inference.cpp 189.0 KB
Newer Older
1 2 3 4
/**
 * \file src/gopt/test/inference.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
5
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
6 7 8
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
M
Megvii Engine Team 已提交
9 10
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
 * implied.
11 12
 */

13
#include "megbrain/opr/dnn/local.h"
14 15 16 17
#include "megbrain/test/helper.h"

#include "megbrain/gopt/basic_arith.h"
#include "megbrain/gopt/gtrans.h"
M
Megvii Engine Team 已提交
18
#include "megbrain/gopt/inference.h"
19 20

#include "megbrain/opr/basic_arith_wrapper.h"
M
Megvii Engine Team 已提交
21
#include "megbrain/opr/blas.h"
22 23
#include "megbrain/opr/dnn/batch_norm.h"
#include "megbrain/opr/dnn/convolution.h"
M
Megvii Engine Team 已提交
24
#include "megbrain/opr/dnn/pooling.h"
25
#include "megbrain/opr/imgproc.h"
M
Megvii Engine Team 已提交
26
#include "megbrain/opr/io.h"
27
#include "megbrain/opr/nn_int.h"
28
#include "megbrain/opr/tensor_gen.h"
M
Megvii Engine Team 已提交
29 30
#include "megbrain/opr/tensor_manip.h"
#include "megbrain/opr/utility.h"
31 32

#include "./helper.h"
M
Megvii Engine Team 已提交
33
#include "megbrain/comp_node_env.h"
34 35 36 37

#include "megdnn/tensor_format.h"

#include <random>
38
#include <vector>
39

40 41 42 43
#if MGB_CUDA
#include <cudnn.h>
#endif

44 45 46 47 48 49 50 51 52 53 54 55 56
using namespace mgb;

namespace {
//! find first the operator of specific type; raise exception if not found
template <typename T>
T& find_opr(SymbolVar endpoint) {
    T* found = nullptr;
    auto cb = [&found](cg::OperatorNodeBase* opr) {
        if (!found && opr->same_type<T>()) {
            found = &opr->cast_final_safe<T>();
        }
    };
    cg::DepOprIter{cb}.add(endpoint.node()->owner_opr());
57 58 59 60 61 62 63 64 65 66 67 68 69
    mgb_assert(found, "not found opr from %s", endpoint.node()->name().c_str());
    return *found;
}

template <typename T>
T& find_opr(SymbolVar endpoint, const std::string& node_name) {
    T* found = nullptr;
    auto cb = [&found, &node_name](cg::OperatorNodeBase* opr) {
        if (!found && opr->same_type<T>() && opr->name() == node_name) {
            found = &opr->cast_final_safe<T>();
        }
    };
    cg::DepOprIter{cb}.add(endpoint.node()->owner_opr());
M
Megvii Engine Team 已提交
70 71 72
    mgb_assert(
            found, "not found opr %s from %s", node_name.c_str(),
            endpoint.node()->name().c_str());
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
    return *found;
}

template <typename T>
size_t find_opr_num(SymbolVar endpoint) {
    size_t opr_num = 0;
    auto cb = [&opr_num](cg::OperatorNodeBase* opr) {
        if (opr->same_type<T>()) {
            opr_num++;
        }
    };
    cg::DepOprIter{cb}.add(endpoint.node()->owner_opr());
    return opr_num;
}

class NaiveMegDNNHandleScope {
    int m_orig_level;

public:
    NaiveMegDNNHandleScope()
            : m_orig_level{MegDNNHandle::exchange_default_dbg_level(2)} {
        CompNode::finalize();
    }
    ~NaiveMegDNNHandleScope() {
        auto set = MegDNNHandle::exchange_default_dbg_level(m_orig_level);
        mgb_assert(set == 2);
        CompNode::finalize();
    }
};

#if MGB_CUDA
//! this function is only used in TestGoptInference.EnableCHWN4...
M
Megvii Engine Team 已提交
105
void warp_perspective_mat_gen(HostTensorND& mat, size_t N, size_t INP_H, size_t INP_W) {
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
    static std::mt19937 rng(next_rand_seed());
    auto rand_real = [&](double lo, double hi) {
        return rng() / (std::mt19937::max() + 1.0) * (hi - lo) + lo;
    };
    auto rand_real2 = [&](double range) { return rand_real(-range, range); };
    auto ptr = mat.ptr<float>();
    for (size_t i = 0; i < N; ++i) {
        auto rot = rand_real(0, M_PI * 2), scale = rand_real(0.8, 1.2),
             sheer = rand_real(0.9, 1.1), dy = rand_real2(INP_H * 0.5),
             dx = rand_real2(INP_W * 0.5), ky = rand_real2(0.1 / INP_H),
             kx = rand_real2(0.1 / INP_W), kb = rand_real2(0.1) + 1;
        ptr[0] = ptr[4] = cos(rot) * scale;
        ptr[1] = -(ptr[3] = sin(rot) * scale);
        ptr[3] *= sheer;
        ptr[4] *= sheer;
        ptr[2] = dx;
        ptr[5] = dy;
        ptr[6] = kx;
        ptr[7] = ky;
        ptr[8] = kb;
        ptr += 9;
    }
    mgb_assert(ptr == mat.ptr<float>() + mat.shape().total_nr_elems());
}
#endif
}  // namespace

133 134 135 136 137 138 139 140 141
TEST(TestGoptInference, ParamFuseConstEndPoint) {
    constexpr size_t SIZE = 23;
    HostTensorGenerator<> gen;
    auto host_x = gen({SIZE}), host_y = gen({1}), host_p = gen({1});

    auto graph = ComputingGraph::make();
    graph->options().graph_opt_level = 0;
    auto x = opr::SharedDeviceTensor::make(*graph, *host_x),
         y = opr::SharedDeviceTensor::make(*graph, *host_y),
M
Megvii Engine Team 已提交
142 143
         p = opr::Host2DeviceCopy::make(*graph, host_p), q = p + x, a = y + 3,
         z0 = a + q, z1 = a + 4;
144 145 146 147

    HostTensorND host_z0, host_z1;

    SymbolVar z0_1, z1_1;
M
Megvii Engine Team 已提交
148 149 150 151 152 153 154 155 156
    unpack_vector(
            gopt::GraphOptimizer{}
                    .add_pass<gopt::ParamFusePass>()
                    .apply({{z1, z0}})
                    .endpoint_vars(),
            z1_1, z0_1);

    auto func = graph->compile(
            {make_callback_copy(z0_1, host_z0), make_callback_copy(z1_1, host_z1)});
157 158 159 160 161
    func->to_json()->writeto_fpath(
            output_file("TestGoptInference.ParamFuseEndPoint.json"));
    func->execute();

    int nr_opr = 0;
M
Megvii Engine Team 已提交
162 163 164 165
    func->iter_opr_seq([&](cg::OperatorNodeBase*) {
        ++nr_opr;
        return true;
    });
166 167 168 169 170 171 172
    ASSERT_EQ(8, nr_opr);

    auto px = host_x->ptr<float>(), pz0 = host_z0.ptr<float>();

    auto yv = host_y->ptr<float>()[0], pv = host_p->ptr<float>()[0],
         pz1 = host_z1.ptr<float>()[0];

M
Megvii Engine Team 已提交
173
    for (size_t i = 0; i < SIZE; ++i) {
174 175 176 177 178
        MGB_ASSERT_FLOAT_EQ(px[i] + yv + 3 + pv, pz0[i]);
    }
    MGB_ASSERT_FLOAT_EQ(yv + 7, pz1);
}

179 180 181 182 183 184 185 186 187 188
TEST(TestGoptInference, ParamFuse) {
    constexpr size_t SIZE = 23;
    HostTensorGenerator<> gen;
    auto host_x = gen({SIZE}), host_y = gen({1}), host_p = gen({1});

    auto graph = ComputingGraph::make();
    graph->options().graph_opt_level = 0;
    auto x = opr::SharedDeviceTensor::make(*graph, *host_x),
         y = opr::SharedDeviceTensor::make(*graph, *host_y),
         p = opr::Host2DeviceCopy::make(*graph, host_p),
M
Megvii Engine Team 已提交
189 190
         z = x + y,         // endpoint
            q = x * y + p;  // middle point
191 192

    SymbolVar z1, q1;
M
Megvii Engine Team 已提交
193 194 195 196 197 198
    unpack_vector(
            gopt::GraphOptimizer{}
                    .add_pass<gopt::ParamFusePass>()
                    .apply({{z, q}})
                    .endpoint_vars(),
            z1, q1);
199 200 201

    ASSERT_TRUE(z1.node()->owner_opr()->same_type<opr::SharedDeviceTensor>());
    ASSERT_NE(q1.node()->owner_opr(), q.node()->owner_opr());
M
Megvii Engine Team 已提交
202 203 204
    ASSERT_EQ(
            q1.node()->owner_opr()->dyn_typeinfo(),
            q.node()->owner_opr()->dyn_typeinfo());
205 206 207

    HostTensorND host_z, host_q;
    auto func = graph->compile(
M
Megvii Engine Team 已提交
208
            {make_callback_copy(z1, host_z), make_callback_copy(q1, host_q)});
209 210 211
    func->execute();

    int nr_opr = 0;
M
Megvii Engine Team 已提交
212 213 214 215
    func->iter_opr_seq([&](cg::OperatorNodeBase*) {
        ++nr_opr;
        return true;
    });
216 217
    ASSERT_EQ(6, nr_opr);

M
Megvii Engine Team 已提交
218
    auto px = host_x->ptr<float>(), pz = host_z.ptr<float>(), pq = host_q.ptr<float>();
219
    auto yv = host_y->ptr<float>()[0], pv = host_p->ptr<float>()[0];
M
Megvii Engine Team 已提交
220
    for (size_t i = 0; i < SIZE; ++i) {
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
        MGB_ASSERT_FLOAT_EQ(px[i] + yv, pz[i]);
        MGB_ASSERT_FLOAT_EQ(px[i] * yv + pv, pq[i]);
    }
}

TEST(TestGoptInference, ParamFuseMultiDeviceTensorHolder) {
    constexpr size_t SIZE = 23;
    HostTensorGenerator<> gen;
    auto host_x = gen({SIZE}), host_y = gen({1}), host_p = gen({1});

    auto graph = ComputingGraph::make();
    graph->options().graph_opt_level = 0;
    auto x = opr::SharedDeviceTensor::make(*graph, *host_x),
         y = opr::SharedDeviceTensor::make(*graph, *host_y),
         p = opr::Host2DeviceCopy::make(*graph, host_p),
M
Megvii Engine Team 已提交
236 237
         z = x + y,         //! endpoint
            q = x * y + p;  //! middle point
238 239

    SymbolVar z1, q1;
M
Megvii Engine Team 已提交
240 241 242 243 244 245
    unpack_vector(
            gopt::GraphOptimizer{}
                    .add_pass<gopt::ParamMergePass>()
                    .apply({{z}})
                    .endpoint_vars(),
            z1);
246 247

    ASSERT_TRUE(z1.node()
M
Megvii Engine Team 已提交
248 249 250
                        ->owner_opr()
                        ->input(0)
                        ->owner_opr()
251
                        ->same_type<opr::MultipleDeviceTensorHolder>());
M
Megvii Engine Team 已提交
252 253 254 255 256 257 258
    unpack_vector(
            gopt::GraphOptimizer{}
                    .add_pass<gopt::ParamMergePass>()
                    .add_pass<gopt::ParamFusePass>()
                    .apply({{z, q}})
                    .endpoint_vars(),
            z1, q1);
259 260 261

    ASSERT_TRUE(z1.node()->owner_opr()->same_type<opr::SharedDeviceTensor>());
    ASSERT_NE(q1.node()->owner_opr(), q.node()->owner_opr());
M
Megvii Engine Team 已提交
262 263 264
    ASSERT_EQ(
            q1.node()->owner_opr()->dyn_typeinfo(),
            q.node()->owner_opr()->dyn_typeinfo());
265 266 267

    HostTensorND host_z, host_q;
    auto func = graph->compile(
M
Megvii Engine Team 已提交
268
            {make_callback_copy(z1, host_z), make_callback_copy(q1, host_q)});
269 270 271
    func->execute();

    int nr_opr = 0;
M
Megvii Engine Team 已提交
272 273 274 275
    func->iter_opr_seq([&](cg::OperatorNodeBase* op) {
        ++nr_opr;
        return true;
    });
276 277
    ASSERT_EQ(6, nr_opr);

M
Megvii Engine Team 已提交
278
    auto px = host_x->ptr<float>(), pz = host_z.ptr<float>(), pq = host_q.ptr<float>();
279
    auto yv = host_y->ptr<float>()[0], pv = host_p->ptr<float>()[0];
M
Megvii Engine Team 已提交
280
    for (size_t i = 0; i < SIZE; ++i) {
281 282 283 284 285 286 287 288 289 290 291
        MGB_ASSERT_FLOAT_EQ(px[i] + yv, pz[i]);
        MGB_ASSERT_FLOAT_EQ(px[i] * yv + pv, pq[i]);
    }
}

TEST(TestGoptInference, ParamFuseMultiRead) {
    HostTensorGenerator<> gen;

    auto graph = ComputingGraph::make();
    graph->options().graph_opt_level = 0;

M
Megvii Engine Team 已提交
292
    auto mkvar = [&](const char* name, const TensorShape& shp) {
293 294
        return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
    };
M
Megvii Engine Team 已提交
295
    auto mkcvar = [&](const char* name, const TensorShape& shp) {
296 297 298
        return opr::SharedDeviceTensor::make(*graph, *gen(shp)).rename(name);
    };

M
Megvii Engine Team 已提交
299
    auto x = mkvar("x", {23}), p0 = mkcvar("p0", {1}), p1 = mkcvar("p1", {1}),
300 301 302
         z0 = x * (p0 + p1) + x / (p0 + p1);

    SymbolVar z1;
M
Megvii Engine Team 已提交
303 304 305 306 307 308
    unpack_vector(
            gopt::GraphOptimizer{}
                    .add_pass<gopt::ParamFusePass>()
                    .apply({{z0}})
                    .endpoint_vars(),
            z1);
309 310

    ASSERT_NE(z0.node(), z1.node());
M
Megvii Engine Team 已提交
311 312 313 314 315 316 317 318 319 320 321 322 323 324
    ASSERT_TRUE(z1.node()
                        ->owner_opr()
                        ->input(0)
                        ->owner_opr()
                        ->input(1)
                        ->owner_opr()
                        ->same_type<opr::SharedDeviceTensor>());
    ASSERT_TRUE(z1.node()
                        ->owner_opr()
                        ->input(1)
                        ->owner_opr()
                        ->input(1)
                        ->owner_opr()
                        ->same_type<opr::SharedDeviceTensor>());
325
    HostTensorND host_z0, host_z1;
M
Megvii Engine Team 已提交
326
    graph->compile({make_callback_copy(z0, host_z0), make_callback_copy(z1, host_z1)})
M
Megvii Engine Team 已提交
327
            ->execute();
328 329 330 331 332 333 334 335
    MGB_ASSERT_TENSOR_EQ(host_z0, host_z1);
}

TEST(TestGoptInference, ParamFuseStaticInfer) {
    HostTensorGenerator<> gen;

    auto graph = ComputingGraph::make();

M
Megvii Engine Team 已提交
336
    auto mkvar = [&](const char* name, const TensorShape& shp) {
337 338
        return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
    };
M
Megvii Engine Team 已提交
339
    auto mkcvar = [&](const char* name, const TensorShape& shp) {
340 341 342 343 344 345 346
        return opr::SharedDeviceTensor::make(*graph, *gen(shp)).rename(name);
    };

    auto a = mkvar("x", {4}),
         b = a.reshape(opr::GetVarShape::make(mkcvar("tshp", {2, 2})));

    SymbolVar b1;
M
Megvii Engine Team 已提交
347 348 349 350 351 352
    unpack_vector(
            gopt::GraphOptimizer{}
                    .add_pass<gopt::ParamFusePass>()
                    .apply({{b}})
                    .endpoint_vars(),
            b1);
353 354 355 356 357 358 359 360 361 362 363 364 365 366

    ASSERT_EQ(b1, a.reshape({2, 2}));
}

TEST(TestGoptInference, ParamRedistributeConvMul) {
    constexpr size_t N = 4, IC = 3, IH = 5, IW = 4, OC = 4, KH = 3, KW = 2;

