tensor_manip.cpp 9.8 KB
Newer Older
1
/**
M
Megvii Engine Team 已提交
2 3
 * \file imperative/src/impl/ops/tensor_manip.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
4
 *
5
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
6
 *
M
Megvii Engine Team 已提交
7 8 9
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
10 11
 */

12
#include "megbrain/imperative/ops/autogen.h"
13 14
#include "megbrain/imperative/ops/opr_attr.h"
#include "megbrain/opr/tensor_manip.h"
15 16 17

#include "../async_releaser.h"
#include "../dnn_op_helper.h"
18 19 20 21
#include "../op_trait.h"

namespace mgb::imperative {

22
namespace get_var_shape {
23 24 25
cg::OperatorNodeBase* apply_on_var_node(
        const OpDef& def,
        const VarNodeArray& inputs) {
26
    auto&& op_def = def.cast_final_safe<GetVarShape>();
27 28
    OperatorNodeConfig config{op_def.make_name()};
    return opr::GetVarShape::make(inputs, op_def.param(), config).node()->owner_opr();
29 30
}

31
DispatchMode decide_dispatch_mode(
32
        const OpDef& def,
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
        const SmallVector<LogicalTensorDesc>& inputs) {
    bool host_computable = true;
    for (auto&& inp : inputs) {
        // FIXME(czh): remove value chech after proxy graph's
        // apply_on_device_tensornd is supported and output Tensor
        // is made before add_task.
        // then if layout is valid, ptr->layout must be ready
        if (inp.value.empty() || inp.value.layout().ndim == 0) {
            host_computable = false;
            break;
        }
    }
    return host_computable ? DEFAULT_CPU : KERNEL;
}

void apply_on_device_tensornd(
        const OpDef& def,
        const SmallVector<DeviceTensorND>& inputs,
        SmallVector<DeviceTensorND>* outputs) {
52
    auto&& op_def = def.cast_final_safe<GetVarShape>();
53 54
    mgb_assert(inputs.size() == 1, "GetVarShape take 1 input, got %lu", inputs.size());
    auto&& inp = inputs[0];
55
    auto&& shp = inp.layout();
56
    mgb_assert(shp.ndim != 0, "input shape invalid");
57 58 59
    mgb_assert((*outputs)[0].comp_node() == CompNode::default_cpu(),
        "GetVarShape's apply_on_device_tensornd should receive default_cpu outputs.");

60
    HostTensorND hv;
61 62
    if (op_def.axis == opr::GetVarShape::Param::INVALID_AXIS) {
        hv = HostTensorND(CompNode::default_cpu(), {shp.ndim}, dtype::Int32());
63 64 65 66 67
        auto* ptr = hv.ptr<dt_int32>();
        for (size_t i = 0; i < shp.ndim; ++i) {
            ptr[i] = shp.shape[i];
        }
    }else{
68 69 70 71 72
        int32_t axis = op_def.axis;
        if (axis < 0) {
            axis += shp.ndim;
        }
        mgb_assert(axis >= 0 && axis < (int32_t)shp.ndim);
73
        hv = HostTensorND(CompNode::default_cpu(), {1}, dtype::Int32());
74
        auto* ptr = hv.ptr<dt_int32>();
75
        ptr[0] = shp.shape[axis];
76
    }
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
    (*outputs)[0] = DeviceTensorND::make_proxy(hv);
}

SmallVector<TensorPtr> apply_on_physical_tensor(
        const OpDef& def,
        const SmallVector<TensorPtr>& inputs) {
    SmallVector<DeviceTensorND> input_tensornds;
    input_tensornds.reserve(inputs.size());
    for (auto&& inp : inputs) {
        input_tensornds.push_back(inp->dev_tensor());
    }
    SmallVector<DeviceTensorND> output_tensornds = {{CompNode::default_cpu(), dtype::Int32()}};

    apply_on_device_tensornd(def, input_tensornds, &output_tensornds);

    // restore to input comp_node
    HostTensorND host_tensornd = HostTensorND::make_proxy(output_tensornds[0])
        .proxy_to_comp_node(inputs[0]->comp_node());
    return {Tensor::make(std::move(host_tensornd))};
96 97
}

