tensor_manip.cpp 5.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
/**
 * \file src/core/include/megbrain/imperative.h
 *
 * This file is part of MegBrain, a deep learning framework developed by Megvii.
 *
 * \copyright Copyright (c) 2014-2019 Megvii Inc. All rights reserved.
 *
 */

#include "megbrain/imperative/ops/tensor_manip.h"
#include "megbrain/imperative/ops/opr_attr.h"
#include "megbrain/opr/tensor_manip.h"
#include "../op_trait.h"

namespace mgb::imperative {
namespace {

cg::OperatorNodeBase* apply_on_var_node(
        const OpDef& def,
        const VarNodeArray& inputs) {
    def.cast_final_safe<GetVarShape>();
    return opr::GetVarShape::make(inputs).node()->owner_opr();
}

SmallVector<TensorPtr> apply_on_physical_tensor(
        const OpDef& def,
        const SmallVector<TensorPtr>& inputs) {
    def.cast_final_safe<GetVarShape>();
    mgb_assert(inputs.size() == 1, "GetVarShape take 1 input, got %lu", inputs.size());
    auto&& inp = inputs[0];
    auto&& shp = inp->layout();
    mgb_assert(shp.ndim != 0, "input shape invalid");
    HostTensorND hv(inp->comp_node(), {shp.ndim}, dtype::Int32());
    auto* ptr = hv.ptr<dt_int32>();
    for (size_t i = 0; i < shp.ndim; ++i) {
        ptr[i] = shp.shape[i];
    }
    return {Tensor::make(std::move(hv))};
}

SmallVector<LogicalTensorDesc> infer_output_attrs_fallible(
        const OpDef& def,
        const SmallVector<LogicalTensorDesc>& inputs) {
    def.cast_final_safe<GetVarShape>();
    mgb_assert(inputs.size() == 1, "GetVarShape take 1 input, got %lu", inputs.size());
    auto&& desc = inputs[0];
    if (!desc.layout.ndim) {
        return {{TensorLayout(dtype::Int32()), desc.comp_node}};
    }
    DeviceTensorND value(CompNode::default_cpu(), {desc.layout.ndim}, dtype::Int32());
    auto* ptr = value.ptr<dt_int32>();
    for (size_t i = 0; i < desc.layout.ndim; ++i) {
        ptr[i] = desc.layout[i];
    }
    return {{value.layout(), desc.comp_node, std::move(value)}};
}

std::shared_ptr<OpDef> make_from_op_node(cg::OperatorNodeBase* node_) {
    auto* node = &node_->cast_final_safe<opr::GetVarShape>();
    if (node->config().comp_node().size() ||
            node->config().output_dtype().valid() ||
            node->param().axis != opr::GetVarShape::Param::INVALID_AXIS) {
        mgb_log_warn("weird GetVarShape");
        return OpTrait::find_by_typeinfo(OprAttr::typeinfo())->make_from_op_node(node);
    }
    return GetVarShape::make();
}

OP_TRAIT_REG(GetVarShape, GetVarShape, opr::GetVarShape)
    .make_from_op_node(make_from_op_node)
    .infer_output_attrs_fallible(infer_output_attrs_fallible)
    .apply_on_var_node(apply_on_var_node)
    .apply_on_physical_tensor(apply_on_physical_tensor)
    .fallback();

TensorShapeArray get_shapes(const std::vector<std::vector<size_t>>& shapes) {
    TensorShapeArray ret;
    for (auto&& i:shapes) {
        SmallVector<size_t> shape(i.begin(), i.end());
        TensorShape shp(shape);
        ret.push_back(shp);
    }
    return ret;
}

cg::OperatorNodeBase* param_pack_split_apply_on_var_node(
        const OpDef& def, const VarNodeArray& inputs) {
    auto&& param = def.cast_final_safe<ParamPackSplit>();
    auto&& graph = inputs[0]->owner_graph();

    auto&& shapes = get_shapes(param.shapes);
    cg::OperatorNodeConfig config;
    cg::OperatorNodeBase* opr =
            graph->insert_opr(std::make_unique<mgb::opr::ParamPackSplit>(
                    inputs[0], param.offsets, shapes, config));
    return opr;
}

SmallVector<TensorPtr> param_pack_split_apply_on_physical_tensor(
        const OpDef& def,
        const SmallVector<TensorPtr>& inputs) {
    auto param = def.cast_final_safe<ParamPackSplit>();
    mgb_assert(inputs.size() == 1, "ParamPackSplit take 1 input, got %lu", inputs.size());
    auto&& inp = inputs[0];
    auto&& shp = inp->layout();
    mgb_assert(shp.ndim == 1, "ParamPackSplit input shape invalid, ndim should be 1");
    mgb_assert(param.shapes.size() * 2 == param.offsets.size());
    SmallVector<TensorPtr> ret;
    auto&& shapes = get_shapes(param.shapes);
    size_t dtype_size = inputs[0]->layout().dtype.size();
    for (size_t i = 0; i < shapes.size(); ++i) {
        ret.push_back(
                inputs[0]->sub(param.offsets[i * 2] * dtype_size, shapes[i]));
    }
    return ret;
}

OP_TRAIT_REG(ParamPackSplit, ParamPackSplit, mgb::opr::ParamPackSplit)
        .apply_on_var_node(param_pack_split_apply_on_var_node)
        .apply_on_physical_tensor(param_pack_split_apply_on_physical_tensor)
        .fallback();

cg::OperatorNodeBase* param_pack_concat_apply_on_var_node(
        const OpDef& def, const VarNodeArray& inputs) {
    auto&& param = def.cast_final_safe<ParamPackConcat>();
    auto&& graph = inputs[0]->owner_graph();

    VarNodeArray inps(inputs.begin(), inputs.end() - 1);
    cg::OperatorNodeConfig config;
    cg::OperatorNodeBase* opr =
            graph->insert_opr(std::make_unique<mgb::opr::ParamPackConcat>(
                    inps, inputs.back(), param.offsets, config));
    return opr;
}

OP_TRAIT_REG(ParamPackConcat, ParamPackConcat, mgb::opr::ParamPackConcat)
        .apply_on_var_node(param_pack_concat_apply_on_var_node)
        .fallback();
} // namespace

MGB_DYN_TYPE_OBJ_FINAL_IMPL(GetVarShape);
MGB_DYN_TYPE_OBJ_FINAL_IMPL(ParamPackSplit);
MGB_DYN_TYPE_OBJ_FINAL_IMPL(ParamPackConcat);

} // namespace mgb::imperative