mmu.c 28.4 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 *  linux/arch/arm/mm/mmu.c
 *
 *  Copyright (C) 1995-2005 Russell King
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
10
#include <linux/module.h>
11 12 13 14 15
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/mman.h>
#include <linux/nodemask.h>
R
Russell King 已提交
16
#include <linux/memblock.h>
17
#include <linux/fs.h>
18

19
#include <asm/cputype.h>
R
Russell King 已提交
20
#include <asm/sections.h>
21
#include <asm/cachetype.h>
22 23
#include <asm/setup.h>
#include <asm/sizes.h>
24
#include <asm/smp_plat.h>
25
#include <asm/tlb.h>
N
Nicolas Pitre 已提交
26
#include <asm/highmem.h>
27
#include <asm/traps.h>
28 29 30 31 32 33 34 35 36 37 38

#include <asm/mach/arch.h>
#include <asm/mach/map.h>

#include "mm.h"

/*
 * empty_zero_page is a special page that is used for
 * zero-initialized data and COW.
 */
struct page *empty_zero_page;
39
EXPORT_SYMBOL(empty_zero_page);
40 41 42 43 44 45

/*
 * The pmd table for the upper-most set of pages.
 */
pmd_t *top_pmd;

46 47 48 49 50 51 52 53
#define CPOLICY_UNCACHED	0
#define CPOLICY_BUFFERED	1
#define CPOLICY_WRITETHROUGH	2
#define CPOLICY_WRITEBACK	3
#define CPOLICY_WRITEALLOC	4

static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
static unsigned int ecc_mask __initdata = 0;
54
pgprot_t pgprot_user;
55 56
pgprot_t pgprot_kernel;

57
EXPORT_SYMBOL(pgprot_user);
58 59 60 61 62
EXPORT_SYMBOL(pgprot_kernel);

struct cachepolicy {
	const char	policy[16];
	unsigned int	cr_mask;
63
	pmdval_t	pmd;
64
	pteval_t	pte;
65 66 67 68 69 70 71
};

static struct cachepolicy cache_policies[] __initdata = {
	{
		.policy		= "uncached",
		.cr_mask	= CR_W|CR_C,
		.pmd		= PMD_SECT_UNCACHED,
72
		.pte		= L_PTE_MT_UNCACHED,
73 74 75 76
	}, {
		.policy		= "buffered",
		.cr_mask	= CR_C,
		.pmd		= PMD_SECT_BUFFERED,
77
		.pte		= L_PTE_MT_BUFFERABLE,
78 79 80 81
	}, {
		.policy		= "writethrough",
		.cr_mask	= 0,
		.pmd		= PMD_SECT_WT,
82
		.pte		= L_PTE_MT_WRITETHROUGH,
83 84 85 86
	}, {
		.policy		= "writeback",
		.cr_mask	= 0,
		.pmd		= PMD_SECT_WB,
87
		.pte		= L_PTE_MT_WRITEBACK,
88 89 90 91
	}, {
		.policy		= "writealloc",
		.cr_mask	= 0,
		.pmd		= PMD_SECT_WBWA,
92
		.pte		= L_PTE_MT_WRITEALLOC,
93 94 95 96
	}
};

/*
S
Simon Arlott 已提交
97
 * These are useful for identifying cache coherency
98 99 100 101
 * problems by allowing the cache or the cache and
 * writebuffer to be turned off.  (Note: the write
 * buffer should not be on and the cache off).
 */
102
static int __init early_cachepolicy(char *p)
103 104 105 106 107 108
{
	int i;

	for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
		int len = strlen(cache_policies[i].policy);

109
		if (memcmp(p, cache_policies[i].policy, len) == 0) {
110 111 112 113 114 115 116 117
			cachepolicy = i;
			cr_alignment &= ~cache_policies[i].cr_mask;
			cr_no_alignment &= ~cache_policies[i].cr_mask;
			break;
		}
	}
	if (i == ARRAY_SIZE(cache_policies))
		printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
118 119 120 121 122 123 124
	/*
	 * This restriction is partly to do with the way we boot; it is
	 * unpredictable to have memory mapped using two different sets of
	 * memory attributes (shared, type, and cache attribs).  We can not
	 * change these attributes once the initial assembly has setup the
	 * page tables.
	 */
125 126 127 128
	if (cpu_architecture() >= CPU_ARCH_ARMv6) {
		printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
		cachepolicy = CPOLICY_WRITEBACK;
	}
129 130
	flush_cache_all();
	set_cr(cr_alignment);
131
	return 0;
132
}
133
early_param("cachepolicy", early_cachepolicy);
134

