mmu.c 30.2 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 *  linux/arch/arm/mm/mmu.c
 *
 *  Copyright (C) 1995-2005 Russell King
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
10
#include <linux/module.h>
11 12 13 14 15
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/mman.h>
#include <linux/nodemask.h>
R
Russell King 已提交
16
#include <linux/memblock.h>
17
#include <linux/fs.h>
18
#include <linux/vmalloc.h>
19

20
#include <asm/cp15.h>
21
#include <asm/cputype.h>
R
Russell King 已提交
22
#include <asm/sections.h>
23
#include <asm/cachetype.h>
24 25
#include <asm/setup.h>
#include <asm/sizes.h>
26
#include <asm/smp_plat.h>
27
#include <asm/tlb.h>
N
Nicolas Pitre 已提交
28
#include <asm/highmem.h>
29
#include <asm/system_info.h>
30
#include <asm/traps.h>
31 32 33 34 35 36 37 38 39 40 41

#include <asm/mach/arch.h>
#include <asm/mach/map.h>

#include "mm.h"

/*
 * empty_zero_page is a special page that is used for
 * zero-initialized data and COW.
 */
struct page *empty_zero_page;
42
EXPORT_SYMBOL(empty_zero_page);
43 44 45 46 47 48

/*
 * The pmd table for the upper-most set of pages.
 */
pmd_t *top_pmd;

49 50 51 52 53 54 55 56
#define CPOLICY_UNCACHED	0
#define CPOLICY_BUFFERED	1
#define CPOLICY_WRITETHROUGH	2
#define CPOLICY_WRITEBACK	3
#define CPOLICY_WRITEALLOC	4

static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
static unsigned int ecc_mask __initdata = 0;
57
pgprot_t pgprot_user;
58 59
pgprot_t pgprot_kernel;

60
EXPORT_SYMBOL(pgprot_user);
61 62 63 64 65
EXPORT_SYMBOL(pgprot_kernel);

struct cachepolicy {
	const char	policy[16];
	unsigned int	cr_mask;
66
	pmdval_t	pmd;
67
	pteval_t	pte;
68 69 70 71 72 73 74
};

static struct cachepolicy cache_policies[] __initdata = {
	{
		.policy		= "uncached",
		.cr_mask	= CR_W|CR_C,
		.pmd		= PMD_SECT_UNCACHED,
75
		.pte		= L_PTE_MT_UNCACHED,
76 77 78 79
	}, {
		.policy		= "buffered",
		.cr_mask	= CR_C,
		.pmd		= PMD_SECT_BUFFERED,
80
		.pte		= L_PTE_MT_BUFFERABLE,
81 82 83 84
	}, {
		.policy		= "writethrough",
		.cr_mask	= 0,
		.pmd		= PMD_SECT_WT,
85
		.pte		= L_PTE_MT_WRITETHROUGH,
86 87 88 89
	}, {
		.policy		= "writeback",
		.cr_mask	= 0,
		.pmd		= PMD_SECT_WB,
90
		.pte		= L_PTE_MT_WRITEBACK,
91 92 93 94
	}, {
		.policy		= "writealloc",
		.cr_mask	= 0,
		.pmd		= PMD_SECT_WBWA,
95
		.pte		= L_PTE_MT_WRITEALLOC,
96 97 98 99
	}
};

/*
S
Simon Arlott 已提交
100
 * These are useful for identifying cache coherency
101 102 103 104
 * problems by allowing the cache or the cache and
 * writebuffer to be turned off.  (Note: the write
 * buffer should not be on and the cache off).
 */
105
static int __init early_cachepolicy(char *p)
106 107 108 109 110 111
{
	int i;

	for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
		int len = strlen(cache_policies[i].policy);

112
		if (memcmp(p, cache_policies[i].policy, len) == 0) {
113 114 115 116 117 118 119 120
			cachepolicy = i;
			cr_alignment &= ~cache_policies[i].cr_mask;
			cr_no_alignment &= ~cache_policies[i].cr_mask;
			break;
		}
	}
	if (i == ARRAY_SIZE(cache_policies))
		printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
121 122 123 124 125 126 127
	/*
	 * This restriction is partly to do with the way we boot; it is
	 * unpredictable to have memory mapped using two different sets of
	 * memory attributes (shared, type, and cache attribs).  We can not
	 * change these attributes once the initial assembly has setup the
	 * page tables.
	 */
128 129 130 131
	if (cpu_architecture() >= CPU_ARCH_ARMv6) {
		printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
		cachepolicy = CPOLICY_WRITEBACK;
	}
132 133
	flush_cache_all();
	set_cr(cr_alignment);
134
	return 0;
135
}
136
early_param("cachepolicy", early_cachepolicy);
137

