mmu.c 27.3 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 *  linux/arch/arm/mm/mmu.c
 *
 *  Copyright (C) 1995-2005 Russell King
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
10
#include <linux/module.h>
11 12 13 14 15 16 17
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/bootmem.h>
#include <linux/mman.h>
#include <linux/nodemask.h>

18
#include <asm/cputype.h>
19
#include <asm/mach-types.h>
R
Russell King 已提交
20
#include <asm/sections.h>
21
#include <asm/cachetype.h>
22 23 24
#include <asm/setup.h>
#include <asm/sizes.h>
#include <asm/tlb.h>
N
Nicolas Pitre 已提交
25
#include <asm/highmem.h>
26 27 28 29 30 31 32 33 34 35 36 37 38

#include <asm/mach/arch.h>
#include <asm/mach/map.h>

#include "mm.h"

DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);

/*
 * empty_zero_page is a special page that is used for
 * zero-initialized data and COW.
 */
struct page *empty_zero_page;
39
EXPORT_SYMBOL(empty_zero_page);
40 41 42 43 44 45

/*
 * The pmd table for the upper-most set of pages.
 */
pmd_t *top_pmd;

46 47 48 49 50 51 52 53
#define CPOLICY_UNCACHED	0
#define CPOLICY_BUFFERED	1
#define CPOLICY_WRITETHROUGH	2
#define CPOLICY_WRITEBACK	3
#define CPOLICY_WRITEALLOC	4

static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
static unsigned int ecc_mask __initdata = 0;
54
pgprot_t pgprot_user;
55 56
pgprot_t pgprot_kernel;

57
EXPORT_SYMBOL(pgprot_user);
58 59 60 61 62 63 64 65 66 67 68 69 70 71
EXPORT_SYMBOL(pgprot_kernel);

struct cachepolicy {
	const char	policy[16];
	unsigned int	cr_mask;
	unsigned int	pmd;
	unsigned int	pte;
};

static struct cachepolicy cache_policies[] __initdata = {
	{
		.policy		= "uncached",
		.cr_mask	= CR_W|CR_C,
		.pmd		= PMD_SECT_UNCACHED,
72
		.pte		= L_PTE_MT_UNCACHED,
73 74 75 76
	}, {
		.policy		= "buffered",
		.cr_mask	= CR_C,
		.pmd		= PMD_SECT_BUFFERED,
77
		.pte		= L_PTE_MT_BUFFERABLE,
78 79 80 81
	}, {
		.policy		= "writethrough",
		.cr_mask	= 0,
		.pmd		= PMD_SECT_WT,
82
		.pte		= L_PTE_MT_WRITETHROUGH,
83 84 85 86
	}, {
		.policy		= "writeback",
		.cr_mask	= 0,
		.pmd		= PMD_SECT_WB,
87
		.pte		= L_PTE_MT_WRITEBACK,
88 89 90 91
	}, {
		.policy		= "writealloc",
		.cr_mask	= 0,
		.pmd		= PMD_SECT_WBWA,
92
		.pte		= L_PTE_MT_WRITEALLOC,
93 94 95 96
	}
};

/*
S
Simon Arlott 已提交
97
 * These are useful for identifying cache coherency
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
 * problems by allowing the cache or the cache and
 * writebuffer to be turned off.  (Note: the write
 * buffer should not be on and the cache off).
 */
static void __init early_cachepolicy(char **p)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
		int len = strlen(cache_policies[i].policy);

		if (memcmp(*p, cache_policies[i].policy, len) == 0) {
			cachepolicy = i;
			cr_alignment &= ~cache_policies[i].cr_mask;
			cr_no_alignment &= ~cache_policies[i].cr_mask;
			*p += len;
			break;
		}
	}
	if (i == ARRAY_SIZE(cache_policies))
		printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
119 120 121 122
	if (cpu_architecture() >= CPU_ARCH_ARMv6) {
		printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
		cachepolicy = CPOLICY_WRITEBACK;
	}
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
	flush_cache_all();
	set_cr(cr_alignment);
}
__early_param("cachepolicy=", early_cachepolicy);

static void __init early_nocache(char **__unused)
{
	char *p = "buffered";
	printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
	early_cachepolicy(&p);
}
__early_param("nocache", early_nocache);