135
static int __init early_nocache(char *__unused)
136 137 138
{
	char *p = "buffered";
	printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
139 140
	early_cachepolicy(p);
	return 0;
141
}
142
early_param("nocache", early_nocache);
143

144
static int __init early_nowrite(char *__unused)
145 146 147
{
	char *p = "uncached";
	printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
148 149
	early_cachepolicy(p);
	return 0;
150
}
151
early_param("nowb", early_nowrite);
152

153
static int __init early_ecc(char *p)
154
{
155
	if (memcmp(p, "on", 2) == 0)
156
		ecc_mask = PMD_PROTECTION;
157
	else if (memcmp(p, "off", 3) == 0)
158
		ecc_mask = 0;
159
	return 0;
160
}
161
early_param("ecc", early_ecc);
162 163 164 165 166 167 168 169 170 171

static int __init noalign_setup(char *__unused)
{
	cr_alignment &= ~CR_A;
	cr_no_alignment &= ~CR_A;
	set_cr(cr_alignment);
	return 1;
}
__setup("noalign", noalign_setup);

172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
#ifndef CONFIG_SMP
void adjust_cr(unsigned long mask, unsigned long set)
{
	unsigned long flags;

	mask &= ~CR_A;

	set &= mask;

	local_irq_save(flags);

	cr_no_alignment = (cr_no_alignment & ~mask) | set;
	cr_alignment = (cr_alignment & ~mask) | set;

	set_cr((get_cr() & ~mask) | set);

	local_irq_restore(flags);
}
#endif

192
#define PROT_PTE_DEVICE		L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
193
#define PROT_SECT_DEVICE	PMD_TYPE_SECT|PMD_SECT_AP_WRITE
194

195
static struct mem_type mem_types[] = {
196
	[MT_DEVICE] = {		  /* Strongly ordered / ARMv6 shared device */
197 198
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
				  L_PTE_SHARED,
199
		.prot_l1	= PMD_TYPE_TABLE,
200
		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_S,
201 202 203
		.domain		= DOMAIN_IO,
	},
	[MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
204
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
205
		.prot_l1	= PMD_TYPE_TABLE,
206
		.prot_sect	= PROT_SECT_DEVICE,
207 208 209
		.domain		= DOMAIN_IO,
	},
	[MT_DEVICE_CACHED] = {	  /* ioremap_cached */
210
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
211 212 213 214
		.prot_l1	= PMD_TYPE_TABLE,
		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_WB,
		.domain		= DOMAIN_IO,
	},	
215
	[MT_DEVICE_WC] = {	/* ioremap_wc */
216
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
217
		.prot_l1	= PMD_TYPE_TABLE,
218
		.prot_sect	= PROT_SECT_DEVICE,
219
		.domain		= DOMAIN_IO,
220
	},
221 222 223 224 225 226
	[MT_UNCACHED] = {
		.prot_pte	= PROT_PTE_DEVICE,
		.prot_l1	= PMD_TYPE_TABLE,
		.prot_sect	= PMD_TYPE_SECT | PMD_SECT_XN,
		.domain		= DOMAIN_IO,
	},
227
	[MT_CACHECLEAN] = {
228
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
229 230 231
		.domain    = DOMAIN_KERNEL,
	},
	[MT_MINICLEAN] = {
232
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
233 234 235 236
		.domain    = DOMAIN_KERNEL,
	},
	[MT_LOW_VECTORS] = {
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
237
				L_PTE_RDONLY,
238 239 240 241 242
		.prot_l1   = PMD_TYPE_TABLE,
		.domain    = DOMAIN_USER,
	},
	[MT_HIGH_VECTORS] = {
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
243
				L_PTE_USER | L_PTE_RDONLY,
244 245 246 247
		.prot_l1   = PMD_TYPE_TABLE,
		.domain    = DOMAIN_USER,
	},
	[MT_MEMORY] = {
248
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
249
		.prot_l1   = PMD_TYPE_TABLE,
250
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
251 252 253
		.domain    = DOMAIN_KERNEL,
	},
	[MT_ROM] = {
254
		.prot_sect = PMD_TYPE_SECT,
255 256
		.domain    = DOMAIN_KERNEL,
	},
257
	[MT_MEMORY_NONCACHED] = {
258
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
259
				L_PTE_MT_BUFFERABLE,
260
		.prot_l1   = PMD_TYPE_TABLE,
261 262 263
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
		.domain    = DOMAIN_KERNEL,
	},
264
	[MT_MEMORY_DTCM] = {
265
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
266
				L_PTE_XN,
267 268 269
		.prot_l1   = PMD_TYPE_TABLE,
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
		.domain    = DOMAIN_KERNEL,
270 271
	},
	[MT_MEMORY_ITCM] = {
272
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
273
		.prot_l1   = PMD_TYPE_TABLE,
274
		.domain    = DOMAIN_KERNEL,
275
	},
276 277 278 279 280 281 282 283
	[MT_MEMORY_SO] = {
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
				L_PTE_MT_UNCACHED,
		.prot_l1   = PMD_TYPE_TABLE,
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
				PMD_SECT_UNCACHED | PMD_SECT_XN,
		.domain    = DOMAIN_KERNEL,
	},
284 285
};