    HostTensorGenerator<> gen;
    auto host_x = gen({N, IC, IH, IW}), host_k = gen({IC}),
         host_w = gen({OC, IC, KH, KW});

    auto graph = ComputingGraph::make();
    auto x = opr::Host2DeviceCopy::make(*graph, host_x),
         k = opr::Dimshuffle::make(
M
Megvii Engine Team 已提交
367
                 opr::SharedDeviceTensor::make(*graph, *host_k), {-1, 0, -1, -1}),
368 369 370 371
         w = opr::SharedDeviceTensor::make(*graph, *host_w),
         y0 = opr::Convolution::make(x * k, w);

    SymbolVar y1;
M
Megvii Engine Team 已提交
372 373 374 375 376 377
    unpack_vector(
            gopt::GraphOptimizer{}
                    .add_pass<gopt::ParamRedistributePass>()
                    .apply({{y0}})
                    .endpoint_vars(),
            y1);
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392

    ASSERT_NE(y0.node(), y1.node());

    HostTensorND host_y0, host_y1;
    auto func = graph->compile(
            {make_callback_copy(y0, host_y0), make_callback_copy(y1, host_y1)});
    func->execute();

    MGB_ASSERT_TENSOR_EQ(host_y0, host_y1);
}

TEST(TestGoptInference, ParamRedistributeConvMulUniqReader) {
    constexpr size_t N = 4, C = 3, IH = 5, IW = 4, KH = 1, KW = 1;

    HostTensorGenerator<> gen;
M
Megvii Engine Team 已提交
393
    auto host_x = gen({N, C, IH, IW}), host_k = gen({C}), host_w = gen({C, C, KH, KW});
394 395 396 397 398

    auto graph = ComputingGraph::make();
    graph->options().graph_opt_level = 0;
    auto x = opr::Host2DeviceCopy::make(*graph, host_x),
         k = opr::Dimshuffle::make(
M
Megvii Engine Team 已提交
399
                 opr::SharedDeviceTensor::make(*graph, *host_k) + 2, {-1, 0, -1, -1}),
400 401
         w = opr::SharedDeviceTensor::make(*graph, *host_w),
         // y0 should be replaced
M
Megvii Engine Team 已提交
402
            y0 = opr::powf(opr::Convolution::make(x * k, w).rename("y0") + 2, 2),
403 404
         y0k = (y0 * k).rename("y0k"),
         // y0k is accessed twice, so it should not be replaced
M
Megvii Engine Team 已提交
405
            y1 = opr::Convolution::make(y0k, w).rename("y1"), z0 = y1 / y0k;
406 407

    SymbolVar z1;
M
Megvii Engine Team 已提交
408 409 410 411 412 413
    unpack_vector(
            gopt::GraphOptimizer{}
                    .add_pass<gopt::ParamRedistributePass>()
                    .apply({{z0}})
                    .endpoint_vars(),
            z1);
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431

    ASSERT_NE(z0.node(), z1.node());
    auto y1_repl = z1.node()->owner_opr()->input(0)->owner_opr();
    ASSERT_TRUE(y1_repl->same_type<opr::Convolution>());
    ASSERT_EQ(y1_repl->input(0), z1.node()->owner_opr()->input(1));

    HostTensorND host_z0, host_z1;
    auto func = graph->compile(
            {make_callback_copy(z0, host_z0), make_callback_copy(z1, host_z1)});
    func->execute();

    MGB_ASSERT_TENSOR_NEAR(host_z0, host_z1, 5e-5);
}

TEST(TestGoptInference, ParamRedistributeMulConvMul) {
    constexpr size_t N = 4, IC = 3, IH = 5, IW = 4, OC = 4, KH = 3, KW = 2;

    HostTensorGenerator<> gen;
M
Megvii Engine Team 已提交
432 433
    auto host_x = gen({N, IC, IH, IW}), host_k1 = gen({IC}),
         host_k2 = gen({1, OC, 1, 1}), host_w = gen({OC, IC, KH, KW});
434 435 436 437

    auto graph = ComputingGraph::make();
    auto x = opr::Host2DeviceCopy::make(*graph, host_x),
         k1 = opr::Dimshuffle::make(
M
Megvii Engine Team 已提交
438
                 opr::SharedDeviceTensor::make(*graph, *host_k1), {-1, 0, -1, -1}),
439 440 441 442 443
         k2 = opr::SharedDeviceTensor::make(*graph, *host_k2),
         w = opr::SharedDeviceTensor::make(*graph, *host_w),
         y0 = opr::Convolution::make(x * k1, w) * k2;

    SymbolVar y1;
M
Megvii Engine Team 已提交
444 445 446 447 448 449 450
    unpack_vector(
            gopt::GraphOptimizer{}
                    .add_pass<gopt::ParamRedistributePass>()
                    .add_pass<gopt::ParamFusePass>()
                    .apply({{y0}})
                    .endpoint_vars(),
            y1);
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473

    auto y1opr = y1.node()->owner_opr();
    ASSERT_TRUE(y1opr->same_type<opr::Convolution>());
    ASSERT_EQ(y1opr->input(0), x.node());

    HostTensorND host_y0, host_y1;
    auto func = graph->compile(
            {make_callback_copy(y0, host_y0), make_callback_copy(y1, host_y1)});
    func->execute();

    MGB_ASSERT_TENSOR_NEAR(host_y0, host_y1, 5e-6);
}

TEST(TestGoptInference, ParamRedistributeConvAdd) {
    constexpr size_t N = 4, IC = 3, IH = 5, IW = 4, OC = 4, KH = 3, KW = 2;

    HostTensorGenerator<> gen;
    auto host_x = gen({N, IC, IH, IW}), host_b = gen({IC}),
         host_w = gen({OC, IC, KH, KW});

    auto graph = ComputingGraph::make();
    auto x = opr::Host2DeviceCopy::make(*graph, host_x),
         b = opr::Dimshuffle::make(
M
Megvii Engine Team 已提交
474
                 opr::SharedDeviceTensor::make(*graph, *host_b), {-1, 0, -1, -1}),
475 476 477 478
         w = opr::SharedDeviceTensor::make(*graph, *host_w),
         y0 = opr::Convolution::make(x + b, w);

    SymbolVar y1;
M
Megvii Engine Team 已提交
479 480 481 482 483 484 485
    unpack_vector(
            gopt::GraphOptimizer{}
                    .add_pass<gopt::ParamRedistributePass>()
                    .add_pass<gopt::ParamFusePass>()
                    .apply({{y0}})
                    .endpoint_vars(),
            y1);
486 487 488 489 490 491 492 493 494 495 496 497

    ASSERT_NE(y0.node(), y1.node());

    HostTensorND host_y0, host_y1;
    auto func = graph->compile(
            {make_callback_copy(y0, host_y0), make_callback_copy(y1, host_y1)});
    func->execute();

    MGB_ASSERT_TENSOR_NEAR(host_y0, host_y1, 1e-5);
}

TEST(TestGoptInference, ParamRedistributeDistThenReasso) {
M
Megvii Engine Team 已提交
498
    constexpr size_t N = 4, IC0 = 3, IC1 = 6, IH = 5, IW = 4, OC = 4, KH = 3, KW = 2;
499 500 501

    HostTensorGenerator<> gen;
    auto graph = ComputingGraph::make();
M
Megvii Engine Team 已提交
502
    auto mkvar = [&](const char* name, const TensorShape& shp) {
503 504
        return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
    };
M
Megvii Engine Team 已提交
505
    auto mkcvar = [&](const char* name, const TensorShape& shp) {
506 507
        return opr::SharedDeviceTensor::make(*graph, *gen(shp)).rename(name);
    };
M
Megvii Engine Team 已提交
508
    auto x0 = mkvar("x0", {N, IC0, IH, IW}), x1 = mkvar("x1", {N, IC1, IH, IW}),
M
Megvii Engine Team 已提交
509 510
         k0 = opr::Dimshuffle::make(mkcvar("x1_", {IC0}), {-1, 0, -1, -1}).rename("x1"),
         w0 = mkcvar("w0", {OC, IC0, KH, KW}), k1 = mkcvar("k1", {1, IC1, 1, 1}),
M
Megvii Engine Team 已提交
511 512 513 514 515
         w1 = mkcvar("w1", {OC, IC1, KH, KW}), b0 = mkvar("b0", {1, OC, 1, 1}),
         b1 = mkcvar("b1", {1}), k2 = mkcvar("k2", {1}),
         y0 = (opr::Convolution::make(x0 * k0, w0) +
               opr::Convolution::make(x1 + k1, w1) + b0 + b1) *
              k2;
516 517

    SymbolVar y1;
M
Megvii Engine Team 已提交
518 519 520 521 522 523 524 525 526
    unpack_vector(
            gopt::GraphOptimizer{}
                    .add_pass<gopt::ParamRedistributePass>()
                    .add_pass<gopt::ReorderArithChainPass>(
                            gopt::ConstVarType::IMMUTABLE_AND_PARAM)
                    .add_pass<gopt::ParamFusePass>()
                    .apply({{y0}})
                    .endpoint_vars(),
            y1);
527 528 529 530 531 532 533 534 535

    ASSERT_NE(y0.node(), y1.node());
    HostTensorND host_y0, host_y1;
    auto func = graph->compile(
            {make_callback_copy(y0, host_y0), make_callback_copy(y1, host_y1)});
    func->execute();

    MGB_ASSERT_TENSOR_NEAR(host_y0, host_y1, 1e-5);

M
Megvii Engine Team 已提交
536 537 538
    auto chain = gopt::extract_opr_leaves(y1.node(), [](cg::OperatorNodeBase* opr) {
        return gopt::as_elem_opr(opr, opr::Elemwise::Mode::ADD);
    });
539
    size_t nr_conv = 0;
M
Megvii Engine Team 已提交
540
    for (auto i : chain) {
541 542
        auto opr = i->owner_opr();
        if (opr->same_type<opr::Convolution>()) {
M
Megvii Engine Team 已提交
543
            ++nr_conv;
M
Megvii Engine Team 已提交
544 545 546
            ASSERT_TRUE(opr->input(0)->owner_opr()->same_type<opr::Host2DeviceCopy>());
            ASSERT_TRUE(
                    opr->input(1)->owner_opr()->same_type<opr::SharedDeviceTensor>());
547 548 549 550 551 552 553 554 555 556 557 558
        }
    }
    ASSERT_EQ(2u, nr_conv);
    ASSERT_EQ(4u, chain.size());
}

TEST(TestGoptInference, ParamRedistributeMultiChange) {
    constexpr size_t N = 4, IC = 3, IH = 5, IW = 4, OC = 4, KH = 3, KW = 2;

    HostTensorGenerator<> gen;
    auto graph = ComputingGraph::make();
    graph->options().graph_opt_level = 0;
M
Megvii Engine Team 已提交
559
    auto mkvar = [&](const char* name, const TensorShape& shp) {
560 561
        return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
    };
M
Megvii Engine Team 已提交
562
    auto mkcvar = [&](const char* name, const TensorShape& shp) {
563 564
        return opr::SharedDeviceTensor::make(*graph, *gen(shp)).rename(name);
    };
M
Megvii Engine Team 已提交
565 566 567
    auto x = mkvar("x", {N, IC, IH, IW}), k0 = mkcvar("k0", {1, IC, 1, 1}),
         b0 = mkcvar("b0", {1, IC, 1, 1}), k1 = mkcvar("k0", {1}),
         b1 = mkcvar("b0", {1}), w = mkcvar("w", {OC, IC, KH, KW}),
568 569 570
         y0 = (opr::Convolution::make(x * k0 + b0, w) + b1) * k1;

    SymbolVar y1;
M
Megvii Engine Team 已提交
571 572 573 574 575 576 577
    unpack_vector(
            gopt::GraphOptimizer{}
                    .add_pass<gopt::ParamRedistributePass>()
                    .add_pass<gopt::ParamFusePass>()
                    .apply({{y0}})
                    .endpoint_vars(),
            y1);
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602

    ASSERT_NE(y0.node(), y1.node());
    HostTensorND host_y0, host_y1;
    auto func = graph->compile(
            {make_callback_copy(y0, host_y0), make_callback_copy(y1, host_y1)});
    func->execute();

    MGB_ASSERT_TENSOR_NEAR(host_y0, host_y1, 1e-5);

    auto y1elem = gopt::as_elem_opr(y1.node(), opr::Elemwise::Mode::ADD);
    ASSERT_TRUE(y1elem);
    auto yconv = y1elem->input(0)->owner_opr();
    if (!yconv->same_type<opr::Convolution>())
        yconv = y1elem->input(1)->owner_opr();
    ASSERT_TRUE(yconv->same_type<opr::Convolution>());
    ASSERT_EQ(x.node(), yconv->input(0));
}

TEST(TestGoptInference, ParamRedistributeMultiReader) {
    constexpr size_t N = 4, IC = 3, IH = 5, IW = 4, OC = 4, KH = 3, KW = 2;

    HostTensorGenerator<> gen;
    auto graph = ComputingGraph::make();
    graph->options().graph_opt_level = 0;

M
Megvii Engine Team 已提交
603
    auto mkvar = [&](const char* name, const TensorShape& shp) {
604 605 606
        return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
    };

M
Megvii Engine Team 已提交
607
    auto mkcvar = [&](const char* name, const TensorShape& shp) {
608 609 610
        return opr::SharedDeviceTensor::make(*graph, *gen(shp)).rename(name);
    };

M
Megvii Engine Team 已提交
611
    auto x = mkvar("x", {N, IC, IH, IW}), k = mkcvar("k", {1, OC, 1, 1}),
612 613 614 615 616 617 618
         w = mkcvar("w", {OC, IC, KH, KW});

    auto conv = opr::Convolution::make(x, w);
    auto t = conv * k;
    auto y0 = t * 4.2f + t * 2.4f;

    SymbolVar y1;
M
Megvii Engine Team 已提交
619 620 621 622 623 624 625
    unpack_vector(
            gopt::GraphOptimizer{}
                    .add_pass<gopt::ParamRedistributePass>()
                    .add_pass<gopt::ParamFusePass>()
                    .apply({{y0}})
                    .endpoint_vars(),
            y1);
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641

    ASSERT_NE(y0.node(), y1.node());
    HostTensorND host_y0, host_y1;
    auto func = graph->compile(
            {make_callback_copy(y0, host_y0), make_callback_copy(y1, host_y1)});
    func->execute();

    MGB_ASSERT_TENSOR_NEAR(host_y0, host_y1, 1e-5);

    auto y1elem = gopt::as_elem_opr(y1.node(), opr::Elemwise::Mode::ADD);
    ASSERT_TRUE(y1elem);
    auto ymul0 = gopt::as_elem_opr(y1elem->input(0), opr::Elemwise::Mode::MUL),
         ymul1 = gopt::as_elem_opr(y1elem->input(1), opr::Elemwise::Mode::MUL);
    ASSERT_TRUE(ymul0);
    ASSERT_TRUE(ymul1);
    auto yconv = ymul0->input(0)->owner_opr();
M
Megvii Engine Team 已提交
642
    if (!yconv->same_type<opr::Convolution>()) {
643 644 645
        yconv = ymul0->input(1)->owner_opr();
    }
    ASSERT_TRUE(yconv->same_type<opr::Convolution>());
M
Megvii Engine Team 已提交
646
    if (ymul1->input(0) != yconv->output(0)) {
647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
        ASSERT_EQ(yconv->output(0), ymul1->input(1));
    }
    ASSERT_EQ(x.node(), yconv->input(0));
}

TEST(TestGoptInference, ParamFuseBiasMerge) {
    HostTensorGenerator<> gen;
    auto graph = ComputingGraph::make();
    graph->options().graph_opt_level = 0;
    auto mkvar = [&](const char* name, const TensorShape& shp) {
        return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
    };
    auto mkcvar = [&](const char* name, const TensorShape& shp) {
        return opr::SharedDeviceTensor::make(*graph, *gen(shp)).rename(name);
    };
    auto x = mkvar("x", {6, 3, 8, 8}), w1 = mkcvar("w1", {4, 3, 3, 3}),
         w2 = mkcvar("w2", {4, 3, 3, 3}), b1 = mkcvar("b1", {1, 4, 1, 1}),
M
Megvii Engine Team 已提交
664
         b2 = mkcvar("b2", {1, 4, 1, 1}), y1 = opr::Convolution::make(x, w1) + b1,
665 666 667 668 669 670
         y2 = opr::Convolution::make(x, w2) + b2, y = y1 + y2;