static void __init early_nowrite(char **__unused)
{
	char *p = "uncached";
	printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
	early_cachepolicy(&p);
}
__early_param("nowb", early_nowrite);

static void __init early_ecc(char **p)
{
	if (memcmp(*p, "on", 2) == 0) {
		ecc_mask = PMD_PROTECTION;
		*p += 2;
	} else if (memcmp(*p, "off", 3) == 0) {
		ecc_mask = 0;
		*p += 3;
	}
}
__early_param("ecc=", early_ecc);

static int __init noalign_setup(char *__unused)
{
	cr_alignment &= ~CR_A;
	cr_no_alignment &= ~CR_A;
	set_cr(cr_alignment);
	return 1;
}
__setup("noalign", noalign_setup);

165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
#ifndef CONFIG_SMP
void adjust_cr(unsigned long mask, unsigned long set)
{
	unsigned long flags;

	mask &= ~CR_A;

	set &= mask;

	local_irq_save(flags);

	cr_no_alignment = (cr_no_alignment & ~mask) | set;
	cr_alignment = (cr_alignment & ~mask) | set;

	set_cr((get_cr() & ~mask) | set);

	local_irq_restore(flags);
}
#endif

185
#define PROT_PTE_DEVICE		L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_WRITE
186
#define PROT_SECT_DEVICE	PMD_TYPE_SECT|PMD_SECT_AP_WRITE
187

188
static struct mem_type mem_types[] = {
189
	[MT_DEVICE] = {		  /* Strongly ordered / ARMv6 shared device */
190 191
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
				  L_PTE_SHARED,
192
		.prot_l1	= PMD_TYPE_TABLE,
193
		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_S,
194 195 196
		.domain		= DOMAIN_IO,
	},
	[MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
197
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
198
		.prot_l1	= PMD_TYPE_TABLE,
199
		.prot_sect	= PROT_SECT_DEVICE,
200 201 202
		.domain		= DOMAIN_IO,
	},
	[MT_DEVICE_CACHED] = {	  /* ioremap_cached */
203
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
204 205 206 207
		.prot_l1	= PMD_TYPE_TABLE,
		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_WB,
		.domain		= DOMAIN_IO,
	},	
208
	[MT_DEVICE_WC] = {	/* ioremap_wc */
209
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
210
		.prot_l1	= PMD_TYPE_TABLE,
211
		.prot_sect	= PROT_SECT_DEVICE,
212
		.domain		= DOMAIN_IO,
213
	},
214 215 216 217 218 219
	[MT_UNCACHED] = {
		.prot_pte	= PROT_PTE_DEVICE,
		.prot_l1	= PMD_TYPE_TABLE,
		.prot_sect	= PMD_TYPE_SECT | PMD_SECT_XN,
		.domain		= DOMAIN_IO,
	},
220
	[MT_CACHECLEAN] = {
221
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
222 223 224
		.domain    = DOMAIN_KERNEL,
	},
	[MT_MINICLEAN] = {
225
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
		.domain    = DOMAIN_KERNEL,
	},
	[MT_LOW_VECTORS] = {
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
				L_PTE_EXEC,
		.prot_l1   = PMD_TYPE_TABLE,
		.domain    = DOMAIN_USER,
	},
	[MT_HIGH_VECTORS] = {
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
				L_PTE_USER | L_PTE_EXEC,
		.prot_l1   = PMD_TYPE_TABLE,
		.domain    = DOMAIN_USER,
	},
	[MT_MEMORY] = {
241
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
242 243 244
		.domain    = DOMAIN_KERNEL,
	},
	[MT_ROM] = {
245
		.prot_sect = PMD_TYPE_SECT,
246 247
		.domain    = DOMAIN_KERNEL,
	},
248 249 250 251
	[MT_MEMORY_NONCACHED] = {
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
		.domain    = DOMAIN_KERNEL,
	},
252 253
};

254 255 256 257
const struct mem_type *get_mem_type(unsigned int type)
{
	return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
}
258
EXPORT_SYMBOL(get_mem_type);
259

260 261 262 263 264 265 266
/*
 * Adjust the PMD section entries according to the CPU in use.
 */
static void __init build_mem_type_table(void)
{
	struct cachepolicy *cp;
	unsigned int cr = get_cr();
267
	unsigned int user_pgprot, kern_pgprot, vecs_pgprot;
268 269 270
	int cpu_arch = cpu_architecture();
	int i;

