i7core_edac.c 53.9 KB
Newer Older
1 2 3 4 5 6
/* Intel i7 core/Nehalem Memory Controller kernel module
 *
 * This driver supports yhe memory controllers found on the Intel
 * processor families i7core, i7core 7xx/8xx, i5core, Xeon 35xx,
 * Xeon 55xx and Xeon 56xx also known as Nehalem, Nehalem-EP, Lynnfield
 * and Westmere-EP.
7 8 9 10
 *
 * This file may be distributed under the terms of the
 * GNU General Public License version 2 only.
 *
11
 * Copyright (c) 2009-2010 by:
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
 *	 Mauro Carvalho Chehab <mchehab@redhat.com>
 *
 * Red Hat Inc. http://www.redhat.com
 *
 * Forked and adapted from the i5400_edac driver
 *
 * Based on the following public Intel datasheets:
 * Intel Core i7 Processor Extreme Edition and Intel Core i7 Processor
 * Datasheet, Volume 2:
 *	http://download.intel.com/design/processor/datashts/320835.pdf
 * Intel Xeon Processor 5500 Series Datasheet Volume 2
 *	http://www.intel.com/Assets/PDF/datasheet/321322.pdf
 * also available at:
 * 	http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/pci_ids.h>
#include <linux/slab.h>
R
Randy Dunlap 已提交
33
#include <linux/delay.h>
34 35
#include <linux/edac.h>
#include <linux/mmzone.h>
36
#include <linux/edac_mce.h>
37
#include <linux/smp.h>
38
#include <asm/processor.h>
39 40 41

#include "edac_core.h"

42 43 44 45 46 47 48 49 50
/*
 * This is used for Nehalem-EP and Nehalem-EX devices, where the non-core
 * registers start at bus 255, and are not reported by BIOS.
 * We currently find devices with only 2 sockets. In order to support more QPI
 * Quick Path Interconnect, just increment this number.
 */
#define MAX_SOCKET_BUSES	2


51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
/*
 * Alter this version for the module when modifications are made
 */
#define I7CORE_REVISION    " Ver: 1.0.0 " __DATE__
#define EDAC_MOD_STR      "i7core_edac"

/*
 * Debug macros
 */
#define i7core_printk(level, fmt, arg...)			\
	edac_printk(level, "i7core", fmt, ##arg)

#define i7core_mc_printk(mci, level, fmt, arg...)		\
	edac_mc_chipset_printk(mci, level, "i7core", fmt, ##arg)

/*
 * i7core Memory Controller Registers
 */

70 71 72 73
	/* OFFSETS for Device 0 Function 0 */

#define MC_CFG_CONTROL	0x90

74 75 76 77 78 79
	/* OFFSETS for Device 3 Function 0 */

#define MC_CONTROL	0x48
#define MC_STATUS	0x4c
#define MC_MAX_DOD	0x64

80 81 82 83 84 85 86 87 88 89 90 91
/*
 * OFFSETS for Device 3 Function 4, as inicated on Xeon 5500 datasheet:
 * http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
 */

#define MC_TEST_ERR_RCV1	0x60
  #define DIMM2_COR_ERR(r)			((r) & 0x7fff)

#define MC_TEST_ERR_RCV0	0x64
  #define DIMM1_COR_ERR(r)			(((r) >> 16) & 0x7fff)
  #define DIMM0_COR_ERR(r)			((r) & 0x7fff)

92 93 94 95 96 97 98 99 100 101 102 103
/* OFFSETS for Device 3 Function 2, as inicated on Xeon 5500 datasheet */
#define MC_COR_ECC_CNT_0	0x80
#define MC_COR_ECC_CNT_1	0x84
#define MC_COR_ECC_CNT_2	0x88
#define MC_COR_ECC_CNT_3	0x8c
#define MC_COR_ECC_CNT_4	0x90
#define MC_COR_ECC_CNT_5	0x94

#define DIMM_TOP_COR_ERR(r)			(((r) >> 16) & 0x7fff)
#define DIMM_BOT_COR_ERR(r)			((r) & 0x7fff)


104 105
	/* OFFSETS for Devices 4,5 and 6 Function 0 */

106 107 108 109 110 111
#define MC_CHANNEL_DIMM_INIT_PARAMS 0x58
  #define THREE_DIMMS_PRESENT		(1 << 24)
  #define SINGLE_QUAD_RANK_PRESENT	(1 << 23)
  #define QUAD_RANK_PRESENT		(1 << 22)
  #define REGISTERED_DIMM		(1 << 15)

112 113 114 115
#define MC_CHANNEL_MAPPER	0x60
  #define RDLCH(r, ch)		((((r) >> (3 + (ch * 6))) & 0x07) - 1)
  #define WRLCH(r, ch)		((((r) >> (ch * 6)) & 0x07) - 1)

116 117 118
#define MC_CHANNEL_RANK_PRESENT 0x7c
  #define RANK_PRESENT_MASK		0xffff

119
#define MC_CHANNEL_ADDR_MATCH	0xf0
120 121 122 123 124 125 126 127 128 129
#define MC_CHANNEL_ERROR_MASK	0xf8
#define MC_CHANNEL_ERROR_INJECT	0xfc
  #define INJECT_ADDR_PARITY	0x10
  #define INJECT_ECC		0x08
  #define MASK_CACHELINE	0x06
  #define MASK_FULL_CACHELINE	0x06
  #define MASK_MSB32_CACHELINE	0x04
  #define MASK_LSB32_CACHELINE	0x02
  #define NO_MASK_CACHELINE	0x00
  #define REPEAT_EN		0x01
130

131
	/* OFFSETS for Devices 4,5 and 6 Function 1 */
132

133 134 135 136 137 138 139
#define MC_DOD_CH_DIMM0		0x48
#define MC_DOD_CH_DIMM1		0x4c
#define MC_DOD_CH_DIMM2		0x50
  #define RANKOFFSET_MASK	((1 << 12) | (1 << 11) | (1 << 10))
  #define RANKOFFSET(x)		((x & RANKOFFSET_MASK) >> 10)
  #define DIMM_PRESENT_MASK	(1 << 9)
  #define DIMM_PRESENT(x)	(((x) & DIMM_PRESENT_MASK) >> 9)
140 141 142 143
  #define MC_DOD_NUMBANK_MASK		((1 << 8) | (1 << 7))
  #define MC_DOD_NUMBANK(x)		(((x) & MC_DOD_NUMBANK_MASK) >> 7)
  #define MC_DOD_NUMRANK_MASK		((1 << 6) | (1 << 5))
  #define MC_DOD_NUMRANK(x)		(((x) & MC_DOD_NUMRANK_MASK) >> 5)
144
  #define MC_DOD_NUMROW_MASK		((1 << 4) | (1 << 3) | (1 << 2))
145
  #define MC_DOD_NUMROW(x)		(((x) & MC_DOD_NUMROW_MASK) >> 2)
146 147
  #define MC_DOD_NUMCOL_MASK		3
  #define MC_DOD_NUMCOL(x)		((x) & MC_DOD_NUMCOL_MASK)
148

149 150
#define MC_RANK_PRESENT		0x7c

151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
#define MC_SAG_CH_0	0x80
#define MC_SAG_CH_1	0x84
#define MC_SAG_CH_2	0x88
#define MC_SAG_CH_3	0x8c
#define MC_SAG_CH_4	0x90
#define MC_SAG_CH_5	0x94
#define MC_SAG_CH_6	0x98
#define MC_SAG_CH_7	0x9c

#define MC_RIR_LIMIT_CH_0	0x40
#define MC_RIR_LIMIT_CH_1	0x44
#define MC_RIR_LIMIT_CH_2	0x48
#define MC_RIR_LIMIT_CH_3	0x4C
#define MC_RIR_LIMIT_CH_4	0x50
#define MC_RIR_LIMIT_CH_5	0x54
#define MC_RIR_LIMIT_CH_6	0x58
#define MC_RIR_LIMIT_CH_7	0x5C
#define MC_RIR_LIMIT_MASK	((1 << 10) - 1)

#define MC_RIR_WAY_CH		0x80
  #define MC_RIR_WAY_OFFSET_MASK	(((1 << 14) - 1) & ~0x7)
  #define MC_RIR_WAY_RANK_MASK		0x7

174 175 176 177 178
/*
 * i7core structs
 */

#define NUM_CHANS 3
179 180 181
#define MAX_DIMMS 3		/* Max DIMMS per channel */
#define MAX_MCR_FUNC  4
#define MAX_CHAN_FUNC 3
182 183 184 185 186

struct i7core_info {
	u32	mc_control;
	u32	mc_status;
	u32	max_dod;
187
	u32	ch_map;
188 189
};

190 191 192 193 194 195 196 197 198 199 200 201

struct i7core_inject {
	int	enable;

	u32	section;
	u32	type;
	u32	eccmask;

	/* Error address mask */
	int channel, dimm, rank, bank, page, col;
};

202
struct i7core_channel {
203 204
	u32		ranks;
	u32		dimms;
205 206
};

207
struct pci_id_descr {
208 209 210
	int			dev;
	int			func;
	int 			dev_id;
211
	int			optional;
212 213
};

214 215 216 217 218
struct pci_id_table {
	struct pci_id_descr	*descr;
	int			n_devs;
};

219 220 221 222
struct i7core_dev {
	struct list_head	list;
	u8			socket;
	struct pci_dev		**pdev;
223
	int			n_devs;
224 225 226
	struct mem_ctl_info	*mci;
};

227
struct i7core_pvt {
228 229 230 231 232
	struct pci_dev	*pci_noncore;
	struct pci_dev	*pci_mcr[MAX_MCR_FUNC + 1];
	struct pci_dev	*pci_ch[NUM_CHANS][MAX_CHAN_FUNC + 1];

	struct i7core_dev *i7core_dev;
233

234
	struct i7core_info	info;
235
	struct i7core_inject	inject;
236
	struct i7core_channel	channel[NUM_CHANS];
237