138
static int __init early_nocache(char *__unused)
139 140 141
{
	char *p = "buffered";
	printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
142 143
	early_cachepolicy(p);
	return 0;
144
}
145
early_param("nocache", early_nocache);
146

147
static int __init early_nowrite(char *__unused)
148 149 150
{
	char *p = "uncached";
	printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
151 152
	early_cachepolicy(p);
	return 0;
153
}
154
early_param("nowb", early_nowrite);
155

156
#ifndef CONFIG_ARM_LPAE
157
static int __init early_ecc(char *p)
158
{
159
	if (memcmp(p, "on", 2) == 0)
160
		ecc_mask = PMD_PROTECTION;
161
	else if (memcmp(p, "off", 3) == 0)
162
		ecc_mask = 0;
163
	return 0;
164
}
165
early_param("ecc", early_ecc);
166
#endif
167 168 169 170 171 172 173 174 175 176

static int __init noalign_setup(char *__unused)
{
	cr_alignment &= ~CR_A;
	cr_no_alignment &= ~CR_A;
	set_cr(cr_alignment);
	return 1;
}
__setup("noalign", noalign_setup);

177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
#ifndef CONFIG_SMP
void adjust_cr(unsigned long mask, unsigned long set)
{
	unsigned long flags;

	mask &= ~CR_A;

	set &= mask;

	local_irq_save(flags);

	cr_no_alignment = (cr_no_alignment & ~mask) | set;
	cr_alignment = (cr_alignment & ~mask) | set;

	set_cr((get_cr() & ~mask) | set);

	local_irq_restore(flags);
}
#endif

197
#define PROT_PTE_DEVICE		L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
198
#define PROT_SECT_DEVICE	PMD_TYPE_SECT|PMD_SECT_AP_WRITE
199

200
static struct mem_type mem_types[] = {
201
	[MT_DEVICE] = {		  /* Strongly ordered / ARMv6 shared device */
202 203
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
				  L_PTE_SHARED,
204
		.prot_l1	= PMD_TYPE_TABLE,
205
		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_S,
206 207 208
		.domain		= DOMAIN_IO,
	},
	[MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
209
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
210
		.prot_l1	= PMD_TYPE_TABLE,
211
		.prot_sect	= PROT_SECT_DEVICE,
212 213 214
		.domain		= DOMAIN_IO,
	},
	[MT_DEVICE_CACHED] = {	  /* ioremap_cached */
215
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
216 217 218 219
		.prot_l1	= PMD_TYPE_TABLE,
		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_WB,
		.domain		= DOMAIN_IO,
	},	
220
	[MT_DEVICE_WC] = {	/* ioremap_wc */
221
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
222
		.prot_l1	= PMD_TYPE_TABLE,
223
		.prot_sect	= PROT_SECT_DEVICE,
224
		.domain		= DOMAIN_IO,
225
	},
226 227 228 229 230 231
	[MT_UNCACHED] = {
		.prot_pte	= PROT_PTE_DEVICE,
		.prot_l1	= PMD_TYPE_TABLE,
		.prot_sect	= PMD_TYPE_SECT | PMD_SECT_XN,
		.domain		= DOMAIN_IO,
	},
232
	[MT_CACHECLEAN] = {
233
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
234 235
		.domain    = DOMAIN_KERNEL,
	},
236
#ifndef CONFIG_ARM_LPAE
237
	[MT_MINICLEAN] = {
238
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
239 240
		.domain    = DOMAIN_KERNEL,
	},
241
#endif
242 243
	[MT_LOW_VECTORS] = {
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
244
				L_PTE_RDONLY,
245 246 247 248 249
		.prot_l1   = PMD_TYPE_TABLE,
		.domain    = DOMAIN_USER,
	},
	[MT_HIGH_VECTORS] = {
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
250
				L_PTE_USER | L_PTE_RDONLY,
251 252 253 254
		.prot_l1   = PMD_TYPE_TABLE,
		.domain    = DOMAIN_USER,
	},
	[MT_MEMORY] = {
255
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
256
		.prot_l1   = PMD_TYPE_TABLE,
257
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
258 259 260
		.domain    = DOMAIN_KERNEL,
	},
	[MT_ROM] = {
261
		.prot_sect = PMD_TYPE_SECT,
262 263
		.domain    = DOMAIN_KERNEL,
	},
264
	[MT_MEMORY_NONCACHED] = {
265
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
266
				L_PTE_MT_BUFFERABLE,
267
		.prot_l1   = PMD_TYPE_TABLE,
268 269 270
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
		.domain    = DOMAIN_KERNEL,
	},
271
	[MT_MEMORY_DTCM] = {
272
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
273
				L_PTE_XN,
274 275 276
		.prot_l1   = PMD_TYPE_TABLE,
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
		.domain    = DOMAIN_KERNEL,
277 278
	},
	[MT_MEMORY_ITCM] = {
279
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
280
		.prot_l1   = PMD_TYPE_TABLE,
281
		.domain    = DOMAIN_KERNEL,
282
	},
283 284 285 286 287 288 289 290
	[MT_MEMORY_SO] = {
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
				L_PTE_MT_UNCACHED,
		.prot_l1   = PMD_TYPE_TABLE,
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
				PMD_SECT_UNCACHED | PMD_SECT_XN,
		.domain    = DOMAIN_KERNEL,
	},
291 292
};