271
	if (cpu_arch < CPU_ARCH_ARMv6) {
272
#if defined(CONFIG_CPU_DCACHE_DISABLE)
273 274
		if (cachepolicy > CPOLICY_BUFFERED)
			cachepolicy = CPOLICY_BUFFERED;
275
#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
276 277
		if (cachepolicy > CPOLICY_WRITETHROUGH)
			cachepolicy = CPOLICY_WRITETHROUGH;
278
#endif
279
	}
280 281 282 283 284
	if (cpu_arch < CPU_ARCH_ARMv5) {
		if (cachepolicy >= CPOLICY_WRITEALLOC)
			cachepolicy = CPOLICY_WRITEBACK;
		ecc_mask = 0;
	}
285 286 287
#ifdef CONFIG_SMP
	cachepolicy = CPOLICY_WRITEALLOC;
#endif
288

289
	/*
290 291 292
	 * Strip out features not present on earlier architectures.
	 * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
	 * without extended page tables don't have the 'Shared' bit.
293
	 */
294 295 296 297 298 299
	if (cpu_arch < CPU_ARCH_ARMv5)
		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
			mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
	if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
			mem_types[i].prot_sect &= ~PMD_SECT_S;
300 301

	/*
302 303 304
	 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
	 * "update-able on write" bit on ARM610).  However, Xscale and
	 * Xscale3 require this bit to be cleared.
305
	 */
306
	if (cpu_is_xscale() || cpu_is_xsc3()) {
307
		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
308
			mem_types[i].prot_sect &= ~PMD_BIT4;
309 310 311 312
			mem_types[i].prot_l1 &= ~PMD_BIT4;
		}
	} else if (cpu_arch < CPU_ARCH_ARMv6) {
		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
313 314
			if (mem_types[i].prot_l1)
				mem_types[i].prot_l1 |= PMD_BIT4;
315 316 317 318
			if (mem_types[i].prot_sect)
				mem_types[i].prot_sect |= PMD_BIT4;
		}
	}
319

320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
	/*
	 * Mark the device areas according to the CPU/architecture.
	 */
	if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
		if (!cpu_is_xsc3()) {
			/*
			 * Mark device regions on ARMv6+ as execute-never
			 * to prevent speculative instruction fetches.
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
		}
		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
			/*
			 * For ARMv7 with TEX remapping,
			 * - shared device is SXCB=1100
			 * - nonshared device is SXCB=0100
			 * - write combine device mem is SXCB=0001
			 * (Uncached Normal memory)
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
		} else if (cpu_is_xsc3()) {
			/*
			 * For Xscale3,
			 * - shared device is TEXCB=00101
			 * - nonshared device is TEXCB=01000
			 * - write combine device mem is TEXCB=00100
			 * (Inner/Outer Uncacheable in xsc3 parlance)
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
		} else {
			/*
			 * For ARMv6 and ARMv7 without TEX remapping,
			 * - shared device is TEXCB=00001
			 * - nonshared device is TEXCB=01000
			 * - write combine device mem is TEXCB=00100
			 * (Uncached Normal in ARMv6 parlance).
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
		}
	} else {
		/*
		 * On others, write combining is "Uncached/Buffered"
		 */
		mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
	}

	/*
	 * Now deal with the memory-type mappings
	 */
378
	cp = &cache_policies[cachepolicy];
379 380 381 382 383 384 385 386 387
	vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;

#ifndef CONFIG_SMP
	/*
	 * Only use write-through for non-SMP systems
	 */
	if (cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH)
		vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte;
#endif
388 389 390 391 392

	/*
	 * Enable CPU-specific coherency if supported.
	 * (Only available on XSC3 at the moment.)
	 */
393 394
	if (arch_is_coherent() && cpu_is_xsc3())
		mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413

	/*
	 * ARMv6 and above have extended page tables.
	 */
	if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
		/*
		 * Mark cache clean areas and XIP ROM read only
		 * from SVC mode and no access from userspace.
		 */
		mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
		mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;