286 287 288 289
const struct mem_type *get_mem_type(unsigned int type)
{
	return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
}
290
EXPORT_SYMBOL(get_mem_type);
291

292 293 294 295 296 297 298
/*
 * Adjust the PMD section entries according to the CPU in use.
 */
static void __init build_mem_type_table(void)
{
	struct cachepolicy *cp;
	unsigned int cr = get_cr();
299
	pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
300 301 302
	int cpu_arch = cpu_architecture();
	int i;

303
	if (cpu_arch < CPU_ARCH_ARMv6) {
304
#if defined(CONFIG_CPU_DCACHE_DISABLE)
305 306
		if (cachepolicy > CPOLICY_BUFFERED)
			cachepolicy = CPOLICY_BUFFERED;
307
#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
308 309
		if (cachepolicy > CPOLICY_WRITETHROUGH)
			cachepolicy = CPOLICY_WRITETHROUGH;
310
#endif
311
	}
312 313 314 315 316
	if (cpu_arch < CPU_ARCH_ARMv5) {
		if (cachepolicy >= CPOLICY_WRITEALLOC)
			cachepolicy = CPOLICY_WRITEBACK;
		ecc_mask = 0;
	}
317 318
	if (is_smp())
		cachepolicy = CPOLICY_WRITEALLOC;
319

320
	/*
321 322 323
	 * Strip out features not present on earlier architectures.
	 * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
	 * without extended page tables don't have the 'Shared' bit.
324
	 */
325 326 327 328 329 330
	if (cpu_arch < CPU_ARCH_ARMv5)
		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
			mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
	if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
			mem_types[i].prot_sect &= ~PMD_SECT_S;
331 332

	/*
333 334 335
	 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
	 * "update-able on write" bit on ARM610).  However, Xscale and
	 * Xscale3 require this bit to be cleared.
336
	 */
337
	if (cpu_is_xscale() || cpu_is_xsc3()) {
338
		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
339
			mem_types[i].prot_sect &= ~PMD_BIT4;
340 341 342 343
			mem_types[i].prot_l1 &= ~PMD_BIT4;
		}
	} else if (cpu_arch < CPU_ARCH_ARMv6) {
		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
344 345
			if (mem_types[i].prot_l1)
				mem_types[i].prot_l1 |= PMD_BIT4;
346 347 348 349
			if (mem_types[i].prot_sect)
				mem_types[i].prot_sect |= PMD_BIT4;
		}
	}
350

351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
	/*
	 * Mark the device areas according to the CPU/architecture.
	 */
	if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
		if (!cpu_is_xsc3()) {
			/*
			 * Mark device regions on ARMv6+ as execute-never
			 * to prevent speculative instruction fetches.
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
		}
		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
			/*
			 * For ARMv7 with TEX remapping,
			 * - shared device is SXCB=1100
			 * - nonshared device is SXCB=0100
			 * - write combine device mem is SXCB=0001
			 * (Uncached Normal memory)
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
		} else if (cpu_is_xsc3()) {
			/*
			 * For Xscale3,
			 * - shared device is TEXCB=00101
			 * - nonshared device is TEXCB=01000
			 * - write combine device mem is TEXCB=00100
			 * (Inner/Outer Uncacheable in xsc3 parlance)
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
		} else {
			/*
			 * For ARMv6 and ARMv7 without TEX remapping,
			 * - shared device is TEXCB=00001
			 * - nonshared device is TEXCB=01000
			 * - write combine device mem is TEXCB=00100
			 * (Uncached Normal in ARMv6 parlance).
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
		}
	} else {
		/*
		 * On others, write combining is "Uncached/Buffered"
		 */
		mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
	}