238
	int		channels; /* Number of active channels */
239

240 241
	int		ce_count_available;
	int 		csrow_map[NUM_CHANS][MAX_DIMMS];
242 243

			/* ECC corrected errors counts per udimm */
244 245
	unsigned long	udimm_ce_count[MAX_DIMMS];
	int		udimm_last_ce_count[MAX_DIMMS];
246
			/* ECC corrected errors counts per rdimm */
247 248
	unsigned long	rdimm_ce_count[NUM_CHANS][MAX_DIMMS];
	int		rdimm_last_ce_count[NUM_CHANS][MAX_DIMMS];
249

250
	unsigned int	is_registered;
251

252 253
	/* mcelog glue */
	struct edac_mce		edac_mce;
254 255

	/* Fifo double buffers */
256
	struct mce		mce_entry[MCE_LOG_LEN];
257 258 259 260 261 262 263
	struct mce		mce_outentry[MCE_LOG_LEN];

	/* Fifo in/out counters */
	unsigned		mce_in, mce_out;

	/* Count indicator to show errors not got */
	unsigned		mce_overrun;
264 265
};

266 267 268
/* Static vars */
static LIST_HEAD(i7core_edac_list);
static DEFINE_MUTEX(i7core_edac_lock);
269

270 271 272 273 274
#define PCI_DESCR(device, function, device_id)	\
	.dev = (device),			\
	.func = (function),			\
	.dev_id = (device_id)

275
struct pci_id_descr pci_dev_descr_i7core_nehalem[] = {
276 277 278
		/* Memory controller */
	{ PCI_DESCR(3, 0, PCI_DEVICE_ID_INTEL_I7_MCR)     },
	{ PCI_DESCR(3, 1, PCI_DEVICE_ID_INTEL_I7_MC_TAD)  },
279 280
			/* Exists only for RDIMM */
	{ PCI_DESCR(3, 2, PCI_DEVICE_ID_INTEL_I7_MC_RAS), .optional = 1  },
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
	{ PCI_DESCR(3, 4, PCI_DEVICE_ID_INTEL_I7_MC_TEST) },

		/* Channel 0 */
	{ PCI_DESCR(4, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH0_CTRL) },
	{ PCI_DESCR(4, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH0_ADDR) },
	{ PCI_DESCR(4, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH0_RANK) },
	{ PCI_DESCR(4, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH0_TC)   },

		/* Channel 1 */
	{ PCI_DESCR(5, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH1_CTRL) },
	{ PCI_DESCR(5, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH1_ADDR) },
	{ PCI_DESCR(5, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH1_RANK) },
	{ PCI_DESCR(5, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH1_TC)   },

		/* Channel 2 */
	{ PCI_DESCR(6, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH2_CTRL) },
	{ PCI_DESCR(6, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH2_ADDR) },
	{ PCI_DESCR(6, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH2_RANK) },
	{ PCI_DESCR(6, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH2_TC)   },
300 301 302 303 304 305 306 307

		/* Generic Non-core registers */
	/*
	 * This is the PCI device on i7core and on Xeon 35xx (8086:2c41)
	 * On Xeon 55xx, however, it has a different id (8086:2c40). So,
	 * the probing code needs to test for the other address in case of
	 * failure of this one
	 */
308
	{ PCI_DESCR(0, 0, PCI_DEVICE_ID_INTEL_I7_NONCORE)  },
309

310
};
311

312 313 314 315 316 317 318 319 320 321
struct pci_id_descr pci_dev_descr_lynnfield[] = {
	{ PCI_DESCR( 3, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MCR)         },
	{ PCI_DESCR( 3, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TAD)      },
	{ PCI_DESCR( 3, 4, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TEST)     },

	{ PCI_DESCR( 4, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_CTRL) },
	{ PCI_DESCR( 4, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_ADDR) },
	{ PCI_DESCR( 4, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_RANK) },
	{ PCI_DESCR( 4, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_TC)   },

322 323 324 325
	{ PCI_DESCR( 5, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_CTRL) },
	{ PCI_DESCR( 5, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_ADDR) },
	{ PCI_DESCR( 5, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_RANK) },
	{ PCI_DESCR( 5, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_TC)   },
326

327 328 329 330
	/*
	 * This is the PCI device has an alternate address on some
	 * processors like Core i7 860
	 */
331 332 333
	{ PCI_DESCR( 0, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE)     },
};

334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
struct pci_id_descr pci_dev_descr_i7core_westmere[] = {
		/* Memory controller */
	{ PCI_DESCR(3, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MCR_REV2)     },
	{ PCI_DESCR(3, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TAD_REV2)  },
			/* Exists only for RDIMM */
	{ PCI_DESCR(3, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_RAS_REV2), .optional = 1  },
	{ PCI_DESCR(3, 4, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TEST_REV2) },

		/* Channel 0 */
	{ PCI_DESCR(4, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_CTRL_REV2) },
	{ PCI_DESCR(4, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_ADDR_REV2) },
	{ PCI_DESCR(4, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_RANK_REV2) },
	{ PCI_DESCR(4, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_TC_REV2)   },

		/* Channel 1 */
	{ PCI_DESCR(5, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_CTRL_REV2) },
	{ PCI_DESCR(5, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_ADDR_REV2) },
	{ PCI_DESCR(5, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_RANK_REV2) },
	{ PCI_DESCR(5, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_TC_REV2)   },

		/* Channel 2 */
	{ PCI_DESCR(6, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_CTRL_REV2) },
	{ PCI_DESCR(6, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_ADDR_REV2) },
	{ PCI_DESCR(6, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_RANK_REV2) },
	{ PCI_DESCR(6, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_TC_REV2)   },

		/* Generic Non-core registers */
	{ PCI_DESCR(0, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_REV2)  },

};

#define PCI_ID_TABLE_ENTRY(A) { A, ARRAY_SIZE(A) }
struct pci_id_table pci_dev_table[] = {
	PCI_ID_TABLE_ENTRY(pci_dev_descr_i7core_nehalem),
	PCI_ID_TABLE_ENTRY(pci_dev_descr_lynnfield),
	PCI_ID_TABLE_ENTRY(pci_dev_descr_i7core_westmere),
};

372 373 374 375
/*
 *	pci_device_id	table for which devices we are looking for
 */
static const struct pci_device_id i7core_pci_tbl[] __devinitdata = {
376
	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_X58_HUB_MGMT)},
377
	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_LYNNFIELD_QPI_LINK0)},
378 379 380
	{0,}			/* 0 terminated list. */
};

381 382 383 384 385 386 387
static struct edac_pci_ctl_info *i7core_pci;

/****************************************************************************
			Anciliary status routines
 ****************************************************************************/

	/* MC_CONTROL bits */
388 389
#define CH_ACTIVE(pvt, ch)	((pvt)->info.mc_control & (1 << (8 + ch)))
#define ECCx8(pvt)		((pvt)->info.mc_control & (1 << 1))
390 391

	/* MC_STATUS bits */
392
#define ECC_ENABLED(pvt)	((pvt)->info.mc_status & (1 << 4))
393
#define CH_DISABLED(pvt, ch)	((pvt)->info.mc_status & (1 << ch))
394 395

	/* MC_MAX_DOD read functions */
396
static inline int numdimms(u32 dimms)
397
{
398
	return (dimms & 0x3) + 1;
399 400
}

401
static inline int numrank(u32 rank)
402 403 404
{
	static int ranks[4] = { 1, 2, 4, -EINVAL };

405
	return ranks[rank & 0x3];
406 407
}

408
static inline int numbank(u32 bank)
409 410 411
{
	static int banks[4] = { 4, 8, 16, -EINVAL };

412
	return banks[bank & 0x3];
413 414
}

415
static inline int numrow(u32 row)
416 417 418 419 420 421
{
	static int rows[8] = {
		1 << 12, 1 << 13, 1 << 14, 1 << 15,
		1 << 16, -EINVAL, -EINVAL, -EINVAL,
	};

422
	return rows[row & 0x7];
423 424
}

425
static inline int numcol(u32 col)
426 427 428 429
{
	static int cols[8] = {
		1 << 10, 1 << 11, 1 << 12, -EINVAL,
	};
430
	return cols[col & 0x3];
431 432
}

433
static struct i7core_dev *get_i7core_dev(u8 socket)
434 435 436 437 438 439 440 441 442 443 444
{
	struct i7core_dev *i7core_dev;

	list_for_each_entry(i7core_dev, &i7core_edac_list, list) {
		if (i7core_dev->socket == socket)
			return i7core_dev;
	}

	return NULL;
}

445 446 447
/****************************************************************************
			Memory check routines
 ****************************************************************************/
448 449
static struct pci_dev *get_pdev_slot_func(u8 socket, unsigned slot,
					  unsigned func)
450
{
451
	struct i7core_dev *i7core_dev = get_i7core_dev(socket);
452 453
	int i;

454 455 456
	if (!i7core_dev)
		return NULL;

457
	for (i = 0; i < i7core_dev->n_devs; i++) {
458
		if (!i7core_dev->pdev[i])
459 460
			continue;

461 462 463
		if (PCI_SLOT(i7core_dev->pdev[i]->devfn) == slot &&
		    PCI_FUNC(i7core_dev->pdev[i]->devfn) == func) {
			return i7core_dev->pdev[i];
464 465 466
		}
	}

467 468 469
	return NULL;
}

470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
/**
 * i7core_get_active_channels() - gets the number of channels and csrows
 * @socket:	Quick Path Interconnect socket
 * @channels:	Number of channels that will be returned
 * @csrows:	Number of csrows found
 *
 * Since EDAC core needs to know in advance the number of available channels
 * and csrows, in order to allocate memory for csrows/channels, it is needed
 * to run two similar steps. At the first step, implemented on this function,
 * it checks the number of csrows/channels present at one socket.
 * this is used in order to properly allocate the size of mci components.
 *
 * It should be noticed that none of the current available datasheets explain
 * or even mention how csrows are seen by the memory controller. So, we need
 * to add a fake description for csrows.
 * So, this driver is attributing one DIMM memory for one csrow.
 */
487 488
static int i7core_get_active_channels(u8 socket, unsigned *channels,
				      unsigned *csrows)
489 490 491 492 493 494 495 496
{
	struct pci_dev *pdev = NULL;
	int i, j;
	u32 status, control;