#ifdef CONFIG_SMP
		/*
		 * Mark memory with the "shared" attribute for SMP systems
		 */
		user_pgprot |= L_PTE_SHARED;
		kern_pgprot |= L_PTE_SHARED;
414
		vecs_pgprot |= L_PTE_SHARED;
415
		mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
416
		mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
417 418 419
#endif
	}

420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
	/*
	 * Non-cacheable Normal - intended for memory areas that must
	 * not cause dirty cache line writebacks when used
	 */
	if (cpu_arch >= CPU_ARCH_ARMv6) {
		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
			/* Non-cacheable Normal is XCB = 001 */
			mem_types[MT_MEMORY_NONCACHED].prot_sect |=
				PMD_SECT_BUFFERED;
		} else {
			/* For both ARMv6 and non-TEX-remapping ARMv7 */
			mem_types[MT_MEMORY_NONCACHED].prot_sect |=
				PMD_SECT_TEX(1);
		}
	} else {
		mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
	}

438 439
	for (i = 0; i < 16; i++) {
		unsigned long v = pgprot_val(protection_map[i]);
440
		protection_map[i] = __pgprot(v | user_pgprot);
441 442
	}

443 444
	mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
	mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
445

446
	pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
	pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
				 L_PTE_DIRTY | L_PTE_WRITE |
				 L_PTE_EXEC | kern_pgprot);

	mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
	mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
	mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
	mem_types[MT_ROM].prot_sect |= cp->pmd;

	switch (cp->pmd) {
	case PMD_SECT_WT:
		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
		break;
	case PMD_SECT_WB:
	case PMD_SECT_WBWA:
		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
		break;
	}
	printk("Memory policy: ECC %sabled, Data cache %s\n",
		ecc_mask ? "en" : "dis", cp->policy);
467 468 469 470 471 472 473 474

	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
		struct mem_type *t = &mem_types[i];
		if (t->prot_l1)
			t->prot_l1 |= PMD_DOMAIN(t->domain);
		if (t->prot_sect)
			t->prot_sect |= PMD_DOMAIN(t->domain);
	}
475 476 477 478
}

#define vectors_base()	(vectors_high() ? 0xffff0000 : 0)

479 480 481
static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
				  unsigned long end, unsigned long pfn,
				  const struct mem_type *type)
482
{
483
	pte_t *pte;
484

485 486 487 488
	if (pmd_none(*pmd)) {
		pte = alloc_bootmem_low_pages(2 * PTRS_PER_PTE * sizeof(pte_t));
		__pmd_populate(pmd, __pa(pte) | type->prot_l1);
	}
489

490 491
	pte = pte_offset_kernel(pmd, addr);
	do {
492
		set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
493 494
		pfn++;
	} while (pte++, addr += PAGE_SIZE, addr != end);
495 496
}

497 498 499
static void __init alloc_init_section(pgd_t *pgd, unsigned long addr,
				      unsigned long end, unsigned long phys,
				      const struct mem_type *type)
500
{
501
	pmd_t *pmd = pmd_offset(pgd, addr);
502

503 504 505 506 507 508 509 510
	/*
	 * Try a section mapping - end, addr and phys must all be aligned
	 * to a section boundary.  Note that PMDs refer to the individual
	 * L1 entries, whereas PGDs refer to a group of L1 entries making
	 * up one logical pointer to an L2 table.
	 */
	if (((addr | end | phys) & ~SECTION_MASK) == 0) {
		pmd_t *p = pmd;
511

512 513 514 515 516 517 518
		if (addr & SECTION_SIZE)
			pmd++;

		do {
			*pmd = __pmd(phys | type->prot_sect);
			phys += SECTION_SIZE;
		} while (pmd++, addr += SECTION_SIZE, addr != end);
519

520 521 522 523 524 525 526 527
		flush_pmd_entry(p);
	} else {
		/*
		 * No need to loop; pte's aren't interested in the
		 * individual L1 entries.
		 */
		alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
	}
528 529
}

530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
static void __init create_36bit_mapping(struct map_desc *md,
					const struct mem_type *type)
{
	unsigned long phys, addr, length, end;
	pgd_t *pgd;

	addr = md->virtual;
	phys = (unsigned long)__pfn_to_phys(md->pfn);
	length = PAGE_ALIGN(md->length);

	if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
		printk(KERN_ERR "MM: CPU does not support supersection "
		       "mapping for 0x%08llx at 0x%08lx\n",
		       __pfn_to_phys((u64)md->pfn), addr);
		return;
	}