	/*
	 * Now deal with the memory-type mappings
	 */
409
	cp = &cache_policies[cachepolicy];
410 411 412 413 414
	vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;

	/*
	 * Only use write-through for non-SMP systems
	 */
415
	if (!is_smp() && cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH)
416
		vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte;
417 418 419 420 421

	/*
	 * Enable CPU-specific coherency if supported.
	 * (Only available on XSC3 at the moment.)
	 */
422
	if (arch_is_coherent() && cpu_is_xsc3()) {
423
		mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
424 425 426 427
		mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
		mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
		mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
	}
428 429 430 431 432 433 434 435 436 437 438 439
	/*
	 * ARMv6 and above have extended page tables.
	 */
	if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
		/*
		 * Mark cache clean areas and XIP ROM read only
		 * from SVC mode and no access from userspace.
		 */
		mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
		mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;

440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
		if (is_smp()) {
			/*
			 * Mark memory with the "shared" attribute
			 * for SMP systems
			 */
			user_pgprot |= L_PTE_SHARED;
			kern_pgprot |= L_PTE_SHARED;
			vecs_pgprot |= L_PTE_SHARED;
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
			mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
			mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
			mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
			mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
			mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
			mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
		}
457 458
	}

459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
	/*
	 * Non-cacheable Normal - intended for memory areas that must
	 * not cause dirty cache line writebacks when used
	 */
	if (cpu_arch >= CPU_ARCH_ARMv6) {
		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
			/* Non-cacheable Normal is XCB = 001 */
			mem_types[MT_MEMORY_NONCACHED].prot_sect |=
				PMD_SECT_BUFFERED;
		} else {
			/* For both ARMv6 and non-TEX-remapping ARMv7 */
			mem_types[MT_MEMORY_NONCACHED].prot_sect |=
				PMD_SECT_TEX(1);
		}
	} else {
		mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
	}

477 478
	for (i = 0; i < 16; i++) {
		unsigned long v = pgprot_val(protection_map[i]);
479
		protection_map[i] = __pgprot(v | user_pgprot);
480 481
	}

482 483
	mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
	mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
484

485
	pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
486
	pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
487
				 L_PTE_DIRTY | kern_pgprot);
488 489 490 491

	mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
	mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
	mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
492 493
	mem_types[MT_MEMORY].prot_pte |= kern_pgprot;
	mem_types[MT_MEMORY_NONCACHED].prot_sect |= ecc_mask;
494 495 496 497 498 499 500 501 502 503 504 505 506
	mem_types[MT_ROM].prot_sect |= cp->pmd;

	switch (cp->pmd) {
	case PMD_SECT_WT:
		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
		break;
	case PMD_SECT_WB:
	case PMD_SECT_WBWA:
		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
		break;
	}
	printk("Memory policy: ECC %sabled, Data cache %s\n",
		ecc_mask ? "en" : "dis", cp->policy);
507 508 509 510 511 512 513 514

	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
		struct mem_type *t = &mem_types[i];
		if (t->prot_l1)
			t->prot_l1 |= PMD_DOMAIN(t->domain);
		if (t->prot_sect)
			t->prot_sect |= PMD_DOMAIN(t->domain);
	}
515 516
}

517 518 519 520 521 522 523 524 525 526 527 528 529
#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
			      unsigned long size, pgprot_t vma_prot)
{
	if (!pfn_valid(pfn))
		return pgprot_noncached(vma_prot);
	else if (file->f_flags & O_SYNC)
		return pgprot_writecombine(vma_prot);
	return vma_prot;
}
EXPORT_SYMBOL(phys_mem_access_prot);
#endif

530 531
#define vectors_base()	(vectors_high() ? 0xffff0000 : 0)

R
Russell King 已提交
532 533
static void __init *early_alloc(unsigned long sz)
{
R
Russell King 已提交
534 535 536
	void *ptr = __va(memblock_alloc(sz, sz));
	memset(ptr, 0, sz);
	return ptr;
R
Russell King 已提交
537 538
}

R
Russell King 已提交
539
static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
540
{
541
	if (pmd_none(*pmd)) {
542
		pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
543
		__pmd_populate(pmd, __pa(pte), prot);
544
	}
R
Russell King 已提交
545 546 547
	BUG_ON(pmd_bad(*pmd));
	return pte_offset_kernel(pmd, addr);
}
548