	*channels = 0;
	*csrows = 0;

497
	pdev = get_pdev_slot_func(socket, 3, 0);
498
	if (!pdev) {
499 500
		i7core_printk(KERN_ERR, "Couldn't find socket %d fn 3.0!!!\n",
			      socket);
501
		return -ENODEV;
502
	}
503 504 505 506 507 508

	/* Device 3 function 0 reads */
	pci_read_config_dword(pdev, MC_STATUS, &status);
	pci_read_config_dword(pdev, MC_CONTROL, &control);

	for (i = 0; i < NUM_CHANS; i++) {
509
		u32 dimm_dod[3];
510 511 512 513 514
		/* Check if the channel is active */
		if (!(control & (1 << (8 + i))))
			continue;

		/* Check if the channel is disabled */
515
		if (status & (1 << i))
516 517
			continue;

518
		pdev = get_pdev_slot_func(socket, i + 4, 1);
519
		if (!pdev) {
520 521 522
			i7core_printk(KERN_ERR, "Couldn't find socket %d "
						"fn %d.%d!!!\n",
						socket, i + 4, 1);
523 524 525 526 527 528 529 530 531 532
			return -ENODEV;
		}
		/* Devices 4-6 function 1 */
		pci_read_config_dword(pdev,
				MC_DOD_CH_DIMM0, &dimm_dod[0]);
		pci_read_config_dword(pdev,
				MC_DOD_CH_DIMM1, &dimm_dod[1]);
		pci_read_config_dword(pdev,
				MC_DOD_CH_DIMM2, &dimm_dod[2]);

533
		(*channels)++;
534 535 536 537 538 539

		for (j = 0; j < 3; j++) {
			if (!DIMM_PRESENT(dimm_dod[j]))
				continue;
			(*csrows)++;
		}
540 541
	}

542
	debugf0("Number of active channels on socket %d: %d\n",
543
		socket, *channels);
544

545 546 547
	return 0;
}

548
static int get_dimm_config(struct mem_ctl_info *mci, int *csrow)
549 550
{
	struct i7core_pvt *pvt = mci->pvt_info;
551
	struct csrow_info *csr;
552
	struct pci_dev *pdev;
553
	int i, j;
554
	unsigned long last_page = 0;
555
	enum edac_type mode;
556
	enum mem_type mtype;
557

558
	/* Get data from the MC register, function 0 */
559
	pdev = pvt->pci_mcr[0];
560
	if (!pdev)
561 562
		return -ENODEV;

563
	/* Device 3 function 0 reads */
564 565 566 567
	pci_read_config_dword(pdev, MC_CONTROL, &pvt->info.mc_control);
	pci_read_config_dword(pdev, MC_STATUS, &pvt->info.mc_status);
	pci_read_config_dword(pdev, MC_MAX_DOD, &pvt->info.max_dod);
	pci_read_config_dword(pdev, MC_CHANNEL_MAPPER, &pvt->info.ch_map);
568

569
	debugf0("QPI %d control=0x%08x status=0x%08x dod=0x%08x map=0x%08x\n",
570
		pvt->i7core_dev->socket, pvt->info.mc_control, pvt->info.mc_status,
571
		pvt->info.max_dod, pvt->info.ch_map);
572

573
	if (ECC_ENABLED(pvt)) {
574
		debugf0("ECC enabled with x%d SDCC\n", ECCx8(pvt) ? 8 : 4);
575 576 577 578 579
		if (ECCx8(pvt))
			mode = EDAC_S8ECD8ED;
		else
			mode = EDAC_S4ECD4ED;
	} else {
580
		debugf0("ECC disabled\n");
581 582
		mode = EDAC_NONE;
	}
583 584

	/* FIXME: need to handle the error codes */
585 586
	debugf0("DOD Max limits: DIMMS: %d, %d-ranked, %d-banked "
		"x%x x 0x%x\n",
587 588
		numdimms(pvt->info.max_dod),
		numrank(pvt->info.max_dod >> 2),
589
		numbank(pvt->info.max_dod >> 4),
590 591
		numrow(pvt->info.max_dod >> 6),
		numcol(pvt->info.max_dod >> 9));
592

593
	for (i = 0; i < NUM_CHANS; i++) {
594
		u32 data, dimm_dod[3], value[8];
595

596 597 598
		if (!pvt->pci_ch[i][0])
			continue;

599 600 601 602 603 604 605 606 607
		if (!CH_ACTIVE(pvt, i)) {
			debugf0("Channel %i is not active\n", i);
			continue;
		}
		if (CH_DISABLED(pvt, i)) {
			debugf0("Channel %i is disabled\n", i);
			continue;
		}

608
		/* Devices 4-6 function 0 */
609
		pci_read_config_dword(pvt->pci_ch[i][0],
610 611
				MC_CHANNEL_DIMM_INIT_PARAMS, &data);

612
		pvt->channel[i].ranks = (data & QUAD_RANK_PRESENT) ?
613
						4 : 2;
614

615 616
		if (data & REGISTERED_DIMM)
			mtype = MEM_RDDR3;
617
		else
618 619
			mtype = MEM_DDR3;
#if 0
620 621 622 623 624 625
		if (data & THREE_DIMMS_PRESENT)
			pvt->channel[i].dimms = 3;
		else if (data & SINGLE_QUAD_RANK_PRESENT)
			pvt->channel[i].dimms = 1;
		else
			pvt->channel[i].dimms = 2;
626 627 628
#endif

		/* Devices 4-6 function 1 */
629
		pci_read_config_dword(pvt->pci_ch[i][1],
630
				MC_DOD_CH_DIMM0, &dimm_dod[0]);
631
		pci_read_config_dword(pvt->pci_ch[i][1],
632
				MC_DOD_CH_DIMM1, &dimm_dod[1]);
633
		pci_read_config_dword(pvt->pci_ch[i][1],
634
				MC_DOD_CH_DIMM2, &dimm_dod[2]);
635

636
		debugf0("Ch%d phy rd%d, wr%d (0x%08x): "
637
			"%d ranks, %cDIMMs\n",
638 639 640
			i,
			RDLCH(pvt->info.ch_map, i), WRLCH(pvt->info.ch_map, i),
			data,
641
			pvt->channel[i].ranks,
642
			(data & REGISTERED_DIMM) ? 'R' : 'U');
643 644 645

		for (j = 0; j < 3; j++) {
			u32 banks, ranks, rows, cols;
646
			u32 size, npages;
647 648 649 650 651 652 653 654 655

			if (!DIMM_PRESENT(dimm_dod[j]))
				continue;

			banks = numbank(MC_DOD_NUMBANK(dimm_dod[j]));
			ranks = numrank(MC_DOD_NUMRANK(dimm_dod[j]));
			rows = numrow(MC_DOD_NUMROW(dimm_dod[j]));
			cols = numcol(MC_DOD_NUMCOL(dimm_dod[j]));

656 657 658
			/* DDR3 has 8 I/O banks */
			size = (rows * cols * banks * ranks) >> (20 - 3);

659
			pvt->channel[i].dimms++;
660

661 662 663
			debugf0("\tdimm %d %d Mb offset: %x, "
				"bank: %d, rank: %d, row: %#x, col: %#x\n",
				j, size,
664 665 666
				RANKOFFSET(dimm_dod[j]),
				banks, ranks, rows, cols);

667 668 669 670 671
#if PAGE_SHIFT > 20
			npages = size >> (PAGE_SHIFT - 20);
#else
			npages = size << (20 - PAGE_SHIFT);
#endif
672

673
			csr = &mci->csrows[*csrow];
674 675 676 677 678
			csr->first_page = last_page + 1;
			last_page += npages;
			csr->last_page = last_page;
			csr->nr_pages = npages;

679
			csr->page_mask = 0;
680
			csr->grain = 8;
681
			csr->csrow_idx = *csrow;
682 683 684 685
			csr->nr_channels = 1;

			csr->channels[0].chan_idx = i;
			csr->channels[0].ce_count = 0;
686

687
			pvt->csrow_map[i][j] = *csrow;
688

689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
			switch (banks) {
			case 4:
				csr->dtype = DEV_X4;
				break;
			case 8:
				csr->dtype = DEV_X8;
				break;
			case 16:
				csr->dtype = DEV_X16;
				break;
			default:
				csr->dtype = DEV_UNKNOWN;
			}

			csr->edac_mode = mode;
			csr->mtype = mtype;

706
			(*csrow)++;
707
		}
708

709 710 711 712 713 714 715 716
		pci_read_config_dword(pdev, MC_SAG_CH_0, &value[0]);
		pci_read_config_dword(pdev, MC_SAG_CH_1, &value[1]);
		pci_read_config_dword(pdev, MC_SAG_CH_2, &value[2]);
		pci_read_config_dword(pdev, MC_SAG_CH_3, &value[3]);
		pci_read_config_dword(pdev, MC_SAG_CH_4, &value[4]);
		pci_read_config_dword(pdev, MC_SAG_CH_5, &value[5]);
		pci_read_config_dword(pdev, MC_SAG_CH_6, &value[6]);
		pci_read_config_dword(pdev, MC_SAG_CH_7, &value[7]);
717
		debugf1("\t[%i] DIVBY3\tREMOVED\tOFFSET\n", i);
718
		for (j = 0; j < 8; j++)
719
			debugf1("\t\t%#x\t%#x\t%#x\n",
720 721 722
				(value[j] >> 27) & 0x1,
				(value[j] >> 24) & 0x7,
				(value[j] && ((1 << 24) - 1)));
723 724
	}

