resnet.py 10.0 KB
Newer Older
L
leiyuning 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
'''resnet'''
import numpy as np
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.ops import operations as P
from mindspore.common.initializer import initializer
from mindspore.common import dtype as mstype
def weight_variable(shape):
    """weight_variable"""
    return initializer('XavierUniform', shape=shape, dtype=mstype.float32)


def weight_variable_uniform(shape):
    """weight_variable_uniform"""
    return initializer('Uniform', shape=shape, dtype=mstype.float32)


def weight_variable_0(shape):
    """weight_variable_0"""
    zeros = np.zeros(shape).astype(np.float32)
    return Tensor(zeros)


def weight_variable_1(shape):
    """weight_variable_1"""
    ones = np.ones(shape).astype(np.float32)
    return Tensor(ones)


def conv3x3(in_channels, out_channels, stride=1, padding=0):
    """3x3 convolution """
    weight_shape = (out_channels, in_channels, 3, 3)
    weight = weight_variable(weight_shape)
    return nn.Conv2d(in_channels, out_channels,
                     kernel_size=3, stride=stride, padding=padding, weight_init=weight, has_bias=False, pad_mode="same")


def conv1x1(in_channels, out_channels, stride=1, padding=0):
    """1x1 convolution"""
    weight_shape = (out_channels, in_channels, 1, 1)
    weight = weight_variable(weight_shape)
    return nn.Conv2d(in_channels, out_channels,
                     kernel_size=1, stride=stride, padding=padding, weight_init=weight, has_bias=False, pad_mode="same")


def conv7x7(in_channels, out_channels, stride=1, padding=0):
    """1x1 convolution"""
    weight_shape = (out_channels, in_channels, 7, 7)
    weight = weight_variable(weight_shape)
    return nn.Conv2d(in_channels, out_channels,
                     kernel_size=7, stride=stride, padding=padding, weight_init=weight, has_bias=False, pad_mode="same")


def bn_with_initialize(out_channels):
    """bn_with_initialize"""
    shape = (out_channels)
    mean = weight_variable_0(shape)
    var = weight_variable_1(shape)
    beta = weight_variable_0(shape)
    gamma = weight_variable_uniform(shape)
    bn = nn.BatchNorm2d(out_channels, momentum=0.99, eps=0.00001, gamma_init=gamma,
                        beta_init=beta, moving_mean_init=mean, moving_var_init=var)
    return bn


def bn_with_initialize_last(out_channels):
    """bn_with_initialize_last"""
    shape = (out_channels)
    mean = weight_variable_0(shape)
    var = weight_variable_1(shape)
    beta = weight_variable_0(shape)
    gamma = weight_variable_uniform(shape)
    bn = nn.BatchNorm2d(out_channels, momentum=0.99, eps=0.00001, gamma_init=gamma,
                        beta_init=beta, moving_mean_init=mean, moving_var_init=var)
    return bn


def fc_with_initialize(input_channels, out_channels):
    """fc_with_initialize"""
    weight_shape = (out_channels, input_channels)
    weight = weight_variable(weight_shape)
    bias_shape = (out_channels)
    bias = weight_variable_uniform(bias_shape)
    return nn.Dense(input_channels, out_channels, weight, bias)


class ResidualBlock(nn.Cell):
    """ResidualBlock"""
    expansion = 4

    def __init__(self,
                 in_channels,
                 out_channels,
                 stride=1):
        """init block"""
        super(ResidualBlock, self).__init__()

        out_chls = out_channels // self.expansion
        self.conv1 = conv1x1(in_channels, out_chls, stride=stride, padding=0)
        self.bn1 = bn_with_initialize(out_chls)

        self.conv2 = conv3x3(out_chls, out_chls, stride=1, padding=0)
        self.bn2 = bn_with_initialize(out_chls)

        self.conv3 = conv1x1(out_chls, out_channels, stride=1, padding=0)
        self.bn3 = bn_with_initialize_last(out_channels)

        self.relu = P.ReLU()
        self.add = P.TensorAdd()

    def construct(self, x):
        """construct"""
        identity = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        out = self.add(out, identity)
        out = self.relu(out)

        return out


class ResidualBlockWithDown(nn.Cell):
    """ResidualBlockWithDown"""
    expansion = 4

    def __init__(self,
                 in_channels,
                 out_channels,
                 stride=1,
                 down_sample=False):
        """init block with down"""
        super(ResidualBlockWithDown, self).__init__()

        out_chls = out_channels // self.expansion
        self.conv1 = conv1x1(in_channels, out_chls, stride=stride, padding=0)
        self.bn1 = bn_with_initialize(out_chls)

