ret_val = igb_validate_nvm_checksum_with_offset(hw,
								nvm_offset);
		if (ret_val != 0)
			goto out;
	}

out:
	return ret_val;
}

/**
 *  igb_update_nvm_checksum_82580 - Update EEPROM checksum
 *  @hw: pointer to the HW structure
 *
 *  Updates the EEPROM section checksums for all 4 ports by reading/adding
 *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
 *  checksum and writes the value to the EEPROM.
 **/
static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw)
{
	s32 ret_val;
	u16 j, nvm_data;
	u16 nvm_offset;

	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
	if (ret_val) {
		hw_dbg("NVM Read Error while updating checksum"
			" compatibility bit.\n");
		goto out;
	}

	if ((nvm_data & NVM_COMPATIBILITY_BIT_MASK) == 0) {
		/* set compatibility bit to validate checksums appropriately */
		nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK;
		ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1,
					&nvm_data);
		if (ret_val) {
			hw_dbg("NVM Write Error while updating checksum"
				" compatibility bit.\n");
			goto out;
		}
	}

	for (j = 0; j < 4; j++) {
		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
		if (ret_val)
			goto out;
	}

out:
	return ret_val;
}

/**
 *  igb_validate_nvm_checksum_i350 - Validate EEPROM checksum
 *  @hw: pointer to the HW structure
 *
 *  Calculates the EEPROM section checksum by reading/adding each word of
 *  the EEPROM and then verifies that the sum of the EEPROM is
 *  equal to 0xBABA.
 **/
static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw)
{
	s32 ret_val = 0;
	u16 j;
	u16 nvm_offset;

	for (j = 0; j < 4; j++) {
		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
		ret_val = igb_validate_nvm_checksum_with_offset(hw,
								nvm_offset);
		if (ret_val != 0)
			goto out;
	}

out:
	return ret_val;
}

/**
 *  igb_update_nvm_checksum_i350 - Update EEPROM checksum
 *  @hw: pointer to the HW structure
 *
 *  Updates the EEPROM section checksums for all 4 ports by reading/adding
 *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
 *  checksum and writes the value to the EEPROM.
 **/
static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw)
{
	s32 ret_val = 0;
	u16 j;
	u16 nvm_offset;

	for (j = 0; j < 4; j++) {
		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
		if (ret_val != 0)
			goto out;
	}

out:
	return ret_val;
}
2520

M
Matthew Vick 已提交
2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555
/**
 *  __igb_access_emi_reg - Read/write EMI register
 *  @hw: pointer to the HW structure
 *  @addr: EMI address to program
 *  @data: pointer to value to read/write from/to the EMI address
 *  @read: boolean flag to indicate read or write
 **/
static s32 __igb_access_emi_reg(struct e1000_hw *hw, u16 address,
				  u16 *data, bool read)
{
	s32 ret_val = E1000_SUCCESS;

	ret_val = hw->phy.ops.write_reg(hw, E1000_EMIADD, address);
	if (ret_val)
		return ret_val;

	if (read)
		ret_val = hw->phy.ops.read_reg(hw, E1000_EMIDATA, data);
	else
		ret_val = hw->phy.ops.write_reg(hw, E1000_EMIDATA, *data);

	return ret_val;
}

/**
 *  igb_read_emi_reg - Read Extended Management Interface register
 *  @hw: pointer to the HW structure
 *  @addr: EMI address to program
 *  @data: value to be read from the EMI address
 **/
s32 igb_read_emi_reg(struct e1000_hw *hw, u16 addr, u16 *data)
{
	return __igb_access_emi_reg(hw, addr, data, true);
}

2556 2557 2558 2559 2560 2561 2562 2563 2564 2565
/**
 *  igb_set_eee_i350 - Enable/disable EEE support
 *  @hw: pointer to the HW structure
 *
 *  Enable/disable EEE based on setting in dev_spec structure.
 *
 **/
s32 igb_set_eee_i350(struct e1000_hw *hw)
{
	s32 ret_val = 0;
2566
	u32 ipcnfg, eeer;
2567

2568 2569
	if ((hw->mac.type < e1000_i350) ||
	    (hw->phy.media_type != e1000_media_type_copper))
2570 2571 2572 2573 2574 2575
		goto out;
	ipcnfg = rd32(E1000_IPCNFG);
	eeer = rd32(E1000_EEER);

	/* enable or disable per user setting */
	if (!(hw->dev_spec._82575.eee_disable)) {
2576 2577 2578 2579
		u32 eee_su = rd32(E1000_EEE_SU);

		ipcnfg |= (E1000_IPCNFG_EEE_1G_AN | E1000_IPCNFG_EEE_100M_AN);
		eeer |= (E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN |
2580 2581
			E1000_EEER_LPI_FC);

2582 2583 2584 2585
		/* This bit should not be set in normal operation. */
		if (eee_su & E1000_EEE_SU_LPI_CLK_STP)
			hw_dbg("LPI Clock Stop Bit should not be set!\n");