R
Russell King 已提交
549 550 551 552 553
static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
				  unsigned long end, unsigned long pfn,
				  const struct mem_type *type)
{
	pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
554
	do {
555
		set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
556 557
		pfn++;
	} while (pte++, addr += PAGE_SIZE, addr != end);
558 559
}

R
Russell King 已提交
560
static void __init alloc_init_section(pud_t *pud, unsigned long addr,
561
				      unsigned long end, phys_addr_t phys,
562
				      const struct mem_type *type)
563
{
R
Russell King 已提交
564
	pmd_t *pmd = pmd_offset(pud, addr);
565

566 567 568 569 570 571 572 573
	/*
	 * Try a section mapping - end, addr and phys must all be aligned
	 * to a section boundary.  Note that PMDs refer to the individual
	 * L1 entries, whereas PGDs refer to a group of L1 entries making
	 * up one logical pointer to an L2 table.
	 */
	if (((addr | end | phys) & ~SECTION_MASK) == 0) {
		pmd_t *p = pmd;
574

575 576 577 578 579 580 581
		if (addr & SECTION_SIZE)
			pmd++;

		do {
			*pmd = __pmd(phys | type->prot_sect);
			phys += SECTION_SIZE;
		} while (pmd++, addr += SECTION_SIZE, addr != end);
582

583 584 585 586 587 588 589 590
		flush_pmd_entry(p);
	} else {
		/*
		 * No need to loop; pte's aren't interested in the
		 * individual L1 entries.
		 */
		alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
	}
591 592
}

R
Russell King 已提交
593 594 595 596 597 598 599 600 601 602 603 604 605
static void alloc_init_pud(pgd_t *pgd, unsigned long addr, unsigned long end,
	unsigned long phys, const struct mem_type *type)
{
	pud_t *pud = pud_offset(pgd, addr);
	unsigned long next;

	do {
		next = pud_addr_end(addr, end);
		alloc_init_section(pud, addr, next, phys, type);
		phys += next - addr;
	} while (pud++, addr = next, addr != end);
}

606 607 608
static void __init create_36bit_mapping(struct map_desc *md,
					const struct mem_type *type)
{
609 610
	unsigned long addr, length, end;
	phys_addr_t phys;
611 612 613
	pgd_t *pgd;

	addr = md->virtual;
614
	phys = __pfn_to_phys(md->pfn);
615 616 617 618 619
	length = PAGE_ALIGN(md->length);

	if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
		printk(KERN_ERR "MM: CPU does not support supersection "
		       "mapping for 0x%08llx at 0x%08lx\n",
620
		       (long long)__pfn_to_phys((u64)md->pfn), addr);
621 622 623 624 625 626 627 628 629 630 631 632
		return;
	}

	/* N.B.	ARMv6 supersections are only defined to work with domain 0.
	 *	Since domain assignments can in fact be arbitrary, the
	 *	'domain == 0' check below is required to insure that ARMv6
	 *	supersections are only allocated for domain 0 regardless
	 *	of the actual domain assignments in use.
	 */
	if (type->domain) {
		printk(KERN_ERR "MM: invalid domain in supersection "
		       "mapping for 0x%08llx at 0x%08lx\n",
633
		       (long long)__pfn_to_phys((u64)md->pfn), addr);
634 635 636 637
		return;
	}

	if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
638 639 640
		printk(KERN_ERR "MM: cannot create mapping for 0x%08llx"
		       " at 0x%08lx invalid alignment\n",
		       (long long)__pfn_to_phys((u64)md->pfn), addr);
641 642 643 644 645 646 647 648 649 650 651 652
		return;
	}

	/*
	 * Shift bits [35:32] of address into bits [23:20] of PMD
	 * (See ARMv6 spec).
	 */
	phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);

	pgd = pgd_offset_k(addr);
	end = addr + length;
	do {
R
Russell King 已提交
653 654
		pud_t *pud = pud_offset(pgd, addr);
		pmd_t *pmd = pmd_offset(pud, addr);
655 656 657 658 659 660 661 662 663 664 665
		int i;

		for (i = 0; i < 16; i++)
			*pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);

		addr += SUPERSECTION_SIZE;
		phys += SUPERSECTION_SIZE;
		pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
	} while (addr != end);
}

