rt2400pci.c 52.3 KB
Newer Older
1
/*
2
	Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
	<http://rt2x00.serialmonkey.com>

	This program is free software; you can redistribute it and/or modify
	it under the terms of the GNU General Public License as published by
	the Free Software Foundation; either version 2 of the License, or
	(at your option) any later version.

	This program is distributed in the hope that it will be useful,
	but WITHOUT ANY WARRANTY; without even the implied warranty of
	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
	GNU General Public License for more details.

	You should have received a copy of the GNU General Public License
	along with this program; if not, write to the
	Free Software Foundation, Inc.,
	59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

/*
	Module: rt2400pci
	Abstract: rt2400pci device specific routines.
	Supported chipsets: RT2460.
 */

#include <linux/delay.h>
#include <linux/etherdevice.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/eeprom_93cx6.h>
34
#include <linux/slab.h>
35 36 37 38 39 40 41 42 43 44 45 46 47 48

#include "rt2x00.h"
#include "rt2x00pci.h"
#include "rt2400pci.h"

/*
 * Register access.
 * All access to the CSR registers will go through the methods
 * rt2x00pci_register_read and rt2x00pci_register_write.
 * BBP and RF register require indirect register access,
 * and use the CSR registers BBPCSR and RFCSR to achieve this.
 * These indirect registers work with busy bits,
 * and we will try maximal REGISTER_BUSY_COUNT times to access
 * the register while taking a REGISTER_BUSY_DELAY us delay
M
Mark Einon 已提交
49
 * between each attempt. When the busy bit is still set at that time,
50 51 52
 * the access attempt is considered to have failed,
 * and we will print an error.
 */
53 54 55 56
#define WAIT_FOR_BBP(__dev, __reg) \
	rt2x00pci_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
#define WAIT_FOR_RF(__dev, __reg) \
	rt2x00pci_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
57

A
Adam Baker 已提交
58
static void rt2400pci_bbp_write(struct rt2x00_dev *rt2x00dev,
59 60 61 62
				const unsigned int word, const u8 value)
{
	u32 reg;

63 64
	mutex_lock(&rt2x00dev->csr_mutex);

65
	/*
66 67
	 * Wait until the BBP becomes available, afterwards we
	 * can safely write the new data into the register.
68
	 */
69 70 71 72 73 74 75 76 77
	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
		reg = 0;
		rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
		rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
		rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
		rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);

		rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
	}
78 79

	mutex_unlock(&rt2x00dev->csr_mutex);
80 81
}

A
Adam Baker 已提交
82
static void rt2400pci_bbp_read(struct rt2x00_dev *rt2x00dev,
83 84 85 86
			       const unsigned int word, u8 *value)
{
	u32 reg;

87 88
	mutex_lock(&rt2x00dev->csr_mutex);

89
	/*
90 91 92 93 94 95
	 * Wait until the BBP becomes available, afterwards we
	 * can safely write the read request into the register.
	 * After the data has been written, we wait until hardware
	 * returns the correct value, if at any time the register
	 * doesn't become available in time, reg will be 0xffffffff
	 * which means we return 0xff to the caller.
96
	 */
97 98 99 100 101
	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
		reg = 0;
		rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
		rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
		rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
102

103
		rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
104

105 106
		WAIT_FOR_BBP(rt2x00dev, &reg);
	}
107 108

	*value = rt2x00_get_field32(reg, BBPCSR_VALUE);
109 110

	mutex_unlock(&rt2x00dev->csr_mutex);
111 112
}

A
Adam Baker 已提交
113
static void rt2400pci_rf_write(struct rt2x00_dev *rt2x00dev,
114 115 116 117
			       const unsigned int word, const u32 value)
{
	u32 reg;

118 119
	mutex_lock(&rt2x00dev->csr_mutex);

120 121 122 123 124 125 126 127 128 129 130 131 132
	/*
	 * Wait until the RF becomes available, afterwards we
	 * can safely write the new data into the register.
	 */
	if (WAIT_FOR_RF(rt2x00dev, &reg)) {
		reg = 0;
		rt2x00_set_field32(&reg, RFCSR_VALUE, value);
		rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
		rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
		rt2x00_set_field32(&reg, RFCSR_BUSY, 1);

		rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
		rt2x00_rf_write(rt2x00dev, word, value);
133 134
	}

135
	mutex_unlock(&rt2x00dev->csr_mutex);
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
}

static void rt2400pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
{
	struct rt2x00_dev *rt2x00dev = eeprom->data;
	u32 reg;

	rt2x00pci_register_read(rt2x00dev, CSR21, &reg);

	eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
	eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
	eeprom->reg_data_clock =
	    !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
	eeprom->reg_chip_select =
	    !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
}

static void rt2400pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
{
	struct rt2x00_dev *rt2x00dev = eeprom->data;
	u32 reg = 0;

	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
			   !!eeprom->reg_data_clock);
	rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
			   !!eeprom->reg_chip_select);

	rt2x00pci_register_write(rt2x00dev, CSR21, reg);
}

#ifdef CONFIG_RT2X00_LIB_DEBUGFS
static const struct rt2x00debug rt2400pci_rt2x00debug = {
	.owner	= THIS_MODULE,
	.csr	= {
172 173 174 175
		.read		= rt2x00pci_register_read,
		.write		= rt2x00pci_register_write,
		.flags		= RT2X00DEBUGFS_OFFSET,
		.word_base	= CSR_REG_BASE,
176 177 178 179 180 181
		.word_size	= sizeof(u32),
		.word_count	= CSR_REG_SIZE / sizeof(u32),
	},
	.eeprom	= {
		.read		= rt2x00_eeprom_read,
		.write		= rt2x00_eeprom_write,
182
		.word_base	= EEPROM_BASE,
183 184 185 186 187 188
		.word_size	= sizeof(u16),
		.word_count	= EEPROM_SIZE / sizeof(u16),
	},
	.bbp	= {
		.read		= rt2400pci_bbp_read,
		.write		= rt2400pci_bbp_write,
189
		.word_base	= BBP_BASE,
190 191 192 193 194 195
		.word_size	= sizeof(u8),
		.word_count	= BBP_SIZE / sizeof(u8),
	},
	.rf	= {
		.read		= rt2x00_rf_read,
		.write		= rt2400pci_rf_write,
196
		.word_base	= RF_BASE,
197 198 199 200 201 202 203 204 205 206 207 208 209 210
		.word_size	= sizeof(u32),
		.word_count	= RF_SIZE / sizeof(u32),
	},
};
#endif /* CONFIG_RT2X00_LIB_DEBUGFS */

static int rt2400pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;

	rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
	return rt2x00_get_field32(reg, GPIOCSR_BIT0);
}

211
#ifdef CONFIG_RT2X00_LIB_LEDS
212
static void rt2400pci_brightness_set(struct led_classdev *led_cdev,
213 214 215 216 217 218 219 220 221
				     enum led_brightness brightness)
{
	struct rt2x00_led *led =
	    container_of(led_cdev, struct rt2x00_led, led_dev);
	unsigned int enabled = brightness != LED_OFF;
	u32 reg;

	rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);