293 294 295 296
const struct mem_type *get_mem_type(unsigned int type)
{
	return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
}
297
EXPORT_SYMBOL(get_mem_type);
298

299 300 301 302 303 304 305
/*
 * Adjust the PMD section entries according to the CPU in use.
 */
static void __init build_mem_type_table(void)
{
	struct cachepolicy *cp;
	unsigned int cr = get_cr();
306
	pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
307 308 309
	int cpu_arch = cpu_architecture();
	int i;

310
	if (cpu_arch < CPU_ARCH_ARMv6) {
311
#if defined(CONFIG_CPU_DCACHE_DISABLE)
312 313
		if (cachepolicy > CPOLICY_BUFFERED)
			cachepolicy = CPOLICY_BUFFERED;
314
#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
315 316
		if (cachepolicy > CPOLICY_WRITETHROUGH)
			cachepolicy = CPOLICY_WRITETHROUGH;
317
#endif
318
	}
319 320 321 322 323
	if (cpu_arch < CPU_ARCH_ARMv5) {
		if (cachepolicy >= CPOLICY_WRITEALLOC)
			cachepolicy = CPOLICY_WRITEBACK;
		ecc_mask = 0;
	}
324 325
	if (is_smp())
		cachepolicy = CPOLICY_WRITEALLOC;
326

327
	/*
328 329 330
	 * Strip out features not present on earlier architectures.
	 * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
	 * without extended page tables don't have the 'Shared' bit.
331
	 */
332 333 334 335 336 337
	if (cpu_arch < CPU_ARCH_ARMv5)
		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
			mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
	if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
			mem_types[i].prot_sect &= ~PMD_SECT_S;
338 339

	/*
340 341 342
	 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
	 * "update-able on write" bit on ARM610).  However, Xscale and
	 * Xscale3 require this bit to be cleared.
343
	 */
344
	if (cpu_is_xscale() || cpu_is_xsc3()) {
345
		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
346
			mem_types[i].prot_sect &= ~PMD_BIT4;
347 348 349 350
			mem_types[i].prot_l1 &= ~PMD_BIT4;
		}
	} else if (cpu_arch < CPU_ARCH_ARMv6) {
		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
351 352
			if (mem_types[i].prot_l1)
				mem_types[i].prot_l1 |= PMD_BIT4;
353 354 355 356
			if (mem_types[i].prot_sect)
				mem_types[i].prot_sect |= PMD_BIT4;
		}
	}
357

358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
	/*
	 * Mark the device areas according to the CPU/architecture.
	 */
	if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
		if (!cpu_is_xsc3()) {
			/*
			 * Mark device regions on ARMv6+ as execute-never
			 * to prevent speculative instruction fetches.
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
		}
		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
			/*
			 * For ARMv7 with TEX remapping,
			 * - shared device is SXCB=1100
			 * - nonshared device is SXCB=0100
			 * - write combine device mem is SXCB=0001
			 * (Uncached Normal memory)
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
		} else if (cpu_is_xsc3()) {
			/*
			 * For Xscale3,
			 * - shared device is TEXCB=00101
			 * - nonshared device is TEXCB=01000
			 * - write combine device mem is TEXCB=00100
			 * (Inner/Outer Uncacheable in xsc3 parlance)
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
		} else {
			/*
			 * For ARMv6 and ARMv7 without TEX remapping,
			 * - shared device is TEXCB=00001
			 * - nonshared device is TEXCB=01000
			 * - write combine device mem is TEXCB=00100
			 * (Uncached Normal in ARMv6 parlance).
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
		}
	} else {
		/*
		 * On others, write combining is "Uncached/Buffered"
		 */
		mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
	}

	/*
	 * Now deal with the memory-type mappings
	 */
416
	cp = &cache_policies[cachepolicy];
417 418 419 420 421
	vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;

	/*
	 * Only use write-through for non-SMP systems
	 */
422
	if (!is_smp() && cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH)
423
		vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte;
424 425 426 427 428