725 726 727
	return 0;
}

728 729 730 731 732 733 734 735 736 737 738
/****************************************************************************
			Error insertion routines
 ****************************************************************************/

/* The i7core has independent error injection features per channel.
   However, to have a simpler code, we don't allow enabling error injection
   on more than one channel.
   Also, since a change at an inject parameter will be applied only at enable,
   we're disabling error injection on all write calls to the sysfs nodes that
   controls the error code injection.
 */
739
static int disable_inject(struct mem_ctl_info *mci)
740 741 742 743 744
{
	struct i7core_pvt *pvt = mci->pvt_info;

	pvt->inject.enable = 0;

745
	if (!pvt->pci_ch[pvt->inject.channel][0])
746 747
		return -ENODEV;

748
	pci_write_config_dword(pvt->pci_ch[pvt->inject.channel][0],
749
				MC_CHANNEL_ERROR_INJECT, 0);
750 751

	return 0;
752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
}

/*
 * i7core inject inject.section
 *
 *	accept and store error injection inject.section value
 *	bit 0 - refers to the lower 32-byte half cacheline
 *	bit 1 - refers to the upper 32-byte half cacheline
 */
static ssize_t i7core_inject_section_store(struct mem_ctl_info *mci,
					   const char *data, size_t count)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	unsigned long value;
	int rc;

	if (pvt->inject.enable)
769
		disable_inject(mci);
770 771 772

	rc = strict_strtoul(data, 10, &value);
	if ((rc < 0) || (value > 3))
773
		return -EIO;
774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801

	pvt->inject.section = (u32) value;
	return count;
}

static ssize_t i7core_inject_section_show(struct mem_ctl_info *mci,
					      char *data)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	return sprintf(data, "0x%08x\n", pvt->inject.section);
}

/*
 * i7core inject.type
 *
 *	accept and store error injection inject.section value
 *	bit 0 - repeat enable - Enable error repetition
 *	bit 1 - inject ECC error
 *	bit 2 - inject parity error
 */
static ssize_t i7core_inject_type_store(struct mem_ctl_info *mci,
					const char *data, size_t count)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	unsigned long value;
	int rc;

	if (pvt->inject.enable)
802
		disable_inject(mci);
803 804 805

	rc = strict_strtoul(data, 10, &value);
	if ((rc < 0) || (value > 7))
806
		return -EIO;
807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836

	pvt->inject.type = (u32) value;
	return count;
}

static ssize_t i7core_inject_type_show(struct mem_ctl_info *mci,
					      char *data)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	return sprintf(data, "0x%08x\n", pvt->inject.type);
}

/*
 * i7core_inject_inject.eccmask_store
 *
 * The type of error (UE/CE) will depend on the inject.eccmask value:
 *   Any bits set to a 1 will flip the corresponding ECC bit
 *   Correctable errors can be injected by flipping 1 bit or the bits within
 *   a symbol pair (2 consecutive aligned 8-bit pairs - i.e. 7:0 and 15:8 or
 *   23:16 and 31:24). Flipping bits in two symbol pairs will cause an
 *   uncorrectable error to be injected.
 */
static ssize_t i7core_inject_eccmask_store(struct mem_ctl_info *mci,
					const char *data, size_t count)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	unsigned long value;
	int rc;

	if (pvt->inject.enable)
837
		disable_inject(mci);
838 839 840

	rc = strict_strtoul(data, 10, &value);
	if (rc < 0)
841
		return -EIO;
842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864

	pvt->inject.eccmask = (u32) value;
	return count;
}

static ssize_t i7core_inject_eccmask_show(struct mem_ctl_info *mci,
					      char *data)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	return sprintf(data, "0x%08x\n", pvt->inject.eccmask);
}

/*
 * i7core_addrmatch
 *
 * The type of error (UE/CE) will depend on the inject.eccmask value:
 *   Any bits set to a 1 will flip the corresponding ECC bit
 *   Correctable errors can be injected by flipping 1 bit or the bits within
 *   a symbol pair (2 consecutive aligned 8-bit pairs - i.e. 7:0 and 15:8 or
 *   23:16 and 31:24). Flipping bits in two symbol pairs will cause an
 *   uncorrectable error to be injected.
 */

865 866 867 868 869
#define DECLARE_ADDR_MATCH(param, limit)			\
static ssize_t i7core_inject_store_##param(			\
		struct mem_ctl_info *mci,			\
		const char *data, size_t count)			\
{								\
870
	struct i7core_pvt *pvt;					\
871 872 873
	long value;						\
	int rc;							\
								\
874 875 876
	debugf1("%s()\n", __func__);				\
	pvt = mci->pvt_info;					\
								\
877 878 879
	if (pvt->inject.enable)					\
		disable_inject(mci);				\
								\
880
	if (!strcasecmp(data, "any") || !strcasecmp(data, "any\n"))\
881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
		value = -1;					\
	else {							\
		rc = strict_strtoul(data, 10, &value);		\
		if ((rc < 0) || (value >= limit))		\
			return -EIO;				\
	}							\
								\
	pvt->inject.param = value;				\
								\
	return count;						\
}								\
								\
static ssize_t i7core_inject_show_##param(			\
		struct mem_ctl_info *mci,			\
		char *data)					\
{								\
897 898 899 900
	struct i7core_pvt *pvt;					\
								\
	pvt = mci->pvt_info;					\
	debugf1("%s() pvt=%p\n", __func__, pvt);		\
901 902 903 904
	if (pvt->inject.param < 0)				\
		return sprintf(data, "any\n");			\
	else							\
		return sprintf(data, "%d\n", pvt->inject.param);\
905 906
}

907 908 909 910 911 912 913 914 915
#define ATTR_ADDR_MATCH(param)					\
	{							\
		.attr = {					\
			.name = #param,				\
			.mode = (S_IRUGO | S_IWUSR)		\
		},						\
		.show  = i7core_inject_show_##param,		\
		.store = i7core_inject_store_##param,		\
	}
916

917 918 919 920 921 922
DECLARE_ADDR_MATCH(channel, 3);
DECLARE_ADDR_MATCH(dimm, 3);
DECLARE_ADDR_MATCH(rank, 4);
DECLARE_ADDR_MATCH(bank, 32);
DECLARE_ADDR_MATCH(page, 0x10000);
DECLARE_ADDR_MATCH(col, 0x4000);
923

924 925 926 927 928
static int write_and_test(struct pci_dev *dev, int where, u32 val)
{
	u32 read;
	int count;

929 930 931 932
	debugf0("setting pci %02x:%02x.%x reg=%02x value=%08x\n",
		dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn),
		where, val);

933 934
	for (count = 0; count < 10; count++) {
		if (count)
935
			msleep(100);
936 937 938 939 940 941 942
		pci_write_config_dword(dev, where, val);
		pci_read_config_dword(dev, where, &read);

		if (read == val)
			return 0;
	}

943 944 945 946
	i7core_printk(KERN_ERR, "Error during set pci %02x:%02x.%x reg=%02x "
		"write=%08x. Read=%08x\n",
		dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn),
		where, val, read);
947 948 949 950

	return -EINVAL;
}

951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977
/*
 * This routine prepares the Memory Controller for error injection.
 * The error will be injected when some process tries to write to the
 * memory that matches the given criteria.
 * The criteria can be set in terms of a mask where dimm, rank, bank, page
 * and col can be specified.
 * A -1 value for any of the mask items will make the MCU to ignore
 * that matching criteria for error injection.
 *
 * It should be noticed that the error will only happen after a write operation
 * on a memory that matches the condition. if REPEAT_EN is not enabled at
 * inject mask, then it will produce just one error. Otherwise, it will repeat
 * until the injectmask would be cleaned.
 *
 * FIXME: This routine assumes that MAXNUMDIMMS value of MC_MAX_DOD
 *    is reliable enough to check if the MC is using the
 *    three channels. However, this is not clear at the datasheet.
 */
static ssize_t i7core_inject_enable_store(struct mem_ctl_info *mci,
				       const char *data, size_t count)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	u32 injectmask;
	u64 mask = 0;
	int  rc;
	long enable;

978
	if (!pvt->pci_ch[pvt->inject.channel][0])
979 980
		return 0;

981 982 983 984 985 986 987 988 989 990 991 992 993
	rc = strict_strtoul(data, 10, &enable);
	if ((rc < 0))
		return 0;

	if (enable) {
		pvt->inject.enable = 1;
	} else {
		disable_inject(mci);
		return count;
	}

	/* Sets pvt->inject.dimm mask */
	if (pvt->inject.dimm < 0)
994
		mask |= 1LL << 41;
995
	else {
996
		if (pvt->channel[pvt->inject.channel].dimms > 2)
997
			mask |= (pvt->inject.dimm & 0x3LL) << 35;
998
		else
999
			mask |= (pvt->inject.dimm & 0x1LL) << 36;
1000 1001 1002 1003
	}

	/* Sets pvt->inject.rank mask */
	if (pvt->inject.rank < 0)
1004
		mask |= 1LL << 40;
1005
	else {
1006
		if (pvt->channel[pvt->inject.channel].dimms > 2)
1007
			mask |= (pvt->inject.rank & 0x1LL) << 34;
1008
		else
1009
			mask |= (pvt->inject.rank & 0x3LL) << 34;
1010 1011 1012 1013
	}

	/* Sets pvt->inject.bank mask */
	if (pvt->inject.bank < 0)
1014
		mask |= 1LL << 39;
1015
	else
1016
		mask |= (pvt->inject.bank & 0x15LL) << 30;
1017 1018 1019

	/* Sets pvt->inject.page mask */
	if (pvt->inject.page < 0)
1020
		mask |= 1LL << 38;
1021
	else
1022
		mask |= (pvt->inject.page & 0xffff) << 14;
1023 1024 1025