222
	if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
223
		rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
224 225
	else if (led->type == LED_TYPE_ACTIVITY)
		rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
226 227 228

	rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
}
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244

static int rt2400pci_blink_set(struct led_classdev *led_cdev,
			       unsigned long *delay_on,
			       unsigned long *delay_off)
{
	struct rt2x00_led *led =
	    container_of(led_cdev, struct rt2x00_led, led_dev);
	u32 reg;

	rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
	rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
	rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
	rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);

	return 0;
}
245 246 247 248 249 250 251 252 253 254 255

static void rt2400pci_init_led(struct rt2x00_dev *rt2x00dev,
			       struct rt2x00_led *led,
			       enum led_type type)
{
	led->rt2x00dev = rt2x00dev;
	led->type = type;
	led->led_dev.brightness_set = rt2400pci_brightness_set;
	led->led_dev.blink_set = rt2400pci_blink_set;
	led->flags = LED_INITIALIZED;
}
256
#endif /* CONFIG_RT2X00_LIB_LEDS */
257

258 259 260
/*
 * Configuration handlers.
 */
I
Ivo van Doorn 已提交
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
static void rt2400pci_config_filter(struct rt2x00_dev *rt2x00dev,
				    const unsigned int filter_flags)
{
	u32 reg;

	/*
	 * Start configuration steps.
	 * Note that the version error will always be dropped
	 * since there is no filter for it at this time.
	 */
	rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
	rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
			   !(filter_flags & FIF_FCSFAIL));
	rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
			   !(filter_flags & FIF_PLCPFAIL));
	rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
			   !(filter_flags & FIF_CONTROL));
	rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
			   !(filter_flags & FIF_PROMISC_IN_BSS));
	rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
281 282
			   !(filter_flags & FIF_PROMISC_IN_BSS) &&
			   !rt2x00dev->intf_ap_count);
I
Ivo van Doorn 已提交
283 284 285 286
	rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
	rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
}

287 288 289 290
static void rt2400pci_config_intf(struct rt2x00_dev *rt2x00dev,
				  struct rt2x00_intf *intf,
				  struct rt2x00intf_conf *conf,
				  const unsigned int flags)
291
{
292 293
	unsigned int bcn_preload;
	u32 reg;
294

295 296 297 298
	if (flags & CONFIG_UPDATE_TYPE) {
		/*
		 * Enable beacon config
		 */
299
		bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
300 301 302
		rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
		rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
		rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
303

304 305 306 307 308 309 310
		/*
		 * Enable synchronisation.
		 */
		rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
		rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
		rt2x00pci_register_write(rt2x00dev, CSR14, reg);
	}
311

312 313 314
	if (flags & CONFIG_UPDATE_MAC)
		rt2x00pci_register_multiwrite(rt2x00dev, CSR3,
					      conf->mac, sizeof(conf->mac));
315

316 317 318
	if (flags & CONFIG_UPDATE_BSSID)
		rt2x00pci_register_multiwrite(rt2x00dev, CSR5,
					      conf->bssid, sizeof(conf->bssid));
319 320
}

I
Ivo van Doorn 已提交
321
static void rt2400pci_config_erp(struct rt2x00_dev *rt2x00dev,
322 323
				 struct rt2x00lib_erp *erp,
				 u32 changed)
324
{
325
	int preamble_mask;
326 327
	u32 reg;

328 329 330
	/*
	 * When short preamble is enabled, we should set bit 0x08
	 */
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
	if (changed & BSS_CHANGED_ERP_PREAMBLE) {
		preamble_mask = erp->short_preamble << 3;

		rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
		rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, 0x1ff);
		rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, 0x13a);
		rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
		rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
		rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);

		rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
		rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
		rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
				   GET_DURATION(ACK_SIZE, 10));
		rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);

		rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
		rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
		rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
				   GET_DURATION(ACK_SIZE, 20));
		rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);

		rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
		rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
		rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
				   GET_DURATION(ACK_SIZE, 55));
		rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);

		rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
		rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
		rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
				   GET_DURATION(ACK_SIZE, 110));
		rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
	}

	if (changed & BSS_CHANGED_BASIC_RATES)
		rt2x00pci_register_write(rt2x00dev, ARCSR1, erp->basic_rates);

	if (changed & BSS_CHANGED_ERP_SLOT) {
		rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
		rt2x00_set_field32(&reg, CSR11_SLOT_TIME, erp->slot_time);
		rt2x00pci_register_write(rt2x00dev, CSR11, reg);

		rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
		rt2x00_set_field32(&reg, CSR18_SIFS, erp->sifs);
		rt2x00_set_field32(&reg, CSR18_PIFS, erp->pifs);
		rt2x00pci_register_write(rt2x00dev, CSR18, reg);

		rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
		rt2x00_set_field32(&reg, CSR19_DIFS, erp->difs);
		rt2x00_set_field32(&reg, CSR19_EIFS, erp->eifs);
		rt2x00pci_register_write(rt2x00dev, CSR19, reg);
	}

	if (changed & BSS_CHANGED_BEACON_INT) {
		rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
		rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
				   erp->beacon_int * 16);
		rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
				   erp->beacon_int * 16);
		rt2x00pci_register_write(rt2x00dev, CSR12, reg);
	}
397 398
}

399 400
static void rt2400pci_config_ant(struct rt2x00_dev *rt2x00dev,
				 struct antenna_setup *ant)
401
{
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
	u8 r1;
	u8 r4;

	/*
	 * We should never come here because rt2x00lib is supposed
	 * to catch this and send us the correct antenna explicitely.
	 */
	BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
	       ant->tx == ANTENNA_SW_DIVERSITY);

	rt2400pci_bbp_read(rt2x00dev, 4, &r4);
	rt2400pci_bbp_read(rt2x00dev, 1, &r1);

	/*
	 * Configure the TX antenna.
	 */
	switch (ant->tx) {
	case ANTENNA_HW_DIVERSITY:
		rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 1);
		break;
	case ANTENNA_A:
		rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 0);
		break;
	case ANTENNA_B:
	default:
		rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 2);
		break;
	}

	/*
	 * Configure the RX antenna.
	 */
	switch (ant->rx) {
	case ANTENNA_HW_DIVERSITY:
		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 1);
		break;
	case ANTENNA_A:
		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 0);
		break;
	case ANTENNA_B:
	default:
		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 2);
		break;
	}

	rt2400pci_bbp_write(rt2x00dev, 4, r4);
	rt2400pci_bbp_write(rt2x00dev, 1, r1);
449 450 451
}

static void rt2400pci_config_channel(struct rt2x00_dev *rt2x00dev,
452
				     struct rf_channel *rf)
453 454 455 456
{
	/*
	 * Switch on tuning bits.
	 */
457 458
	rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
	rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
459

460 461 462
	rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
	rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
	rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
463 464 465 466

	/*
	 * RF2420 chipset don't need any additional actions.
	 */
467
	if (rt2x00_rf(rt2x00dev, RF2420))
468 469 470 471 472 473 474
		return;

	/*
	 * For the RT2421 chipsets we need to write an invalid
	 * reference clock rate to activate auto_tune.
	 * After that we set the value back to the correct channel.
	 */
475
	rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
476
	rt2400pci_rf_write(rt2x00dev, 2, 0x000c2a32);
477
	rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
478 479 480

	msleep(1);

481 482 483
	rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
	rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
	rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
484 485 486 487 488 489

	msleep(1);

	/*
	 * Switch off tuning bits.
	 */
490 491
	rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
	rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
492

493 494
	rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
	rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
495 496 497 498

	/*
	 * Clear false CRC during channel switch.
	 */
499
	rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
500 501 502 503 504 505 506
}

static void rt2400pci_config_txpower(struct rt2x00_dev *rt2x00dev, int txpower)
{
	rt2400pci_bbp_write(rt2x00dev, 3, TXPOWER_TO_DEV(txpower));
}

507 508
static void rt2400pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
					 struct rt2x00lib_conf *libconf)
509
{
510
	u32 reg;
511