    SymbolVar y_opt;
    unpack_vector(gopt::optimize_for_inference({y}), y_opt);

    HostTensorND host_y, host_y_opt;
M
Megvii Engine Team 已提交
671 672
    auto func = graph->compile(
            {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
673 674 675 676 677
    func->execute();
    MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);

    graph->compile({{y_opt, {}}})
            ->to_json()
M
Megvii Engine Team 已提交
678
            ->writeto_fpath(output_file("TestGoptInference.ParamFuseConvMerge.json"));
679

M
Megvii Engine Team 已提交
680 681 682
    auto chain = gopt::extract_opr_leaves(y_opt.node(), [](cg::OperatorNodeBase* opr) {
        return gopt::as_elem_opr(opr, opr::Elemwise::Mode::ADD);
    });
683 684 685 686 687 688 689 690 691 692 693
    ASSERT_EQ(3u, chain.size());
}

TEST(TestGoptInference, Float16IOFloat32Compute) {
    constexpr size_t INP_H = 10, INP_W = 10;
    HostTensorGenerator<> gen;
    auto graph = ComputingGraph::make();
    auto mkvar = [&](const char* name, const TensorShape& shp) {
        return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
    };
    graph->options().graph_opt_level = 0;
M
Megvii Engine Team 已提交
694
    auto a = mkvar("a", {1, 4, INP_H, INP_W}), s0 = mkvar("s0", {20, 3, INP_H, INP_W}),
695 696 697 698 699 700
         s1 = mkvar("s1", {4, 3, 1, 1});
    auto b = opr::Convolution::make(s0, s1, {}, {});
    auto y = a + b;
    y = opr::Concat::make({y, -y}, 0);
    y = opr::Reduce::make(y, {}, y.make_scalar(1));
    SymbolVar y_opt;
701 702 703
    auto options = gopt::OptimizeForInferenceOptions{};
    options.enable_f16_io_f32_comp();
    unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
704 705 706
    ASSERT_EQ(y_opt.dtype(), dtype::Float32());

    HostTensorND host_y, host_y_opt;
M
Megvii Engine Team 已提交
707 708
    auto func = graph->compile(
            {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
709 710 711 712
    func->execute();
    MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
}

713 714 715 716 717 718 719 720 721
TEST(TestGoptInference, Float16IOFloat32ComputeDeConv) {
    constexpr size_t INP_H = 10, INP_W = 10;
    HostTensorGenerator<> gen;
    auto graph = ComputingGraph::make();
    auto mkvar = [&](const char* name, const TensorShape& shp) {
        return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
    };
    graph->options().graph_opt_level = 0;

722
    auto s0 = mkvar("s0", {5, 5, 3, 3}), s1 = mkvar("s1", {1, 5, INP_H, INP_W});
723 724 725 726 727
    auto y = opr::ConvolutionBackwardData::make(s0, s1, {}, {});
    SymbolVar y_opt;
    auto options = gopt::OptimizeForInferenceOptions{};
    options.enable_f16_io_f32_comp();
    unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
728 729 730
    ASSERT_EQ(
            find_opr<opr::ConvolutionBackwardData>(y_opt).param().compute_mode,
            opr::ConvBias::Param::ConvBias::ComputeMode::FLOAT32);
731 732 733
    ASSERT_EQ(y_opt.dtype(), dtype::Float32());

    HostTensorND host_y, host_y_opt;
M
Megvii Engine Team 已提交
734 735
    auto func = graph->compile(
            {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
736 737 738 739
    func->execute();
    MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-2);
}

740 741 742 743 744 745 746 747 748 749 750 751 752
TEST(TestGoptInference, Float16IOFloat32ComputeWarpPerspective) {
    constexpr size_t INP_H = 10, INP_W = 10, N = 2;
    HostTensorGenerator<> gen;
    auto graph = ComputingGraph::make();
    auto mkvar = [&](const char* name, const TensorShape& shp) {
        return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
    };
    graph->options().graph_opt_level = 0;
    auto a = mkvar("a", {N, 4, INP_H, INP_W});
    float value1 = M_PI, value2 = 0.6;
    auto gen_mat = [&](HostTensorND& mat) {
        auto ptr = mat.ptr<float>();
        for (size_t i = 0; i < N; ++i) {
M
Megvii Engine Team 已提交
753 754
            auto rot = value1, scale = value2, sheer = value1, dy = value2, dx = value2,
                 ky = value2, kx = value2, kb = value2;
755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
            ptr[0] = ptr[4] = cos(rot) * scale;
            ptr[1] = -(ptr[3] = sin(rot) * scale);
            ptr[3] *= sheer;
            ptr[4] *= sheer;
            ptr[2] = dx;
            ptr[5] = dy;
            ptr[6] = kx;
            ptr[7] = ky;
            ptr[8] = kb;
            ptr += 9;
        }
        mgb_assert(ptr == mat.ptr<float>() + mat.shape().total_nr_elems());
    };
    auto mat_host = std::make_shared<HostTensorND>(
            a.node()->comp_node(), TensorShape{N, 3, 3}, dtype::Float32());
    gen_mat(*mat_host);
    auto mat = opr::Host2DeviceCopy::make(*graph, mat_host).rename("mat");
    TensorShape out_shp{20, 20};
    auto y = opr::WarpPerspective::make(a, mat, out_shp);
    SymbolVar y_opt;
775 776 777
    auto options = gopt::OptimizeForInferenceOptions{};
    options.enable_f16_io_f32_comp();
    unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
778 779
    ASSERT_EQ(y_opt.dtype(), dtype::Float32());
    HostTensorND host_y, host_y_opt;
M
Megvii Engine Team 已提交
780 781
    auto func = graph->compile(
            {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
782 783 784 785
    func->execute();
    MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
}

786 787 788 789 790 791 792 793 794 795 796 797
TEST(TestGoptInference, Float16IOFloat32ComputeRemap) {
    auto cn = CompNode::load("cpu1");
    constexpr size_t INP_H = 10, INP_W = 10, N = 2;
    HostTensorGenerator<> gen;
    auto graph = ComputingGraph::make();
    auto mkvar = [&](const char* name, const TensorShape& shp) {
        return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
    };
    graph->options().graph_opt_level = 0;
    auto a = mkvar("a", {N, 4, INP_H, INP_W});
    auto gen_map = [&](HostTensorND& mat) {
        auto ptr = mat.ptr<float>();
M
Megvii Engine Team 已提交
798 799 800
        for (size_t n = 0; n < N; ++n) {
            for (int h = 0; h < 5; ++h) {
                for (int w = 0; w < 5; ++w) {
801 802 803 804 805 806 807 808 809 810 811 812 813
                    *ptr++ = (h * 5 * 2) + 5 * 2 + 0;
                    *ptr++ = (h * 5 * 2) + 5 * 2 + 1;
                }
            }
        }
        mgb_assert(ptr == mat.ptr<float>() + mat.shape().total_nr_elems());
    };
    auto map_host = std::make_shared<HostTensorND>(
            a.node()->comp_node(), TensorShape{N, 5, 5, 2}, dtype::Float32());
    gen_map(*map_host);
    auto map = opr::Host2DeviceCopy::make(*graph, map_host).rename("map");
    auto y = opr::Remap::make(a, map);
    SymbolVar y_opt;
814 815 816
    auto options = gopt::OptimizeForInferenceOptions{};
    options.enable_f16_io_f32_comp();
    unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
817 818
    ASSERT_EQ(y_opt.dtype(), dtype::Float32());
    HostTensorND host_y, host_y_opt;
M
Megvii Engine Team 已提交
819 820
    auto func = graph->compile(
            {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
821 822 823 824
    func->execute();
    MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
}

825 826 827 828 829 830 831 832 833 834 835 836 837
TEST(TestGoptInference, Uint8IOFloat16ComputeWarpPerspective) {
    constexpr size_t INP_H = 10, INP_W = 10, N = 2;
    HostTensorGenerator<dtype::Uint8> gen_uint8;
    auto graph = ComputingGraph::make();
    auto mkvar = [&](const char* name, const TensorShape& shp) {
        return opr::Host2DeviceCopy::make(*graph, gen_uint8(shp)).rename(name);
    };
    graph->options().graph_opt_level = 0;
    auto a = mkvar("a", {N, 4, INP_H, INP_W});
    float value1 = M_PI, value2 = 0.6;
    auto gen_mat = [&](HostTensorND& mat) {
        auto ptr = mat.ptr<float>();
        for (size_t i = 0; i < N; ++i) {
M
Megvii Engine Team 已提交
838 839
            auto rot = value1, scale = value2, sheer = value1, dy = value2, dx = value2,
                 ky = value2, kx = value2, kb = value2;
840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
            ptr[0] = ptr[4] = cos(rot) * scale;
            ptr[1] = -(ptr[3] = sin(rot) * scale);
            ptr[3] *= sheer;
            ptr[4] *= sheer;
            ptr[2] = dx;
            ptr[5] = dy;
            ptr[6] = kx;
            ptr[7] = ky;
            ptr[8] = kb;
            ptr += 9;
        }
        mgb_assert(ptr == mat.ptr<float>() + mat.shape().total_nr_elems());
    };
    auto mat_host = std::make_shared<HostTensorND>(
            a.node()->comp_node(), TensorShape{N, 3, 3}, dtype::Float32());
    gen_mat(*mat_host);
    auto mat = opr::Host2DeviceCopy::make(*graph, mat_host).rename("mat");
    TensorShape out_shp{20, 20};
    auto y = opr::WarpPerspective::make(a, mat, out_shp);
    SymbolVar y_opt;
860 861 862
    auto options = gopt::OptimizeForInferenceOptions{};
    options.enable_f16_io_comp();
    unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
863 864
    ASSERT_EQ(y_opt.dtype(), dtype::Uint8());
    HostTensorND host_y, host_y_opt;
M
Megvii Engine Team 已提交
865 866
    auto func = graph->compile(
            {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889
    func->execute();
    MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
}

TEST(TestGoptInference, Float32TOFloat16) {
    CompNode cn = CompNode::load("cpu0");
    HostTensorGenerator<> gen(0, 1, 0);
    auto host_x0 = gen({1, 4, 16, 8}, cn), host_x1 = gen({2, 3, 16, 8}, cn),
         host_x2 = gen({4, 3, 1, 1}, cn);
    auto graph = ComputingGraph::make();

    auto make_f32_to_f16_graph = [&]() {
        graph->options().graph_opt_level = 0;

        auto d0 = opr::Host2DeviceCopy::make(*graph, host_x0),
             d1 = opr::Host2DeviceCopy::make(*graph, host_x1),
             d2 = opr::SharedDeviceTensor::make(*graph, *host_x2);

        auto b = opr::Convolution::make(d1, d2, {}, {});
        auto y = d0 + b;
        y = opr::Reduce::make(y, {}, y.make_scalar(1));

        SymbolVar y_opt;
890 891 892
        auto options = gopt::OptimizeForInferenceOptions{};
        options.enable_f16_io_comp();
        unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
893 894 895 896 897
        return y_opt;
    };

    auto make_f16_graph = [&]() {
        auto d0 = opr::TypeCvt::make(
M
Megvii Engine Team 已提交
898
                     opr::Host2DeviceCopy::make(*graph, host_x0), dtype::Float16{}),
899
             d1 = opr::TypeCvt::make(
M
Megvii Engine Team 已提交
900
                     opr::Host2DeviceCopy::make(*graph, host_x1), dtype::Float16{}),
901
             d2 = opr::TypeCvt::make(
M
Megvii Engine Team 已提交
902
                     opr::SharedDeviceTensor::make(*graph, *host_x2), dtype::Float16{});
903 904 905 906 907 908 909 910 911 912 913 914 915 916 917

        auto b = opr::Convolution::make(d1, d2, {}, {});
        SymbolVar y = d0 + b;
        y = opr::Reduce::make(y, {}, y.make_scalar(1));
        y = opr::TypeCvt::make(y, dtype::Float32{});

        return y;
    };

    auto y_opt = make_f32_to_f16_graph();
    auto y = make_f16_graph();
    ASSERT_EQ(y_opt.dtype(), dtype::Float32{});
    ASSERT_EQ(y.dtype(), dtype::Float32{});

    HostTensorND host_y_opt, host_y;
M
Megvii Engine Team 已提交
918 919
    auto func = graph->compile(
            {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
920 921 922 923
    func->execute();
    MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
}

924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948
TEST(TestGoptInference, Float32TOFloat16C32) {
    CompNode cn = CompNode::load("cpu0");
    HostTensorGenerator<> gen(0, 1, 0);
    auto host_x0 = gen({1, 4, 1, 1}, cn), host_x1 = gen({2, 3, 16, 8}, cn),
         host_x2 = gen({4, 3, 1, 1}, cn);
    auto graph = ComputingGraph::make();

    auto make_f32_to_f16_graph = [&]() {
        graph->options().graph_opt_level = 0;

        auto d0 = opr::Host2DeviceCopy::make(*graph, host_x0),
             d1 = opr::Host2DeviceCopy::make(*graph, host_x1),
             d2 = opr::SharedDeviceTensor::make(*graph, *host_x2);

        auto y = opr::ConvBias::make(d1, d2, d0);
        y = opr::Reduce::make(y, {}, y.make_scalar(1));

        SymbolVar y_opt;
        auto options = gopt::OptimizeForInferenceOptions{};
        options.enable_f16_io_f32_comp();
        unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
        return y_opt;
    };

    auto make_f16_graph = [&]() {
M
Megvii Engine Team 已提交
949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
        auto d0 = opr::TypeCvt::make(
                     opr::TypeCvt::make(
                             opr::Host2DeviceCopy::make(*graph, host_x0),
                             dtype::Float16{}),
                     dtype::Float32{}),
             d1 = opr::TypeCvt::make(
                     opr::TypeCvt::make(
                             opr::Host2DeviceCopy::make(*graph, host_x1),
                             dtype::Float16{}),
                     dtype::Float32{}),
             d2 = opr::TypeCvt::make(
                     opr::TypeCvt::make(
                             opr::SharedDeviceTensor::make(*graph, *host_x2),
                             dtype::Float16{}),
                     dtype::Float32{});
964 965 966

        auto y = opr::ConvBias::make(d1, d2, d0);
        y = opr::Reduce::make(y, {}, y.make_scalar(1));
M
Megvii Engine Team 已提交
967 968
        y = opr::TypeCvt::make(
                opr::TypeCvt::make(y, dtype::Float16{}), dtype::Float32{});
969 970 971 972 973 974

        return y;
    };

    auto y_opt = make_f32_to_f16_graph();
    auto y = make_f16_graph();
M
Megvii Engine Team 已提交
975 976 977
    ASSERT_EQ(
            find_opr<opr::ConvBias>(y_opt).param().compute_mode,
            opr::ConvBias::Param::ConvBias::ComputeMode::FLOAT32);
978 979 980 981
    ASSERT_EQ(y_opt.dtype(), dtype::Float32{});
    ASSERT_EQ(y.dtype(), dtype::Float32{});

    HostTensorND host_y_opt, host_y;
M
Megvii Engine Team 已提交
982 983
    auto func = graph->compile(
            {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
984 985 986 987
    func->execute();
    MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
}

988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
TEST(TestGoptInference, Float32TOFloat16EndpointElemwise) {
    CompNode cn = CompNode::load("cpu0");
    HostTensorGenerator<> gen(0, 1, 0);
    auto host_x0 = gen({1, 4, 16, 8}, cn), host_x1 = gen({2, 3, 16, 8}, cn),
         host_x2 = gen({4, 3, 1, 1}, cn);
    auto graph = ComputingGraph::make();

    auto make_f32_to_f16_graph = [&]() {
        graph->options().graph_opt_level = 0;

        auto d0 = opr::Host2DeviceCopy::make(*graph, host_x0),
             d1 = opr::Host2DeviceCopy::make(*graph, host_x1),
             d2 = opr::SharedDeviceTensor::make(*graph, *host_x2);

        auto b = opr::Convolution::make(d1, d2, {}, {});
        auto y = d0 + b;