98
std::tuple<SmallVector<LogicalTensorDesc>, bool> infer_output_attrs_fallible(
99 100
        const OpDef& def,
        const SmallVector<LogicalTensorDesc>& inputs) {
101
    auto&& op_def = def.cast_final_safe<GetVarShape>();
102 103 104
    mgb_assert(inputs.size() == 1, "GetVarShape take 1 input, got %lu", inputs.size());
    auto&& desc = inputs[0];
    if (!desc.layout.ndim) {
105
        return {{{TensorLayout(dtype::Int32()), desc.comp_node}}, false};
106
    }
107
    DeviceTensorND value;
108
    if (op_def.axis == opr::GetVarShape::Param::INVALID_AXIS) {
109 110 111 112 113 114
        value = DeviceTensorND(CompNode::default_cpu(), {desc.layout.ndim}, dtype::Int32());
        auto* ptr = value.ptr<dt_int32>();
        for (size_t i = 0; i < desc.layout.ndim; ++i) {
            ptr[i] = desc.layout[i];
        }
    }else{
115 116 117 118 119
        int32_t axis = op_def.axis;
        if (axis < 0) {
            axis += desc.layout.ndim;
        }
        mgb_assert(axis >= 0 && axis < (int32_t)desc.layout.ndim);
120 121
        value = DeviceTensorND(CompNode::default_cpu(), {1}, dtype::Int32());
        auto* ptr = value.ptr<dt_int32>();
122
        ptr[0] = desc.layout[axis];
123
    }
124
    return {{{value.layout(), desc.comp_node, std::move(value)}}, true};
125 126 127 128
}

std::shared_ptr<OpDef> make_from_op_node(cg::OperatorNodeBase* node_) {
    auto* node = &node_->cast_final_safe<opr::GetVarShape>();
129
    return GetVarShape::make(node->param());
130 131 132 133
}

OP_TRAIT_REG(GetVarShape, GetVarShape, opr::GetVarShape)
    .make_from_op_node(make_from_op_node)
134
    .decide_dispatch_mode(decide_dispatch_mode)
135 136
    .infer_output_attrs_fallible(infer_output_attrs_fallible)
    .apply_on_var_node(apply_on_var_node)
137
    .apply_on_device_tensornd(apply_on_device_tensornd)
138 139
    .apply_on_physical_tensor(apply_on_physical_tensor)
    .fallback();
140
} // get_var_shape
141

142
namespace param_pack {
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
TensorShapeArray get_shapes(const std::vector<std::vector<size_t>>& shapes) {
    TensorShapeArray ret;
    for (auto&& i:shapes) {
        SmallVector<size_t> shape(i.begin(), i.end());
        TensorShape shp(shape);
        ret.push_back(shp);
    }
    return ret;
}

cg::OperatorNodeBase* param_pack_split_apply_on_var_node(
        const OpDef& def, const VarNodeArray& inputs) {
    auto&& param = def.cast_final_safe<ParamPackSplit>();
    auto&& graph = inputs[0]->owner_graph();

    auto&& shapes = get_shapes(param.shapes);
159
    OperatorNodeConfig config(param.make_name());
160 161 162 163 164 165 166 167 168
    cg::OperatorNodeBase* opr =
            graph->insert_opr(std::make_unique<mgb::opr::ParamPackSplit>(
                    inputs[0], param.offsets, shapes, config));
    return opr;
}

SmallVector<TensorPtr> param_pack_split_apply_on_physical_tensor(
        const OpDef& def,
        const SmallVector<TensorPtr>& inputs) {
169
    auto&& param = def.cast_final_safe<ParamPackSplit>();
170 171 172 173 174 175 176 177 178
    mgb_assert(inputs.size() == 1, "ParamPackSplit take 1 input, got %lu", inputs.size());
    auto&& inp = inputs[0];
    auto&& shp = inp->layout();
    mgb_assert(shp.ndim == 1, "ParamPackSplit input shape invalid, ndim should be 1");
    mgb_assert(param.shapes.size() * 2 == param.offsets.size());
    SmallVector<TensorPtr> ret;
    auto&& shapes = get_shapes(param.shapes);
    size_t dtype_size = inputs[0]->layout().dtype.size();
    for (size_t i = 0; i < shapes.size(); ++i) {
179
        // memory forward
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
        ret.push_back(
                inputs[0]->sub(param.offsets[i * 2] * dtype_size, shapes[i]));
    }
    return ret;
}