512 513 514 515 516 517
	rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
	rt2x00_set_field32(&reg, CSR11_LONG_RETRY,
			   libconf->conf->long_frame_max_tx_count);
	rt2x00_set_field32(&reg, CSR11_SHORT_RETRY,
			   libconf->conf->short_frame_max_tx_count);
	rt2x00pci_register_write(rt2x00dev, CSR11, reg);
518 519
}

I
Ivo van Doorn 已提交
520 521 522 523 524 525 526 527 528 529 530
static void rt2400pci_config_ps(struct rt2x00_dev *rt2x00dev,
				struct rt2x00lib_conf *libconf)
{
	enum dev_state state =
	    (libconf->conf->flags & IEEE80211_CONF_PS) ?
		STATE_SLEEP : STATE_AWAKE;
	u32 reg;

	if (state == STATE_SLEEP) {
		rt2x00pci_register_read(rt2x00dev, CSR20, &reg);
		rt2x00_set_field32(&reg, CSR20_DELAY_AFTER_TBCN,
531
				   (rt2x00dev->beacon_int - 20) * 16);
I
Ivo van Doorn 已提交
532 533 534 535 536 537 538 539 540
		rt2x00_set_field32(&reg, CSR20_TBCN_BEFORE_WAKEUP,
				   libconf->conf->listen_interval - 1);

		/* We must first disable autowake before it can be enabled */
		rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
		rt2x00pci_register_write(rt2x00dev, CSR20, reg);

		rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 1);
		rt2x00pci_register_write(rt2x00dev, CSR20, reg);
541 542 543 544
	} else {
		rt2x00pci_register_read(rt2x00dev, CSR20, &reg);
		rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
		rt2x00pci_register_write(rt2x00dev, CSR20, reg);
I
Ivo van Doorn 已提交
545 546 547 548 549
	}

	rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
}

550
static void rt2400pci_config(struct rt2x00_dev *rt2x00dev,
551 552
			     struct rt2x00lib_conf *libconf,
			     const unsigned int flags)
553
{
554
	if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
555
		rt2400pci_config_channel(rt2x00dev, &libconf->rf);
556
	if (flags & IEEE80211_CONF_CHANGE_POWER)
557 558
		rt2400pci_config_txpower(rt2x00dev,
					 libconf->conf->power_level);
559 560
	if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
		rt2400pci_config_retry_limit(rt2x00dev, libconf);
I
Ivo van Doorn 已提交
561 562
	if (flags & IEEE80211_CONF_CHANGE_PS)
		rt2400pci_config_ps(rt2x00dev, libconf);
563 564 565
}

static void rt2400pci_config_cw(struct rt2x00_dev *rt2x00dev,
I
Ivo van Doorn 已提交
566
				const int cw_min, const int cw_max)
567 568 569 570
{
	u32 reg;

	rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
I
Ivo van Doorn 已提交
571 572
	rt2x00_set_field32(&reg, CSR11_CWMIN, cw_min);
	rt2x00_set_field32(&reg, CSR11_CWMAX, cw_max);
573 574 575 576 577 578
	rt2x00pci_register_write(rt2x00dev, CSR11, reg);
}

/*
 * Link tuning
 */
579 580
static void rt2400pci_link_stats(struct rt2x00_dev *rt2x00dev,
				 struct link_qual *qual)
581 582 583 584 585 586 587 588
{
	u32 reg;
	u8 bbp;

	/*
	 * Update FCS error count from register.
	 */
	rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
589
	qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
590 591 592 593 594

	/*
	 * Update False CCA count from register.
	 */
	rt2400pci_bbp_read(rt2x00dev, 39, &bbp);
595
	qual->false_cca = bbp;
596 597
}

598 599
static inline void rt2400pci_set_vgc(struct rt2x00_dev *rt2x00dev,
				     struct link_qual *qual, u8 vgc_level)
600
{
601 602 603 604 605
	if (qual->vgc_level_reg != vgc_level) {
		rt2400pci_bbp_write(rt2x00dev, 13, vgc_level);
		qual->vgc_level = vgc_level;
		qual->vgc_level_reg = vgc_level;
	}
606 607
}

608 609
static void rt2400pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
				  struct link_qual *qual)
610
{
611
	rt2400pci_set_vgc(rt2x00dev, qual, 0x08);
612 613
}

614 615
static void rt2400pci_link_tuner(struct rt2x00_dev *rt2x00dev,
				 struct link_qual *qual, const u32 count)
616 617 618 619 620
{
	/*
	 * The link tuner should not run longer then 60 seconds,
	 * and should run once every 2 seconds.
	 */
621
	if (count > 60 || !(count & 1))
622 623 624 625 626
		return;

	/*
	 * Base r13 link tuning on the false cca count.
	 */
627 628 629 630
	if ((qual->false_cca > 512) && (qual->vgc_level < 0x20))
		rt2400pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level);
	else if ((qual->false_cca < 100) && (qual->vgc_level > 0x08))
		rt2400pci_set_vgc(rt2x00dev, qual, --qual->vgc_level);
631 632
}

633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
/*
 * Queue handlers.
 */
static void rt2400pci_start_queue(struct data_queue *queue)
{
	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
	u32 reg;

	switch (queue->qid) {
	case QID_RX:
		rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
		rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 0);
		rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
		break;
	case QID_BEACON:
648 649 650 651 652
		/*
		 * Allow the tbtt tasklet to be scheduled.
		 */
		tasklet_enable(&rt2x00dev->tbtt_tasklet);

653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
		rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
		rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
		rt2x00_set_field32(&reg, CSR14_TBCN, 1);
		rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
		rt2x00pci_register_write(rt2x00dev, CSR14, reg);
		break;
	default:
		break;
	}
}

static void rt2400pci_kick_queue(struct data_queue *queue)
{
	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
	u32 reg;

	switch (queue->qid) {
I
Ivo van Doorn 已提交
670
	case QID_AC_VO:
671 672 673 674
		rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
		rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, 1);
		rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
		break;
I
Ivo van Doorn 已提交
675
	case QID_AC_VI:
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
		rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
		rt2x00_set_field32(&reg, TXCSR0_KICK_TX, 1);
		rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
		break;
	case QID_ATIM:
		rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
		rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, 1);
		rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
		break;
	default:
		break;
	}
}

static void rt2400pci_stop_queue(struct data_queue *queue)
{
	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
	u32 reg;

	switch (queue->qid) {
I
Ivo van Doorn 已提交
696 697
	case QID_AC_VO:
	case QID_AC_VI:
698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
	case QID_ATIM:
		rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
		rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
		rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
		break;
	case QID_RX:
		rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
		rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 1);
		rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
		break;
	case QID_BEACON:
		rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
		rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
		rt2x00_set_field32(&reg, CSR14_TBCN, 0);
		rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
		rt2x00pci_register_write(rt2x00dev, CSR14, reg);
714 715 716 717 718

		/*
		 * Wait for possibly running tbtt tasklets.
		 */
		tasklet_disable(&rt2x00dev->tbtt_tasklet);
719 720 721 722 723 724
		break;
	default:
		break;
	}
}

725 726 727
/*
 * Initialization functions.
 */
728
static bool rt2400pci_get_entry_state(struct queue_entry *entry)
729
{
730
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
731 732
	u32 word;

733 734
	if (entry->queue->qid == QID_RX) {
		rt2x00_desc_read(entry_priv->desc, 0, &word);
735

736 737 738
		return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
	} else {
		rt2x00_desc_read(entry_priv->desc, 0, &word);
739