	/* Sets pvt->inject.column mask */
	if (pvt->inject.col < 0)
1026
		mask |= 1LL << 37;
1027
	else
1028
		mask |= (pvt->inject.col & 0x3fff);
1029

1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
	/*
	 * bit    0: REPEAT_EN
	 * bits 1-2: MASK_HALF_CACHELINE
	 * bit    3: INJECT_ECC
	 * bit    4: INJECT_ADDR_PARITY
	 */

	injectmask = (pvt->inject.type & 1) |
		     (pvt->inject.section & 0x3) << 1 |
		     (pvt->inject.type & 0x6) << (3 - 1);

	/* Unlock writes to registers - this register is write only */
1042
	pci_write_config_dword(pvt->pci_noncore,
1043
			       MC_CFG_CONTROL, 0x2);
1044

1045
	write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1046
			       MC_CHANNEL_ADDR_MATCH, mask);
1047
	write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1048 1049
			       MC_CHANNEL_ADDR_MATCH + 4, mask >> 32L);

1050
	write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1051 1052
			       MC_CHANNEL_ERROR_MASK, pvt->inject.eccmask);

1053
	write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1054
			       MC_CHANNEL_ERROR_INJECT, injectmask);
1055

1056
	/*
1057 1058 1059
	 * This is something undocumented, based on my tests
	 * Without writing 8 to this register, errors aren't injected. Not sure
	 * why.
1060
	 */
1061
	pci_write_config_dword(pvt->pci_noncore,
1062
			       MC_CFG_CONTROL, 8);
1063

1064 1065
	debugf0("Error inject addr match 0x%016llx, ecc 0x%08x,"
		" inject 0x%08x\n",
1066 1067
		mask, pvt->inject.eccmask, injectmask);

1068

1069 1070 1071 1072 1073 1074 1075
	return count;
}

static ssize_t i7core_inject_enable_show(struct mem_ctl_info *mci,
					char *data)
{
	struct i7core_pvt *pvt = mci->pvt_info;
1076 1077
	u32 injectmask;

1078 1079 1080
	if (!pvt->pci_ch[pvt->inject.channel][0])
		return 0;

1081
	pci_read_config_dword(pvt->pci_ch[pvt->inject.channel][0],
1082
			       MC_CHANNEL_ERROR_INJECT, &injectmask);
1083 1084 1085 1086 1087 1088

	debugf0("Inject error read: 0x%018x\n", injectmask);

	if (injectmask & 0x0c)
		pvt->inject.enable = 1;

1089 1090 1091
	return sprintf(data, "%d\n", pvt->inject.enable);
}

1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
#define DECLARE_COUNTER(param)					\
static ssize_t i7core_show_counter_##param(			\
		struct mem_ctl_info *mci,			\
		char *data)					\
{								\
	struct i7core_pvt *pvt = mci->pvt_info;			\
								\
	debugf1("%s() \n", __func__);				\
	if (!pvt->ce_count_available || (pvt->is_registered))	\
		return sprintf(data, "data unavailable\n");	\
	return sprintf(data, "%lu\n",				\
			pvt->udimm_ce_count[param]);		\
}
1105

1106 1107 1108 1109 1110 1111 1112
#define ATTR_COUNTER(param)					\
	{							\
		.attr = {					\
			.name = __stringify(udimm##param),	\
			.mode = (S_IRUGO | S_IWUSR)		\
		},						\
		.show  = i7core_show_counter_##param		\
1113
	}
1114

1115 1116 1117
DECLARE_COUNTER(0);
DECLARE_COUNTER(1);
DECLARE_COUNTER(2);
1118

1119 1120 1121
/*
 * Sysfs struct
 */
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138


static struct mcidev_sysfs_attribute i7core_addrmatch_attrs[] = {
	ATTR_ADDR_MATCH(channel),
	ATTR_ADDR_MATCH(dimm),
	ATTR_ADDR_MATCH(rank),
	ATTR_ADDR_MATCH(bank),
	ATTR_ADDR_MATCH(page),
	ATTR_ADDR_MATCH(col),
	{ .attr = { .name = NULL } }
};

static struct mcidev_sysfs_group i7core_inject_addrmatch = {
	.name  = "inject_addrmatch",
	.mcidev_attr = i7core_addrmatch_attrs,
};

1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
static struct mcidev_sysfs_attribute i7core_udimm_counters_attrs[] = {
	ATTR_COUNTER(0),
	ATTR_COUNTER(1),
	ATTR_COUNTER(2),
};

static struct mcidev_sysfs_group i7core_udimm_counters = {
	.name  = "all_channel_counts",
	.mcidev_attr = i7core_udimm_counters_attrs,
};

1150
static struct mcidev_sysfs_attribute i7core_sysfs_attrs[] = {
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
	{
		.attr = {
			.name = "inject_section",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_section_show,
		.store = i7core_inject_section_store,
	}, {
		.attr = {
			.name = "inject_type",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_type_show,
		.store = i7core_inject_type_store,
	}, {
		.attr = {
			.name = "inject_eccmask",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_eccmask_show,
		.store = i7core_inject_eccmask_store,
	}, {
1173
		.grp = &i7core_inject_addrmatch,
1174 1175 1176 1177 1178 1179 1180 1181
	}, {
		.attr = {
			.name = "inject_enable",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_enable_show,
		.store = i7core_inject_enable_store,
	},
1182
	{ .attr = { .name = NULL } },	/* Reserved for udimm counters */
1183
	{ .attr = { .name = NULL } }
1184 1185
};

1186 1187 1188 1189 1190 1191 1192 1193
/****************************************************************************
	Device initialization routines: put/get, init/exit
 ****************************************************************************/

/*
 *	i7core_put_devices	'put' all the devices that we have
 *				reserved via 'get'
 */
1194
static void i7core_put_devices(struct i7core_dev *i7core_dev)
1195
{
1196
	int i;
1197

1198
	debugf0(__FILE__ ": %s()\n", __func__);
1199
	for (i = 0; i < i7core_dev->n_devs; i++) {
1200 1201 1202 1203 1204 1205 1206 1207
		struct pci_dev *pdev = i7core_dev->pdev[i];
		if (!pdev)
			continue;
		debugf0("Removing dev %02x:%02x.%d\n",
			pdev->bus->number,
			PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
		pci_dev_put(pdev);
	}
1208
	kfree(i7core_dev->pdev);
1209
	list_del(&i7core_dev->list);
1210 1211
	kfree(i7core_dev);
}
1212

1213 1214
static void i7core_put_all_devices(void)
{
1215
	struct i7core_dev *i7core_dev, *tmp;
1216

1217
	list_for_each_entry_safe(i7core_dev, tmp, &i7core_edac_list, list)
1218
		i7core_put_devices(i7core_dev);
1219 1220
}

1221
static void __init i7core_xeon_pci_fixup(struct pci_id_table *table)
1222 1223 1224 1225 1226 1227 1228 1229
{
	struct pci_dev *pdev = NULL;
	int i;
	/*
	 * On Xeon 55xx, the Intel Quckpath Arch Generic Non-core pci buses
	 * aren't announced by acpi. So, we need to use a legacy scan probing
	 * to detect them
	 */
1230 1231 1232 1233 1234 1235
	while (table && table->descr) {
		pdev = pci_get_device(PCI_VENDOR_ID_INTEL, table->descr[0].dev_id, NULL);
		if (unlikely(!pdev)) {
			for (i = 0; i < MAX_SOCKET_BUSES; i++)
				pcibios_scan_specific_bus(255-i);
		}
1236
		pci_dev_put(pdev);
1237
		table++;
1238 1239 1240
	}
}

1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
static unsigned i7core_pci_lastbus(void)
{
	int last_bus = 0, bus;
	struct pci_bus *b = NULL;

	while ((b = pci_find_next_bus(b)) != NULL) {
		bus = b->number;
		debugf0("Found bus %d\n", bus);
		if (bus > last_bus)
			last_bus = bus;
	}

	debugf0("Last bus %d\n", last_bus);

	return last_bus;
}

1258 1259 1260 1261 1262 1263
/*
 *	i7core_get_devices	Find and perform 'get' operation on the MCH's
 *			device/functions we want to reference for this driver
 *
 *			Need to 'get' device 16 func 1 and func 2
 */
1264
int i7core_get_onedevice(struct pci_dev **prev, int devno,
1265 1266
			 struct pci_id_descr *dev_descr, unsigned n_devs,
			 unsigned last_bus)
1267
{
1268 1269
	struct i7core_dev *i7core_dev;

1270
	struct pci_dev *pdev = NULL;
1271 1272
	u8 bus = 0;
	u8 socket = 0;
1273

1274
	pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
1275
			      dev_descr->dev_id, *prev);
1276 1277 1278 1279 1280 1281

	/*
	 * On Xeon 55xx, the Intel Quckpath Arch Generic Non-core regs
	 * is at addr 8086:2c40, instead of 8086:2c41. So, we need
	 * to probe for the alternate address in case of failure
	 */
1282
	if (dev_descr->dev_id == PCI_DEVICE_ID_INTEL_I7_NONCORE && !pdev)
1283
		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
1284
				      PCI_DEVICE_ID_INTEL_I7_NONCORE_ALT, *prev);
1285

1286
	if (dev_descr->dev_id == PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE && !pdev)
1287 1288 1289 1290
		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
				      PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_ALT,
				      *prev);

1291 1292 1293 1294
	if (!pdev) {
		if (*prev) {
			*prev = pdev;
			return 0;
1295 1296
		}

1297
		if (dev_descr->optional)
1298
			return 0;
1299

1300 1301 1302
		if (devno == 0)
			return -ENODEV;

1303
		i7core_printk(KERN_INFO,
1304
			"Device not found: dev %02x.%d PCI ID %04x:%04x\n",
1305 1306
			dev_descr->dev, dev_descr->func,
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1307

1308 1309 1310 1311
		/* End of list, leave */
		return -ENODEV;
	}
	bus = pdev->bus->number;
1312