        SymbolVar y_opt;
1006 1007 1008
        auto options = gopt::OptimizeForInferenceOptions{};
        options.enable_f16_io_comp();
        unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
1009 1010 1011 1012 1013
        return y_opt;
    };

    auto make_f16_graph = [&]() {
        auto d0 = opr::TypeCvt::make(
M
Megvii Engine Team 已提交
1014
                     opr::Host2DeviceCopy::make(*graph, host_x0), dtype::Float16{}),
1015
             d1 = opr::TypeCvt::make(
M
Megvii Engine Team 已提交
1016
                     opr::Host2DeviceCopy::make(*graph, host_x1), dtype::Float16{}),
1017
             d2 = opr::TypeCvt::make(
M
Megvii Engine Team 已提交
1018
                     opr::SharedDeviceTensor::make(*graph, *host_x2), dtype::Float16{});
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032

        auto b = opr::Convolution::make(d1, d2, {}, {});
        SymbolVar y = d0 + b;
        y = opr::TypeCvt::make(y, dtype::Float32{});

        return y;
    };

    auto y_opt = make_f32_to_f16_graph();
    auto y = make_f16_graph();
    ASSERT_EQ(y_opt.dtype(), dtype::Float32{});
    ASSERT_EQ(y.dtype(), dtype::Float32{});

    HostTensorND host_y_opt, host_y;
M
Megvii Engine Team 已提交
1033 1034
    auto func = graph->compile(
            {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
1035 1036 1037 1038
    func->execute();
    MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
}

1039 1040 1041
TEST(TestGoptInference, Float32TOFloat16Linspace) {
    CompNode cn = CompNode::load("cpu0");
    HostTensorGenerator<> gen(0, 1, 0);
1042
    auto host_x = gen({3, 1}, cn);
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
    auto graph = ComputingGraph::make();

    auto make_f32_to_f16_graph = [&]() {
        graph->options().graph_opt_level = 0;

        auto x = opr::Host2DeviceCopy::make(*graph, host_x);
        auto xshp = opr::GetVarShape::make(x);

        auto cv = [&x](int v) { return x.make_scalar(v); };
        auto sub = [&xshp, &cv](int idx) {
            return opr::IndexAt::make(xshp, {{0, cv(idx)}});
        };
        auto lin = opr::Linspace::make(cv(0), sub(0) - 1, sub(0), {}, {});
        auto shp = opr::Concat::make({sub(1), sub(0)}, 0);
        auto y = opr::Reshape::make(lin, shp);
        auto mm = opr::MatrixMul::make(x, y);

        SymbolVar mm_opt;
1061 1062 1063
        auto options = gopt::OptimizeForInferenceOptions{};
        options.enable_f16_io_comp();
        unpack_vector(gopt::optimize_for_inference({mm}, options), mm_opt);
1064 1065 1066 1067
        return mm_opt;
    };

    auto make_f16_graph = [&]() {
M
Megvii Engine Team 已提交
1068 1069
        auto x = opr::TypeCvt::make(
                opr::Host2DeviceCopy::make(*graph, host_x), dtype::Float16());
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
        auto xshp = opr::GetVarShape::make(x);

        auto cv = [&x](int v) { return x.make_scalar(v); };
        auto sub = [&xshp, &cv](int idx) {
            return opr::IndexAt::make(xshp, {{0, cv(idx)}});
        };
        auto lin = opr::Linspace::make(cv(0), sub(0) - 1, sub(0), {}, {});
        lin = opr::TypeCvt::make(lin, dtype::Float16());
        auto shp = opr::Concat::make({sub(1), sub(0)}, 0);
        auto y = opr::Reshape::make(lin, shp);
        auto mm = opr::MatrixMul::make(x, y);

        mm = opr::TypeCvt::make(mm, dtype::Float32{});

        return mm;
    };

    auto y_opt = make_f32_to_f16_graph();
    auto y = make_f16_graph();
    ASSERT_EQ(y_opt.dtype(), dtype::Float32{});
    ASSERT_EQ(y.dtype(), dtype::Float32{});

    HostTensorND host_y_opt, host_y;
M
Megvii Engine Team 已提交
1093 1094
    auto func = graph->compile(
            {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
1095 1096 1097 1098
    func->execute();
    MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
}

1099 1100 1101 1102 1103 1104 1105 1106 1107
TEST(TestGoptInference, Float32TOFloat16Endpoints) {
    HostTensorGenerator<> gen;
    auto graph = ComputingGraph::make();

    auto mkvar = [&](const char* name, const TensorShape& shp) {
        return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
    };

    auto mkcvar = [&](const char* name, const TensorShape& shp) {
M
Megvii Engine Team 已提交
1108
        return opr::SharedDeviceTensor::make(*graph, *gen(shp)).rename(name);
1109 1110 1111 1112 1113 1114
    };

    graph->options().graph_opt_level = 0;
    opr::Convolution::Param param;
    param.pad_h = param.pad_w = 0;

M
Megvii Engine Team 已提交
1115
    auto x = mkvar("x", {8, 8, 8, 8}), y = mkvar("y", {8, 8, 8, 8}),
M
Megvii Engine Team 已提交
1116
         w = mkcvar("w", {4, 8, 3, 3}), z = opr::Convolution::make(x + y, w, param);
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127

    auto options = gopt::OptimizeForInferenceOptions{};
    options.enable_f16_io_f32_comp();
    SymbolVarArray out = gopt::optimize_for_inference({x + y, z}, options);

    ASSERT_EQ(out[0].dtype(), dtype::Float32());
    ASSERT_EQ(out[1].dtype(), dtype::Float32());
    ASSERT_EQ(out[0].node()->owner_opr()->input(0)->dtype(), dtype::Float16());
    ASSERT_EQ(out[1].node()->owner_opr()->input(0)->dtype(), dtype::Float16());
}

1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
TEST(TestGoptInference, ConvertFormatNHWCD4) {
    // hwcd4 is only supported in naive handle
    NaiveMegDNNHandleScope naive_megdnn_handle;

    HostTensorGenerator<> gen;
    auto cn = CompNode::load("cpu0");
    auto graph = ComputingGraph::make();
    graph->options().graph_opt_level = 0;
    auto mkvar = [&](const char* name, const TensorShape& shp) {
        return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
    };
    auto mkcvar = [&](const char* name, const TensorShape& shp) {
M
Megvii Engine Team 已提交
1140
        return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name);
1141 1142 1143 1144 1145 1146 1147
    };

    auto host_x = gen({8, 8, 8, 8}, cn);
    auto x = opr::Host2DeviceCopy::make(*graph, host_x);

    opr::Convolution::Param param;
    param.pad_h = param.pad_w = 0;
M
Megvii Engine Team 已提交
1148
    auto w1 = mkcvar("w1", {4, 8, 3, 3}), conv = opr::Convolution::make(x, w1, param);
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
    auto shape_of = opr::GetVarShape::make(conv);
    auto subtensor = opr::Subtensor::make(
            shape_of, {opr::Subtensor::AxisIndexer::make_interval(
                              0, x.make_scalar(2), None, x.make_scalar(1))});

    opr::Resize::Param param_resize;
    param_resize.format = opr::Resize::Param::Format::NCHW;
    auto resize = opr::ResizeForward::make(conv, subtensor * 2, param_resize);
    auto mat = mkcvar("mat", {8, 3, 3}),
         warp = opr::WarpPerspectiveForward::make(
                 resize, mat, nullptr, cg::var_from_tensor_shape(x, {4, 4}));

    auto b = mkvar("b", {1, 4, 1, 1}),
M
Megvii Engine Team 已提交
1162
         elem = opr::Elemwise::make({warp + b}, opr::Elemwise::Param::Mode::RELU);
1163
    param.pad_h = param.pad_w = 1;
M
Megvii Engine Team 已提交
1164 1165
    auto w2 = mkcvar("w2", {4, 4, 3, 3}), y = opr::Convolution::make(elem, w2, param),
         z = opr::AxisAddRemove::make(y, {opr::AxisAddRemove::AxisDesc::make_add(0)});
1166

1167
    SymbolVar y_opt, z_opt;
1168
    auto options = gopt::OptimizeForInferenceOptions{};
1169
    options.enable_nhwcd4();
1170
    unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
1171
    unpack_vector(gopt::optimize_for_inference({z}, options), z_opt);
1172

M
Megvii Engine Team 已提交
1173 1174 1175
    ASSERT_EQ(
            opr::Convolution::Param::Format::NHWCD4,
            find_opr<opr::Convolution>(y_opt).param().format);
1176

M
Megvii Engine Team 已提交
1177 1178 1179
    ASSERT_EQ(
            TensorFormat::Type::DEFAULT,
            find_opr<opr::AxisAddRemove>(z_opt).input(0)->format().type());
1180 1181
    ASSERT_EQ(4, find_opr<opr::AxisAddRemove>(z_opt).input(0)->shape().ndim);

1182 1183
    graph->compile({{y_opt, {}}})
            ->to_json()
M
Megvii Engine Team 已提交
1184
            ->writeto_fpath(output_file("TestGoptInference.ConvertFormatNHWCD4.json"));
1185 1186

    HostTensorND host_y_opt, host_y;
M
Megvii Engine Team 已提交
1187 1188
    auto func = graph->compile(
            {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
1189 1190 1191 1192 1193 1194 1195 1196
    func->execute();
    MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);

    *host_x = *gen({8, 8, 16, 16}, cn);
    func->execute();
    MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
}

1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
#if MGB_OPENCL
#include "megcore_opencl.h"

#define REQUIRE_OPENCL()                                                 \
    do {                                                                 \
        if (!CompNode::get_device_count(CompNode::DeviceType::OPENCL)) { \
            return;                                                      \
        }                                                                \
    } while (0)

TEST(TestGoptInference, ConvertFormatNHWCD4OpenCL) {
    REQUIRE_OPENCL();

    HostTensorGenerator<> gen;
    auto cn = CompNode::load("openclx");
    auto graph = ComputingGraph::make();
    graph->options().graph_opt_level = 0;
    auto mkvar = [&](const char* name, const TensorShape& shp) {
        return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
    };
    auto mkcvar = [&](const char* name, const TensorShape& shp) {
M
Megvii Engine Team 已提交
1218
        return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name);
1219 1220 1221 1222 1223 1224 1225
    };

    auto host_x = gen({8, 8, 8, 8}, cn);
    auto x = opr::Host2DeviceCopy::make(*graph, host_x);

    opr::Convolution::Param param;
    param.pad_h = param.pad_w = 0;
M
Megvii Engine Team 已提交
1226
    auto w1 = mkcvar("w1", {4, 8, 3, 3}), conv = opr::Convolution::make(x, w1, param);
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
    auto shape_of = opr::GetVarShape::make(conv);
    auto subtensor = opr::Subtensor::make(
            shape_of, {opr::Subtensor::AxisIndexer::make_interval(
                              0, x.make_scalar(2), None, x.make_scalar(1))});

    opr::Resize::Param param_resize;
    param_resize.format = opr::Resize::Param::Format::NCHW;
    auto resize = opr::ResizeForward::make(conv, subtensor * 2, param_resize);
    auto mat = mkcvar("mat", {8, 3, 3}),
         warp = opr::WarpPerspectiveForward::make(
                 resize, mat, nullptr, cg::var_from_tensor_shape(x, {4, 4}));

    auto b = mkvar("b", {1, 4, 1, 1}),
M
Megvii Engine Team 已提交
1240
         elem = opr::Elemwise::make({warp + b}, opr::Elemwise::Param::Mode::RELU);
1241
    param.pad_h = param.pad_w = 1;
M
Megvii Engine Team 已提交
1242 1243
    auto w2 = mkcvar("w2", {4, 4, 3, 3}), y = opr::Convolution::make(elem, w2, param),
         z = opr::AxisAddRemove::make(y, {opr::AxisAddRemove::AxisDesc::make_add(0)});
1244 1245 1246 1247 1248 1249 1250

    SymbolVar y_opt, z_opt;
    auto options = gopt::OptimizeForInferenceOptions{};
    options.enable_nhwcd4();
    unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
    unpack_vector(gopt::optimize_for_inference({z}, options), z_opt);

M
Megvii Engine Team 已提交
1251 1252 1253
    ASSERT_EQ(
            opr::Convolution::Param::Format::NHWCD4,
            find_opr<opr::Convolution>(y_opt).param().format);
1254

M
Megvii Engine Team 已提交
1255 1256 1257
    ASSERT_EQ(
            TensorFormat::Type::DEFAULT,
            find_opr<opr::AxisAddRemove>(z_opt).input(0)->format().type());
1258 1259 1260
    ASSERT_EQ(4, find_opr<opr::AxisAddRemove>(z_opt).input(0)->shape().ndim);

    HostTensorND host_y_opt, host_y;
M
Megvii Engine Team 已提交
1261 1262
    auto func = graph->compile(
            {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
    func->execute();
    MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);

    *host_x = *gen({8, 8, 16, 16}, cn);
    func->execute();
    MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
}
#undef REQUIRE_OPENCL
#endif

1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
TEST(TestGoptInference, ConvertFormatNHWCD4Elemwise) {
    // hwcd4 is only supported in naive handle
    NaiveMegDNNHandleScope naive_megdnn_handle;

    HostTensorGenerator<> gen;
    auto cn = CompNode::load("cpu0");
    auto graph = ComputingGraph::make();
    graph->options().graph_opt_level = 0;
    auto mkvar = [&](const char* name, const TensorShape& shp) {
        return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
    };
    auto mkcvar = [&](const char* name, const TensorShape& shp) {
M
Megvii Engine Team 已提交
1285
        return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name);
1286 1287 1288 1289 1290 1291 1292
    };

    auto host_x = gen({8, 8, 8, 8}, cn);
    auto x = opr::Host2DeviceCopy::make(*graph, host_x);

    opr::Convolution::Param param;
    param.pad_h = param.pad_w = 0;
M
Megvii Engine Team 已提交
1293
    auto w1 = mkcvar("w1", {8, 8, 3, 3}), conv = opr::Convolution::make(x, w1, param);
1294 1295

    auto b = mkvar("b", {1, 1, 1, 1}),
M
Megvii Engine Team 已提交
1296
         elem = opr::Elemwise::make({conv + b}, opr::Elemwise::Param::Mode::RELU);
1297 1298 1299 1300 1301 1302 1303
    param.pad_h = param.pad_w = 1;
    auto w2 = mkcvar("w2", {8, 8, 3, 3}),
         conv2 = opr::Convolution::make(elem, w2, param);

    auto b_scaler = mkvar("b", {1}), elem2 = conv2 + b_scaler;

    param.pad_h = param.pad_w = 1;
M
Megvii Engine Team 已提交
1304
    auto w3 = mkcvar("w2", {8, 8, 3, 3}), y = opr::Convolution::make(elem2, w3, param);
1305 1306 1307 1308 1309 1310

    SymbolVar y_opt;
    auto options = gopt::OptimizeForInferenceOptions{};
    options.enable_nhwcd4();
    unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);

M
Megvii Engine Team 已提交
1311 1312 1313
    ASSERT_EQ(
            opr::Convolution::Param::Format::NHWCD4,
            find_opr<opr::Convolution>(y_opt).param().format);
1314 1315 1316

    graph->compile({{y_opt, {}}})
            ->to_json()
M
Megvii Engine Team 已提交
1317 1318
            ->writeto_fpath(
                    output_file("TestGoptInference.ConvertFormatNHWCD4Elemwise.json"));
1319 1320

    HostTensorND host_y_opt, host_y;
M
Megvii Engine Team 已提交
1321 1322
    auto func = graph->compile(
            {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
1323 1324 1325 1326 1327 1328 1329 1330
    func->execute();
    MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);

    *host_x = *gen({8, 8, 16, 16}, cn);
    func->execute();
    MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
}

1331 1332 1333 1334 1335 1336 1337 1338
TEST(TestGoptInference, ConvertFormatNHWCD4TypeCvt) {
    NaiveMegDNNHandleScope naive_megdnn_handle;