740 741 742
		return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
		        rt2x00_get_field32(word, TXD_W0_VALID));
	}
743 744
}

745
static void rt2400pci_clear_entry(struct queue_entry *entry)
746
{
747
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
748
	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
749 750
	u32 word;

751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
	if (entry->queue->qid == QID_RX) {
		rt2x00_desc_read(entry_priv->desc, 2, &word);
		rt2x00_set_field32(&word, RXD_W2_BUFFER_LENGTH, entry->skb->len);
		rt2x00_desc_write(entry_priv->desc, 2, word);

		rt2x00_desc_read(entry_priv->desc, 1, &word);
		rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
		rt2x00_desc_write(entry_priv->desc, 1, word);

		rt2x00_desc_read(entry_priv->desc, 0, &word);
		rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
		rt2x00_desc_write(entry_priv->desc, 0, word);
	} else {
		rt2x00_desc_read(entry_priv->desc, 0, &word);
		rt2x00_set_field32(&word, TXD_W0_VALID, 0);
		rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
		rt2x00_desc_write(entry_priv->desc, 0, word);
	}
769 770
}

I
Ivo van Doorn 已提交
771
static int rt2400pci_init_queues(struct rt2x00_dev *rt2x00dev)
772
{
773
	struct queue_entry_priv_pci *entry_priv;
774 775 776 777 778 779
	u32 reg;

	/*
	 * Initialize registers.
	 */
	rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
I
Ivo van Doorn 已提交
780 781
	rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
	rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
782
	rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->atim->limit);
I
Ivo van Doorn 已提交
783
	rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
784 785
	rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);

786
	entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
787
	rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
788
	rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
789
			   entry_priv->desc_dma);
790 791
	rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);

792
	entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
793
	rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
794
	rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
795
			   entry_priv->desc_dma);
796 797
	rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);

798
	entry_priv = rt2x00dev->atim->entries[0].priv_data;
799
	rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
800
	rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
801
			   entry_priv->desc_dma);
802 803
	rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);

804
	entry_priv = rt2x00dev->bcn->entries[0].priv_data;
805
	rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
806
	rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
807
			   entry_priv->desc_dma);
808 809 810 811
	rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);

	rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
	rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
I
Ivo van Doorn 已提交
812
	rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
813 814
	rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);

815
	entry_priv = rt2x00dev->rx->entries[0].priv_data;
816
	rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
817 818
	rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
			   entry_priv->desc_dma);
819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
	rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);

	return 0;
}

static int rt2400pci_init_registers(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;

	rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
	rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
	rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00023f20);
	rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);

	rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
	rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
	rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
	rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
	rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);

	rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
	rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
			   (rt2x00dev->rx->data_size / 128));
	rt2x00pci_register_write(rt2x00dev, CSR9, reg);

844 845 846 847 848 849 850 851 852 853 854
	rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
	rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
	rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
	rt2x00_set_field32(&reg, CSR14_TBCN, 0);
	rt2x00_set_field32(&reg, CSR14_TCFP, 0);
	rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
	rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
	rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
	rt2x00pci_register_write(rt2x00dev, CSR14, reg);

855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
	rt2x00pci_register_write(rt2x00dev, CNT3, 0x3f080000);

	rt2x00pci_register_read(rt2x00dev, ARCSR0, &reg);
	rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA0, 133);
	rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID0, 134);
	rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA1, 136);
	rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID1, 135);
	rt2x00pci_register_write(rt2x00dev, ARCSR0, reg);

	rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
	rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 3); /* Tx power.*/
	rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
	rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 32); /* Signal */
	rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
	rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 36); /* Rssi */
	rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
	rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);

	rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);

	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
		return -EBUSY;

	rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00217223);
	rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);

	rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
	rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
	rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);

	rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 154);
	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 154);
	rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);

	rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
	rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
	rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
	rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
	rt2x00pci_register_write(rt2x00dev, CSR1, reg);

	rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
	rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
	rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
	rt2x00pci_register_write(rt2x00dev, CSR1, reg);

	/*
	 * We must clear the FCS and FIFO error count.
	 * These registers are cleared on read,
	 * so we may pass a useless variable to store the value.
	 */
	rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
	rt2x00pci_register_read(rt2x00dev, CNT4, &reg);

	return 0;
}

914
static int rt2400pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
915 916 917 918 919 920 921
{
	unsigned int i;
	u8 value;

	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
		rt2400pci_bbp_read(rt2x00dev, 0, &value);
		if ((value != 0xff) && (value != 0x00))
922
			return 0;
923 924 925 926 927
		udelay(REGISTER_BUSY_DELAY);
	}

	ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
	return -EACCES;
928 929 930 931 932 933 934 935 936 937 938
}

static int rt2400pci_init_bbp(struct rt2x00_dev *rt2x00dev)
{
	unsigned int i;
	u16 eeprom;
	u8 reg_id;
	u8 value;

	if (unlikely(rt2400pci_wait_bbp_ready(rt2x00dev)))
		return -EACCES;
939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973

	rt2400pci_bbp_write(rt2x00dev, 1, 0x00);
	rt2400pci_bbp_write(rt2x00dev, 3, 0x27);
	rt2400pci_bbp_write(rt2x00dev, 4, 0x08);
	rt2400pci_bbp_write(rt2x00dev, 10, 0x0f);
	rt2400pci_bbp_write(rt2x00dev, 15, 0x72);
	rt2400pci_bbp_write(rt2x00dev, 16, 0x74);
	rt2400pci_bbp_write(rt2x00dev, 17, 0x20);
	rt2400pci_bbp_write(rt2x00dev, 18, 0x72);
	rt2400pci_bbp_write(rt2x00dev, 19, 0x0b);
	rt2400pci_bbp_write(rt2x00dev, 20, 0x00);
	rt2400pci_bbp_write(rt2x00dev, 28, 0x11);
	rt2400pci_bbp_write(rt2x00dev, 29, 0x04);
	rt2400pci_bbp_write(rt2x00dev, 30, 0x21);
	rt2400pci_bbp_write(rt2x00dev, 31, 0x00);

	for (i = 0; i < EEPROM_BBP_SIZE; i++) {
		rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);

		if (eeprom != 0xffff && eeprom != 0x0000) {
			reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
			value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
			rt2400pci_bbp_write(rt2x00dev, reg_id, value);
		}
	}

	return 0;
}

/*
 * Device state switch handlers.
 */
static void rt2400pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
				 enum dev_state state)
{
974
	int mask = (state == STATE_RADIO_IRQ_OFF);
975
	u32 reg;
976
	unsigned long flags;
977 978 979 980 981 982 983 984

	/*
	 * When interrupts are being enabled, the interrupt registers
	 * should clear the register to assure a clean state.
	 */
	if (state == STATE_RADIO_IRQ_ON) {
		rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
		rt2x00pci_register_write(rt2x00dev, CSR7, reg);
985 986 987 988 989 990

		/*
		 * Enable tasklets.
		 */
		tasklet_enable(&rt2x00dev->txstatus_tasklet);
		tasklet_enable(&rt2x00dev->rxdone_tasklet);
991 992 993 994 995 996
	}

	/*
	 * Only toggle the interrupts bits we are going to use.
	 * Non-checked interrupt bits are disabled by default.
	 */
997 998
	spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);