1313
	socket = last_bus - bus;
1314

1315 1316 1317 1318 1319
	i7core_dev = get_i7core_dev(socket);
	if (!i7core_dev) {
		i7core_dev = kzalloc(sizeof(*i7core_dev), GFP_KERNEL);
		if (!i7core_dev)
			return -ENOMEM;
1320
		i7core_dev->pdev = kzalloc(sizeof(*i7core_dev->pdev) * n_devs,
1321
					   GFP_KERNEL);
1322 1323
		if (!i7core_dev->pdev) {
			kfree(i7core_dev);
1324
			return -ENOMEM;
1325
		}
1326
		i7core_dev->socket = socket;
1327
		i7core_dev->n_devs = n_devs;
1328
		list_add_tail(&i7core_dev->list, &i7core_edac_list);
1329
	}
1330

1331
	if (i7core_dev->pdev[devno]) {
1332 1333 1334
		i7core_printk(KERN_ERR,
			"Duplicated device for "
			"dev %02x:%02x.%d PCI ID %04x:%04x\n",
1335 1336
			bus, dev_descr->dev, dev_descr->func,
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1337 1338 1339
		pci_dev_put(pdev);
		return -ENODEV;
	}
1340

1341
	i7core_dev->pdev[devno] = pdev;
1342 1343

	/* Sanity check */
1344 1345
	if (unlikely(PCI_SLOT(pdev->devfn) != dev_descr->dev ||
			PCI_FUNC(pdev->devfn) != dev_descr->func)) {
1346 1347 1348
		i7core_printk(KERN_ERR,
			"Device PCI ID %04x:%04x "
			"has dev %02x:%02x.%d instead of dev %02x:%02x.%d\n",
1349
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id,
1350
			bus, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
1351
			bus, dev_descr->dev, dev_descr->func);
1352 1353
		return -ENODEV;
	}
1354

1355 1356 1357 1358 1359
	/* Be sure that the device is enabled */
	if (unlikely(pci_enable_device(pdev) < 0)) {
		i7core_printk(KERN_ERR,
			"Couldn't enable "
			"dev %02x:%02x.%d PCI ID %04x:%04x\n",
1360 1361
			bus, dev_descr->dev, dev_descr->func,
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1362 1363
		return -ENODEV;
	}
1364

1365
	debugf0("Detected socket %d dev %02x:%02x.%d PCI ID %04x:%04x\n",
1366 1367 1368
		socket, bus, dev_descr->dev,
		dev_descr->func,
		PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1369

1370
	*prev = pdev;
1371

1372 1373
	return 0;
}
1374

1375
static int i7core_get_devices(struct pci_id_table *table)
1376
{
1377
	int i, rc, last_bus;
1378
	struct pci_dev *pdev = NULL;
1379 1380
	struct pci_id_descr *dev_descr;

1381 1382
	last_bus = i7core_pci_lastbus();

1383 1384 1385 1386 1387
	while (table && table->descr) {
		dev_descr = table->descr;
		for (i = 0; i < table->n_devs; i++) {
			pdev = NULL;
			do {
1388 1389 1390 1391
				rc = i7core_get_onedevice(&pdev, i,
							  &dev_descr[i],
							  table->n_devs,
							  last_bus);
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
				if (rc < 0) {
					if (i == 0) {
						i = table->n_devs;
						break;
					}
					i7core_put_all_devices();
					return -ENODEV;
				}
			} while (pdev);
		}
		table++;
1403
	}
1404

1405
	return 0;
1406
	return 0;
1407 1408
}

1409 1410
static int mci_bind_devs(struct mem_ctl_info *mci,
			 struct i7core_dev *i7core_dev)
1411 1412 1413
{
	struct i7core_pvt *pvt = mci->pvt_info;
	struct pci_dev *pdev;
1414
	int i, func, slot;
1415

1416 1417 1418
	/* Associates i7core_dev and mci for future usage */
	pvt->i7core_dev = i7core_dev;
	i7core_dev->mci = mci;
1419

1420
	pvt->is_registered = 0;
1421
	for (i = 0; i < i7core_dev->n_devs; i++) {
1422 1423
		pdev = i7core_dev->pdev[i];
		if (!pdev)
1424 1425
			continue;

1426 1427 1428 1429 1430 1431 1432 1433
		func = PCI_FUNC(pdev->devfn);
		slot = PCI_SLOT(pdev->devfn);
		if (slot == 3) {
			if (unlikely(func > MAX_MCR_FUNC))
				goto error;
			pvt->pci_mcr[func] = pdev;
		} else if (likely(slot >= 4 && slot < 4 + NUM_CHANS)) {
			if (unlikely(func > MAX_CHAN_FUNC))
1434
				goto error;
1435 1436 1437 1438 1439
			pvt->pci_ch[slot - 4][func] = pdev;
		} else if (!slot && !func)
			pvt->pci_noncore = pdev;
		else
			goto error;
1440

1441 1442 1443
		debugf0("Associated fn %d.%d, dev = %p, socket %d\n",
			PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
			pdev, i7core_dev->socket);
1444

1445 1446 1447
		if (PCI_SLOT(pdev->devfn) == 3 &&
			PCI_FUNC(pdev->devfn) == 2)
			pvt->is_registered = 1;
1448
	}
1449

1450 1451 1452 1453 1454 1455 1456 1457 1458
	/*
	 * Add extra nodes to count errors on udimm
	 * For registered memory, this is not needed, since the counters
	 * are already displayed at the standard locations
	 */
	if (!pvt->is_registered)
		i7core_sysfs_attrs[ARRAY_SIZE(i7core_sysfs_attrs)-2].grp =
			&i7core_udimm_counters;

1459
	return 0;
1460 1461 1462 1463 1464 1465

error:
	i7core_printk(KERN_ERR, "Device %d, function %d "
		      "is out of the expected range\n",
		      slot, func);
	return -EINVAL;
1466 1467
}

1468 1469 1470
/****************************************************************************
			Error check routines
 ****************************************************************************/
1471
static void i7core_rdimm_update_csrow(struct mem_ctl_info *mci,
1472 1473 1474 1475
					 int chan, int dimm, int add)
{
	char *msg;
	struct i7core_pvt *pvt = mci->pvt_info;
1476
	int row = pvt->csrow_map[chan][dimm], i;
1477 1478 1479

	for (i = 0; i < add; i++) {
		msg = kasprintf(GFP_KERNEL, "Corrected error "
1480 1481
				"(Socket=%d channel=%d dimm=%d)",
				pvt->i7core_dev->socket, chan, dimm);
1482 1483 1484 1485 1486 1487 1488

		edac_mc_handle_fbd_ce(mci, row, 0, msg);
		kfree (msg);
	}
}

static void i7core_rdimm_update_ce_count(struct mem_ctl_info *mci,
1489
			int chan, int new0, int new1, int new2)
1490 1491 1492 1493
{
	struct i7core_pvt *pvt = mci->pvt_info;
	int add0 = 0, add1 = 0, add2 = 0;
	/* Updates CE counters if it is not the first time here */
1494
	if (pvt->ce_count_available) {
1495 1496
		/* Updates CE counters */

1497 1498 1499
		add2 = new2 - pvt->rdimm_last_ce_count[chan][2];
		add1 = new1 - pvt->rdimm_last_ce_count[chan][1];
		add0 = new0 - pvt->rdimm_last_ce_count[chan][0];
1500 1501 1502

		if (add2 < 0)
			add2 += 0x7fff;
1503
		pvt->rdimm_ce_count[chan][2] += add2;
1504 1505 1506

		if (add1 < 0)
			add1 += 0x7fff;
1507
		pvt->rdimm_ce_count[chan][1] += add1;
1508 1509 1510

		if (add0 < 0)
			add0 += 0x7fff;
1511
		pvt->rdimm_ce_count[chan][0] += add0;
1512
	} else
1513
		pvt->ce_count_available = 1;
1514 1515

	/* Store the new values */
1516 1517 1518
	pvt->rdimm_last_ce_count[chan][2] = new2;
	pvt->rdimm_last_ce_count[chan][1] = new1;
	pvt->rdimm_last_ce_count[chan][0] = new0;
1519 1520 1521

	/*updated the edac core */
	if (add0 != 0)
1522
		i7core_rdimm_update_csrow(mci, chan, 0, add0);
1523
	if (add1 != 0)
1524
		i7core_rdimm_update_csrow(mci, chan, 1, add1);
1525
	if (add2 != 0)
1526
		i7core_rdimm_update_csrow(mci, chan, 2, add2);
1527 1528 1529

}

1530
static void i7core_rdimm_check_mc_ecc_err(struct mem_ctl_info *mci)
1531 1532 1533 1534 1535 1536
{
	struct i7core_pvt *pvt = mci->pvt_info;
	u32 rcv[3][2];
	int i, new0, new1, new2;

	/*Read DEV 3: FUN 2:  MC_COR_ECC_CNT regs directly*/
1537
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_0,
1538
								&rcv[0][0]);
1539
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_1,
1540
								&rcv[0][1]);
1541
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_2,
1542
								&rcv[1][0]);
1543
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_3,
1544
								&rcv[1][1]);
1545
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_4,
1546
								&rcv[2][0]);
1547
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_5,
1548 1549 1550 1551 1552
								&rcv[2][1]);
	for (i = 0 ; i < 3; i++) {
		debugf3("MC_COR_ECC_CNT%d = 0x%x; MC_COR_ECC_CNT%d = 0x%x\n",
			(i * 2), rcv[i][0], (i * 2) + 1, rcv[i][1]);
		/*if the channel has 3 dimms*/
1553
		if (pvt->channel[i].dimms > 2) {
1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
			new0 = DIMM_BOT_COR_ERR(rcv[i][0]);
			new1 = DIMM_TOP_COR_ERR(rcv[i][0]);
			new2 = DIMM_BOT_COR_ERR(rcv[i][1]);
		} else {
			new0 = DIMM_TOP_COR_ERR(rcv[i][0]) +
					DIMM_BOT_COR_ERR(rcv[i][0]);
			new1 = DIMM_TOP_COR_ERR(rcv[i][1]) +
					DIMM_BOT_COR_ERR(rcv[i][1]);
			new2 = 0;
		}