	/*
	 * Enable CPU-specific coherency if supported.
	 * (Only available on XSC3 at the moment.)
	 */
429
	if (arch_is_coherent() && cpu_is_xsc3()) {
430
		mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
431 432 433 434
		mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
		mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
		mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
	}
435 436 437 438
	/*
	 * ARMv6 and above have extended page tables.
	 */
	if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
439
#ifndef CONFIG_ARM_LPAE
440 441 442 443 444 445 446
		/*
		 * Mark cache clean areas and XIP ROM read only
		 * from SVC mode and no access from userspace.
		 */
		mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
		mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
447
#endif
448

449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
		if (is_smp()) {
			/*
			 * Mark memory with the "shared" attribute
			 * for SMP systems
			 */
			user_pgprot |= L_PTE_SHARED;
			kern_pgprot |= L_PTE_SHARED;
			vecs_pgprot |= L_PTE_SHARED;
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
			mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
			mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
			mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
			mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
			mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
			mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
		}
466 467
	}

468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
	/*
	 * Non-cacheable Normal - intended for memory areas that must
	 * not cause dirty cache line writebacks when used
	 */
	if (cpu_arch >= CPU_ARCH_ARMv6) {
		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
			/* Non-cacheable Normal is XCB = 001 */
			mem_types[MT_MEMORY_NONCACHED].prot_sect |=
				PMD_SECT_BUFFERED;
		} else {
			/* For both ARMv6 and non-TEX-remapping ARMv7 */
			mem_types[MT_MEMORY_NONCACHED].prot_sect |=
				PMD_SECT_TEX(1);
		}
	} else {
		mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
	}

486 487 488 489 490 491
#ifdef CONFIG_ARM_LPAE
	/*
	 * Do not generate access flag faults for the kernel mappings.
	 */
	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
		mem_types[i].prot_pte |= PTE_EXT_AF;
492 493
		if (mem_types[i].prot_sect)
			mem_types[i].prot_sect |= PMD_SECT_AF;
494 495 496 497 498
	}
	kern_pgprot |= PTE_EXT_AF;
	vecs_pgprot |= PTE_EXT_AF;
#endif

499 500
	for (i = 0; i < 16; i++) {
		unsigned long v = pgprot_val(protection_map[i]);
501
		protection_map[i] = __pgprot(v | user_pgprot);
502 503
	}

504 505
	mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
	mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
506

507
	pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
508
	pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
509
				 L_PTE_DIRTY | kern_pgprot);
510 511 512 513

	mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
	mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
	mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
514 515
	mem_types[MT_MEMORY].prot_pte |= kern_pgprot;
	mem_types[MT_MEMORY_NONCACHED].prot_sect |= ecc_mask;
516 517 518 519 520 521 522 523 524 525 526 527 528
	mem_types[MT_ROM].prot_sect |= cp->pmd;

	switch (cp->pmd) {
	case PMD_SECT_WT:
		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
		break;
	case PMD_SECT_WB:
	case PMD_SECT_WBWA:
		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
		break;
	}
	printk("Memory policy: ECC %sabled, Data cache %s\n",
		ecc_mask ? "en" : "dis", cp->policy);
529 530 531 532 533 534 535 536

	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
		struct mem_type *t = &mem_types[i];
		if (t->prot_l1)
			t->prot_l1 |= PMD_DOMAIN(t->domain);
		if (t->prot_sect)
			t->prot_sect |= PMD_DOMAIN(t->domain);
	}
537 538
}

539 540 541 542 543 544 545 546 547 548 549 550 551
#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
			      unsigned long size, pgprot_t vma_prot)
{
	if (!pfn_valid(pfn))
		return pgprot_noncached(vma_prot);
	else if (file->f_flags & O_SYNC)
		return pgprot_writecombine(vma_prot);
	return vma_prot;
}
EXPORT_SYMBOL(phys_mem_access_prot);
#endif

552 553
#define vectors_base()	(vectors_high() ? 0xffff0000 : 0)

554
static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
R
Russell King 已提交
555
{
556
	void *ptr = __va(memblock_alloc(sz, align));
R
Russell King 已提交
557 558
	memset(ptr, 0, sz);
	return ptr;
R
Russell King 已提交
559 560
}

561 562 563 564 565
static void __init *early_alloc(unsigned long sz)
{
	return early_alloc_aligned(sz, sz);
}

R
Russell King 已提交
566
static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
567
{
568
	if (pmd_none(*pmd)) {
569
		pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
570
		__pmd_populate(pmd, __pa(pte), prot);
571
	}
R
Russell King 已提交
572 573 574
	BUG_ON(pmd_bad(*pmd));
	return pte_offset_kernel(pmd, addr);
}
575

R
Russell King 已提交
576 577 578 579 580
static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
				  unsigned long end, unsigned long pfn,
				  const struct mem_type *type)
{
	pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
581
	do {
582
		set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
583 584
		pfn++;
	} while (pte++, addr += PAGE_SIZE, addr != end);
585 586
}