999 1000 1001 1002 1003 1004 1005
	rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
	rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
	rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
	rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
	rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
	rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
	rt2x00pci_register_write(rt2x00dev, CSR8, reg);
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016

	spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);

	if (state == STATE_RADIO_IRQ_OFF) {
		/*
		 * Ensure that all tasklets are finished before
		 * disabling the interrupts.
		 */
		tasklet_disable(&rt2x00dev->txstatus_tasklet);
		tasklet_disable(&rt2x00dev->rxdone_tasklet);
	}
1017 1018 1019 1020 1021 1022 1023
}

static int rt2400pci_enable_radio(struct rt2x00_dev *rt2x00dev)
{
	/*
	 * Initialize all registers.
	 */
1024 1025 1026
	if (unlikely(rt2400pci_init_queues(rt2x00dev) ||
		     rt2400pci_init_registers(rt2x00dev) ||
		     rt2400pci_init_bbp(rt2x00dev)))
1027 1028 1029 1030 1031 1032 1033 1034
		return -EIO;

	return 0;
}

static void rt2400pci_disable_radio(struct rt2x00_dev *rt2x00dev)
{
	/*
1035
	 * Disable power
1036
	 */
1037
	rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
1038 1039 1040 1041 1042
}

static int rt2400pci_set_state(struct rt2x00_dev *rt2x00dev,
			       enum dev_state state)
{
1043
	u32 reg, reg2;
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
	unsigned int i;
	char put_to_sleep;
	char bbp_state;
	char rf_state;

	put_to_sleep = (state != STATE_AWAKE);

	rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
	rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
	rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
	rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
	rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
	rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);

	/*
	 * Device is not guaranteed to be in the requested state yet.
	 * We must wait until the register indicates that the
	 * device has entered the correct state.
	 */
	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1064 1065 1066
		rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg2);
		bbp_state = rt2x00_get_field32(reg2, PWRCSR1_BBP_CURR_STATE);
		rf_state = rt2x00_get_field32(reg2, PWRCSR1_RF_CURR_STATE);
1067 1068
		if (bbp_state == state && rf_state == state)
			return 0;
1069
		rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
		msleep(10);
	}

	return -EBUSY;
}

static int rt2400pci_set_device_state(struct rt2x00_dev *rt2x00dev,
				      enum dev_state state)
{
	int retval = 0;

	switch (state) {
	case STATE_RADIO_ON:
		retval = rt2400pci_enable_radio(rt2x00dev);
		break;
	case STATE_RADIO_OFF:
		rt2400pci_disable_radio(rt2x00dev);
		break;
1088 1089 1090
	case STATE_RADIO_IRQ_ON:
	case STATE_RADIO_IRQ_OFF:
		rt2400pci_toggle_irq(rt2x00dev, state);
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
		break;
	case STATE_DEEP_SLEEP:
	case STATE_SLEEP:
	case STATE_STANDBY:
	case STATE_AWAKE:
		retval = rt2400pci_set_state(rt2x00dev, state);
		break;
	default:
		retval = -ENOTSUPP;
		break;
	}

1103 1104 1105 1106
	if (unlikely(retval))
		ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
		      state, retval);

1107 1108 1109 1110 1111 1112
	return retval;
}

/*
 * TX descriptor initialization
 */
1113
static void rt2400pci_write_tx_desc(struct queue_entry *entry,
1114
				    struct txentry_desc *txdesc)
1115
{
1116 1117
	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1118
	__le32 *txd = entry_priv->desc;
1119 1120 1121 1122 1123
	u32 word;

	/*
	 * Start writing the descriptor words.
	 */
1124
	rt2x00_desc_read(txd, 1, &word);
1125
	rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
1126
	rt2x00_desc_write(txd, 1, word);
1127

1128
	rt2x00_desc_read(txd, 2, &word);
1129 1130
	rt2x00_set_field32(&word, TXD_W2_BUFFER_LENGTH, txdesc->length);
	rt2x00_set_field32(&word, TXD_W2_DATABYTE_COUNT, txdesc->length);
1131 1132 1133
	rt2x00_desc_write(txd, 2, word);

	rt2x00_desc_read(txd, 3, &word);
1134
	rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->u.plcp.signal);
1135 1136
	rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_REGNUM, 5);
	rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_BUSY, 1);
1137
	rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->u.plcp.service);
1138 1139
	rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_REGNUM, 6);
	rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_BUSY, 1);
1140 1141 1142
	rt2x00_desc_write(txd, 3, word);

	rt2x00_desc_read(txd, 4, &word);
1143 1144
	rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_LOW,
			   txdesc->u.plcp.length_low);
1145 1146
	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_REGNUM, 8);
	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_BUSY, 1);
1147 1148
	rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_HIGH,
			   txdesc->u.plcp.length_high);
1149 1150
	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_REGNUM, 7);
	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_BUSY, 1);
1151 1152
	rt2x00_desc_write(txd, 4, word);

1153 1154 1155 1156 1157
	/*
	 * Writing TXD word 0 must the last to prevent a race condition with
	 * the device, whereby the device may take hold of the TXD before we
	 * finished updating it.
	 */
1158 1159 1160 1161
	rt2x00_desc_read(txd, 0, &word);
	rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
	rt2x00_set_field32(&word, TXD_W0_VALID, 1);
	rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
I
Ivo van Doorn 已提交
1162
			   test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1163
	rt2x00_set_field32(&word, TXD_W0_ACK,
I
Ivo van Doorn 已提交
1164
			   test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1165
	rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
I
Ivo van Doorn 已提交
1166
			   test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1167
	rt2x00_set_field32(&word, TXD_W0_RTS,
I
Ivo van Doorn 已提交
1168
			   test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
1169
	rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1170
	rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
I
Ivo van Doorn 已提交
1171
			   test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1172
	rt2x00_desc_write(txd, 0, word);
1173 1174 1175 1176 1177 1178

	/*
	 * Register descriptor details in skb frame descriptor.
	 */
	skbdesc->desc = txd;
	skbdesc->desc_len = TXD_DESC_SIZE;
1179 1180 1181 1182 1183
}

/*
 * TX data initialization
 */
1184 1185
static void rt2400pci_write_beacon(struct queue_entry *entry,
				   struct txentry_desc *txdesc)
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
{
	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
	u32 reg;

	/*
	 * Disable beaconing while we are reloading the beacon data,
	 * otherwise we might be sending out invalid data.
	 */
	rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
	rt2x00pci_register_write(rt2x00dev, CSR14, reg);

1198
	rt2x00queue_map_txskb(entry);
1199

1200 1201 1202
	/*
	 * Write the TX descriptor for the beacon.
	 */
1203
	rt2400pci_write_tx_desc(entry, txdesc);
1204 1205 1206 1207 1208

	/*
	 * Dump beacon to userspace through debugfs.
	 */
	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
1209 1210 1211 1212 1213 1214

	/*
	 * Enable beaconing again.
	 */
	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
	rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1215 1216
}

1217 1218 1219
/*
 * RX control handlers
 */
I
Ivo van Doorn 已提交
1220 1221
static void rt2400pci_fill_rxdone(struct queue_entry *entry,
				  struct rxdone_entry_desc *rxdesc)
1222
{
1223
	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1224
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1225 1226
	u32 word0;
	u32 word2;
I
Ivo van Doorn 已提交
1227
	u32 word3;
1228 1229 1230 1231
	u32 word4;
	u64 tsf;
	u32 rx_low;
	u32 rx_high;
1232

1233 1234 1235
	rt2x00_desc_read(entry_priv->desc, 0, &word0);
	rt2x00_desc_read(entry_priv->desc, 2, &word2);
	rt2x00_desc_read(entry_priv->desc, 3, &word3);
1236
	rt2x00_desc_read(entry_priv->desc, 4, &word4);
1237

1238
	if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
I
Ivo van Doorn 已提交
1239
		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1240
	if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
I
Ivo van Doorn 已提交
1241
		rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1242