	/* N.B.	ARMv6 supersections are only defined to work with domain 0.
	 *	Since domain assignments can in fact be arbitrary, the
	 *	'domain == 0' check below is required to insure that ARMv6
	 *	supersections are only allocated for domain 0 regardless
	 *	of the actual domain assignments in use.
	 */
	if (type->domain) {
		printk(KERN_ERR "MM: invalid domain in supersection "
		       "mapping for 0x%08llx at 0x%08lx\n",
		       __pfn_to_phys((u64)md->pfn), addr);
		return;
	}

	if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
		printk(KERN_ERR "MM: cannot create mapping for "
		       "0x%08llx at 0x%08lx invalid alignment\n",
		       __pfn_to_phys((u64)md->pfn), addr);
		return;
	}

	/*
	 * Shift bits [35:32] of address into bits [23:20] of PMD
	 * (See ARMv6 spec).
	 */
	phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);

	pgd = pgd_offset_k(addr);
	end = addr + length;
	do {
		pmd_t *pmd = pmd_offset(pgd, addr);
		int i;

		for (i = 0; i < 16; i++)
			*pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);

		addr += SUPERSECTION_SIZE;
		phys += SUPERSECTION_SIZE;
		pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
	} while (addr != end);
}

588 589 590 591 592 593 594 595 596
/*
 * Create the page directory entries and any necessary
 * page tables for the mapping specified by `md'.  We
 * are able to cope here with varying sizes and address
 * offsets, and we take full advantage of sections and
 * supersections.
 */
void __init create_mapping(struct map_desc *md)
{
597
	unsigned long phys, addr, length, end;
598
	const struct mem_type *type;
599
	pgd_t *pgd;
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614

	if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
		printk(KERN_WARNING "BUG: not creating mapping for "
		       "0x%08llx at 0x%08lx in user region\n",
		       __pfn_to_phys((u64)md->pfn), md->virtual);
		return;
	}

	if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
	    md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
		printk(KERN_WARNING "BUG: mapping for 0x%08llx at 0x%08lx "
		       "overlaps vmalloc space\n",
		       __pfn_to_phys((u64)md->pfn), md->virtual);
	}

615
	type = &mem_types[md->type];
616 617 618 619

	/*
	 * Catch 36-bit addresses
	 */
620 621 622
	if (md->pfn >= 0x100000) {
		create_36bit_mapping(md, type);
		return;
623 624
	}

625
	addr = md->virtual & PAGE_MASK;
626
	phys = (unsigned long)__pfn_to_phys(md->pfn);
627
	length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
628

629
	if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
630 631
		printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not "
		       "be mapped using pages, ignoring.\n",
632
		       __pfn_to_phys(md->pfn), addr);
633 634 635
		return;
	}

636 637 638 639
	pgd = pgd_offset_k(addr);
	end = addr + length;
	do {
		unsigned long next = pgd_addr_end(addr, end);
640

641
		alloc_init_section(pgd, addr, next, phys, type);
642

643 644 645
		phys += next - addr;
		addr = next;
	} while (pgd++, addr != end);
646 647 648 649 650 651 652 653 654 655 656 657 658
}

/*
 * Create the architecture specific mappings
 */
void __init iotable_init(struct map_desc *io_desc, int nr)
{
	int i;

	for (i = 0; i < nr; i++)
		create_mapping(io_desc + i);
}

659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
static unsigned long __initdata vmalloc_reserve = SZ_128M;

/*
 * vmalloc=size forces the vmalloc area to be exactly 'size'
 * bytes. This can be used to increase (or decrease) the vmalloc
 * area - the default is 128m.
 */
static void __init early_vmalloc(char **arg)
{
	vmalloc_reserve = memparse(*arg, arg);

	if (vmalloc_reserve < SZ_16M) {
		vmalloc_reserve = SZ_16M;
		printk(KERN_WARNING
			"vmalloc area too small, limiting to %luMB\n",
			vmalloc_reserve >> 20);
	}
676 677 678 679 680 681 682

	if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
		vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
		printk(KERN_WARNING
			"vmalloc area is too big, limiting to %luMB\n",
			vmalloc_reserve >> 20);
	}
683 684 685 686 687
}
__early_param("vmalloc=", early_vmalloc);