R
Russell King 已提交
587
static void __init alloc_init_section(pud_t *pud, unsigned long addr,
588
				      unsigned long end, phys_addr_t phys,
589
				      const struct mem_type *type)
590
{
R
Russell King 已提交
591
	pmd_t *pmd = pmd_offset(pud, addr);
592

593 594 595 596 597 598 599 600
	/*
	 * Try a section mapping - end, addr and phys must all be aligned
	 * to a section boundary.  Note that PMDs refer to the individual
	 * L1 entries, whereas PGDs refer to a group of L1 entries making
	 * up one logical pointer to an L2 table.
	 */
	if (((addr | end | phys) & ~SECTION_MASK) == 0) {
		pmd_t *p = pmd;
601

602
#ifndef CONFIG_ARM_LPAE
603 604
		if (addr & SECTION_SIZE)
			pmd++;
605
#endif
606 607 608 609 610

		do {
			*pmd = __pmd(phys | type->prot_sect);
			phys += SECTION_SIZE;
		} while (pmd++, addr += SECTION_SIZE, addr != end);
611

612 613 614 615 616 617 618 619
		flush_pmd_entry(p);
	} else {
		/*
		 * No need to loop; pte's aren't interested in the
		 * individual L1 entries.
		 */
		alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
	}
620 621
}

622 623
static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
	unsigned long end, unsigned long phys, const struct mem_type *type)
R
Russell King 已提交
624 625 626 627 628 629 630 631 632 633 634
{
	pud_t *pud = pud_offset(pgd, addr);
	unsigned long next;

	do {
		next = pud_addr_end(addr, end);
		alloc_init_section(pud, addr, next, phys, type);
		phys += next - addr;
	} while (pud++, addr = next, addr != end);
}

635
#ifndef CONFIG_ARM_LPAE
636 637 638
static void __init create_36bit_mapping(struct map_desc *md,
					const struct mem_type *type)
{
639 640
	unsigned long addr, length, end;
	phys_addr_t phys;
641 642 643
	pgd_t *pgd;

	addr = md->virtual;
644
	phys = __pfn_to_phys(md->pfn);
645 646 647 648 649
	length = PAGE_ALIGN(md->length);

	if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
		printk(KERN_ERR "MM: CPU does not support supersection "
		       "mapping for 0x%08llx at 0x%08lx\n",
650
		       (long long)__pfn_to_phys((u64)md->pfn), addr);
651 652 653 654 655 656 657 658 659 660 661 662
		return;
	}

	/* N.B.	ARMv6 supersections are only defined to work with domain 0.
	 *	Since domain assignments can in fact be arbitrary, the
	 *	'domain == 0' check below is required to insure that ARMv6
	 *	supersections are only allocated for domain 0 regardless
	 *	of the actual domain assignments in use.
	 */
	if (type->domain) {
		printk(KERN_ERR "MM: invalid domain in supersection "
		       "mapping for 0x%08llx at 0x%08lx\n",
663
		       (long long)__pfn_to_phys((u64)md->pfn), addr);
664 665 666 667
		return;
	}

	if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
668 669 670
		printk(KERN_ERR "MM: cannot create mapping for 0x%08llx"
		       " at 0x%08lx invalid alignment\n",
		       (long long)__pfn_to_phys((u64)md->pfn), addr);
671 672 673 674 675 676 677 678 679 680 681 682
		return;
	}

	/*
	 * Shift bits [35:32] of address into bits [23:20] of PMD
	 * (See ARMv6 spec).
	 */
	phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);

	pgd = pgd_offset_k(addr);
	end = addr + length;
	do {
R
Russell King 已提交
683 684
		pud_t *pud = pud_offset(pgd, addr);
		pmd_t *pmd = pmd_offset(pud, addr);
685 686 687 688 689 690 691 692 693 694
		int i;

		for (i = 0; i < 16; i++)
			*pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);

		addr += SUPERSECTION_SIZE;
		phys += SUPERSECTION_SIZE;
		pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
	} while (addr != end);
}
695
#endif	/* !CONFIG_ARM_LPAE */
696

697 698 699 700 701 702 703
/*
 * Create the page directory entries and any necessary
 * page tables for the mapping specified by `md'.  We
 * are able to cope here with varying sizes and address
 * offsets, and we take full advantage of sections and
 * supersections.
 */
704
static void __init create_mapping(struct map_desc *md)
705
{
706 707
	unsigned long addr, length, end;
	phys_addr_t phys;
708
	const struct mem_type *type;
709
	pgd_t *pgd;
710 711

	if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
712 713 714
		printk(KERN_WARNING "BUG: not creating mapping for 0x%08llx"
		       " at 0x%08lx in user region\n",
		       (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
715 716 717 718
		return;
	}

	if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
719 720
	    md->virtual >= PAGE_OFFSET &&
	    (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
721
		printk(KERN_WARNING "BUG: mapping for 0x%08llx"
722
		       " at 0x%08lx out of vmalloc space\n",
723
		       (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
724 725
	}