    HostTensorGenerator<> gen;
    auto cn = CompNode::load("cpu0");
    auto graph = ComputingGraph::make();
    graph->options().graph_opt_level = 0;
    auto mkcvar = [&](const char* name, const TensorShape& shp) {
M
Megvii Engine Team 已提交
1339
        return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name);
1340 1341 1342 1343 1344 1345 1346
    };
    auto host_x = gen({8, 8, 8, 8}, cn);
    auto x = opr::Host2DeviceCopy::make(*graph, host_x);

    opr::Convolution::Param param;

    param.pad_h = param.pad_w = 0;
M
Megvii Engine Team 已提交
1347
    auto w1 = mkcvar("w1", {8, 8, 3, 3}), conv1 = opr::Convolution::make(x, w1, param),
1348
         tcvt1 = opr::TypeCvt::make(conv1, dtype::Float16());
M
Megvii Engine Team 已提交
1349
    auto w2 = mkcvar("w2", {8, 8, 3, 3}), conv2 = opr::Convolution::make(x, w2, param),
1350 1351 1352 1353 1354 1355 1356 1357
         tcvt2 = opr::TypeCvt::make(conv2, dtype::Float16());
    auto y = opr::Elemwise::make({tcvt1, tcvt2}, opr::Elemwise::Param::Mode::ADD);

    SymbolVar y_opt;
    auto options = gopt::OptimizeForInferenceOptions{};
    options.enable_nhwcd4();
    unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);

M
Megvii Engine Team 已提交
1358 1359 1360
    ASSERT_EQ(
            opr::Convolution::Param::Format::NHWCD4,
            find_opr<opr::Convolution>(y_opt).param().format);
1361 1362 1363

    graph->compile({{y_opt, {}}})
            ->to_json()
M
Megvii Engine Team 已提交
1364 1365
            ->writeto_fpath(
                    output_file("TestGoptInference.ConvertFormatNHWCD4TypeCvt.json"));
1366 1367

    HostTensorND host_y_opt, host_y;
M
Megvii Engine Team 已提交
1368 1369
    auto func = graph->compile(
            {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
1370 1371 1372 1373 1374 1375 1376 1377
    func->execute();
    MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);

    *host_x = *gen({8, 8, 16, 16}, cn);
    func->execute();
    MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
}

1378 1379 1380 1381 1382 1383 1384 1385 1386
TEST(TestGoptInference, ConvertFormatNHWCD4LOCAL) {
    // hwcd4 is only supported in naive handle
    NaiveMegDNNHandleScope naive_megdnn_handle;

    HostTensorGenerator<> gen;
    auto cn = CompNode::load("cpu0");
    auto graph = ComputingGraph::make();
    graph->options().graph_opt_level = 0;
    auto mkcvar = [&](const char* name, const TensorShape& shp) {
M
Megvii Engine Team 已提交
1387
        return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name);
1388 1389 1390 1391 1392 1393 1394
    };

    auto host_x = gen({2, 8, 8, 16}, cn);
    auto x = opr::Host2DeviceCopy::make(*graph, host_x);

    opr::Convolution::Param param;
    param.pad_h = param.pad_w = 1;
M
Megvii Engine Team 已提交
1395
    auto w1 = mkcvar("w1", {4, 8, 3, 3}), conv1 = opr::Convolution::make(x, w1, param);
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411

    auto w2 = mkcvar("w2", {8, 16, 4, 3, 3, 4}),
         local = opr::Local::make(conv1, w2, param);

    auto w3 = mkcvar("w3", {4, 4, 3, 3}),
         conv2 = opr::Convolution::make(local, w3, param);

    opr::GroupLocal::Param param_group_local;
    param_group_local.pad_h = param_group_local.pad_w = 1;
    auto w4 = mkcvar("w4", {2, 8, 16, 2, 3, 3, 2}),
         group_local = opr::GroupLocal::make(conv2, w4, param_group_local);

    auto w5 = mkcvar("w5", {4, 4, 3, 3}),
         y = opr::Convolution::make(group_local, w5, param);

    SymbolVar y_opt;
1412
    auto options = gopt::OptimizeForInferenceOptions{};
1413
    options.enable_nhwcd4();
1414
    unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
1415

M
Megvii Engine Team 已提交
1416 1417 1418
    ASSERT_EQ(
            opr::Convolution::Param::Format::NHWCD4,
            find_opr<opr::Convolution>(y_opt).param().format);
1419

M
Megvii Engine Team 已提交
1420 1421 1422
    ASSERT_EQ(
            opr::Local::Param::Format::NCHW,
            find_opr<opr::Local>(y_opt).param().format);
1423

M
Megvii Engine Team 已提交
1424 1425 1426
    ASSERT_EQ(
            opr::GroupLocal::Param::Format::NCHW,
            find_opr<opr::GroupLocal>(y_opt).param().format);
1427 1428 1429

    graph->compile({{y_opt, {}}})
            ->to_json()
M
Megvii Engine Team 已提交
1430 1431
            ->writeto_fpath(
                    output_file("TestGoptInference.ConvertFormatNHWCD4LOCAL.json"));
1432 1433

    HostTensorND host_y_opt, host_y;
M
Megvii Engine Team 已提交
1434 1435
    auto func = graph->compile(
            {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
1436 1437 1438 1439
    func->execute();
    MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
}

1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
TEST(TestGoptInference, ConvertFormatNHWCD4Deconv) {
    // hwcd4 is only supported in naive handle
    NaiveMegDNNHandleScope naive_megdnn_handle;

    HostTensorGenerator<> gen;
    auto cn = CompNode::load("cpu0");
    auto graph = ComputingGraph::make();
    graph->options().graph_opt_level = 0;

    auto mkcvar = [&](const char* name, const TensorShape& shp) {
M
Megvii Engine Team 已提交
1450
        return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name);
1451 1452 1453 1454 1455 1456 1457
    };

    auto host_x = gen({8, 8, 8, 8}, cn);
    auto x = opr::Host2DeviceCopy::make(*graph, host_x);

    opr::Convolution::Param param;
    param.pad_h = param.pad_w = 0;
M
Megvii Engine Team 已提交
1458
    auto w0 = mkcvar("w1", {4, 8, 2, 2}), conv = opr::Convolution::make(x, w0, param);
1459 1460 1461 1462 1463

    auto w1 = mkcvar("w1", {4, 1, 2, 2}),
         y = opr::ConvolutionBackwardData::make(w1, conv, param, {}, {});

    SymbolVar y_opt;
1464
    auto options = gopt::OptimizeForInferenceOptions{};
1465
    options.enable_nhwcd4();
1466
    unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
1467

M
Megvii Engine Team 已提交
1468 1469 1470 1471 1472 1473
    ASSERT_EQ(
            opr::Convolution::Param::Format::NCHW,
            find_opr<opr::ConvolutionBackwardData>(y_opt).param().format);
    ASSERT_EQ(
            opr::Convolution::Param::Format::NHWCD4,
            find_opr<opr::Convolution>(y_opt).param().format);
1474 1475

    HostTensorND host_y_opt, host_y;
M
Megvii Engine Team 已提交
1476 1477
    auto func = graph->compile(
            {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
    func->execute();
    MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
}
TEST(TestGoptInference, ConvertFormatNHWCD4Qint8) {
    // hwcd4 is only supported in naive handle
    NaiveMegDNNHandleScope naive_megdnn_handle;

    HostTensorGenerator<> gen;
    auto cn = CompNode::load("cpu0");
    auto graph = ComputingGraph::make();
    graph->options().graph_opt_level = 0;

M
Megvii Engine Team 已提交
1490
    auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
1491
        return opr::TypeCvt::make(
M
Megvii Engine Team 已提交
1492
                opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
                dtype);
    };

    auto host_x = gen({8, 8, 8, 8}, cn);
    auto _x = opr::Host2DeviceCopy::make(*graph, host_x),
         x = opr::TypeCvt::make(_x, dtype::QuantizedS8(0.2f));

    opr::ConvBias::Param param;
    param.pad_h = param.pad_w = 0;
    auto w = mkcvar("w", {4, 8, 3, 3}, dtype::QuantizedS8(0.1f)),
         b = mkcvar("b", {1, 4, 1, 1}, dtype::QuantizedS32(0.02f)),
M
Megvii Engine Team 已提交
1504 1505
         y = opr::ConvBias::make(
                 x, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8(0.2f)});
1506 1507

    SymbolVar y_opt;
1508
    auto options = gopt::OptimizeForInferenceOptions{};
1509
    options.enable_nhwcd4();
1510
    unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
1511

M
Megvii Engine Team 已提交
1512 1513 1514
    ASSERT_EQ(
            opr::ConvBias::Param::Format::NHWCD4,
            find_opr<opr::ConvBias>(y_opt).param().format);
1515 1516 1517

    graph->compile({{y_opt, {}}})
            ->to_json()
M
Megvii Engine Team 已提交
1518 1519
            ->writeto_fpath(
                    output_file("TestGoptInference.ConvertFormatNHWCD4Qint8.json"));
1520 1521 1522 1523
    auto float_y = opr::TypeCvt::make(y, dtype::Float32()),
         float_y_opt = opr::TypeCvt::make(y_opt, dtype::Float32());

    HostTensorND host_y_opt, host_y;
M
Megvii Engine Team 已提交
1524 1525 1526
    auto func = graph->compile(
            {make_callback_copy(float_y, host_y),
             make_callback_copy(float_y_opt, host_y_opt)});
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
    func->execute();
    MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
}
TEST(TestGoptInference, ConvertFormatPadIC) {
    // hwcd4 is only supported in naive handle
    NaiveMegDNNHandleScope naive_megdnn_handle;

    HostTensorGenerator<> gen;
    auto cn = CompNode::load("cpu0");
    auto graph = ComputingGraph::make();
    graph->options().graph_opt_level = 0;
    auto mkcvar = [&](const char* name, const TensorShape& shp) {
M
Megvii Engine Team 已提交
1539
        return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name);
1540 1541
    };

M
Megvii Engine Team 已提交
1542
    auto host_inp1 = gen({1, 6, 128, 128}, cn), host_inp2 = gen({1, 6, 256, 256}, cn);
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
    auto inp1 = opr::Host2DeviceCopy::make(*graph, host_inp1),
         inp2 = opr::Host2DeviceCopy::make(*graph, host_inp2);

    auto shape_tmp = mkcvar("tmp", {256, 256});
    auto shape_of = opr::GetVarShape::make(shape_tmp);
    opr::Resize::Param param_resize;
    param_resize.format = opr::Resize::Param::Format::NCHW;
    auto resize = opr::ResizeForward::make(inp1, shape_of, param_resize);

    auto concat = opr::Concat::make({inp2, resize}, 1);

    opr::Convolution::Param param;
    param.pad_h = param.pad_w = 1;
    param.sparse = opr::Convolution::Param::Sparse::DENSE;
    auto w1 = mkcvar("w1", {12, 12, 3, 3});
    auto y = opr::Convolution::make(concat, w1, param);
    SymbolVar y_opt;
1560
    auto options = gopt::OptimizeForInferenceOptions{};
1561
    options.enable_nhwcd4();
1562
    unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
1563 1564

    HostTensorND host_y_opt, host_y;
M
Megvii Engine Team 已提交
1565 1566
    auto func = graph->compile(
            {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
1567 1568
    func->execute();
    MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
1569 1570
}

1571 1572 1573 1574 1575 1576 1577 1578 1579
TEST(TestGoptInference, concatbypass) {
    // hwcd4 is only supported in naive handle
    NaiveMegDNNHandleScope naive_megdnn_handle;

    HostTensorGenerator<> gen;
    auto cn = CompNode::load("cpu0");
    auto graph = ComputingGraph::make();
    graph->options().graph_opt_level = 0;
    auto mkcvar = [&](const char* name, const TensorShape& shp) {
M
Megvii Engine Team 已提交
1580
        return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name);
1581 1582
    };

M
Megvii Engine Team 已提交
1583
    auto host_inp1 = gen({1, 6, 16, 16}, cn), host_inp2 = gen({1, 6, 32, 32}, cn);
1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
    auto inp1 = opr::Host2DeviceCopy::make(*graph, host_inp1),
         inp2 = opr::Host2DeviceCopy::make(*graph, host_inp2);

    auto shape_tmp = mkcvar("tmp", {32, 32});
    auto shape_of = opr::GetVarShape::make(shape_tmp);
    opr::Resize::Param param_resize;
    param_resize.format = opr::Resize::Param::Format::NCHW;
    auto resize = opr::ResizeForward::make(inp1, shape_of, param_resize);

    //! this concat should forward to chw
    auto concat = opr::Concat::make({inp2, resize}, 1);

    opr::Convolution::Param param;
    param.pad_h = param.pad_w = 1;
    param.sparse = opr::Convolution::Param::Sparse::DENSE;
    auto w1 = mkcvar("w1", {12, 12, 3, 3});
    auto w2 = mkcvar("w1", {12, 24, 3, 3});
    auto y = opr::Convolution::make(concat, w1, param);
    //! this concat should bypass CD4
    y = opr::Concat::make({y, y}, 0);
    y = opr::Convolution::make(y, w1, param);
    //! this concat should bypass CD4
    y = opr::Concat::make({y, y}, 1);
    y = opr::Convolution::make(y, w2, param);
    //! this concat should bypass CD4
    y = opr::Concat::make({y, y}, 2);
    y = opr::Convolution::make(y, w1, param);
    SymbolVar y_opt;
    auto options = gopt::OptimizeForInferenceOptions{};
    options.enable_nhwcd4();
    unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);

    HostTensorND host_y_opt, host_y;
M
Megvii Engine Team 已提交
1617 1618
    auto func = graph->compile(
            {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
    size_t relayout_format_nr = 0;
    auto cb = [&](cg::OperatorNodeBase* opr) {
        if (opr->try_cast_final<opr::Convolution>()) {
            auto conv_inputs = opr->input();
            for (auto& input : conv_inputs) {
                if (std::string::npos !=
                    std::string(input->cname()).find("relayout_format")) {
                    relayout_format_nr++;
                }
            }
        }
        return true;
    };
    func->iter_opr_seq(cb);
    func->execute();
    MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
M
Megvii Engine Team 已提交
1635 1636 1637
    ASSERT_EQ(
            opr::Convolution::Param::Format::NHWCD4,
            find_opr<opr::Convolution>(y_opt).param().format);
1638 1639 1640
    ASSERT_EQ(1, relayout_format_nr);
}

1641 1642 1643
TEST(TestGoptInference, ConvertBatchNormPass) {
    auto cn = CompNode::load("cpu0");

1644
    std::vector<TensorShape> shps = {{1, 3, 1, 1}, {1, 1, 1, 3}},
M
Megvii Engine Team 已提交
1645
                             xshps = {{2, 3, 16, 24}, {2, 16, 24, 3}};
1646 1647 1648 1649 1650 1651 1652 1653
    for (int t = 0; t < 2; t++) {
        HostTensorGenerator<> gen(0, 1, 0);
        auto graph = ComputingGraph::make();
        graph->options().graph_opt_level = 0;
        auto mkvar = [&](const char* name, const TensorShape& shp) {
            return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
        };
        auto mkcvar = [&](const char* name, const TensorShape& shp) {
M
Megvii Engine Team 已提交
1654
            return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name);
1655 1656
        };
        using Param = opr::BatchNorm::Param;
M
Megvii Engine Team 已提交
1657 1658
        Param::ParamDim param_dim =
                t == 0 ? Param::ParamDim::DIM_1C11 : Param::ParamDim::DIM_111C;
1659 1660 1661 1662 1663 1664
        Param param(param_dim, Param::FwdMode::INFERENCE);
        TensorShape shp = shps[t], xshp = xshps[t];
        auto x = mkvar("x", xshp), scale = mkcvar("scale", shp),
             bias = mkcvar("bias", shp), mean = mkcvar("mean", shp);
        auto host_variance = gen(shp, cn);
        for (size_t i = 0; i < shp.total_nr_elems(); ++i) {
M
Megvii Engine Team 已提交
1665
            host_variance->ptr<float>()[i] = std::abs(host_variance->ptr<float>()[i]);
1666 1667 1668 1669 1670
        }
        auto variance = opr::SharedDeviceTensor::make(*graph, *host_variance)
                                .rename("variance");
        auto y = opr::BatchNorm::make(x, scale, bias, mean, variance, param)[5];
        SymbolVar y_opt;
M
Megvii Engine Team 已提交
1671 1672 1673
        unpack_vector(
                gopt::optimize_for_inference({y}, gopt::OptimizeForInferenceOptions{}),
                y_opt);
1674 1675 1676 1677 1678 1679 1680
        ASSERT_EQ(0u, find_opr_num<opr::BatchNorm>(y_opt));
        graph->compile({{y_opt, {}}})
                ->to_json()
                ->writeto_fpath(
                        output_file("TestGoptInference.ConvertBatchNormPass.json"));