#define VMALLOC_MIN	(void *)(VMALLOC_END - vmalloc_reserve)

688
static void __init sanity_check_meminfo(void)
689
{
690
	int i, j;
691

692
	for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
693 694
		struct membank *bank = &meminfo.bank[j];
		*bank = meminfo.bank[i];
695

696 697 698 699 700 701 702 703 704 705
#ifdef CONFIG_HIGHMEM
		/*
		 * Split those memory banks which are partially overlapping
		 * the vmalloc area greatly simplifying things later.
		 */
		if (__va(bank->start) < VMALLOC_MIN &&
		    bank->size > VMALLOC_MIN - __va(bank->start)) {
			if (meminfo.nr_banks >= NR_BANKS) {
				printk(KERN_CRIT "NR_BANKS too low, "
						 "ignoring high memory\n");
706 707 708 709
			} else if (cache_is_vipt_aliasing()) {
				printk(KERN_CRIT "HIGHMEM is not yet supported "
						 "with VIPT aliasing cache, "
						 "ignoring high memory\n");
710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
			} else {
				memmove(bank + 1, bank,
					(meminfo.nr_banks - i) * sizeof(*bank));
				meminfo.nr_banks++;
				i++;
				bank[1].size -= VMALLOC_MIN - __va(bank->start);
				bank[1].start = __pa(VMALLOC_MIN - 1) + 1;
				j++;
			}
			bank->size = VMALLOC_MIN - __va(bank->start);
		}
#else
		/*
		 * Check whether this memory bank would entirely overlap
		 * the vmalloc area.
		 */
726
		if (__va(bank->start) >= VMALLOC_MIN ||
727
		    __va(bank->start) < (void *)PAGE_OFFSET) {
728 729 730 731 732
			printk(KERN_NOTICE "Ignoring RAM at %.8lx-%.8lx "
			       "(vmalloc region overlap).\n",
			       bank->start, bank->start + bank->size - 1);
			continue;
		}
733

734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
		/*
		 * Check whether this memory bank would partially overlap
		 * the vmalloc area.
		 */
		if (__va(bank->start + bank->size) > VMALLOC_MIN ||
		    __va(bank->start + bank->size) < __va(bank->start)) {
			unsigned long newsize = VMALLOC_MIN - __va(bank->start);
			printk(KERN_NOTICE "Truncating RAM at %.8lx-%.8lx "
			       "to -%.8lx (vmalloc region overlap).\n",
			       bank->start, bank->start + bank->size - 1,
			       bank->start + newsize - 1);
			bank->size = newsize;
		}
#endif
		j++;
749
	}
750
	meminfo.nr_banks = j;
751 752
}

753
static inline void prepare_page_table(void)
754 755 756 757 758 759
{
	unsigned long addr;

	/*
	 * Clear out all the mappings below the kernel image.
	 */
760
	for (addr = 0; addr < MODULES_VADDR; addr += PGDIR_SIZE)
761 762 763 764
		pmd_clear(pmd_off_k(addr));

#ifdef CONFIG_XIP_KERNEL
	/* The XIP kernel is mapped in the module area -- skip over it */
R
Russell King 已提交
765
	addr = ((unsigned long)_etext + PGDIR_SIZE - 1) & PGDIR_MASK;
766 767 768 769 770 771 772 773
#endif
	for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE)
		pmd_clear(pmd_off_k(addr));

	/*
	 * Clear out all the kernel space mappings, except for the first
	 * memory bank, up to the end of the vmalloc region.
	 */
774
	for (addr = __phys_to_virt(bank_phys_end(&meminfo.bank[0]));
775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
	     addr < VMALLOC_END; addr += PGDIR_SIZE)
		pmd_clear(pmd_off_k(addr));
}

/*
 * Reserve the various regions of node 0
 */
void __init reserve_node_zero(pg_data_t *pgdat)
{
	unsigned long res_size = 0;

	/*
	 * Register the kernel text and data with bootmem.
	 * Note that this can only be in node 0.
	 */
#ifdef CONFIG_XIP_KERNEL
R
Russell King 已提交
791
	reserve_bootmem_node(pgdat, __pa(_data), _end - _data,
792
			BOOTMEM_DEFAULT);
793
#else
R
Russell King 已提交
794
	reserve_bootmem_node(pgdat, __pa(_stext), _end - _stext,
795
			BOOTMEM_DEFAULT);
796 797 798 799 800 801 802
#endif