726
	type = &mem_types[md->type];
727

728
#ifndef CONFIG_ARM_LPAE
729 730 731
	/*
	 * Catch 36-bit addresses
	 */
732 733 734
	if (md->pfn >= 0x100000) {
		create_36bit_mapping(md, type);
		return;
735
	}
736
#endif
737

738
	addr = md->virtual & PAGE_MASK;
739
	phys = __pfn_to_phys(md->pfn);
740
	length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
741

742
	if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
743
		printk(KERN_WARNING "BUG: map for 0x%08llx at 0x%08lx can not "
744
		       "be mapped using pages, ignoring.\n",
745
		       (long long)__pfn_to_phys(md->pfn), addr);
746 747 748
		return;
	}

749 750 751 752
	pgd = pgd_offset_k(addr);
	end = addr + length;
	do {
		unsigned long next = pgd_addr_end(addr, end);
753

R
Russell King 已提交
754
		alloc_init_pud(pgd, addr, next, phys, type);
755

756 757 758
		phys += next - addr;
		addr = next;
	} while (pgd++, addr != end);
759 760 761 762 763 764 765
}

/*
 * Create the architecture specific mappings
 */
void __init iotable_init(struct map_desc *io_desc, int nr)
{
766 767 768 769 770
	struct map_desc *md;
	struct vm_struct *vm;

	if (!nr)
		return;
771

772 773 774 775 776 777 778
	vm = early_alloc_aligned(sizeof(*vm) * nr, __alignof__(*vm));

	for (md = io_desc; nr; md++, nr--) {
		create_mapping(md);
		vm->addr = (void *)(md->virtual & PAGE_MASK);
		vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
		vm->phys_addr = __pfn_to_phys(md->pfn); 
779 780
		vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING; 
		vm->flags |= VM_ARM_MTYPE(md->type);
781 782 783
		vm->caller = iotable_init;
		vm_area_add_early(vm++);
	}
784 785
}

786 787
static void * __initdata vmalloc_min =
	(void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
788 789 790 791

/*
 * vmalloc=size forces the vmalloc area to be exactly 'size'
 * bytes. This can be used to increase (or decrease) the vmalloc
792
 * area - the default is 240m.
793
 */
794
static int __init early_vmalloc(char *arg)
795
{
R
Russell King 已提交
796
	unsigned long vmalloc_reserve = memparse(arg, NULL);
797 798 799 800 801 802 803

	if (vmalloc_reserve < SZ_16M) {
		vmalloc_reserve = SZ_16M;
		printk(KERN_WARNING
			"vmalloc area too small, limiting to %luMB\n",
			vmalloc_reserve >> 20);
	}
804 805 806 807 808 809 810

	if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
		vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
		printk(KERN_WARNING
			"vmalloc area is too big, limiting to %luMB\n",
			vmalloc_reserve >> 20);
	}
R
Russell King 已提交
811 812

	vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
813
	return 0;
814
}
815
early_param("vmalloc", early_vmalloc);
816

817 818
static phys_addr_t lowmem_limit __initdata = 0;

819
void __init sanity_check_meminfo(void)
820
{
R
Russell King 已提交
821
	int i, j, highmem = 0;
822

823
	for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
824 825
		struct membank *bank = &meminfo.bank[j];
		*bank = meminfo.bank[i];
826

827 828 829
		if (bank->start > ULONG_MAX)
			highmem = 1;

830
#ifdef CONFIG_HIGHMEM
831
		if (__va(bank->start) >= vmalloc_min ||
R
Russell King 已提交
832 833 834 835 836
		    __va(bank->start) < (void *)PAGE_OFFSET)
			highmem = 1;

		bank->highmem = highmem;

837 838 839 840
		/*
		 * Split those memory banks which are partially overlapping
		 * the vmalloc area greatly simplifying things later.
		 */
841
		if (!highmem && __va(bank->start) < vmalloc_min &&
R
Russell King 已提交
842
		    bank->size > vmalloc_min - __va(bank->start)) {
843 844 845 846 847 848 849 850
			if (meminfo.nr_banks >= NR_BANKS) {
				printk(KERN_CRIT "NR_BANKS too low, "
						 "ignoring high memory\n");
			} else {
				memmove(bank + 1, bank,
					(meminfo.nr_banks - i) * sizeof(*bank));
				meminfo.nr_banks++;
				i++;
R
Russell King 已提交
851 852
				bank[1].size -= vmalloc_min - __va(bank->start);
				bank[1].start = __pa(vmalloc_min - 1) + 1;
R
Russell King 已提交
853
				bank[1].highmem = highmem = 1;
854 855
				j++;
			}
R
Russell King 已提交
856
			bank->size = vmalloc_min - __va(bank->start);
857 858
		}
#else
859 860
		bank->highmem = highmem;