2586 2587 2588 2589 2590 2591 2592 2593 2594
	} else {
		ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN |
			E1000_IPCNFG_EEE_100M_AN);
		eeer &= ~(E1000_EEER_TX_LPI_EN |
			E1000_EEER_RX_LPI_EN |
			E1000_EEER_LPI_FC);
	}
	wr32(E1000_IPCNFG, ipcnfg);
	wr32(E1000_EEER, eeer);
2595 2596
	rd32(E1000_IPCNFG);
	rd32(E1000_EEER);
2597 2598 2599 2600
out:

	return ret_val;
}
2601

2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615
/**
 *  igb_set_eee_i354 - Enable/disable EEE support
 *  @hw: pointer to the HW structure
 *
 *  Enable/disable EEE legacy mode based on setting in dev_spec structure.
 *
 **/
s32 igb_set_eee_i354(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val = 0;
	u16 phy_data;

	if ((hw->phy.media_type != e1000_media_type_copper) ||
2616
	    (phy->id != M88E1543_E_PHY_ID))
2617 2618 2619 2620
		goto out;

	if (!hw->dev_spec._82575.eee_disable) {
		/* Switch to PHY page 18. */
2621
		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 18);
2622 2623 2624
		if (ret_val)
			goto out;

2625
		ret_val = phy->ops.read_reg(hw, E1000_M88E1543_EEE_CTRL_1,
2626 2627 2628 2629
					    &phy_data);
		if (ret_val)
			goto out;

2630 2631
		phy_data |= E1000_M88E1543_EEE_CTRL_1_MS;
		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_EEE_CTRL_1,
2632 2633 2634 2635 2636
					     phy_data);
		if (ret_val)
			goto out;

		/* Return the PHY to page 0. */
2637
		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687
		if (ret_val)
			goto out;

		/* Turn on EEE advertisement. */
		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
					     E1000_EEE_ADV_DEV_I354,
					     &phy_data);
		if (ret_val)
			goto out;

		phy_data |= E1000_EEE_ADV_100_SUPPORTED |
			    E1000_EEE_ADV_1000_SUPPORTED;
		ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
						E1000_EEE_ADV_DEV_I354,
						phy_data);
	} else {
		/* Turn off EEE advertisement. */
		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
					     E1000_EEE_ADV_DEV_I354,
					     &phy_data);
		if (ret_val)
			goto out;

		phy_data &= ~(E1000_EEE_ADV_100_SUPPORTED |
			      E1000_EEE_ADV_1000_SUPPORTED);
		ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
					      E1000_EEE_ADV_DEV_I354,
					      phy_data);
	}

out:
	return ret_val;
}

/**
 *  igb_get_eee_status_i354 - Get EEE status
 *  @hw: pointer to the HW structure
 *  @status: EEE status
 *
 *  Get EEE status by guessing based on whether Tx or Rx LPI indications have
 *  been received.
 **/
s32 igb_get_eee_status_i354(struct e1000_hw *hw, bool *status)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val = 0;
	u16 phy_data;

	/* Check if EEE is supported on this device. */
	if ((hw->phy.media_type != e1000_media_type_copper) ||
2688
	    (phy->id != M88E1543_E_PHY_ID))
2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
		goto out;

	ret_val = igb_read_xmdio_reg(hw, E1000_PCS_STATUS_ADDR_I354,
				     E1000_PCS_STATUS_DEV_I354,
				     &phy_data);
	if (ret_val)
		goto out;

	*status = phy_data & (E1000_PCS_STATUS_TX_LPI_RCVD |
			      E1000_PCS_STATUS_RX_LPI_RCVD) ? true : false;

out:
	return ret_val;
}

2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716
static const u8 e1000_emc_temp_data[4] = {
	E1000_EMC_INTERNAL_DATA,
	E1000_EMC_DIODE1_DATA,
	E1000_EMC_DIODE2_DATA,
	E1000_EMC_DIODE3_DATA
};
static const u8 e1000_emc_therm_limit[4] = {
	E1000_EMC_INTERNAL_THERM_LIMIT,
	E1000_EMC_DIODE1_THERM_LIMIT,
	E1000_EMC_DIODE2_THERM_LIMIT,
	E1000_EMC_DIODE3_THERM_LIMIT
};

2717 2718
/**
 *  igb_get_thermal_sensor_data_generic - Gathers thermal sensor data
2719 2720 2721
 *  @hw: pointer to hardware structure
 *
 *  Updates the temperatures in mac.thermal_sensor_data
2722
 **/
2723
static s32 igb_get_thermal_sensor_data_generic(struct e1000_hw *hw)
2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769
{
	s32 status = E1000_SUCCESS;
	u16 ets_offset;
	u16 ets_cfg;
	u16 ets_sensor;
	u8  num_sensors;
	u8  sensor_index;
	u8  sensor_location;
	u8  i;
	struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;

	if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
		return E1000_NOT_IMPLEMENTED;

	data->sensor[0].temp = (rd32(E1000_THMJT) & 0xFF);