	/*
	 * Reserve the page tables.  These are already in use,
	 * and can only be in node 0.
	 */
	reserve_bootmem_node(pgdat, __pa(swapper_pg_dir),
803
			     PTRS_PER_PGD * sizeof(pgd_t), BOOTMEM_DEFAULT);
804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822

	/*
	 * Hmm... This should go elsewhere, but we really really need to
	 * stop things allocating the low memory; ideally we need a better
	 * implementation of GFP_DMA which does not assume that DMA-able
	 * memory starts at zero.
	 */
	if (machine_is_integrator() || machine_is_cintegrator())
		res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;

	/*
	 * These should likewise go elsewhere.  They pre-reserve the
	 * screen memory region at the start of main system memory.
	 */
	if (machine_is_edb7211())
		res_size = 0x00020000;
	if (machine_is_p720t())
		res_size = 0x00014000;

823 824 825
	/* H1940 and RX3715 need to reserve this for suspend */

	if (machine_is_h1940() || machine_is_rx3715()) {
826 827 828 829
		reserve_bootmem_node(pgdat, 0x30003000, 0x1000,
				BOOTMEM_DEFAULT);
		reserve_bootmem_node(pgdat, 0x30081000, 0x1000,
				BOOTMEM_DEFAULT);
830 831
	}

832 833 834 835 836 837 838
	if (machine_is_palmld() || machine_is_palmtx()) {
		reserve_bootmem_node(pgdat, 0xa0000000, 0x1000,
				BOOTMEM_EXCLUSIVE);
		reserve_bootmem_node(pgdat, 0xa0200000, 0x1000,
				BOOTMEM_EXCLUSIVE);
	}

839 840 841 842 843 844 845
	if (machine_is_treo680()) {
		reserve_bootmem_node(pgdat, 0xa0000000, 0x1000,
				BOOTMEM_EXCLUSIVE);
		reserve_bootmem_node(pgdat, 0xa2000000, 0x1000,
				BOOTMEM_EXCLUSIVE);
	}

846 847 848 849
	if (machine_is_palmt5())
		reserve_bootmem_node(pgdat, 0xa0200000, 0x1000,
				BOOTMEM_EXCLUSIVE);

850 851 852 853 854 855 856 857 858 859 860 861 862 863
	/*
	 * U300 - This platform family can share physical memory
	 * between two ARM cpus, one running Linux and the other
	 * running another OS.
	 */
	if (machine_is_u300()) {
#ifdef CONFIG_MACH_U300_SINGLE_RAM
#if ((CONFIG_MACH_U300_ACCESS_MEM_SIZE & 1) == 1) &&	\
	CONFIG_MACH_U300_2MB_ALIGNMENT_FIX
		res_size = 0x00100000;
#endif
#endif
	}

864 865 866 867 868 869 870 871
#ifdef CONFIG_SA1111
	/*
	 * Because of the SA1111 DMA bug, we want to preserve our
	 * precious DMA-able memory...
	 */
	res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
#endif
	if (res_size)
872 873
		reserve_bootmem_node(pgdat, PHYS_OFFSET, res_size,
				BOOTMEM_DEFAULT);
874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
}

/*
 * Set up device the mappings.  Since we clear out the page tables for all
 * mappings above VMALLOC_END, we will remove any debug device mappings.
 * This means you have to be careful how you debug this function, or any
 * called function.  This means you can't use any function or debugging
 * method which may touch any device, otherwise the kernel _will_ crash.
 */
static void __init devicemaps_init(struct machine_desc *mdesc)
{
	struct map_desc map;
	unsigned long addr;
	void *vectors;

	/*
	 * Allocate the vector page early.
	 */
	vectors = alloc_bootmem_low_pages(PAGE_SIZE);

	for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE)
		pmd_clear(pmd_off_k(addr));

	/*
	 * Map the kernel if it is XIP.
	 * It is always first in the modulearea.
	 */
#ifdef CONFIG_XIP_KERNEL
	map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
903
	map.virtual = MODULES_VADDR;
R
Russell King 已提交
904
	map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959
	map.type = MT_ROM;
	create_mapping(&map);
#endif