1565
		i7core_rdimm_update_ce_count(mci, i, new0, new1, new2);
1566 1567
	}
}
1568 1569 1570 1571 1572 1573 1574

/* This function is based on the device 3 function 4 registers as described on:
 * Intel Xeon Processor 5500 Series Datasheet Volume 2
 *	http://www.intel.com/Assets/PDF/datasheet/321322.pdf
 * also available at:
 * 	http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
 */
1575
static void i7core_udimm_check_mc_ecc_err(struct mem_ctl_info *mci)
1576 1577 1578 1579 1580
{
	struct i7core_pvt *pvt = mci->pvt_info;
	u32 rcv1, rcv0;
	int new0, new1, new2;

1581
	if (!pvt->pci_mcr[4]) {
1582
		debugf0("%s MCR registers not found\n", __func__);
1583 1584 1585
		return;
	}

1586
	/* Corrected test errors */
1587 1588
	pci_read_config_dword(pvt->pci_mcr[4], MC_TEST_ERR_RCV1, &rcv1);
	pci_read_config_dword(pvt->pci_mcr[4], MC_TEST_ERR_RCV0, &rcv0);
1589 1590 1591 1592 1593 1594 1595

	/* Store the new values */
	new2 = DIMM2_COR_ERR(rcv1);
	new1 = DIMM1_COR_ERR(rcv0);
	new0 = DIMM0_COR_ERR(rcv0);

	/* Updates CE counters if it is not the first time here */
1596
	if (pvt->ce_count_available) {
1597 1598 1599
		/* Updates CE counters */
		int add0, add1, add2;

1600 1601 1602
		add2 = new2 - pvt->udimm_last_ce_count[2];
		add1 = new1 - pvt->udimm_last_ce_count[1];
		add0 = new0 - pvt->udimm_last_ce_count[0];
1603 1604 1605

		if (add2 < 0)
			add2 += 0x7fff;
1606
		pvt->udimm_ce_count[2] += add2;
1607 1608 1609

		if (add1 < 0)
			add1 += 0x7fff;
1610
		pvt->udimm_ce_count[1] += add1;
1611 1612 1613

		if (add0 < 0)
			add0 += 0x7fff;
1614
		pvt->udimm_ce_count[0] += add0;
1615 1616 1617 1618 1619

		if (add0 | add1 | add2)
			i7core_printk(KERN_ERR, "New Corrected error(s): "
				      "dimm0: +%d, dimm1: +%d, dimm2 +%d\n",
				      add0, add1, add2);
1620
	} else
1621
		pvt->ce_count_available = 1;
1622 1623

	/* Store the new values */
1624 1625 1626
	pvt->udimm_last_ce_count[2] = new2;
	pvt->udimm_last_ce_count[1] = new1;
	pvt->udimm_last_ce_count[0] = new0;
1627 1628
}

1629 1630 1631
/*
 * According with tables E-11 and E-12 of chapter E.3.3 of Intel 64 and IA-32
 * Architectures Software Developer’s Manual Volume 3B.
1632 1633 1634
 * Nehalem are defined as family 0x06, model 0x1a
 *
 * The MCA registers used here are the following ones:
1635
 *     struct mce field	MCA Register
1636 1637 1638
 *     m->status	MSR_IA32_MC8_STATUS
 *     m->addr		MSR_IA32_MC8_ADDR
 *     m->misc		MSR_IA32_MC8_MISC
1639 1640 1641
 * In the case of Nehalem, the error information is masked at .status and .misc
 * fields
 */
1642 1643 1644
static void i7core_mce_output_error(struct mem_ctl_info *mci,
				    struct mce *m)
{
1645
	struct i7core_pvt *pvt = mci->pvt_info;
1646
	char *type, *optype, *err, *msg;
1647
	unsigned long error = m->status & 0x1ff0000l;
1648
	u32 optypenum = (m->status >> 4) & 0x07;
1649 1650 1651 1652 1653
	u32 core_err_cnt = (m->status >> 38) && 0x7fff;
	u32 dimm = (m->misc >> 16) & 0x3;
	u32 channel = (m->misc >> 18) & 0x3;
	u32 syndrome = m->misc >> 32;
	u32 errnum = find_first_bit(&error, 32);
1654
	int csrow;
1655

1656 1657 1658 1659 1660
	if (m->mcgstatus & 1)
		type = "FATAL";
	else
		type = "NON_FATAL";

1661
	switch (optypenum) {
1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
	case 0:
		optype = "generic undef request";
		break;
	case 1:
		optype = "read error";
		break;
	case 2:
		optype = "write error";
		break;
	case 3:
		optype = "addr/cmd error";
		break;
	case 4:
		optype = "scrubbing error";
		break;
	default:
		optype = "reserved";
		break;
1680 1681
	}

1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
	switch (errnum) {
	case 16:
		err = "read ECC error";
		break;
	case 17:
		err = "RAS ECC error";
		break;
	case 18:
		err = "write parity error";
		break;
	case 19:
		err = "redundacy loss";
		break;
	case 20:
		err = "reserved";
		break;
	case 21:
		err = "memory range error";
		break;
	case 22:
		err = "RTID out of range";
		break;
	case 23:
		err = "address parity error";
		break;
	case 24:
		err = "byte enable parity error";
		break;
	default:
		err = "unknown";
1712 1713
	}

1714
	/* FIXME: should convert addr into bank and rank information */
1715
	msg = kasprintf(GFP_ATOMIC,
1716
		"%s (addr = 0x%08llx, cpu=%d, Dimm=%d, Channel=%d, "
1717
		"syndrome=0x%08x, count=%d, Err=%08llx:%08llx (%s: %s))\n",
1718
		type, (long long) m->addr, m->cpu, dimm, channel,
1719 1720
		syndrome, core_err_cnt, (long long)m->status,
		(long long)m->misc, optype, err);
1721 1722

	debugf0("%s", msg);
1723

1724
	csrow = pvt->csrow_map[channel][dimm];
1725

1726
	/* Call the helper to output message */
1727 1728 1729
	if (m->mcgstatus & 1)
		edac_mc_handle_fbd_ue(mci, csrow, 0,
				0 /* FIXME: should be channel here */, msg);
1730
	else if (!pvt->is_registered)
1731 1732
		edac_mc_handle_fbd_ce(mci, csrow,
				0 /* FIXME: should be channel here */, msg);
1733 1734

	kfree(msg);
1735 1736
}

1737 1738 1739 1740 1741 1742
/*
 *	i7core_check_error	Retrieve and process errors reported by the
 *				hardware. Called by the Core module.
 */
static void i7core_check_error(struct mem_ctl_info *mci)
{
1743 1744 1745
	struct i7core_pvt *pvt = mci->pvt_info;
	int i;
	unsigned count = 0;
1746
	struct mce *m;
1747

1748 1749 1750 1751 1752 1753
	/*
	 * MCE first step: Copy all mce errors into a temporary buffer
	 * We use a double buffering here, to reduce the risk of
	 * loosing an error.
	 */
	smp_rmb();
1754 1755
	count = (pvt->mce_out + MCE_LOG_LEN - pvt->mce_in)
		% MCE_LOG_LEN;
1756
	if (!count)
1757
		goto check_ce_error;
1758

1759
	m = pvt->mce_outentry;
1760 1761
	if (pvt->mce_in + count > MCE_LOG_LEN) {
		unsigned l = MCE_LOG_LEN - pvt->mce_in;
1762

1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
		memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * l);
		smp_wmb();
		pvt->mce_in = 0;
		count -= l;
		m += l;
	}
	memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * count);
	smp_wmb();
	pvt->mce_in += count;

	smp_rmb();
	if (pvt->mce_overrun) {
		i7core_printk(KERN_ERR, "Lost %d memory errors\n",
			      pvt->mce_overrun);
		smp_wmb();
		pvt->mce_overrun = 0;
	}
1780

1781 1782 1783
	/*
	 * MCE second step: parse errors and display
	 */
1784
	for (i = 0; i < count; i++)
1785
		i7core_mce_output_error(mci, &pvt->mce_outentry[i]);
1786

1787 1788 1789
	/*
	 * Now, let's increment CE error counts
	 */
1790
check_ce_error:
1791 1792 1793 1794
	if (!pvt->is_registered)
		i7core_udimm_check_mc_ecc_err(mci);
	else
		i7core_rdimm_check_mc_ecc_err(mci);
1795 1796
}

1797 1798 1799 1800 1801
/*
 * i7core_mce_check_error	Replicates mcelog routine to get errors
 *				This routine simply queues mcelog errors, and
 *				return. The error itself should be handled later
 *				by i7core_check_error.
1802 1803
 * WARNING: As this routine should be called at NMI time, extra care should
 * be taken to avoid deadlocks, and to be as fast as possible.
1804 1805 1806
 */
static int i7core_mce_check_error(void *priv, struct mce *mce)
{
1807 1808
	struct mem_ctl_info *mci = priv;
	struct i7core_pvt *pvt = mci->pvt_info;
1809

1810 1811 1812 1813 1814 1815 1816
	/*
	 * Just let mcelog handle it if the error is
	 * outside the memory controller
	 */
	if (((mce->status & 0xffff) >> 7) != 1)
		return 0;

1817 1818 1819 1820
	/* Bank 8 registers are the only ones that we know how to handle */
	if (mce->bank != 8)
		return 0;

R
Randy Dunlap 已提交
1821
#ifdef CONFIG_SMP
1822
	/* Only handle if it is the right mc controller */
1823
	if (cpu_data(mce->cpu).phys_proc_id != pvt->i7core_dev->socket)
1824
		return 0;
R
Randy Dunlap 已提交
1825
#endif
1826