	/* Return the internal sensor only if ETS is unsupported */
	hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
	if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
		return status;

	hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
	if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
	    != NVM_ETS_TYPE_EMC)
		return E1000_NOT_IMPLEMENTED;

	num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
	if (num_sensors > E1000_MAX_SENSORS)
		num_sensors = E1000_MAX_SENSORS;

	for (i = 1; i < num_sensors; i++) {
		hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
		sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
				NVM_ETS_DATA_INDEX_SHIFT);
		sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
				   NVM_ETS_DATA_LOC_SHIFT);

		if (sensor_location != 0)
			hw->phy.ops.read_i2c_byte(hw,
					e1000_emc_temp_data[sensor_index],
					E1000_I2C_THERMAL_SENSOR_ADDR,
					&data->sensor[i].temp);
	}
	return status;
}

2770 2771
/**
 *  igb_init_thermal_sensor_thresh_generic - Sets thermal sensor thresholds
2772 2773 2774 2775
 *  @hw: pointer to hardware structure
 *
 *  Sets the thermal sensor thresholds according to the NVM map
 *  and save off the threshold and location values into mac.thermal_sensor_data
2776
 **/
2777
static s32 igb_init_thermal_sensor_thresh_generic(struct e1000_hw *hw)
2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838
{
	s32 status = E1000_SUCCESS;
	u16 ets_offset;
	u16 ets_cfg;
	u16 ets_sensor;
	u8  low_thresh_delta;
	u8  num_sensors;
	u8  sensor_index;
	u8  sensor_location;
	u8  therm_limit;
	u8  i;
	struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;

	if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
		return E1000_NOT_IMPLEMENTED;

	memset(data, 0, sizeof(struct e1000_thermal_sensor_data));

	data->sensor[0].location = 0x1;
	data->sensor[0].caution_thresh =
		(rd32(E1000_THHIGHTC) & 0xFF);
	data->sensor[0].max_op_thresh =
		(rd32(E1000_THLOWTC) & 0xFF);

	/* Return the internal sensor only if ETS is unsupported */
	hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
	if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
		return status;

	hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
	if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
	    != NVM_ETS_TYPE_EMC)
		return E1000_NOT_IMPLEMENTED;

	low_thresh_delta = ((ets_cfg & NVM_ETS_LTHRES_DELTA_MASK) >>
			    NVM_ETS_LTHRES_DELTA_SHIFT);
	num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);

	for (i = 1; i <= num_sensors; i++) {
		hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
		sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
				NVM_ETS_DATA_INDEX_SHIFT);
		sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
				   NVM_ETS_DATA_LOC_SHIFT);
		therm_limit = ets_sensor & NVM_ETS_DATA_HTHRESH_MASK;

		hw->phy.ops.write_i2c_byte(hw,
			e1000_emc_therm_limit[sensor_index],
			E1000_I2C_THERMAL_SENSOR_ADDR,
			therm_limit);

		if ((i < E1000_MAX_SENSORS) && (sensor_location != 0)) {
			data->sensor[i].location = sensor_location;
			data->sensor[i].caution_thresh = therm_limit;
			data->sensor[i].max_op_thresh = therm_limit -
							low_thresh_delta;
		}
	}
	return status;
}

2839 2840 2841
static struct e1000_mac_operations e1000_mac_ops_82575 = {
	.init_hw              = igb_init_hw_82575,
	.check_for_link       = igb_check_for_link_82575,
A
Alexander Duyck 已提交
2842
	.rar_set              = igb_rar_set,
2843
	.read_mac_addr        = igb_read_mac_addr_82575,
2844
	.get_speed_and_duplex = igb_get_link_up_info_82575,
2845 2846 2847 2848
#ifdef CONFIG_IGB_HWMON
	.get_thermal_sensor_data = igb_get_thermal_sensor_data_generic,
	.init_thermal_sensor_thresh = igb_init_thermal_sensor_thresh_generic,
#endif
2849 2850 2851
};

static struct e1000_phy_operations e1000_phy_ops_82575 = {
A
Alexander Duyck 已提交
2852
	.acquire              = igb_acquire_phy_82575,
2853
	.get_cfg_done         = igb_get_cfg_done_82575,
A
Alexander Duyck 已提交
2854
	.release              = igb_release_phy_82575,
C
Carolyn Wyborny 已提交
2855 2856
	.write_i2c_byte       = igb_write_i2c_byte,
	.read_i2c_byte        = igb_read_i2c_byte,
2857 2858 2859
};

static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
A
Alexander Duyck 已提交
2860 2861 2862 2863
	.acquire              = igb_acquire_nvm_82575,
	.read                 = igb_read_nvm_eerd,
	.release              = igb_release_nvm_82575,
	.write                = igb_write_nvm_spi,
2864 2865 2866 2867 2868 2869 2870 2871 2872
};

const struct e1000_info e1000_82575_info = {
	.get_invariants = igb_get_invariants_82575,
	.mac_ops = &e1000_mac_ops_82575,
	.phy_ops = &e1000_phy_ops_82575,
	.nvm_ops = &e1000_nvm_ops_82575,
};