1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
	/*
	 * We only get the lower 32bits from the timestamp,
	 * to get the full 64bits we must complement it with
	 * the timestamp from get_tsf().
	 * Note that when a wraparound of the lower 32bits
	 * has occurred between the frame arrival and the get_tsf()
	 * call, we must decrease the higher 32bits with 1 to get
	 * to correct value.
	 */
	tsf = rt2x00dev->ops->hw->get_tsf(rt2x00dev->hw);
	rx_low = rt2x00_get_field32(word4, RXD_W4_RX_END_TIME);
	rx_high = upper_32_bits(tsf);

	if ((u32)tsf <= rx_low)
		rx_high--;

1259 1260
	/*
	 * Obtain the status about this packet.
1261 1262
	 * The signal is the PLCP value, and needs to be stripped
	 * of the preamble bit (0x08).
1263
	 */
1264
	rxdesc->timestamp = ((u64)rx_high << 32) | rx_low;
1265
	rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL) & ~0x08;
I
Ivo van Doorn 已提交
1266
	rxdesc->rssi = rt2x00_get_field32(word2, RXD_W3_RSSI) -
I
Ivo van Doorn 已提交
1267 1268
	    entry->queue->rt2x00dev->rssi_offset;
	rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1269

1270
	rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1271 1272
	if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
		rxdesc->dev_flags |= RXDONE_MY_BSS;
1273 1274 1275 1276 1277
}

/*
 * Interrupt functions.
 */
I
Ivo van Doorn 已提交
1278
static void rt2400pci_txdone(struct rt2x00_dev *rt2x00dev,
1279
			     const enum data_queue_qid queue_idx)
1280
{
1281
	struct data_queue *queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
1282
	struct queue_entry_priv_pci *entry_priv;
I
Ivo van Doorn 已提交
1283 1284
	struct queue_entry *entry;
	struct txdone_entry_desc txdesc;
1285 1286
	u32 word;

I
Ivo van Doorn 已提交
1287 1288
	while (!rt2x00queue_empty(queue)) {
		entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1289 1290
		entry_priv = entry->priv_data;
		rt2x00_desc_read(entry_priv->desc, 0, &word);
1291 1292 1293 1294 1295 1296 1297 1298

		if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
		    !rt2x00_get_field32(word, TXD_W0_VALID))
			break;

		/*
		 * Obtain the status about this packet.
		 */
I
Ivo van Doorn 已提交
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
		txdesc.flags = 0;
		switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
		case 0: /* Success */
		case 1: /* Success with retry */
			__set_bit(TXDONE_SUCCESS, &txdesc.flags);
			break;
		case 2: /* Failure, excessive retries */
			__set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
			/* Don't break, this is a failed frame! */
		default: /* Failure */
			__set_bit(TXDONE_FAILURE, &txdesc.flags);
		}
I
Ivo van Doorn 已提交
1311
		txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1312

1313
		rt2x00lib_txdone(entry, &txdesc);
1314 1315 1316
	}
}

1317 1318
static void rt2400pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
				       struct rt2x00_field32 irq_field)
1319
{
1320
	u32 reg;
1321 1322

	/*
1323 1324
	 * Enable a single interrupt. The interrupt mask register
	 * access needs locking.
1325
	 */
1326
	spin_lock_irq(&rt2x00dev->irqmask_lock);
1327

1328 1329 1330
	rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
	rt2x00_set_field32(&reg, irq_field, 0);
	rt2x00pci_register_write(rt2x00dev, CSR8, reg);
1331

1332
	spin_unlock_irq(&rt2x00dev->irqmask_lock);
1333
}
1334

1335 1336 1337 1338
static void rt2400pci_txstatus_tasklet(unsigned long data)
{
	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
	u32 reg;
1339 1340

	/*
1341
	 * Handle all tx queues.
1342
	 */
1343 1344 1345
	rt2400pci_txdone(rt2x00dev, QID_ATIM);
	rt2400pci_txdone(rt2x00dev, QID_AC_VO);
	rt2400pci_txdone(rt2x00dev, QID_AC_VI);
1346 1347

	/*
1348
	 * Enable all TXDONE interrupts again.
1349
	 */
1350
	spin_lock_irq(&rt2x00dev->irqmask_lock);
1351

1352 1353 1354 1355 1356 1357
	rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
	rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, 0);
	rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, 0);
	rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, 0);
	rt2x00pci_register_write(rt2x00dev, CSR8, reg);

1358
	spin_unlock_irq(&rt2x00dev->irqmask_lock);
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
}

static void rt2400pci_tbtt_tasklet(unsigned long data)
{
	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
	rt2x00lib_beacondone(rt2x00dev);
	rt2400pci_enable_interrupt(rt2x00dev, CSR8_TBCN_EXPIRE);
}

static void rt2400pci_rxdone_tasklet(unsigned long data)
{
	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
1371 1372 1373 1374
	if (rt2x00pci_rxdone(rt2x00dev))
		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
	else
		rt2400pci_enable_interrupt(rt2x00dev, CSR8_RXDONE);
1375 1376
}

1377 1378 1379
static irqreturn_t rt2400pci_interrupt(int irq, void *dev_instance)
{
	struct rt2x00_dev *rt2x00dev = dev_instance;
1380
	u32 reg, mask;
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394

	/*
	 * Get the interrupt sources & saved to local variable.
	 * Write register value back to clear pending interrupts.
	 */
	rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
	rt2x00pci_register_write(rt2x00dev, CSR7, reg);

	if (!reg)
		return IRQ_NONE;

	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
		return IRQ_HANDLED;

1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
	mask = reg;

	/*
	 * Schedule tasklets for interrupt handling.
	 */
	if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
		tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);

	if (rt2x00_get_field32(reg, CSR7_RXDONE))
		tasklet_schedule(&rt2x00dev->rxdone_tasklet);

	if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING) ||
	    rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING) ||
	    rt2x00_get_field32(reg, CSR7_TXDONE_TXRING)) {
		tasklet_schedule(&rt2x00dev->txstatus_tasklet);
		/*
		 * Mask out all txdone interrupts.
		 */
		rt2x00_set_field32(&mask, CSR8_TXDONE_TXRING, 1);
		rt2x00_set_field32(&mask, CSR8_TXDONE_ATIMRING, 1);
		rt2x00_set_field32(&mask, CSR8_TXDONE_PRIORING, 1);
	}
1417

1418 1419 1420 1421
	/*
	 * Disable all interrupts for which a tasklet was scheduled right now,
	 * the tasklet will reenable the appropriate interrupts.
	 */
1422
	spin_lock(&rt2x00dev->irqmask_lock);
1423

1424 1425 1426 1427
	rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
	reg |= mask;
	rt2x00pci_register_write(rt2x00dev, CSR8, reg);

1428
	spin_unlock(&rt2x00dev->irqmask_lock);
1429 1430 1431 1432



	return IRQ_HANDLED;
1433 1434
}

1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
/*
 * Device probe functions.
 */
static int rt2400pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
{
	struct eeprom_93cx6 eeprom;
	u32 reg;
	u16 word;
	u8 *mac;

	rt2x00pci_register_read(rt2x00dev, CSR21, &reg);

	eeprom.data = rt2x00dev;
	eeprom.register_read = rt2400pci_eepromregister_read;
	eeprom.register_write = rt2400pci_eepromregister_write;
	eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
	    PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
	eeprom.reg_data_in = 0;
	eeprom.reg_data_out = 0;
	eeprom.reg_data_clock = 0;
	eeprom.reg_chip_select = 0;

	eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
			       EEPROM_SIZE / sizeof(u16));