        HostTensorND host_y, host_y_opt;
M
Megvii Engine Team 已提交
1681 1682
        auto func = graph->compile(
                {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
1683 1684
        func->execute();
        MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-5);
1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
    }
}

TEST(TestGoptInference, ConvBiasNonlinearityFusePass) {
    // hwcd4 is only supported in naive handle
    NaiveMegDNNHandleScope naive_megdnn_handle;

    auto cn = CompNode::load("cpu0");

    HostTensorGenerator<> gen;
    auto graph = ComputingGraph::make();
    graph->options().graph_opt_level = 0;
    auto mkvar = [&](const char* name, const TensorShape& shp) {
        return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
    };
    auto mkcvar = [&](const char* name, const TensorShape& shp) {
M
Megvii Engine Team 已提交
1701
        return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name);
1702 1703 1704 1705 1706 1707
    };
    opr::Convolution::Param param;
    auto x = mkvar("x", {5, 8, 16, 24}), w1 = mkcvar("w1", {4, 8, 1, 1}),
         w2 = mkcvar("w2", {4, 4, 3, 3}), b1 = mkcvar("b1", {1, 4, 1, 1}),
         b2 = mkcvar("b2", {1, 4, 1, 1}), w3 = mkcvar("w3", {8, 4, 1, 1}),
         y_cut = opr::Convolution::make(x, w1, param),
M
Megvii Engine Team 已提交
1708
         y1 = opr::Elemwise::make({y_cut + b1}, opr::Elemwise::Param::Mode::RELU);
1709
    param.pad_w = param.pad_h = 1;
M
Megvii Engine Team 已提交
1710 1711 1712
    auto y2 = opr::Elemwise::make(
            {opr::Convolution::make(y1, w2, param) + b2},
            opr::Elemwise::Param::Mode::SIGMOID);
1713 1714
    param.pad_w = param.pad_h = 0;
    auto y3 = opr::Convolution::make(y2, w3, param), y_tmp = y3 + x,
M
Megvii Engine Team 已提交
1715
         y_expand = opr::Elemwise::make({y_cut}, opr::Elemwise::Param::Mode::RELU),
1716 1717
         y_y = opr::Convolution::make(y_expand, w3, param), y = y_y + y_tmp;
    SymbolVar y_opt;
1718
    auto options = gopt::OptimizeForInferenceOptions{};
1719
    options.enable_nhwcd4().enable_fuse_conv_bias_nonlinearity();
1720
    unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
1721 1722 1723
    ASSERT_EQ(3u, find_opr<opr::ConvBias>(y_opt).input().size());
    graph->compile({{y_opt, {}}})
            ->to_json()
M
Megvii Engine Team 已提交
1724 1725
            ->writeto_fpath(
                    output_file("TestGoptInference.FuseConvBiasNonlinPass.json"));
1726 1727

    HostTensorND host_y, host_y_opt;
M
Megvii Engine Team 已提交
1728 1729
    auto func = graph->compile(
            {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
1730 1731 1732 1733
    func->execute();
    MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-4);
}

1734 1735 1736 1737 1738 1739 1740 1741
TEST(TestGoptInference, ConvBiasNonlinearityFusePass_FullBias) {
    NaiveMegDNNHandleScope naive_megdnn_handle;

    for (int i = 0; i < 2; i++) {
        auto graph = ComputingGraph::make();
        auto cn = CompNode::load("cpu0");
        HostTensorGenerator<> gen;
        auto mkImvar = [&](const char* name, const TensorShape& shp) {
M
Megvii Engine Team 已提交
1742
            return opr::ImmutableTensor::make(*graph, *gen(shp, cn)).rename(name);
1743 1744 1745 1746
        };

        graph->options().graph_opt_level = 0;
        auto mkcvar = [&](const char* name, const TensorShape& shp) {
M
Megvii Engine Team 已提交
1747
            return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name);
1748 1749 1750 1751 1752 1753
        };
        opr::Convolution::Param param;
        auto host_x = gen({1, 8, 16, 24}, cn);
        auto x = opr::Host2DeviceCopy::make(*graph, host_x),
             w1 = mkcvar("w1", {4, 8, 1, 1}), w2 = mkcvar("w2", {4, 8, 3, 3}),
             w3 = mkcvar("w3", {4, 4, 1, 1}),
M
Megvii Engine Team 已提交
1754
             b = i == 0 ? mkcvar("b", {1, 4, 16, 24}) : mkImvar("bias", {1, 4, 16, 24}),
1755 1756 1757
             y_cut0 = opr::Convolution::make(x, w1, param);
        param.pad_w = param.pad_h = 1;
        auto y_cut1 = opr::Convolution::make(x, w2, param);
M
Megvii Engine Team 已提交
1758 1759
        auto y1 = opr::Elemwise::make(
                {y_cut0 + y_cut1}, opr::Elemwise::Param::Mode::RELU);
1760 1761
        param.pad_w = param.pad_h = 0;
        auto y2 = opr::Convolution::make(y1, w3, param);
M
Megvii Engine Team 已提交
1762
        auto y = opr::Elemwise::make({y2 + b}, opr::Elemwise::Param::Mode::RELU);
1763 1764 1765 1766 1767 1768 1769
        SymbolVar y_opt;
        auto options = gopt::OptimizeForInferenceOptions{};
        options.enable_fuse_conv_bias_nonlinearity();
        unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
        ASSERT_EQ(3u, find_opr<opr::ConvBias>(y_opt).input().size());
        graph->compile({{y_opt, {}}})
                ->to_json()
M
Megvii Engine Team 已提交
1770 1771
                ->writeto_fpath(output_file("TestGoptInference.FuseConvBiasNonlinPass_"
                                            "FulBias.json"));
1772
        HostTensorND host_y, host_y_opt;
M
Megvii Engine Team 已提交
1773 1774
        auto func = graph->compile(
                {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
1775 1776 1777 1778 1779 1780 1781 1782
        func->execute();
        MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-4);
        *host_x = *gen({4, 8, 16, 24}, cn);
        func->execute();
        MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-4);
    }
}

1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793
TEST(TestGoptInference, ParamMerge) {
    auto cns = load_multiple_xpus(2);
    HostTensorGenerator<> gen;
    auto graph = ComputingGraph::make();
    auto var0 = opr::SharedDeviceTensor::make(*graph, *gen({2, 3}, cns[0])),
         var1 = opr::SharedDeviceTensor::make(*graph, *gen({1, 3}, cns[1])),
         y = var0 + opr::Copy::make(var1, {cns[0]});
    HostTensorND y_expected_val;
    graph->compile({make_callback_copy(y, y_expected_val)})->execute();

    SymbolVar y_opt;
M
Megvii Engine Team 已提交
1794 1795 1796 1797 1798 1799
    unpack_vector(
            gopt::GraphOptimizer{}
                    .add_pass<gopt::ParamMergePass>()
                    .apply({{y}})
                    .endpoint_vars(),
            y_opt);
1800 1801
    auto opr = y_opt.node()->owner_opr();
    ASSERT_EQ(2u, opr->input().size());
M
Megvii Engine Team 已提交
1802
    ASSERT_EQ(2u, find_opr<opr::MultipleDeviceTensorHolder>(y_opt).output().size());
1803 1804 1805 1806 1807 1808 1809 1810 1811
    HostTensorND y_got_val;
    graph->compile({make_callback_copy(y_opt, y_got_val)})->execute();
    MGB_ASSERT_TENSOR_EQ(y_expected_val, y_got_val);
}

TEST(TestGoptInference, ParamMergeFormat) {
    auto cns = load_multiple_xpus(2);

    auto make_dv = [](const HostTensorND& hv) {
M
Megvii Engine Team 已提交
1812 1813 1814
        TensorLayout layout{
                hv.layout(), hv.layout().dtype,
                megdnn::Image2DPack4TensorFormat::make_raw(1, 64)};
1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
        auto ret = std::make_shared<DeviceTensorND>(hv.comp_node(), layout);
        ret->copy_from_fixlayout(hv).sync();
        return ret;
    };

    HostTensorGenerator<> gen;
    auto graph = ComputingGraph::make();
    auto var0 = opr::SharedDeviceTensorWithFormat::make(
                 *graph, make_dv(*gen({2, 32}, cns[0]))),
         var1 = opr::SharedDeviceTensorWithFormat::make(
                 *graph, make_dv(*gen({1, 32}, cns[1]))),
         y = var0 + opr::Copy::make(var1, {cns[0]});
    HostTensorND y_expected_val;
    graph->compile({make_callback_copy(y, y_expected_val)})->execute();

    SymbolVar y_opt;
M
Megvii Engine Team 已提交
1831 1832 1833 1834 1835 1836
    unpack_vector(
            gopt::GraphOptimizer{}
                    .add_pass<gopt::ParamMergePass>()
                    .apply({{y}})
                    .endpoint_vars(),
            y_opt);
1837 1838
    auto opr = y_opt.node()->owner_opr();
    ASSERT_EQ(2u, opr->input().size());
M
Megvii Engine Team 已提交
1839 1840 1841
    ASSERT_EQ(
            2u,
            find_opr<opr::MultipleDeviceTensorWithFormatHolder>(y_opt).output().size());
1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873
    HostTensorND y_got_val;
    graph->compile({make_callback_copy(y_opt, y_got_val)})->execute();
    MGB_ASSERT_TENSOR_EQ(y_expected_val, y_got_val);
}

#if MGB_ENABLE_FASTRUN
TEST(TestGoptInference, AlgoProfile) {
    HostTensorGenerator<> gen;
    auto graph = ComputingGraph::make();
    auto host_x = gen({4, 3, 8, 9}), host_y = gen({2, 3, 3, 3});
    auto x = opr::Host2DeviceCopy::make(*graph, host_x),
         y = opr::Host2DeviceCopy::make(*graph, host_y),
         z = opr::Convolution::make(x, y);
    auto&& conv = z.node()->owner_opr()->cast_final_safe<opr::Convolution>();
    using S = opr::Convolution::ExecutionPolicy::Strategy;
    ASSERT_EQ(S::HEURISTIC, conv.execution_policy_transient().strategy);
    gopt::enable_opr_algo_profiling_inplace({z + 2.3f});
    ASSERT_EQ(S::PROFILE, conv.execution_policy().strategy);
}
#endif

TEST(TestGoptInference, ProfileCache) {
    HostTensorGenerator<> gen;
    auto graph = ComputingGraph::make();
    auto host_x = gen({4, 3, 8, 9}), host_y = gen({2, 3, 3, 3});
    auto x = opr::Host2DeviceCopy::make(*graph, host_x),
         y = opr::Host2DeviceCopy::make(*graph, host_y),
         z = opr::Convolution::make(x, y);
    auto&& conv = z.node()->owner_opr()->cast_final_safe<opr::Convolution>();
    using S = opr::Convolution::ExecutionPolicy::Strategy;
    ASSERT_EQ(S::HEURISTIC, conv.execution_policy_transient().strategy);
    gopt::enable_opr_use_profiling_cache_inplace({z + 2.3f});
1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
    ASSERT_EQ(S::PROFILE | S::HEURISTIC, conv.execution_policy().strategy);
}

TEST(TestGoptInference, FastProfileCache) {
    HostTensorGenerator<> gen;
    auto graph = ComputingGraph::make();
    auto host_x = gen({4, 3, 8, 9}), host_y = gen({2, 3, 3, 3});
    auto x = opr::Host2DeviceCopy::make(*graph, host_x),
         y = opr::Host2DeviceCopy::make(*graph, host_y),
         z = opr::Convolution::make(x, y);
    auto&& conv = z.node()->owner_opr()->cast_final_safe<opr::Convolution>();
    using S = opr::Convolution::ExecutionPolicy::Strategy;
    ASSERT_EQ(S::HEURISTIC, conv.execution_policy_transient().strategy);
M
Megvii Engine Team 已提交
1887
    gopt::modify_opr_algo_strategy_inplace({z + 2.3f}, S::PROFILE | S::OPTIMIZED);
M
Megvii Engine Team 已提交
1888
    ASSERT_EQ(S::PROFILE | S::OPTIMIZED, conv.execution_policy().strategy);
1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
}

TEST(TestGoptInference, AlgoWorkspaceLimit) {
    HostTensorGenerator<> gen;
    auto graph = ComputingGraph::make();
    auto host_x = gen({4, 3, 8, 9}), host_y = gen({2, 3, 3, 3});
    auto x = opr::Host2DeviceCopy::make(*graph, host_x),
         y = opr::Host2DeviceCopy::make(*graph, host_y),
         z = opr::Convolution::make(x, y);
    auto&& conv = z.node()->owner_opr()->cast_final_safe<opr::Convolution>();
M
Megvii Engine Team 已提交
1899 1900 1901
    ASSERT_EQ(
            std::numeric_limits<uint64_t>::max(),
            conv.execution_policy_transient().workspace_limit);
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911
    gopt::set_opr_algo_workspace_limit_inplace({z + 2.3f}, 10000u);
    ASSERT_EQ(10000u, conv.execution_policy().workspace_limit);
}

TEST_PASS(FuseConvBiasNonlinPass, Basic) {
    auto cn = CompNode::load("xpux");

    HostTensorGenerator<dtype::Int8> gen;
    auto graph = ComputingGraph::make();
    graph->options().graph_opt_level = 0;
M
Megvii Engine Team 已提交
1912
    auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
1913
        return opr::TypeCvt::make(
M
Megvii Engine Team 已提交
1914
                opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
1915
    };
M
Megvii Engine Team 已提交
1916
    auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
1917
        return opr::TypeCvt::make(
M
Megvii Engine Team 已提交
1918
                opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
1919 1920 1921
                dtype);
    };

M
Megvii Engine Team 已提交
1922 1923 1924
    for (auto format :
         {opr::Convolution::Param::Format::NCHW, opr::Convolution::Param::Format::NHWC,
          opr::Convolution::Param::Format::NCHW4}) {
1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957
        opr::Convolution::Param param;
        param.format = format;
        SymbolVar x, w, b;
        if (format == opr::Convolution::Param::Format::NHWC) {
            x = mkvar("x", {20, 20, 20, 4}, dtype::QuantizedS8(2.5f)),
            w = mkcvar("w1", {24, 1, 1, 4}, dtype::QuantizedS8(2.5f)),
            b = mkcvar("b", {1, 1, 1, 24}, dtype::QuantizedS32(6.25f));
        } else if (format == opr::Convolution::Param::Format::NCHW) {
            x = mkvar("x", {20, 4, 20, 20}, dtype::QuantizedS8(2.5f)),
            w = mkcvar("w1", {24, 4, 1, 1}, dtype::QuantizedS8(2.5f)),
            b = mkcvar("b", {1, 24, 1, 1}, dtype::QuantizedS32(6.25f));
        } else {
            mgb_assert(format == opr::Convolution::Param::Format::NCHW4);
            x = mkvar("x", {20, 1, 20, 20, 4}, dtype::QuantizedS8(2.5f)),
            w = mkcvar("w1", {24, 1, 1, 1, 4}, dtype::QuantizedS8(2.5f)),
            b = mkcvar("b", {1, 6, 1, 1, 4}, dtype::QuantizedS32(6.25f));
        }
        auto y = opr::Convolution::make(x, w, param);
        y = opr::Elemwise::make({y + b}, opr::Elemwise::Param::Mode::RELU);
        y = opr::TypeCvt::make(y, dtype::QuantizedS8(2.5f));

        opr::ConvBias::Param conv_bias_param;
        conv_bias_param.format = format;
        conv_bias_param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
        auto concret_y = opr::ConvBias::make(
                x, w, b, conv_bias_param, {},
                OperatorNodeConfig{dtype::QuantizedS8(2.5f)});

        check(concret_y, y);
    }
}

#if MGB_CUDA
1958

1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
TEST(TestEnableTensorCore, SmallInputShape) {
    REQUIRE_GPU(1);
    auto cn = CompNode::load("gpu0");
    cn.activate();
    auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
    auto sm_ver = prop.major * 10 + prop.minor;
    if (sm_ver < 75) {
        printf("This testcast ignored due to insufficient cuda cap(got: %d, "
               "expected: %d)\n",
               sm_ver, 75);
        return;
    }