OP_TRAIT_REG(ParamPackSplit, ParamPackSplit, mgb::opr::ParamPackSplit)
        .apply_on_var_node(param_pack_split_apply_on_var_node)
        .apply_on_physical_tensor(param_pack_split_apply_on_physical_tensor)
        .fallback();

cg::OperatorNodeBase* param_pack_concat_apply_on_var_node(
        const OpDef& def, const VarNodeArray& inputs) {
    auto&& param = def.cast_final_safe<ParamPackConcat>();
    auto&& graph = inputs[0]->owner_graph();

    VarNodeArray inps(inputs.begin(), inputs.end() - 1);
197
    OperatorNodeConfig config{param.make_name()};
198 199 200 201 202 203
    cg::OperatorNodeBase* opr =
            graph->insert_opr(std::make_unique<mgb::opr::ParamPackConcat>(
                    inps, inputs.back(), param.offsets, config));
    return opr;
}

204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
SmallVector<TensorPtr> param_pack_concat_apply_on_physical_tensor(
        const OpDef& def,
        const SmallVector<TensorPtr>& inputs) {
    def.cast_final_safe<ParamPackConcat>();
    mgb_assert(inputs.size() > 1, "param_pack should have at least one input");
    auto comp_node = inputs.front()->comp_node();
    auto dtype = inputs.front()->dtype();
    size_t nr_inputs = inputs.size() - 1;
    size_t nr_elems = 0;
    for (size_t i = 0; i < nr_inputs; ++i) {
        auto& input = inputs[i];
        mgb_assert(comp_node == input->comp_node(), "inputs for param_pack_concat must in same comp_node");
        mgb_assert(dtype == input->dtype(), "inputs for param_pack_concat must have same dtype");
        nr_elems += input->layout().total_nr_elems();
    }
    auto dest_layout = TensorLayout({nr_elems}, dtype);
    auto output = Tensor::make(dest_layout, comp_node);
    auto caller = DnnOprCaller<megdnn::ParamPackConcat>(comp_node);
    size_t srcs_size = sizeof(void*)*nr_inputs;
    void** srcs_raw_ptr = (void**)comp_node.alloc_host(srcs_size);
    std::shared_ptr<dt_byte> srcs_ptr = {(dt_byte*)srcs_raw_ptr, [comp_node](dt_byte* ptr){
        comp_node.free_host(ptr);
    }};
    TensorLayout srcs_layout = TensorLayout{{nr_inputs}, dtype::Int32()};
    size_t ws_size;
    {
        TensorShapeArray src_shapes;
        for (size_t i = 0; i < nr_inputs; ++i) {
            src_shapes.push_back(inputs[i]->shape());
        }
        ws_size = caller.op->get_workspace_in_bytes(src_shapes, inputs.back()->shape(), TensorShape{});
    }
    for (size_t i = 0; i < nr_inputs; ++i) {
        srcs_raw_ptr[i] = inputs[i]->dev_tensor().as_megdnn().raw_ptr;
    }
    HostTensorStorage srcs_storage;
    srcs_storage.reset(comp_node, srcs_size, srcs_ptr);
    caller.op->exec({srcs_raw_ptr, srcs_layout}, inputs.back()->dev_tensor().as_megdnn(), output->dev_tensor().as_megdnn(),
            caller.create_workspace({{ws_size}, dtype::Byte()}));
    AsyncReleaser::inst()->add(HostTensorND{comp_node, srcs_layout}.storage(srcs_storage));
    return { output };
}

247 248
OP_TRAIT_REG(ParamPackConcat, ParamPackConcat, mgb::opr::ParamPackConcat)
        .apply_on_var_node(param_pack_concat_apply_on_var_node)
249
        .apply_on_physical_tensor(param_pack_concat_apply_on_physical_tensor)
250
        .fallback();
251
} // param_pack
252 253

} // namespace mgb::imperative