	/*
	 * Start validation of the data that has been read.
	 */
	mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
	if (!is_valid_ether_addr(mac)) {
		random_ether_addr(mac);
J
Johannes Berg 已提交
1466
		EEPROM(rt2x00dev, "MAC: %pM\n", mac);
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
	}

	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
	if (word == 0xffff) {
		ERROR(rt2x00dev, "Invalid EEPROM data detected.\n");
		return -EINVAL;
	}

	return 0;
}

static int rt2400pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;
	u16 value;
	u16 eeprom;

	/*
	 * Read EEPROM word for configuration.
	 */
	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);

	/*
	 * Identify RF chipset.
	 */
	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
	rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
1494 1495
	rt2x00_set_chip(rt2x00dev, RT2460, value,
			rt2x00_get_field32(reg, CSR0_REVISION));
1496

1497
	if (!rt2x00_rf(rt2x00dev, RF2420) && !rt2x00_rf(rt2x00dev, RF2421)) {
1498 1499 1500 1501 1502 1503 1504
		ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
		return -ENODEV;
	}

	/*
	 * Identify default antenna configuration.
	 */
1505
	rt2x00dev->default_ant.tx =
1506
	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1507
	rt2x00dev->default_ant.rx =
1508 1509
	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);

1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
	/*
	 * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
	 * I am not 100% sure about this, but the legacy drivers do not
	 * indicate antenna swapping in software is required when
	 * diversity is enabled.
	 */
	if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
		rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
	if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
		rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;

1521 1522 1523
	/*
	 * Store led mode, for correct led behaviour.
	 */
1524
#ifdef CONFIG_RT2X00_LIB_LEDS
1525 1526
	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);

1527
	rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1528 1529 1530
	if (value == LED_MODE_TXRX_ACTIVITY ||
	    value == LED_MODE_DEFAULT ||
	    value == LED_MODE_ASUS)
1531 1532
		rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
				   LED_TYPE_ACTIVITY);
1533
#endif /* CONFIG_RT2X00_LIB_LEDS */
1534 1535 1536 1537 1538

	/*
	 * Detect if this device has an hardware controlled radio.
	 */
	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1539
		__set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1540 1541 1542 1543

	/*
	 * Check if the BBP tuning should be enabled.
	 */
1544 1545
	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_AGCVGC_TUNING))
		__set_bit(DRIVER_SUPPORT_LINK_TUNING, &rt2x00dev->flags);
1546 1547 1548 1549 1550 1551 1552 1553

	return 0;
}

/*
 * RF value list for RF2420 & RF2421
 * Supports: 2.4 GHz
 */
1554
static const struct rf_channel rf_vals_b[] = {
1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
	{ 1,  0x00022058, 0x000c1fda, 0x00000101, 0 },
	{ 2,  0x00022058, 0x000c1fee, 0x00000101, 0 },
	{ 3,  0x00022058, 0x000c2002, 0x00000101, 0 },
	{ 4,  0x00022058, 0x000c2016, 0x00000101, 0 },
	{ 5,  0x00022058, 0x000c202a, 0x00000101, 0 },
	{ 6,  0x00022058, 0x000c203e, 0x00000101, 0 },
	{ 7,  0x00022058, 0x000c2052, 0x00000101, 0 },
	{ 8,  0x00022058, 0x000c2066, 0x00000101, 0 },
	{ 9,  0x00022058, 0x000c207a, 0x00000101, 0 },
	{ 10, 0x00022058, 0x000c208e, 0x00000101, 0 },
	{ 11, 0x00022058, 0x000c20a2, 0x00000101, 0 },
	{ 12, 0x00022058, 0x000c20b6, 0x00000101, 0 },
	{ 13, 0x00022058, 0x000c20ca, 0x00000101, 0 },
	{ 14, 0x00022058, 0x000c20fa, 0x00000101, 0 },
};

1571
static int rt2400pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1572 1573
{
	struct hw_mode_spec *spec = &rt2x00dev->spec;
1574 1575
	struct channel_info *info;
	char *tx_power;
1576 1577 1578 1579 1580
	unsigned int i;

	/*
	 * Initialize all hw fields.
	 */
1581
	rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1582 1583 1584
			       IEEE80211_HW_SIGNAL_DBM |
			       IEEE80211_HW_SUPPORTS_PS |
			       IEEE80211_HW_PS_NULLFUNC_STACK;
1585

1586
	SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1587 1588 1589 1590 1591 1592 1593
	SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
				rt2x00_eeprom_addr(rt2x00dev,
						   EEPROM_MAC_ADDR_0));

	/*
	 * Initialize hw_mode information.
	 */
1594 1595
	spec->supported_bands = SUPPORT_BAND_2GHZ;
	spec->supported_rates = SUPPORT_RATE_CCK;
1596

1597 1598 1599 1600 1601 1602
	spec->num_channels = ARRAY_SIZE(rf_vals_b);
	spec->channels = rf_vals_b;

	/*
	 * Create channel information array
	 */
1603
	info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
1604 1605 1606 1607 1608 1609
	if (!info)
		return -ENOMEM;

	spec->channels_info = info;

	tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1610 1611 1612 1613
	for (i = 0; i < 14; i++) {
		info[i].max_power = TXPOWER_FROM_DEV(MAX_TXPOWER);
		info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
	}
1614 1615

	return 0;
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
}

static int rt2400pci_probe_hw(struct rt2x00_dev *rt2x00dev)
{
	int retval;

	/*
	 * Allocate eeprom data.
	 */
	retval = rt2400pci_validate_eeprom(rt2x00dev);
	if (retval)
		return retval;

	retval = rt2400pci_init_eeprom(rt2x00dev);
	if (retval)
		return retval;

	/*
	 * Initialize hw specifications.
	 */
1636 1637 1638
	retval = rt2400pci_probe_hw_mode(rt2x00dev);
	if (retval)
		return retval;
1639 1640

	/*
1641
	 * This device requires the atim queue and DMA-mapped skbs.
1642
	 */
I
Ivo van Doorn 已提交
1643
	__set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
1644
	__set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
1645
	__set_bit(DRIVER_REQUIRE_SW_SEQNO, &rt2x00dev->flags);
1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657

	/*
	 * Set the rssi offset.
	 */
	rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;

	return 0;
}

/*
 * IEEE80211 stack callback functions.
 */
J
Johannes Berg 已提交
1658
static int rt2400pci_conf_tx(struct ieee80211_hw *hw, u16 queue,
1659 1660 1661 1662 1663 1664 1665 1666 1667
			     const struct ieee80211_tx_queue_params *params)
{
	struct rt2x00_dev *rt2x00dev = hw->priv;

	/*
	 * We don't support variating cw_min and cw_max variables
	 * per queue. So by default we only configure the TX queue,
	 * and ignore all other configurations.
	 */
J
Johannes Berg 已提交
1668
	if (queue != 0)
1669 1670 1671 1672 1673 1674 1675 1676
		return -EINVAL;

	if (rt2x00mac_conf_tx(hw, queue, params))
		return -EINVAL;