666 667 668 669 670 671 672
/*
 * Create the page directory entries and any necessary
 * page tables for the mapping specified by `md'.  We
 * are able to cope here with varying sizes and address
 * offsets, and we take full advantage of sections and
 * supersections.
 */
673
static void __init create_mapping(struct map_desc *md)
674
{
675 676
	unsigned long addr, length, end;
	phys_addr_t phys;
677
	const struct mem_type *type;
678
	pgd_t *pgd;
679 680

	if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
681 682 683
		printk(KERN_WARNING "BUG: not creating mapping for 0x%08llx"
		       " at 0x%08lx in user region\n",
		       (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
684 685 686 687 688
		return;
	}

	if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
	    md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
689 690 691
		printk(KERN_WARNING "BUG: mapping for 0x%08llx"
		       " at 0x%08lx overlaps vmalloc space\n",
		       (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
692 693
	}

694
	type = &mem_types[md->type];
695 696 697 698

	/*
	 * Catch 36-bit addresses
	 */
699 700 701
	if (md->pfn >= 0x100000) {
		create_36bit_mapping(md, type);
		return;
702 703
	}

704
	addr = md->virtual & PAGE_MASK;
705
	phys = __pfn_to_phys(md->pfn);
706
	length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
707

708
	if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
709
		printk(KERN_WARNING "BUG: map for 0x%08llx at 0x%08lx can not "
710
		       "be mapped using pages, ignoring.\n",
711
		       (long long)__pfn_to_phys(md->pfn), addr);
712 713 714
		return;
	}

715 716 717 718
	pgd = pgd_offset_k(addr);
	end = addr + length;
	do {
		unsigned long next = pgd_addr_end(addr, end);
719

R
Russell King 已提交
720
		alloc_init_pud(pgd, addr, next, phys, type);
721

722 723 724
		phys += next - addr;
		addr = next;
	} while (pgd++, addr != end);
725 726 727 728 729 730 731 732 733 734 735 736 737
}

/*
 * Create the architecture specific mappings
 */
void __init iotable_init(struct map_desc *io_desc, int nr)
{
	int i;

	for (i = 0; i < nr; i++)
		create_mapping(io_desc + i);
}

R
Russell King 已提交
738
static void * __initdata vmalloc_min = (void *)(VMALLOC_END - SZ_128M);
739 740 741 742 743 744

/*
 * vmalloc=size forces the vmalloc area to be exactly 'size'
 * bytes. This can be used to increase (or decrease) the vmalloc
 * area - the default is 128m.
 */
745
static int __init early_vmalloc(char *arg)
746
{
R
Russell King 已提交
747
	unsigned long vmalloc_reserve = memparse(arg, NULL);
748 749 750 751 752 753 754

	if (vmalloc_reserve < SZ_16M) {
		vmalloc_reserve = SZ_16M;
		printk(KERN_WARNING
			"vmalloc area too small, limiting to %luMB\n",
			vmalloc_reserve >> 20);
	}
755 756 757 758 759 760 761

	if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
		vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
		printk(KERN_WARNING
			"vmalloc area is too big, limiting to %luMB\n",
			vmalloc_reserve >> 20);
	}
R
Russell King 已提交
762 763

	vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
764
	return 0;
765
}
766
early_param("vmalloc", early_vmalloc);
767

768 769
static phys_addr_t lowmem_limit __initdata = 0;

770
void __init sanity_check_meminfo(void)
771
{
R
Russell King 已提交
772
	int i, j, highmem = 0;
773

774
	for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
775 776
		struct membank *bank = &meminfo.bank[j];
		*bank = meminfo.bank[i];
777

778
#ifdef CONFIG_HIGHMEM
779
		if (__va(bank->start) >= vmalloc_min ||
R
Russell King 已提交
780 781 782 783 784
		    __va(bank->start) < (void *)PAGE_OFFSET)
			highmem = 1;

		bank->highmem = highmem;

785 786 787 788
		/*
		 * Split those memory banks which are partially overlapping
		 * the vmalloc area greatly simplifying things later.
		 */
R
Russell King 已提交
789 790
		if (__va(bank->start) < vmalloc_min &&
		    bank->size > vmalloc_min - __va(bank->start)) {
791 792 793 794 795 796 797 798
			if (meminfo.nr_banks >= NR_BANKS) {
				printk(KERN_CRIT "NR_BANKS too low, "
						 "ignoring high memory\n");
			} else {
				memmove(bank + 1, bank,
					(meminfo.nr_banks - i) * sizeof(*bank));
				meminfo.nr_banks++;
				i++;
R
Russell King 已提交
799 800
				bank[1].size -= vmalloc_min - __va(bank->start);
				bank[1].start = __pa(vmalloc_min - 1) + 1;
R
Russell King 已提交
801
				bank[1].highmem = highmem = 1;
802 803
				j++;
			}
R
Russell King 已提交
804
			bank->size = vmalloc_min - __va(bank->start);
805 806
		}
#else
807 808
		bank->highmem = highmem;

