/** * \file imperative/src/impl/ops/tensor_manip.cpp * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") * * Copyright (c) 2014-2021 Megvii Inc. All rights reserved. * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. */ #include "megbrain/imperative/ops/autogen.h" #include "megbrain/imperative/ops/opr_attr.h" #include "megbrain/opr/tensor_manip.h" #include "../async_releaser.h" #include "../dnn_op_helper.h" #include "../op_trait.h" namespace mgb::imperative { namespace get_var_shape { cg::OperatorNodeBase* apply_on_var_node( const OpDef& def, const VarNodeArray& inputs) { auto&& op_def = def.cast_final_safe(); OperatorNodeConfig config{op_def.make_name()}; return opr::GetVarShape::make(inputs, op_def.param(), config).node()->owner_opr(); } DispatchMode decide_dispatch_mode( const OpDef& def, const SmallVector& inputs) { bool host_computable = true; for (auto&& inp : inputs) { // FIXME(czh): remove value chech after proxy graph's // apply_on_device_tensornd is supported and output Tensor // is made before add_task. // then if layout is valid, ptr->layout must be ready if (inp.value.empty() || inp.value.layout().ndim == 0) { host_computable = false; break; } } return host_computable ? DEFAULT_CPU : KERNEL; } void apply_on_device_tensornd( const OpDef& def, const SmallVector& inputs, SmallVector* outputs) { auto&& op_def = def.cast_final_safe(); mgb_assert(inputs.size() == 1, "GetVarShape take 1 input, got %lu", inputs.size()); auto&& inp = inputs[0]; auto&& shp = inp.layout(); mgb_assert(shp.ndim != 0, "input shape invalid"); mgb_assert((*outputs)[0].comp_node() == CompNode::default_cpu(), "GetVarShape's apply_on_device_tensornd should receive default_cpu outputs."); HostTensorND hv; if (op_def.axis == opr::GetVarShape::Param::INVALID_AXIS) { hv = HostTensorND(CompNode::default_cpu(), {shp.ndim}, dtype::Int32()); auto* ptr = hv.ptr(); for (size_t i = 0; i < shp.ndim; ++i) { ptr[i] = shp.shape[i]; } }else{ int32_t axis = op_def.axis; if (axis < 0) { axis += shp.ndim; } mgb_assert(axis >= 0 && axis < (int32_t)shp.ndim); hv = HostTensorND(CompNode::default_cpu(), {1}, dtype::Int32()); auto* ptr = hv.ptr(); ptr[0] = shp.shape[axis]; } (*outputs)[0] = DeviceTensorND::make_proxy(hv); } SmallVector apply_on_physical_tensor( const OpDef& def, const SmallVector& inputs) { SmallVector input_tensornds; input_tensornds.reserve(inputs.size()); for (auto&& inp : inputs) { input_tensornds.push_back(inp->dev_tensor()); } SmallVector output_tensornds = {{CompNode::default_cpu(), dtype::Int32()}}; apply_on_device_tensornd(def, input_tensornds, &output_tensornds); // restore to input comp_node HostTensorND host_tensornd = HostTensorND::make_proxy(output_tensornds[0]) .proxy_to_comp_node(inputs[0]->comp_node()); return {Tensor::make(std::move(host_tensornd))}; } std::tuple, bool> infer_output_attrs_fallible( const OpDef& def, const SmallVector& inputs) { auto&& op_def = def.cast_final_safe(); mgb_assert(inputs.size() == 1, "GetVarShape take 1 input, got %lu", inputs.size()); auto&& desc = inputs[0]; if (!desc.layout.ndim) { return {{{TensorLayout(dtype::Int32()), desc.comp_node}}, false}; } DeviceTensorND value; if (op_def.axis == opr::GetVarShape::Param::INVALID_AXIS) { value = DeviceTensorND(CompNode::default_cpu(), {desc.layout.ndim}, dtype::Int32()); auto* ptr = value.ptr(); for (size_t i = 0; i < desc.layout.ndim; ++i) { ptr[i] = desc.layout[i]; } }else{ int32_t axis = op_def.axis; if (axis < 0) { axis += desc.layout.ndim; } mgb_assert(axis >= 0 && axis < (int32_t)desc.layout.ndim); value = DeviceTensorND(CompNode::default_cpu(), {1}, dtype::Int32()); auto* ptr = value.ptr(); ptr[0] = desc.layout[axis]; } return {{{value.layout(), desc.comp_node, std::move(value)}}, true}; } std::shared_ptr make_from_op_node(cg::OperatorNodeBase* node_) { auto* node = &node_->cast_final_safe(); return GetVarShape::make(node->param()); } OP_TRAIT_REG(GetVarShape, GetVarShape, opr::GetVarShape) .make_from_op_node(make_from_op_node) .decide_dispatch_mode(decide_dispatch_mode) .infer_output_attrs_fallible(infer_output_attrs_fallible) .apply_on_var_node(apply_on_var_node) .apply_on_device_tensornd(apply_on_device_tensornd) .apply_on_physical_tensor(apply_on_physical_tensor) .fallback(); } // get_var_shape