861 862 863 864 865 866 867 868 869 870 871
		/*
		 * Highmem banks not allowed with !CONFIG_HIGHMEM.
		 */
		if (highmem) {
			printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
			       "(!CONFIG_HIGHMEM).\n",
			       (unsigned long long)bank->start,
			       (unsigned long long)bank->start + bank->size - 1);
			continue;
		}

872 873 874 875
		/*
		 * Check whether this memory bank would entirely overlap
		 * the vmalloc area.
		 */
R
Russell King 已提交
876
		if (__va(bank->start) >= vmalloc_min ||
877
		    __va(bank->start) < (void *)PAGE_OFFSET) {
878
			printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
879
			       "(vmalloc region overlap).\n",
880 881
			       (unsigned long long)bank->start,
			       (unsigned long long)bank->start + bank->size - 1);
882 883
			continue;
		}
884

885 886 887 888
		/*
		 * Check whether this memory bank would partially overlap
		 * the vmalloc area.
		 */
R
Russell King 已提交
889
		if (__va(bank->start + bank->size) > vmalloc_min ||
890
		    __va(bank->start + bank->size) < __va(bank->start)) {
R
Russell King 已提交
891
			unsigned long newsize = vmalloc_min - __va(bank->start);
892 893 894 895 896
			printk(KERN_NOTICE "Truncating RAM at %.8llx-%.8llx "
			       "to -%.8llx (vmalloc region overlap).\n",
			       (unsigned long long)bank->start,
			       (unsigned long long)bank->start + bank->size - 1,
			       (unsigned long long)bank->start + newsize - 1);
897 898 899
			bank->size = newsize;
		}
#endif
900 901 902
		if (!bank->highmem && bank->start + bank->size > lowmem_limit)
			lowmem_limit = bank->start + bank->size;

903
		j++;
904
	}
905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
#ifdef CONFIG_HIGHMEM
	if (highmem) {
		const char *reason = NULL;

		if (cache_is_vipt_aliasing()) {
			/*
			 * Interactions between kmap and other mappings
			 * make highmem support with aliasing VIPT caches
			 * rather difficult.
			 */
			reason = "with VIPT aliasing cache";
		}
		if (reason) {
			printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
				reason);
			while (j > 0 && meminfo.bank[j - 1].highmem)
				j--;
		}
	}
#endif
925
	meminfo.nr_banks = j;
926
	high_memory = __va(lowmem_limit - 1) + 1;
927
	memblock_set_current_limit(lowmem_limit);
928 929
}

930
static inline void prepare_page_table(void)
931 932
{
	unsigned long addr;
933
	phys_addr_t end;
934 935 936 937

	/*
	 * Clear out all the mappings below the kernel image.
	 */
938
	for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
939 940 941 942
		pmd_clear(pmd_off_k(addr));

#ifdef CONFIG_XIP_KERNEL
	/* The XIP kernel is mapped in the module area -- skip over it */
943
	addr = ((unsigned long)_etext + PMD_SIZE - 1) & PMD_MASK;
944
#endif
945
	for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
946 947
		pmd_clear(pmd_off_k(addr));

948 949 950 951 952 953 954
	/*
	 * Find the end of the first block of lowmem.
	 */
	end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
	if (end >= lowmem_limit)
		end = lowmem_limit;

955 956
	/*
	 * Clear out all the kernel space mappings, except for the first
957
	 * memory bank, up to the vmalloc region.
958
	 */
959
	for (addr = __phys_to_virt(end);
960
	     addr < VMALLOC_START; addr += PMD_SIZE)
961 962 963
		pmd_clear(pmd_off_k(addr));
}

964 965 966 967 968
#ifdef CONFIG_ARM_LPAE
/* the first page is reserved for pgd */
#define SWAPPER_PG_DIR_SIZE	(PAGE_SIZE + \
				 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
#else
969
#define SWAPPER_PG_DIR_SIZE	(PTRS_PER_PGD * sizeof(pgd_t))
970
#endif
971

972
/*
R
Russell King 已提交
973
 * Reserve the special regions of memory
974
 */
R
Russell King 已提交
975
void __init arm_mm_memblock_reserve(void)
976 977 978 979 980
{
	/*
	 * Reserve the page tables.  These are already in use,
	 * and can only be in node 0.
	 */
981
	memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
982 983 984 985 986 987

#ifdef CONFIG_SA1111
	/*
	 * Because of the SA1111 DMA bug, we want to preserve our
	 * precious DMA-able memory...
	 */
R
Russell King 已提交
988
	memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
989 990 991 992
#endif
}