809 810 811 812
		/*
		 * Check whether this memory bank would entirely overlap
		 * the vmalloc area.
		 */
R
Russell King 已提交
813
		if (__va(bank->start) >= vmalloc_min ||
814
		    __va(bank->start) < (void *)PAGE_OFFSET) {
815
			printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
816
			       "(vmalloc region overlap).\n",
817 818
			       (unsigned long long)bank->start,
			       (unsigned long long)bank->start + bank->size - 1);
819 820
			continue;
		}
821

822 823 824 825
		/*
		 * Check whether this memory bank would partially overlap
		 * the vmalloc area.
		 */
R
Russell King 已提交
826
		if (__va(bank->start + bank->size) > vmalloc_min ||
827
		    __va(bank->start + bank->size) < __va(bank->start)) {
R
Russell King 已提交
828
			unsigned long newsize = vmalloc_min - __va(bank->start);
829 830 831 832 833
			printk(KERN_NOTICE "Truncating RAM at %.8llx-%.8llx "
			       "to -%.8llx (vmalloc region overlap).\n",
			       (unsigned long long)bank->start,
			       (unsigned long long)bank->start + bank->size - 1,
			       (unsigned long long)bank->start + newsize - 1);
834 835 836
			bank->size = newsize;
		}
#endif
837 838 839
		if (!bank->highmem && bank->start + bank->size > lowmem_limit)
			lowmem_limit = bank->start + bank->size;

840
		j++;
841
	}
842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
#ifdef CONFIG_HIGHMEM
	if (highmem) {
		const char *reason = NULL;

		if (cache_is_vipt_aliasing()) {
			/*
			 * Interactions between kmap and other mappings
			 * make highmem support with aliasing VIPT caches
			 * rather difficult.
			 */
			reason = "with VIPT aliasing cache";
		}
		if (reason) {
			printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
				reason);
			while (j > 0 && meminfo.bank[j - 1].highmem)
				j--;
		}
	}
#endif
862
	meminfo.nr_banks = j;
863
	memblock_set_current_limit(lowmem_limit);
864 865
}

866
static inline void prepare_page_table(void)
867 868
{
	unsigned long addr;
869
	phys_addr_t end;
870 871 872 873

	/*
	 * Clear out all the mappings below the kernel image.
	 */
874
	for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
875 876 877 878
		pmd_clear(pmd_off_k(addr));

#ifdef CONFIG_XIP_KERNEL
	/* The XIP kernel is mapped in the module area -- skip over it */
879
	addr = ((unsigned long)_etext + PMD_SIZE - 1) & PMD_MASK;
880
#endif
881
	for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
882 883
		pmd_clear(pmd_off_k(addr));

884 885 886 887 888 889 890
	/*
	 * Find the end of the first block of lowmem.
	 */
	end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
	if (end >= lowmem_limit)
		end = lowmem_limit;

891 892 893 894
	/*
	 * Clear out all the kernel space mappings, except for the first
	 * memory bank, up to the end of the vmalloc region.
	 */
895
	for (addr = __phys_to_virt(end);
896
	     addr < VMALLOC_END; addr += PMD_SIZE)
897 898 899
		pmd_clear(pmd_off_k(addr));
}

900 901
#define SWAPPER_PG_DIR_SIZE	(PTRS_PER_PGD * sizeof(pgd_t))

902
/*
R
Russell King 已提交
903
 * Reserve the special regions of memory
904
 */
R
Russell King 已提交
905
void __init arm_mm_memblock_reserve(void)
906 907 908 909 910
{
	/*
	 * Reserve the page tables.  These are already in use,
	 * and can only be in node 0.
	 */
911
	memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
912 913 914 915 916 917

#ifdef CONFIG_SA1111
	/*
	 * Because of the SA1111 DMA bug, we want to preserve our
	 * precious DMA-able memory...
	 */
R
Russell King 已提交
918
	memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
#endif
}