        self.conv2 = conv3x3(out_chls, out_chls, stride=1, padding=0)
        self.bn2 = bn_with_initialize(out_chls)

        self.conv3 = conv1x1(out_chls, out_channels, stride=1, padding=0)
        self.bn3 = bn_with_initialize_last(out_channels)

        self.relu = P.ReLU()
        self.down_sample = down_sample

        self.conv_down_sample = conv1x1(in_channels, out_channels, stride=stride, padding=0)
        self.bn_down_sample = bn_with_initialize(out_channels)
        self.add = P.TensorAdd()

    def construct(self, x):
        """construct"""
        identity = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        identity = self.conv_down_sample(identity)
        identity = self.bn_down_sample(identity)

        out = self.add(out, identity)
        out = self.relu(out)

        return out


class MakeLayer0(nn.Cell):
    """MakeLayer0"""

    def __init__(self, block, in_channels, out_channels, stride):
        """init"""
        super(MakeLayer0, self).__init__()
        self.a = ResidualBlockWithDown(in_channels, out_channels, stride=1, down_sample=True)
        self.b = block(out_channels, out_channels, stride=stride)
        self.c = block(out_channels, out_channels, stride=1)

    def construct(self, x):
        """construct"""
        x = self.a(x)
        x = self.b(x)
        x = self.c(x)

        return x


class MakeLayer1(nn.Cell):
    """MakeLayer1"""

    def __init__(self, block, in_channels, out_channels, stride):
        """init"""
        super(MakeLayer1, self).__init__()
        self.a = ResidualBlockWithDown(in_channels, out_channels, stride=stride, down_sample=True)
        self.b = block(out_channels, out_channels, stride=1)
        self.c = block(out_channels, out_channels, stride=1)
        self.d = block(out_channels, out_channels, stride=1)

    def construct(self, x):
        """construct"""
        x = self.a(x)
        x = self.b(x)
        x = self.c(x)
        x = self.d(x)

        return x


class MakeLayer2(nn.Cell):
    """MakeLayer2"""

    def __init__(self, block, in_channels, out_channels, stride):
        """init"""
        super(MakeLayer2, self).__init__()
        self.a = ResidualBlockWithDown(in_channels, out_channels, stride=stride, down_sample=True)
        self.b = block(out_channels, out_channels, stride=1)
        self.c = block(out_channels, out_channels, stride=1)
        self.d = block(out_channels, out_channels, stride=1)
        self.e = block(out_channels, out_channels, stride=1)
        self.f = block(out_channels, out_channels, stride=1)

    def construct(self, x):
        """construct"""
        x = self.a(x)
        x = self.b(x)
        x = self.c(x)
        x = self.d(x)
        x = self.e(x)
        x = self.f(x)

        return x


class MakeLayer3(nn.Cell):
    """MakeLayer3"""

    def __init__(self, block, in_channels, out_channels, stride):
        """init"""
        super(MakeLayer3, self).__init__()
        self.a = ResidualBlockWithDown(in_channels, out_channels, stride=stride, down_sample=True)
        self.b = block(out_channels, out_channels, stride=1)
        self.c = block(out_channels, out_channels, stride=1)

    def construct(self, x):
        """construct"""
        x = self.a(x)
        x = self.b(x)
        x = self.c(x)

        return x


class ResNet(nn.Cell):
    """ResNet"""

    def __init__(self, block, num_classes=100, batch_size=32):
        """init"""
        super(ResNet, self).__init__()
        self.batch_size = batch_size
        self.num_classes = num_classes

        self.conv1 = conv7x7(3, 64, stride=2, padding=0)

        self.bn1 = bn_with_initialize(64)
        self.relu = P.ReLU()
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, pad_mode="same")

        self.layer1 = MakeLayer0(block, in_channels=64, out_channels=256, stride=1)
        self.layer2 = MakeLayer1(block, in_channels=256, out_channels=512, stride=2)
        self.layer3 = MakeLayer2(block, in_channels=512, out_channels=1024, stride=2)
        self.layer4 = MakeLayer3(block, in_channels=1024, out_channels=2048, stride=2)

        self.pool = P.ReduceMean(keep_dims=True)
        self.squeeze = P.Squeeze(axis=(2, 3))
        self.fc = fc_with_initialize(512 * block.expansion, num_classes)

    def construct(self, x):
        """construct"""
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)

        x = self.pool(x, (2, 3))
        x = self.squeeze(x)
        x = self.fc(x)
        return x


def resnet50(batch_size, num_classes):
    """create resnet50"""
    return ResNet(ResidualBlock, num_classes, batch_size)