	/*
	 * Write configuration to register.
	 */
I
Ivo van Doorn 已提交
1677 1678
	rt2400pci_config_cw(rt2x00dev,
			    rt2x00dev->tx->cw_min, rt2x00dev->tx->cw_max);
1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707

	return 0;
}

static u64 rt2400pci_get_tsf(struct ieee80211_hw *hw)
{
	struct rt2x00_dev *rt2x00dev = hw->priv;
	u64 tsf;
	u32 reg;

	rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
	tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
	rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
	tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);

	return tsf;
}

static int rt2400pci_tx_last_beacon(struct ieee80211_hw *hw)
{
	struct rt2x00_dev *rt2x00dev = hw->priv;
	u32 reg;

	rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
	return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
}

static const struct ieee80211_ops rt2400pci_mac80211_ops = {
	.tx			= rt2x00mac_tx,
1708 1709
	.start			= rt2x00mac_start,
	.stop			= rt2x00mac_stop,
1710 1711 1712
	.add_interface		= rt2x00mac_add_interface,
	.remove_interface	= rt2x00mac_remove_interface,
	.config			= rt2x00mac_config,
I
Ivo van Doorn 已提交
1713
	.configure_filter	= rt2x00mac_configure_filter,
1714 1715
	.sw_scan_start		= rt2x00mac_sw_scan_start,
	.sw_scan_complete	= rt2x00mac_sw_scan_complete,
1716
	.get_stats		= rt2x00mac_get_stats,
1717
	.bss_info_changed	= rt2x00mac_bss_info_changed,
1718 1719 1720
	.conf_tx		= rt2400pci_conf_tx,
	.get_tsf		= rt2400pci_get_tsf,
	.tx_last_beacon		= rt2400pci_tx_last_beacon,
1721
	.rfkill_poll		= rt2x00mac_rfkill_poll,
I
Ivo van Doorn 已提交
1722
	.flush			= rt2x00mac_flush,
1723 1724 1725 1726
};

static const struct rt2x00lib_ops rt2400pci_rt2x00_ops = {
	.irq_handler		= rt2400pci_interrupt,
1727 1728 1729
	.txstatus_tasklet	= rt2400pci_txstatus_tasklet,
	.tbtt_tasklet		= rt2400pci_tbtt_tasklet,
	.rxdone_tasklet		= rt2400pci_rxdone_tasklet,
1730 1731 1732
	.probe_hw		= rt2400pci_probe_hw,
	.initialize		= rt2x00pci_initialize,
	.uninitialize		= rt2x00pci_uninitialize,
1733 1734
	.get_entry_state	= rt2400pci_get_entry_state,
	.clear_entry		= rt2400pci_clear_entry,
1735 1736 1737 1738 1739
	.set_device_state	= rt2400pci_set_device_state,
	.rfkill_poll		= rt2400pci_rfkill_poll,
	.link_stats		= rt2400pci_link_stats,
	.reset_tuner		= rt2400pci_reset_tuner,
	.link_tuner		= rt2400pci_link_tuner,
1740 1741 1742
	.start_queue		= rt2400pci_start_queue,
	.kick_queue		= rt2400pci_kick_queue,
	.stop_queue		= rt2400pci_stop_queue,
1743
	.write_tx_desc		= rt2400pci_write_tx_desc,
1744
	.write_beacon		= rt2400pci_write_beacon,
1745
	.fill_rxdone		= rt2400pci_fill_rxdone,
I
Ivo van Doorn 已提交
1746
	.config_filter		= rt2400pci_config_filter,
1747
	.config_intf		= rt2400pci_config_intf,
1748
	.config_erp		= rt2400pci_config_erp,
1749
	.config_ant		= rt2400pci_config_ant,
1750 1751 1752
	.config			= rt2400pci_config,
};

I
Ivo van Doorn 已提交
1753
static const struct data_queue_desc rt2400pci_queue_rx = {
1754
	.entry_num		= 24,
I
Ivo van Doorn 已提交
1755 1756
	.data_size		= DATA_FRAME_SIZE,
	.desc_size		= RXD_DESC_SIZE,
1757
	.priv_size		= sizeof(struct queue_entry_priv_pci),
I
Ivo van Doorn 已提交
1758 1759 1760
};

static const struct data_queue_desc rt2400pci_queue_tx = {
1761
	.entry_num		= 24,
I
Ivo van Doorn 已提交
1762 1763
	.data_size		= DATA_FRAME_SIZE,
	.desc_size		= TXD_DESC_SIZE,
1764
	.priv_size		= sizeof(struct queue_entry_priv_pci),
I
Ivo van Doorn 已提交
1765 1766 1767
};

static const struct data_queue_desc rt2400pci_queue_bcn = {
1768
	.entry_num		= 1,
I
Ivo van Doorn 已提交
1769 1770
	.data_size		= MGMT_FRAME_SIZE,
	.desc_size		= TXD_DESC_SIZE,
1771
	.priv_size		= sizeof(struct queue_entry_priv_pci),
I
Ivo van Doorn 已提交
1772 1773 1774
};

static const struct data_queue_desc rt2400pci_queue_atim = {
1775
	.entry_num		= 8,
I
Ivo van Doorn 已提交
1776 1777
	.data_size		= DATA_FRAME_SIZE,
	.desc_size		= TXD_DESC_SIZE,
1778
	.priv_size		= sizeof(struct queue_entry_priv_pci),
I
Ivo van Doorn 已提交
1779 1780
};

1781
static const struct rt2x00_ops rt2400pci_ops = {
G
Gertjan van Wingerde 已提交
1782 1783 1784 1785 1786 1787
	.name			= KBUILD_MODNAME,
	.max_sta_intf		= 1,
	.max_ap_intf		= 1,
	.eeprom_size		= EEPROM_SIZE,
	.rf_size		= RF_SIZE,
	.tx_queues		= NUM_TX_QUEUES,
1788
	.extra_tx_headroom	= 0,
G
Gertjan van Wingerde 已提交
1789 1790 1791 1792 1793 1794
	.rx			= &rt2400pci_queue_rx,
	.tx			= &rt2400pci_queue_tx,
	.bcn			= &rt2400pci_queue_bcn,
	.atim			= &rt2400pci_queue_atim,
	.lib			= &rt2400pci_rt2x00_ops,
	.hw			= &rt2400pci_mac80211_ops,
1795
#ifdef CONFIG_RT2X00_LIB_DEBUGFS
G
Gertjan van Wingerde 已提交
1796
	.debugfs		= &rt2400pci_rt2x00debug,
1797 1798 1799 1800 1801 1802
#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
};

/*
 * RT2400pci module information.
 */
1803
static DEFINE_PCI_DEVICE_TABLE(rt2400pci_device_table) = {
1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815
	{ PCI_DEVICE(0x1814, 0x0101), PCI_DEVICE_DATA(&rt2400pci_ops) },
	{ 0, }
};

MODULE_AUTHOR(DRV_PROJECT);
MODULE_VERSION(DRV_VERSION);
MODULE_DESCRIPTION("Ralink RT2400 PCI & PCMCIA Wireless LAN driver.");
MODULE_SUPPORTED_DEVICE("Ralink RT2460 PCI & PCMCIA chipset based cards");
MODULE_DEVICE_TABLE(pci, rt2400pci_device_table);
MODULE_LICENSE("GPL");

static struct pci_driver rt2400pci_driver = {
1816
	.name		= KBUILD_MODNAME,
1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835
	.id_table	= rt2400pci_device_table,
	.probe		= rt2x00pci_probe,
	.remove		= __devexit_p(rt2x00pci_remove),
	.suspend	= rt2x00pci_suspend,
	.resume		= rt2x00pci_resume,
};

static int __init rt2400pci_init(void)
{
	return pci_register_driver(&rt2400pci_driver);
}

static void __exit rt2400pci_exit(void)
{
	pci_unregister_driver(&rt2400pci_driver);
}

module_init(rt2400pci_init);
module_exit(rt2400pci_exit);