	/*
	 * Map the cache flushing regions.
	 */
#ifdef FLUSH_BASE
	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
	map.virtual = FLUSH_BASE;
	map.length = SZ_1M;
	map.type = MT_CACHECLEAN;
	create_mapping(&map);
#endif
#ifdef FLUSH_BASE_MINICACHE
	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
	map.virtual = FLUSH_BASE_MINICACHE;
	map.length = SZ_1M;
	map.type = MT_MINICLEAN;
	create_mapping(&map);
#endif

	/*
	 * Create a mapping for the machine vectors at the high-vectors
	 * location (0xffff0000).  If we aren't using high-vectors, also
	 * create a mapping at the low-vectors virtual address.
	 */
	map.pfn = __phys_to_pfn(virt_to_phys(vectors));
	map.virtual = 0xffff0000;
	map.length = PAGE_SIZE;
	map.type = MT_HIGH_VECTORS;
	create_mapping(&map);

	if (!vectors_high()) {
		map.virtual = 0;
		map.type = MT_LOW_VECTORS;
		create_mapping(&map);
	}

	/*
	 * Ask the machine support to map in the statically mapped devices.
	 */
	if (mdesc->map_io)
		mdesc->map_io();

	/*
	 * Finally flush the caches and tlb to ensure that we're in a
	 * consistent state wrt the writebuffer.  This also ensures that
	 * any write-allocated cache lines in the vector page are written
	 * back.  After this point, we can start to touch devices again.
	 */
	local_flush_tlb_all();
	flush_cache_all();
}

N
Nicolas Pitre 已提交
960 961 962 963 964 965 966 967 968 969 970
static void __init kmap_init(void)
{
#ifdef CONFIG_HIGHMEM
	pmd_t *pmd = pmd_off_k(PKMAP_BASE);
	pte_t *pte = alloc_bootmem_low_pages(2 * PTRS_PER_PTE * sizeof(pte_t));
	BUG_ON(!pmd_none(*pmd) || !pte);
	__pmd_populate(pmd, __pa(pte) | _PAGE_KERNEL_TABLE);
	pkmap_page_table = pte + PTRS_PER_PTE;
#endif
}

971 972 973 974
/*
 * paging_init() sets up the page tables, initialises the zone memory
 * maps, and sets up the zero page, bad page and bad page tables.
 */
975
void __init paging_init(struct machine_desc *mdesc)
976 977 978 979
{
	void *zero_page;

	build_mem_type_table();
980 981 982
	sanity_check_meminfo();
	prepare_page_table();
	bootmem_init();
983
	devicemaps_init(mdesc);
N
Nicolas Pitre 已提交
984
	kmap_init();
985 986 987 988

	top_pmd = pmd_off_k(0xffff0000);

	/*
989 990
	 * allocate the zero page.  Note that this always succeeds and
	 * returns a zeroed result.
991 992 993 994 995
	 */
	zero_page = alloc_bootmem_low_pages(PAGE_SIZE);
	empty_zero_page = virt_to_page(zero_page);
	flush_dcache_page(empty_zero_page);
}
996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026

/*
 * In order to soft-boot, we need to insert a 1:1 mapping in place of
 * the user-mode pages.  This will then ensure that we have predictable
 * results when turning the mmu off
 */
void setup_mm_for_reboot(char mode)
{
	unsigned long base_pmdval;
	pgd_t *pgd;
	int i;

	if (current->mm && current->mm->pgd)
		pgd = current->mm->pgd;
	else
		pgd = init_mm.pgd;

	base_pmdval = PMD_SECT_AP_WRITE | PMD_SECT_AP_READ | PMD_TYPE_SECT;
	if (cpu_architecture() <= CPU_ARCH_ARMv5TEJ && !cpu_is_xscale())
		base_pmdval |= PMD_BIT4;

	for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++, pgd++) {
		unsigned long pmdval = (i << PGDIR_SHIFT) | base_pmdval;
		pmd_t *pmd;

		pmd = pmd_off(pgd, i << PGDIR_SHIFT);
		pmd[0] = __pmd(pmdval);
		pmd[1] = __pmd(pmdval + (1 << (PGDIR_SHIFT - 1)));
		flush_pmd_entry(pmd);
	}
}