    HostTensorGenerator<dtype::Int8> gen;
    auto graph = ComputingGraph::make();
    graph->options().graph_opt_level = 0;
M
Megvii Engine Team 已提交
1975
    auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
1976
        return opr::TypeCvt::make(
M
Megvii Engine Team 已提交
1977
                opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
1978
    };
M
Megvii Engine Team 已提交
1979
    auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
1980
        return opr::TypeCvt::make(
M
Megvii Engine Team 已提交
1981
                opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994
                dtype);
    };

    auto x = mkvar("x", {32, 16, 4, 8, 4}, dtype::QuantizedS8(2.5f)),
         w = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
         b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
         z = mkcvar("b1", {32, 16, 2, 4, 4}, dtype::QuantizedS8(2.5f));
    opr::ConvBias::Param param;
    param.format = opr::ConvBias::Param::Format::NCHW4;
    param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
    param.stride_h = param.stride_w = 2;
    param.pad_h = param.pad_w = 1;

M
Megvii Engine Team 已提交
1995 1996 1997 1998
    auto y = opr::ConvBias::make(
            x, w, b, z, param, {}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
    y = opr::ConvBias::make(
            y, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
1999 2000 2001 2002
    y = opr::TypeCvt::make(y, dtype::Float32());

    SymbolVar y_opt;
    SymbolVar y_no_tc;
2003 2004
    {
        auto options = gopt::OptimizeForInferenceOptions{};
2005
        options.enable_nchw32().enable_fuse_conv_bias_nonlinearity();
2006 2007 2008 2009 2010 2011 2012
        unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
    }
    {
        auto options = gopt::OptimizeForInferenceOptions{};
        options.enable_fuse_conv_bias_nonlinearity();
        unpack_vector(gopt::optimize_for_inference({y}, options), y_no_tc);
    }
2013 2014 2015
    auto nr_dimshuffle = find_opr_num<mgb::opr::Dimshuffle>(y_opt);
    ASSERT_EQ(2u, nr_dimshuffle);
    HostTensorND host_y, host_y_opt;
M
Megvii Engine Team 已提交
2016 2017 2018
    auto func = graph->compile(
            {make_callback_copy(y_no_tc, host_y),
             make_callback_copy(y_opt, host_y_opt)});
2019 2020 2021 2022
    func->execute();
    MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
}

2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038
TEST(TestEnableTensorCore, Nchw4Nchw) {
    REQUIRE_GPU(1);
    auto cn = CompNode::load("gpu0");
    cn.activate();
    auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
    auto sm_ver = prop.major * 10 + prop.minor;
    if (sm_ver < 75) {
        printf("This testcast ignored due to insufficient cuda cap(got: %d, "
               "expected: %d)\n",
               sm_ver, 75);
        return;
    }

    HostTensorGenerator<dtype::Int8> gen;
    auto graph = ComputingGraph::make();
    graph->options().graph_opt_level = 0;
M
Megvii Engine Team 已提交
2039
    auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
2040
        return opr::TypeCvt::make(
M
Megvii Engine Team 已提交
2041
                opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
2042
    };
M
Megvii Engine Team 已提交
2043
    auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
2044
        return opr::TypeCvt::make(
M
Megvii Engine Team 已提交
2045
                opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
2046 2047 2048
                dtype);
    };

M
Megvii Engine Team 已提交
2049 2050
    auto mkshape = [](opr::ConvBias::Param::Format format, size_t N, size_t C, size_t H,
                      size_t W) -> TensorShape {
2051 2052 2053 2054 2055 2056 2057 2058 2059
        mgb_assert(C % 4 == 0);
        if (format == opr::ConvBias::Param::Format::NCHW4) {
            return {N, C / 4, H, W, 4};
        } else {
            mgb_assert(format == opr::ConvBias::Param::Format::NCHW);
            return {N, C, H, W};
        }
    };

M
Megvii Engine Team 已提交
2060 2061 2062 2063 2064 2065
    for (auto format :
         {opr::ConvBias::Param::Format::NCHW, opr::ConvBias::Param::Format::NCHW4}) {
        auto x = mkvar("x", mkshape(format, 32, 64, 16, 16), dtype::QuantizedS8(2.5f)),
             w = mkcvar("w1", mkshape(format, 64, 64, 3, 3), dtype::QuantizedS8(2.5f)),
             b = mkcvar("b", mkshape(format, 1, 64, 1, 1), dtype::QuantizedS32(6.25f)),
             z = mkcvar("b1", mkshape(format, 32, 64, 8, 8), dtype::QuantizedS8(2.5f));
2066 2067 2068 2069 2070 2071 2072
        opr::ConvBias::Param param;
        param.format = format;
        param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
        param.stride_h = param.stride_w = 2;
        param.pad_h = param.pad_w = 1;

        auto y = opr::ConvBias::make(
M
Megvii Engine Team 已提交
2073 2074 2075
                x, w, b, z, param, {}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
        y = opr::ConvBias::make(
                y, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090
        y = opr::TypeCvt::make(y, dtype::Float32());

        SymbolVar y_opt;
        SymbolVar y_no_tc;
        {
            auto options = gopt::OptimizeForInferenceOptions{};
            options.enable_nchw32().enable_fuse_conv_bias_nonlinearity();
            unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
        }
        {
            auto options = gopt::OptimizeForInferenceOptions{};
            options.enable_fuse_conv_bias_nonlinearity();
            unpack_vector(gopt::optimize_for_inference({y}, options), y_no_tc);
        }
        auto nr_dimshuffle = find_opr_num<mgb::opr::Dimshuffle>(y_opt);
2091 2092
        if (format == opr::ConvBias::Param::Format::NCHW4) {
#if CUDA_VERSION >= 10020
M
Megvii Engine Team 已提交
2093
            //! try_conv_reformat_nchw322nchw4 used when cuda_version >= 10020
2094 2095 2096 2097 2098 2099 2100
            ASSERT_EQ(1u, nr_dimshuffle);
#else
            ASSERT_EQ(2u, nr_dimshuffle);
#endif
        } else {
            ASSERT_EQ(2u, nr_dimshuffle);
        }
2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
        std::string json_name;
        if (format == opr::ConvBias::Param::Format::NCHW4) {
            json_name = "TestGoptInference.Nchw4Nchw.NCHW4.json";
        } else {
            mgb_assert(format == opr::ConvBias::Param::Format::NCHW);
            json_name = "TestGoptInference.Nchw4Nchw.NCHW.json";
        }

        graph->compile({{y_opt, {}}})
                ->to_json()
                ->writeto_fpath(output_file(json_name.c_str()));
        HostTensorND host_y, host_y_opt;
M
Megvii Engine Team 已提交
2113 2114 2115
        auto func = graph->compile(
                {make_callback_copy(y_no_tc, host_y),
                 make_callback_copy(y_opt, host_y_opt)});
2116 2117 2118 2119 2120
        func->execute();
        MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
    }
}

2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136
TEST(TestEnableTensorCore, ConvBiasWithZ) {
    REQUIRE_GPU(1);
    auto cn = CompNode::load("gpu0");
    cn.activate();
    auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
    auto sm_ver = prop.major * 10 + prop.minor;
    if (sm_ver < 75) {
        printf("This testcast ignored due to insufficient cuda cap(got: %d, "
               "expected: %d)\n",
               sm_ver, 75);
        return;
    }

    HostTensorGenerator<dtype::Int8> gen;
    auto graph = ComputingGraph::make();
    graph->options().graph_opt_level = 0;
M
Megvii Engine Team 已提交
2137
    auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
2138
        return opr::TypeCvt::make(
M
Megvii Engine Team 已提交
2139
                opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
2140
    };
M
Megvii Engine Team 已提交
2141
    auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
2142
        return opr::TypeCvt::make(
M
Megvii Engine Team 已提交
2143
                opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156
                dtype);
    };

    auto x = mkvar("x", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f)),
         w = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
         b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
         z = mkvar("b1", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f));
    opr::ConvBias::Param param;
    param.format = opr::ConvBias::Param::Format::NCHW4;
    param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
    param.stride_h = param.stride_w = 1;
    param.pad_h = param.pad_w = 1;

M
Megvii Engine Team 已提交
2157 2158
    auto y = opr::ConvBias::make(
            x, w, b, z, param, {}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
2159 2160 2161 2162
    y = opr::TypeCvt::make(y, dtype::Float32());

    SymbolVar y_opt;
    SymbolVar y_no_tc;
2163 2164
    {
        auto options = gopt::OptimizeForInferenceOptions{};
2165
        options.enable_fuse_conv_bias_nonlinearity().enable_nchw32();
2166 2167 2168 2169 2170 2171 2172
        unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
    }
    {
        auto options = gopt::OptimizeForInferenceOptions{};
        options.enable_fuse_conv_bias_nonlinearity();
        unpack_vector(gopt::optimize_for_inference({y}, options), y_no_tc);
    }
2173
    HostTensorND host_y, host_y_opt;
M
Megvii Engine Team 已提交
2174 2175 2176
    auto func = graph->compile(
            {make_callback_copy(y_no_tc, host_y),
             make_callback_copy(y_opt, host_y_opt)});
2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196
    func->execute();
    MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
}

TEST(TestEnableTensorCore, Pooling) {
    REQUIRE_GPU(1);
    auto cn = CompNode::load("gpu0");
    cn.activate();
    auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
    auto sm_ver = prop.major * 10 + prop.minor;
    if (sm_ver < 75) {
        printf("This testcast ignored due to insufficient cuda cap(got: %d, "
               "expected: %d)\n",
               sm_ver, 75);
        return;
    }

    HostTensorGenerator<dtype::Int8> gen;
    auto graph = ComputingGraph::make();
    graph->options().graph_opt_level = 0;
M
Megvii Engine Team 已提交
2197
    auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
2198
        return opr::TypeCvt::make(
M
Megvii Engine Team 已提交
2199
                opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
2200
    };
M
Megvii Engine Team 已提交
2201
    auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
2202
        return opr::TypeCvt::make(
M
Megvii Engine Team 已提交
2203
                opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216
                dtype);
    };

    auto x = mkvar("x", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f)),
         w = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
         b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
         z = mkvar("b1", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f));
    opr::ConvBias::Param param;
    param.format = opr::ConvBias::Param::Format::NCHW4;
    param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
    param.stride_h = param.stride_w = 1;
    param.pad_h = param.pad_w = 1;

M
Megvii Engine Team 已提交
2217 2218
    auto y = opr::ConvBias::make(
            x, w, b, z, param, {}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230
    opr::Pooling::Param pool_param;
    pool_param.format = opr::Pooling::Param::Format::NCHW4;
    y = opr::Pooling::make(y, pool_param);
    y = opr::TypeCvt::make(y, dtype::Float32());

    SymbolVar y_opt;
    SymbolVar y_no_tc;
    {
        auto options = gopt::OptimizeForInferenceOptions{};
        options.enable_fuse_conv_bias_nonlinearity().enable_nchw32();
        unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
    }
M
Megvii Engine Team 已提交
2231 2232 2233
    ASSERT_EQ(
            opr::Pooling::Param::Format::NCHW32,
            find_opr<opr::Pooling>(y_opt).param().format);
2234 2235 2236 2237 2238 2239
    {
        auto options = gopt::OptimizeForInferenceOptions{};
        options.enable_fuse_conv_bias_nonlinearity();
        unpack_vector(gopt::optimize_for_inference({y}, options), y_no_tc);
    }
    HostTensorND host_y, host_y_opt;
M
Megvii Engine Team 已提交
2240 2241 2242
    auto func = graph->compile(
            {make_callback_copy(y_no_tc, host_y),
             make_callback_copy(y_opt, host_y_opt)});
2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262
    func->execute();
    MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
}

TEST(TestGoptInference, EnableTensorCore) {
    REQUIRE_GPU(1);
    auto cn = CompNode::load("gpu0");
    cn.activate();
    auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
    auto sm_ver = prop.major * 10 + prop.minor;
    if (sm_ver < 75) {
        printf("This testcast ignored due to insufficient cuda cap(got: %d, "
               "expected: %d)\n",
               sm_ver, 75);
        return;
    }

    HostTensorGenerator<dtype::Int8> gen;
    auto graph = ComputingGraph::make();
    graph->options().graph_opt_level = 0;
M
Megvii Engine Team 已提交
2263
    auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
2264
        return opr::TypeCvt::make(
M
Megvii Engine Team 已提交
2265
                opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
2266
    };
M
Megvii Engine Team 已提交
2267
    auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
2268
        return opr::TypeCvt::make(
M
Megvii Engine Team 已提交
2269
                opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293
                dtype);
    };

    auto x = mkvar("x", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f)),
         w = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
         b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
         b1 = mkvar("b1", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f));
    opr::Convolution::Param param;
    param.format = opr::Convolution::Param::Format::NCHW4;
    param.stride_h = param.stride_w = 1;
    param.pad_h = param.pad_w = 1;

    auto y = opr::Convolution::make(x, w, param);
    y = opr::Elemwise::make({y + b}, opr::Elemwise::Param::Mode::RELU);
    y = opr::TypeCvt::make(y, dtype::QuantizedS8(2.5f));

    auto y1 = y + b1, y2 = opr::Convolution::make(y, w, param),
         y3 = opr::Elemwise::make({y - b1}, opr::Elemwise::Param::Mode::RELU);
    y2 = opr::Elemwise::make({y2 + b}, opr::Elemwise::Param::Mode::RELU),
    y2 = opr::TypeCvt::make(y2, dtype::QuantizedS8(2.5f));
    auto y4 = y1 + y2 + y3;
    y4 = opr::TypeCvt::make(y4, dtype::Float32());
    SymbolVar y_opt;
    SymbolVar y_no_tc;
2294 2295
    {
        auto options = gopt::OptimizeForInferenceOptions{};
2296
        options.enable_fuse_conv_bias_nonlinearity().enable_nchw32();
2297 2298 2299 2300
        unpack_vector(gopt::optimize_for_inference({y4}, options), y_opt);
    }
    {
        auto options = gopt::OptimizeForInferenceOptions{};
2301
        options.enable_fuse_conv_bias_nonlinearity().enable_nchw32();
2302 2303
        unpack_vector(gopt::optimize_for_inference({y4}, options), y_no_tc);
    }
2304 2305 2306 2307
    auto nr_dimshuffle = find_opr_num<mgb::opr::Dimshuffle>(y_opt);
    ASSERT_EQ(3u, nr_dimshuffle);
    graph->compile({{y_opt, {}}})
            ->to_json()
M
Megvii Engine Team 已提交
2308
            ->writeto_fpath(output_file("TestGoptInference.EnableTensorCorePass.json"));
2309 2310

    HostTensorND host_y, host_y_opt;
M
Megvii Engine Team 已提交
2311 2312 2313
    auto func = graph->compile(
            {make_callback_copy(y_no_tc, host_y),
             make_callback_copy(y_opt, host_y_opt)});
2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333
    func->execute();
    MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
}

TEST(FuseConvBiasZPass, BlockFuse) {
    REQUIRE_GPU(1);
    auto cn = CompNode::load("gpu0");
    cn.activate();
    auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
    auto sm_ver = prop.major * 10 + prop.minor;
    if (sm_ver < 61) {
        printf("This testcast ignored due to insufficient cuda cap(got: %d, "
               "expected: %d)\n",
               sm_ver, 61);
        return;
    }

    HostTensorGenerator<dtype::Int8> gen;
    auto graph = ComputingGraph::make();
    graph->options().graph_opt_level = 0;
M
Megvii Engine Team 已提交
2334
    auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
2335
        return opr::TypeCvt::make(
M
Megvii Engine Team 已提交
2336
                opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
2337
    };
M
Megvii Engine Team 已提交
2338
    auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
2339
        return opr::TypeCvt::make(
M
Megvii Engine Team 已提交
2340
                opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
2341 2342 2343
                dtype);
    };

2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358
    using ElemMultiMode = opr::ElemwiseMultiType::Param::Mode;
    using NonlineMode = opr::ConvBias::Param::NonlineMode;
    for (auto mode :
         {ElemMultiMode::QFUSE_ADD_RELU, ElemMultiMode::QFUSE_ADD_H_SWISH}) {
        auto x = mkvar("x", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f)),
             w1 = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
             b1 = mkcvar("b1", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
             w2 = mkcvar("w2", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
             b2 = mkcvar("b2", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
             w3 = mkcvar("w3", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
             b3 = mkcvar("b3", {1, 16, 1, 1, 4}, dtype::QuantizedS32(3.0f));
        NonlineMode nonline_mode = NonlineMode::RELU;
        if (mode == ElemMultiMode::QFUSE_ADD_H_SWISH) {
            nonline_mode = NonlineMode::H_SWISH;
        }
2359