1827
	smp_rmb();
1828
	if ((pvt->mce_out + 1) % MCE_LOG_LEN == pvt->mce_in) {
1829 1830 1831
		smp_wmb();
		pvt->mce_overrun++;
		return 0;
1832
	}
1833 1834 1835

	/* Copy memory error at the ringbuffer */
	memcpy(&pvt->mce_entry[pvt->mce_out], mce, sizeof(*mce));
1836
	smp_wmb();
1837
	pvt->mce_out = (pvt->mce_out + 1) % MCE_LOG_LEN;
1838

1839 1840 1841 1842
	/* Handle fatal errors immediately */
	if (mce->mcgstatus & 1)
		i7core_check_error(mci);

1843
	/* Advice mcelog that the error were handled */
1844
	return 1;
1845 1846
}

1847 1848
static int i7core_register_mci(struct i7core_dev *i7core_dev,
			       int num_channels, int num_csrows)
1849 1850 1851
{
	struct mem_ctl_info *mci;
	struct i7core_pvt *pvt;
1852
	int csrow = 0;
1853
	int rc;
1854 1855

	/* allocate a new MC control structure */
1856 1857
	mci = edac_mc_alloc(sizeof(*pvt), num_csrows, num_channels,
			    i7core_dev->socket);
1858 1859
	if (unlikely(!mci))
		return -ENOMEM;
1860 1861 1862

	debugf0("MC: " __FILE__ ": %s(): mci = %p\n", __func__, mci);

1863 1864 1865
	/* record ptr to the generic device */
	mci->dev = &i7core_dev->pdev[0]->dev;

1866
	pvt = mci->pvt_info;
1867
	memset(pvt, 0, sizeof(*pvt));
1868

1869 1870 1871 1872 1873 1874
	/*
	 * FIXME: how to handle RDDR3 at MCI level? It is possible to have
	 * Mixed RDDR3/UDDR3 with Nehalem, provided that they are on different
	 * memory channels
	 */
	mci->mtype_cap = MEM_FLAG_DDR3;
1875 1876 1877 1878
	mci->edac_ctl_cap = EDAC_FLAG_NONE;
	mci->edac_cap = EDAC_FLAG_NONE;
	mci->mod_name = "i7core_edac.c";
	mci->mod_ver = I7CORE_REVISION;
1879 1880 1881
	mci->ctl_name = kasprintf(GFP_KERNEL, "i7 core #%d",
				  i7core_dev->socket);
	mci->dev_name = pci_name(i7core_dev->pdev[0]);
1882
	mci->ctl_page_to_phys = NULL;
1883
	mci->mc_driver_sysfs_attributes = i7core_sysfs_attrs;
1884 1885
	/* Set the function pointer to an actual operation function */
	mci->edac_check = i7core_check_error;
1886

1887
	/* Store pci devices at mci for faster access */
1888
	rc = mci_bind_devs(mci, i7core_dev);
1889
	if (unlikely(rc < 0))
1890
		goto fail;
1891 1892

	/* Get dimm basic config */
1893
	get_dimm_config(mci, &csrow);
1894

1895
	/* add this new MC control structure to EDAC's list of MCs */
1896
	if (unlikely(edac_mc_add_mc(mci))) {
1897 1898 1899 1900 1901
		debugf0("MC: " __FILE__
			": %s(): failed edac_mc_add_mc()\n", __func__);
		/* FIXME: perhaps some code should go here that disables error
		 * reporting if we just enabled it
		 */
1902 1903

		rc = -EINVAL;
1904
		goto fail;
1905 1906 1907
	}

	/* allocating generic PCI control info */
1908 1909
	i7core_pci = edac_pci_create_generic_ctl(&i7core_dev->pdev[0]->dev,
						 EDAC_MOD_STR);
1910
	if (unlikely(!i7core_pci)) {
1911 1912 1913 1914 1915 1916 1917 1918
		printk(KERN_WARNING
			"%s(): Unable to create PCI control\n",
			__func__);
		printk(KERN_WARNING
			"%s(): PCI error report via EDAC not setup\n",
			__func__);
	}

1919
	/* Default error mask is any memory */
1920
	pvt->inject.channel = 0;
1921 1922 1923 1924 1925 1926
	pvt->inject.dimm = -1;
	pvt->inject.rank = -1;
	pvt->inject.bank = -1;
	pvt->inject.page = -1;
	pvt->inject.col = -1;

1927
	/* Registers on edac_mce in order to receive memory errors */
1928
	pvt->edac_mce.priv = mci;
1929 1930 1931
	pvt->edac_mce.check_error = i7core_mce_check_error;

	rc = edac_mce_register(&pvt->edac_mce);
1932
	if (unlikely(rc < 0)) {
1933 1934
		debugf0("MC: " __FILE__
			": %s(): failed edac_mce_register()\n", __func__);
1935 1936 1937
	}

fail:
T
Tony Luck 已提交
1938 1939
	if (rc < 0)
		edac_mc_free(mci);
1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
	return rc;
}

/*
 *	i7core_probe	Probe for ONE instance of device to see if it is
 *			present.
 *	return:
 *		0 for FOUND a device
 *		< 0 for error code
 */
1950 1951 1952

static int probed = 0;

1953 1954 1955 1956 1957 1958
static int __devinit i7core_probe(struct pci_dev *pdev,
				  const struct pci_device_id *id)
{
	int rc;
	struct i7core_dev *i7core_dev;

1959 1960 1961
	/* get the pci devices we want to reserve for our use */
	mutex_lock(&i7core_edac_lock);

1962
	/*
1963
	 * All memory controllers are allocated at the first pass.
1964
	 */
1965 1966
	if (unlikely(probed >= 1)) {
		mutex_unlock(&i7core_edac_lock);
1967
		return -EINVAL;
1968 1969
	}
	probed++;
1970

1971
	rc = i7core_get_devices(pci_dev_table);
1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984
	if (unlikely(rc < 0))
		goto fail0;

	list_for_each_entry(i7core_dev, &i7core_edac_list, list) {
		int channels;
		int csrows;

		/* Check the number of active and not disabled channels */
		rc = i7core_get_active_channels(i7core_dev->socket,
						&channels, &csrows);
		if (unlikely(rc < 0))
			goto fail1;

1985 1986 1987
		rc = i7core_register_mci(i7core_dev, channels, csrows);
		if (unlikely(rc < 0))
			goto fail1;
1988 1989
	}

1990
	i7core_printk(KERN_INFO, "Driver loaded.\n");
1991

1992
	mutex_unlock(&i7core_edac_lock);
1993 1994
	return 0;

1995
fail1:
1996
	i7core_put_all_devices();
1997 1998
fail0:
	mutex_unlock(&i7core_edac_lock);
1999
	return rc;
2000 2001 2002 2003 2004 2005 2006 2007 2008
}

/*
 *	i7core_remove	destructor for one instance of device
 *
 */
static void __devexit i7core_remove(struct pci_dev *pdev)
{
	struct mem_ctl_info *mci;
2009
	struct i7core_dev *i7core_dev, *tmp;
2010 2011 2012 2013 2014 2015

	debugf0(__FILE__ ": %s()\n", __func__);

	if (i7core_pci)
		edac_pci_release_generic_ctl(i7core_pci);

2016 2017 2018 2019 2020 2021 2022
	/*
	 * we have a trouble here: pdev value for removal will be wrong, since
	 * it will point to the X58 register used to detect that the machine
	 * is a Nehalem or upper design. However, due to the way several PCI
	 * devices are grouped together to provide MC functionality, we need
	 * to use a different method for releasing the devices
	 */
2023

2024
	mutex_lock(&i7core_edac_lock);
2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040
	list_for_each_entry_safe(i7core_dev, tmp, &i7core_edac_list, list) {
		mci = edac_mc_del_mc(&i7core_dev->pdev[0]->dev);
		if (mci) {
			struct i7core_pvt *pvt = mci->pvt_info;

			i7core_dev = pvt->i7core_dev;
			edac_mce_unregister(&pvt->edac_mce);
			kfree(mci->ctl_name);
			edac_mc_free(mci);
			i7core_put_devices(i7core_dev);
		} else {
			i7core_printk(KERN_ERR,
				      "Couldn't find mci for socket %d\n",
				      i7core_dev->socket);
		}
	}
2041 2042
	probed--;

2043
	mutex_unlock(&i7core_edac_lock);
2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071
}

MODULE_DEVICE_TABLE(pci, i7core_pci_tbl);

/*
 *	i7core_driver	pci_driver structure for this module
 *
 */
static struct pci_driver i7core_driver = {
	.name     = "i7core_edac",
	.probe    = i7core_probe,
	.remove   = __devexit_p(i7core_remove),
	.id_table = i7core_pci_tbl,
};

/*
 *	i7core_init		Module entry function
 *			Try to initialize this module for its devices
 */
static int __init i7core_init(void)
{
	int pci_rc;

	debugf2("MC: " __FILE__ ": %s()\n", __func__);

	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
	opstate_init();

2072
	i7core_xeon_pci_fixup(pci_dev_table);
2073

2074 2075
	pci_rc = pci_register_driver(&i7core_driver);

2076 2077 2078 2079 2080 2081 2082
	if (pci_rc >= 0)
		return 0;

	i7core_printk(KERN_ERR, "Failed to register device with error %d.\n",
		      pci_rc);

	return pci_rc;
2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105
}

/*
 *	i7core_exit()	Module exit function
 *			Unregister the driver
 */
static void __exit i7core_exit(void)
{
	debugf2("MC: " __FILE__ ": %s()\n", __func__);
	pci_unregister_driver(&i7core_driver);
}

module_init(i7core_init);
module_exit(i7core_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
MODULE_DESCRIPTION("MC Driver for Intel i7 Core memory controllers - "
		   I7CORE_REVISION);

module_param(edac_op_state, int, 0444);
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");