/*
993 994
 * Set up the device mappings.  Since we clear out the page tables for all
 * mappings above VMALLOC_START, we will remove any debug device mappings.
995 996 997 998 999 1000 1001 1002
 * This means you have to be careful how you debug this function, or any
 * called function.  This means you can't use any function or debugging
 * method which may touch any device, otherwise the kernel _will_ crash.
 */
static void __init devicemaps_init(struct machine_desc *mdesc)
{
	struct map_desc map;
	unsigned long addr;
1003
	void *vectors;
1004 1005 1006 1007

	/*
	 * Allocate the vector page early.
	 */
1008 1009 1010
	vectors = early_alloc(PAGE_SIZE);

	early_trap_init(vectors);
1011

1012
	for (addr = VMALLOC_START; addr; addr += PMD_SIZE)
1013 1014 1015 1016 1017 1018 1019 1020
		pmd_clear(pmd_off_k(addr));

	/*
	 * Map the kernel if it is XIP.
	 * It is always first in the modulearea.
	 */
#ifdef CONFIG_XIP_KERNEL
	map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1021
	map.virtual = MODULES_VADDR;
R
Russell King 已提交
1022
	map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
	map.type = MT_ROM;
	create_mapping(&map);
#endif

	/*
	 * Map the cache flushing regions.
	 */
#ifdef FLUSH_BASE
	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
	map.virtual = FLUSH_BASE;
	map.length = SZ_1M;
	map.type = MT_CACHECLEAN;
	create_mapping(&map);
#endif
#ifdef FLUSH_BASE_MINICACHE
	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
	map.virtual = FLUSH_BASE_MINICACHE;
	map.length = SZ_1M;
	map.type = MT_MINICLEAN;
	create_mapping(&map);
#endif

	/*
	 * Create a mapping for the machine vectors at the high-vectors
	 * location (0xffff0000).  If we aren't using high-vectors, also
	 * create a mapping at the low-vectors virtual address.
	 */
1050
	map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
	map.virtual = 0xffff0000;
	map.length = PAGE_SIZE;
	map.type = MT_HIGH_VECTORS;
	create_mapping(&map);

	if (!vectors_high()) {
		map.virtual = 0;
		map.type = MT_LOW_VECTORS;
		create_mapping(&map);
	}

	/*
	 * Ask the machine support to map in the statically mapped devices.
	 */
	if (mdesc->map_io)
		mdesc->map_io();

	/*
	 * Finally flush the caches and tlb to ensure that we're in a
	 * consistent state wrt the writebuffer.  This also ensures that
	 * any write-allocated cache lines in the vector page are written
	 * back.  After this point, we can start to touch devices again.
	 */
	local_flush_tlb_all();
	flush_cache_all();
}

N
Nicolas Pitre 已提交
1078 1079 1080
static void __init kmap_init(void)
{
#ifdef CONFIG_HIGHMEM
R
Russell King 已提交
1081 1082
	pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
		PKMAP_BASE, _PAGE_KERNEL_TABLE);
N
Nicolas Pitre 已提交
1083 1084 1085
#endif
}

1086 1087
static void __init map_lowmem(void)
{
1088
	struct memblock_region *reg;
1089 1090

	/* Map all the lowmem memory banks. */
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
	for_each_memblock(memory, reg) {
		phys_addr_t start = reg->base;
		phys_addr_t end = start + reg->size;
		struct map_desc map;

		if (end > lowmem_limit)
			end = lowmem_limit;
		if (start >= end)
			break;

		map.pfn = __phys_to_pfn(start);
		map.virtual = __phys_to_virt(start);
		map.length = end - start;
		map.type = MT_MEMORY;
1105

1106
		create_mapping(&map);
1107 1108 1109
	}
}

1110 1111 1112 1113
/*
 * paging_init() sets up the page tables, initialises the zone memory
 * maps, and sets up the zero page, bad page and bad page tables.
 */
1114
void __init paging_init(struct machine_desc *mdesc)
1115 1116 1117
{
	void *zero_page;

1118 1119
	memblock_set_current_limit(lowmem_limit);

1120
	build_mem_type_table();
1121
	prepare_page_table();
1122
	map_lowmem();
1123
	devicemaps_init(mdesc);
N
Nicolas Pitre 已提交
1124
	kmap_init();
1125 1126 1127

	top_pmd = pmd_off_k(0xffff0000);

R
Russell King 已提交
1128 1129
	/* allocate the zero page. */
	zero_page = early_alloc(PAGE_SIZE);
R
Russell King 已提交
1130

1131
	bootmem_init();
R
Russell King 已提交
1132

1133
	empty_zero_page = virt_to_page(zero_page);
1134
	__flush_dcache_page(NULL, empty_zero_page);
1135
}