/*
 * Set up device the mappings.  Since we clear out the page tables for all
 * mappings above VMALLOC_END, we will remove any debug device mappings.
 * This means you have to be careful how you debug this function, or any
 * called function.  This means you can't use any function or debugging
 * method which may touch any device, otherwise the kernel _will_ crash.
 */
static void __init devicemaps_init(struct machine_desc *mdesc)
{
	struct map_desc map;
	unsigned long addr;

	/*
	 * Allocate the vector page early.
	 */
937
	vectors_page = early_alloc(PAGE_SIZE);
938

939
	for (addr = VMALLOC_END; addr; addr += PMD_SIZE)
940 941 942 943 944 945 946 947
		pmd_clear(pmd_off_k(addr));

	/*
	 * Map the kernel if it is XIP.
	 * It is always first in the modulearea.
	 */
#ifdef CONFIG_XIP_KERNEL
	map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
948
	map.virtual = MODULES_VADDR;
R
Russell King 已提交
949
	map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
	map.type = MT_ROM;
	create_mapping(&map);
#endif

	/*
	 * Map the cache flushing regions.
	 */
#ifdef FLUSH_BASE
	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
	map.virtual = FLUSH_BASE;
	map.length = SZ_1M;
	map.type = MT_CACHECLEAN;
	create_mapping(&map);
#endif
#ifdef FLUSH_BASE_MINICACHE
	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
	map.virtual = FLUSH_BASE_MINICACHE;
	map.length = SZ_1M;
	map.type = MT_MINICLEAN;
	create_mapping(&map);
#endif

	/*
	 * Create a mapping for the machine vectors at the high-vectors
	 * location (0xffff0000).  If we aren't using high-vectors, also
	 * create a mapping at the low-vectors virtual address.
	 */
977
	map.pfn = __phys_to_pfn(virt_to_phys(vectors_page));
978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
	map.virtual = 0xffff0000;
	map.length = PAGE_SIZE;
	map.type = MT_HIGH_VECTORS;
	create_mapping(&map);

	if (!vectors_high()) {
		map.virtual = 0;
		map.type = MT_LOW_VECTORS;
		create_mapping(&map);
	}

	/*
	 * Ask the machine support to map in the statically mapped devices.
	 */
	if (mdesc->map_io)
		mdesc->map_io();

	/*
	 * Finally flush the caches and tlb to ensure that we're in a
	 * consistent state wrt the writebuffer.  This also ensures that
	 * any write-allocated cache lines in the vector page are written
	 * back.  After this point, we can start to touch devices again.
	 */
	local_flush_tlb_all();
	flush_cache_all();
}

N
Nicolas Pitre 已提交
1005 1006 1007
static void __init kmap_init(void)
{
#ifdef CONFIG_HIGHMEM
R
Russell King 已提交
1008 1009
	pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
		PKMAP_BASE, _PAGE_KERNEL_TABLE);
N
Nicolas Pitre 已提交
1010 1011 1012
#endif
}

1013 1014
static void __init map_lowmem(void)
{
1015
	struct memblock_region *reg;
1016 1017

	/* Map all the lowmem memory banks. */
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
	for_each_memblock(memory, reg) {
		phys_addr_t start = reg->base;
		phys_addr_t end = start + reg->size;
		struct map_desc map;

		if (end > lowmem_limit)
			end = lowmem_limit;
		if (start >= end)
			break;

		map.pfn = __phys_to_pfn(start);
		map.virtual = __phys_to_virt(start);
		map.length = end - start;
		map.type = MT_MEMORY;
1032

1033
		create_mapping(&map);
1034 1035 1036
	}
}

1037 1038 1039 1040
/*
 * paging_init() sets up the page tables, initialises the zone memory
 * maps, and sets up the zero page, bad page and bad page tables.
 */
1041
void __init paging_init(struct machine_desc *mdesc)
1042 1043 1044
{
	void *zero_page;

1045 1046
	memblock_set_current_limit(lowmem_limit);

1047
	build_mem_type_table();
1048
	prepare_page_table();
1049
	map_lowmem();
1050
	devicemaps_init(mdesc);
N
Nicolas Pitre 已提交
1051
	kmap_init();
1052 1053 1054

	top_pmd = pmd_off_k(0xffff0000);

R
Russell King 已提交
1055 1056
	/* allocate the zero page. */
	zero_page = early_alloc(PAGE_SIZE);
R
Russell King 已提交
1057

1058
	bootmem_init();
R
Russell King 已提交
1059

1060
	empty_zero_page = virt_to_page(zero_page);
1061
	__flush_dcache_page(NULL, empty_zero_page);
1062
}