namespace param_pack { TensorShapeArray get_shapes(const std::vector>& shapes) { TensorShapeArray ret; for (auto&& i:shapes) { SmallVector shape(i.begin(), i.end()); TensorShape shp(shape); ret.push_back(shp); } return ret; } cg::OperatorNodeBase* param_pack_split_apply_on_var_node( const OpDef& def, const VarNodeArray& inputs) { auto&& param = def.cast_final_safe(); auto&& graph = inputs[0]->owner_graph(); auto&& shapes = get_shapes(param.shapes); OperatorNodeConfig config(param.make_name()); cg::OperatorNodeBase* opr = graph->insert_opr(std::make_unique( inputs[0], param.offsets, shapes, config)); return opr; } SmallVector param_pack_split_apply_on_physical_tensor( const OpDef& def, const SmallVector& inputs) { auto&& param = def.cast_final_safe(); mgb_assert(inputs.size() == 1, "ParamPackSplit take 1 input, got %lu", inputs.size()); auto&& inp = inputs[0]; auto&& shp = inp->layout(); mgb_assert(shp.ndim == 1, "ParamPackSplit input shape invalid, ndim should be 1"); mgb_assert(param.shapes.size() * 2 == param.offsets.size()); SmallVector ret; auto&& shapes = get_shapes(param.shapes); size_t dtype_size = inputs[0]->layout().dtype.size(); for (size_t i = 0; i < shapes.size(); ++i) { // memory forward ret.push_back( inputs[0]->sub(param.offsets[i * 2] * dtype_size, shapes[i])); } return ret; } OP_TRAIT_REG(ParamPackSplit, ParamPackSplit, mgb::opr::ParamPackSplit) .apply_on_var_node(param_pack_split_apply_on_var_node) .apply_on_physical_tensor(param_pack_split_apply_on_physical_tensor) .fallback(); cg::OperatorNodeBase* param_pack_concat_apply_on_var_node( const OpDef& def, const VarNodeArray& inputs) { auto&& param = def.cast_final_safe(); auto&& graph = inputs[0]->owner_graph(); VarNodeArray inps(inputs.begin(), inputs.end() - 1); OperatorNodeConfig config{param.make_name()}; cg::OperatorNodeBase* opr = graph->insert_opr(std::make_unique( inps, inputs.back(), param.offsets, config)); return opr; } SmallVector param_pack_concat_apply_on_physical_tensor( const OpDef& def, const SmallVector& inputs) { def.cast_final_safe(); mgb_assert(inputs.size() > 1, "param_pack should have at least one input"); auto comp_node = inputs.front()->comp_node(); auto dtype = inputs.front()->dtype(); size_t nr_inputs = inputs.size() - 1; size_t nr_elems = 0; for (size_t i = 0; i < nr_inputs; ++i) { auto& input = inputs[i]; mgb_assert(comp_node == input->comp_node(), "inputs for param_pack_concat must in same comp_node"); mgb_assert(dtype == input->dtype(), "inputs for param_pack_concat must have same dtype"); nr_elems += input->layout().total_nr_elems(); } auto dest_layout = TensorLayout({nr_elems}, dtype); auto output = Tensor::make(dest_layout, comp_node); auto caller = DnnOprCaller(comp_node); size_t srcs_size = sizeof(void*)*nr_inputs; void** srcs_raw_ptr = (void**)comp_node.alloc_host(srcs_size); std::shared_ptr srcs_ptr = {(dt_byte*)srcs_raw_ptr, [comp_node](dt_byte* ptr){ comp_node.free_host(ptr); }}; TensorLayout srcs_layout = TensorLayout{{nr_inputs}, dtype::Int32()}; size_t ws_size; { TensorShapeArray src_shapes; for (size_t i = 0; i < nr_inputs; ++i) { src_shapes.push_back(inputs[i]->shape()); } ws_size = caller.op->get_workspace_in_bytes(src_shapes, inputs.back()->shape(), TensorShape{}); } for (size_t i = 0; i < nr_inputs; ++i) { srcs_raw_ptr[i] = inputs[i]->dev_tensor().as_megdnn().raw_ptr; } HostTensorStorage srcs_storage; srcs_storage.reset(comp_node, srcs_size, srcs_ptr); caller.op->exec({srcs_raw_ptr, srcs_layout}, inputs.back()->dev_tensor().as_megdnn(), output->dev_tensor().as_megdnn(), caller.create_workspace({{ws_size}, dtype::Byte()})); AsyncReleaser::inst()->add(HostTensorND{comp_node, srcs_layout}.storage(srcs_storage)); return { output }; } OP_TRAIT_REG(ParamPackConcat, ParamPackConcat, mgb::opr::ParamPackConcat) .apply_on_var_node(param_pack_concat_apply_on_var_node) .apply_on_physical_tensor(param_pack_concat_apply_on_physical_tensor) .fallback(); } // param_pack } // namespace mgb::imperative