2360 2361 2362 2363 2364
        opr::ConvBias::Param param;
        param.format = opr::Convolution::Param::Format::NCHW4;
        param.nonlineMode = nonline_mode;
        param.stride_h = param.stride_w = 1;
        param.pad_h = param.pad_w = 1;
2365

2366
        auto y1 = opr::ConvBias::make(
M
Megvii Engine Team 已提交
2367
                x, w1, b1, param, {}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
2368 2369 2370 2371 2372
        param.nonlineMode = opr::ConvBias::Param::NonlineMode::IDENTITY;
        auto y2 = opr::ConvBias::make(
                     y1, w2, b2, param, {},
                     OperatorNodeConfig{dtype::QuantizedS8(2.5f)}),
             y3 = opr::ElemwiseMultiType::make(
M
Megvii Engine Team 已提交
2373
                     {y1, y2}, {mode}, OperatorNodeConfig{dtype::QuantizedS8(1.2f)});
2374 2375 2376 2377 2378 2379 2380 2381 2382
        param.nonlineMode = nonline_mode;
        auto y4 = opr::ConvBias::make(
                     y3, w3, b3, param, {},
                     OperatorNodeConfig{dtype::QuantizedS8(2.5f)}),
             z = opr::ElemwiseMultiType::make(
                     {y3, y4}, {opr::ElemwiseMultiType::Param::Mode::QADD},
                     OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
        z = opr::TypeCvt::make(z, dtype::Float32());

2383 2384 2385
        SymbolVar z_fuse;
        {
            auto options = gopt::OptimizeForInferenceOptions{};
M
Megvii Engine Team 已提交
2386
            options.enable_fuse_conv_bias_nonlinearity().enable_fuse_conv_bias_with_z();
2387 2388 2389 2390
            unpack_vector(gopt::optimize_for_inference({z}, options), z_fuse);
        }
        graph->compile({{z_fuse, {}}})
                ->to_json()
M
Megvii Engine Team 已提交
2391
                ->writeto_fpath(output_file("FuseConvBiasZPass.BlockFuse_fuse.json"));
2392

M
Megvii Engine Team 已提交
2393
        auto nr_elem_multi_type = find_opr_num<mgb::opr::ElemwiseMultiType>(z_fuse);
2394 2395 2396 2397 2398
        MGB_MARK_USED_VAR(nr_elem_multi_type);
#if MGB_CUDA && (CUDNN_MAJOR == 8)
        ASSERT_EQ(2u, nr_elem_multi_type);
#else
        ASSERT_EQ(1u, nr_elem_multi_type);
2399 2400
        //! fuse z mannually
        auto z0 = opr::ConvBias::make(
M
Megvii Engine Team 已提交
2401
                x, w1, b1, param, {}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416
        auto z1 = opr::ConvBias::make(
                     z0, w2, b2, z0, param, {},
                     OperatorNodeConfig{dtype::QuantizedS8(1.2f)}),
             z2 = opr::ConvBias::make(
                     z1, w3, b3, param, {},
                     OperatorNodeConfig{dtype::QuantizedS8(2.5f)}),
             z4 = opr::ElemwiseMultiType::make(
                     {z1, z2}, {opr::ElemwiseMultiType::Mode::QADD},
                     OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
        z4 = opr::TypeCvt::make(z4, dtype::Float32());

        SymbolVar z_nonfuse;
        {
            auto options = gopt::OptimizeForInferenceOptions{};
            options.enable_fuse_conv_bias_nonlinearity();
M
Megvii Engine Team 已提交
2417
            unpack_vector(gopt::optimize_for_inference({z4}, options), z_nonfuse);
2418 2419 2420
        }
        graph->compile({{z_nonfuse, {}}})
                ->to_json()
M
Megvii Engine Team 已提交
2421 2422
                ->writeto_fpath(
                        output_file("FuseConvBiasZPass.BlockFuse_nonfuse.json"));
2423
        HostTensorND host_z_fuse, host_z_nonfuse;
M
Megvii Engine Team 已提交
2424 2425 2426
        auto func = graph->compile(
                {make_callback_copy(z_nonfuse, host_z_nonfuse),
                 make_callback_copy(z_fuse, host_z_fuse)});
2427 2428
        func->execute();
        MGB_ASSERT_TENSOR_EQ(host_z_fuse, host_z_nonfuse);
2429
#endif
2430
    }
2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448
}

TEST(TestEnableTensorCore, ShuffleMerge) {
    REQUIRE_GPU(1);
    auto cn = CompNode::load("gpu0");
    cn.activate();
    auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
    auto sm_ver = prop.major * 10 + prop.minor;
    if (sm_ver < 75) {
        printf("This testcast ignored due to insufficient cuda cap(got: %d, "
               "expected: %d)\n",
               sm_ver, 75);
        return;
    }

    HostTensorGenerator<dtype::Int8> gen;
    auto graph = ComputingGraph::make();
    graph->options().graph_opt_level = 0;
M
Megvii Engine Team 已提交
2449
    auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
2450
        return opr::TypeCvt::make(
M
Megvii Engine Team 已提交
2451
                opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
2452
    };
M
Megvii Engine Team 已提交
2453
    auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
2454
        return opr::TypeCvt::make(
M
Megvii Engine Team 已提交
2455
                opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
2456 2457 2458 2459 2460 2461 2462 2463 2464 2465
                dtype);
    };

    auto nchw2nchw4 = [](SymbolVar x) {
        auto xshp = opr::GetVarShape::make(x);

        auto cv = [&x](int v) { return x.make_scalar(v); };
        auto sub = [&xshp, &cv](int idx) {
            return opr::IndexAt::make(xshp, {{0, cv(idx)}});
        };
M
Megvii Engine Team 已提交
2466
        auto tshp = opr::Concat::make({sub(0), sub(1) / 4, cv(4), sub(2), sub(3)}, 0);
2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488
        auto y0 = opr::Reshape::make(x, tshp);
        auto y1 = opr::Dimshuffle::make(y0, {0, 1, 3, 4, 2});
        return y1;
    };

    auto nchw42nchw = [](SymbolVar x) {
        auto xshp = opr::GetVarShape::make(x);

        auto cv = [&x](int v) { return x.make_scalar(v); };
        auto sub = [&xshp, &cv](int idx) {
            return opr::IndexAt::make(xshp, {{0, cv(idx)}});
        };
        auto tshp = opr::Concat::make({sub(0), sub(1) * 4, sub(2), sub(3)}, 0);
        auto y0 = opr::Dimshuffle::make(x, {0, 1, 4, 2, 3});
        auto y1 = opr::Reshape::make(y0, tshp);
        return y1;
    };

    auto x = mkvar("x", {32, 64, 16, 16}, dtype::QuantizedS8(2.5f)),
         w = mkcvar("w1", {64, 64, 3, 3}, dtype::QuantizedS8(2.5f)),
         b = mkcvar("b", {1, 64, 1, 1}, dtype::QuantizedS32(6.25f)),
         z = mkvar("b1", {32, 64, 16, 16}, dtype::QuantizedS8(2.5f));
M
Megvii Engine Team 已提交
2489
    x = nchw2nchw4(x), w = nchw2nchw4(w), b = nchw2nchw4(b), z = nchw2nchw4(z);
2490 2491 2492 2493 2494 2495
    opr::ConvBias::Param param;
    param.format = opr::ConvBias::Param::Format::NCHW4;
    param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
    param.stride_h = param.stride_w = 1;
    param.pad_h = param.pad_w = 1;

M
Megvii Engine Team 已提交
2496 2497
    auto y = opr::ConvBias::make(
            x, w, b, z, param, {}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
2498 2499 2500 2501 2502
    y = nchw42nchw(y);
    y = opr::TypeCvt::make(y, dtype::Float32());

    SymbolVar y_opt;
    SymbolVar y_no_tc;
2503 2504
    {
        auto options = gopt::OptimizeForInferenceOptions{};
2505
        options.enable_fuse_conv_bias_nonlinearity().enable_nchw32();
2506 2507 2508 2509 2510 2511 2512
        unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
    }
    {
        auto options = gopt::OptimizeForInferenceOptions{};
        options.enable_fuse_conv_bias_nonlinearity();
        unpack_vector(gopt::optimize_for_inference({y}, options), y_no_tc);
    }
2513 2514 2515
    auto nr_dimshuffle = find_opr_num<mgb::opr::Dimshuffle>(y_opt);
    ASSERT_EQ(3u, nr_dimshuffle);
    HostTensorND host_y, host_y_opt;
M
Megvii Engine Team 已提交
2516 2517 2518
    auto func = graph->compile(
            {make_callback_copy(y_no_tc, host_y),
             make_callback_copy(y_opt, host_y_opt)});
2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531
    func->execute();
    MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
}

#endif

TEST(FuseConvBiasZPass, Basic) {
    REQUIRE_GPU(1);
    auto cn = CompNode::load("gpu0");

    HostTensorGenerator<dtype::Int8> gen;
    auto graph = ComputingGraph::make();
    graph->options().graph_opt_level = 0;
M
Megvii Engine Team 已提交
2532
    auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
2533
        return opr::TypeCvt::make(
M
Megvii Engine Team 已提交
2534
                opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
2535
    };
M
Megvii Engine Team 已提交
2536
    auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
2537
        return opr::TypeCvt::make(
M
Megvii Engine Team 已提交
2538
                opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554
                dtype);
    };

    auto format = opr::Convolution::Param::Format::NCHW4;

    auto x = mkvar("x", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f)),
         w = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
         b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
         b1 = mkvar("b1", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f)),
         b2 = mkvar("b2", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f));

    opr::ConvBias::Param conv_bias_param;
    conv_bias_param.format = format;
    conv_bias_param.stride_h = conv_bias_param.stride_w = 1;
    conv_bias_param.pad_h = conv_bias_param.pad_w = 1;

M
Megvii Engine Team 已提交
2555 2556
    auto y = opr::ConvBias::make(
            x, w, b, conv_bias_param, {}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
2557 2558 2559 2560

    SymbolVar y_opt;

    // check fuse mode
M
Megvii Engine Team 已提交
2561 2562 2563 2564
    for (auto mode :
         {opr::ElemwiseMultiType::Param::Mode::QADD,
          opr::ElemwiseMultiType::Param::Mode::QMUL,
          opr::ElemwiseMultiType::Param::Mode::QFUSE_ADD_RELU}) {
2565 2566
        auto y1 = opr::ElemwiseMultiType::make(
                {y, b1}, {mode}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
2567 2568 2569 2570
        {
            auto options = gopt::OptimizeForInferenceOptions{};
            options.enable_fuse_conv_bias_nonlinearity()
                    .enable_fuse_conv_bias_with_z()
2571
                    .enable_nchw32();
2572 2573
            unpack_vector(gopt::optimize_for_inference({y1}, options), y_opt);
        }
2574 2575 2576 2577 2578 2579 2580 2581
        auto nr_elemwisemultitype = find_opr_num<opr::ElemwiseMultiType>(y_opt);
        if (mode == opr::ElemwiseMultiType::Param::Mode::QMUL) {
            ASSERT_NE(0u, nr_elemwisemultitype);
        } else
            ASSERT_EQ(0u, nr_elemwisemultitype);
        // fuse convbiasz and z
        if (mode == opr::ElemwiseMultiType::Param::Mode::QADD) {
            auto y2 = opr::ElemwiseMultiType::make(
M
Megvii Engine Team 已提交
2582
                    {y1, b2}, {mode}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
2583 2584 2585 2586
            {
                auto options = gopt::OptimizeForInferenceOptions{};
                options.enable_fuse_conv_bias_nonlinearity()
                        .enable_fuse_conv_bias_with_z()
2587
                        .enable_nchw32();
M
Megvii Engine Team 已提交
2588
                unpack_vector(gopt::optimize_for_inference({y2}, options), y_opt);
2589
            }
M
Megvii Engine Team 已提交
2590
            auto nr_elemwisemultitype = find_opr_num<opr::ElemwiseMultiType>(y_opt);
2591 2592 2593 2594 2595 2596
            ASSERT_NE(0u, nr_elemwisemultitype);
        }
    }
}

#if MGB_CUDA
2597
//! close for cu111 ci, reopen it when bug fixed
2598
#if CUDA_VERSION < 11000
2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614
TEST(TestGoptInference, EnableCHWN4) {
    REQUIRE_GPU(1);
    auto cn = CompNode::load("gpu0");
    cn.activate();
    auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
    auto sm_ver = prop.major * 10 + prop.minor;
    if (sm_ver < 61) {
        printf("This testcast ignored due to insufficient cuda cap(got: %d, "
               "expected: %d)\n",
               sm_ver, 61);
        return;
    }

    HostTensorGenerator<dtype::Int8> gen;
    auto graph = ComputingGraph::make();
    graph->options().graph_opt_level = 0;
M
Megvii Engine Team 已提交
2615
    auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
2616
        return opr::TypeCvt::make(
M
Megvii Engine Team 已提交
2617
                opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
2618
    };
M
Megvii Engine Team 已提交
2619
    auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
2620
        return opr::TypeCvt::make(
M
Megvii Engine Team 已提交
2621
                opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
2622 2623
                dtype);
    };
M
Megvii Engine Team 已提交
2624 2625
    auto mkshape = [](opr::ConvBias::Param::Format format, size_t N, size_t C, size_t H,
                      size_t W) -> TensorShape {
2626 2627 2628 2629 2630 2631 2632 2633
        mgb_assert(C % 4 == 0);
        if (format == opr::ConvBias::Param::Format::NCHW4) {
            return {N, C / 4, H, W, 4};
        } else {
            mgb_assert(format == opr::ConvBias::Param::Format::NCHW);
            return {N, C, H, W};
        }
    };
2634

M
Megvii Engine Team 已提交
2635 2636 2637 2638 2639 2640 2641
    for (auto format :
         {opr::ConvBias::Param::Format::NCHW, opr::ConvBias::Param::Format::NCHW4}) {
        auto x = mkvar("x", mkshape(format, 32, 64, 16, 16), dtype::QuantizedS8(2.5f)),
             w = mkcvar("w1", mkshape(format, 64, 64, 3, 3), dtype::QuantizedS8(2.5f)),
             b = mkcvar("b", mkshape(format, 1, 64, 1, 1), dtype::QuantizedS32(6.25f)),
             b1 = mkvar(
                     "b1", mkshape(format, 32, 64, 16, 16), dtype::QuantizedS8(2.5f));
2642 2643 2644 2645 2646
        opr::ConvBias::Param param;
        param.format = format;
        param.stride_h = param.stride_w = 1;
        param.pad_h = param.pad_w = 1;
        param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
2647

2648
        auto y = opr::ConvBiasForward::make(
M
Megvii Engine Team 已提交
2649
                x, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
2650 2651 2652 2653
        auto y1 = opr::ElemwiseMultiType::make(
                {y, b1}, opr::ElemwiseMultiType::Mode::QFUSE_ADD_RELU,
                OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
        auto y2 = opr::ConvBiasForward::make(
M
Megvii Engine Team 已提交
2654
                y, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
        auto y3 = opr::ElemwiseMultiType::make(
                {y, b1}, opr::ElemwiseMultiType::Param::Mode::QSUB,
                OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
        auto y4 = opr::ElemwiseMultiType::make(
                {y1, y2}, opr::ElemwiseMultiType::Param::Mode::QADD,
                OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
        y4 = opr::ElemwiseMultiType::make(
                {y3, y4}, opr::ElemwiseMultiType::Param::Mode::QADD,
                OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
        y4 = opr::TypeCvt::make(y4, dtype::Float32());
        SymbolVar y_opt;
        SymbolVar y_cudnn;
        {
            auto options = gopt::OptimizeForInferenceOptions{};
            options.enable_chwn4();
            unpack_vector(gopt::optimize_for_inference({y4}, options), y_opt);
        }
M
Megvii Engine Team 已提交
2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682
        unpack_vector(
                gopt::GraphOptimizer{}
                        .add_pass<gopt::FuseConvBiasNonlinPass>()
                        .add_pass<gopt::FuseConvBiasZPass>()
                        .apply({{y4}})
                        .endpoint_vars(),
                y_cudnn);

        ASSERT_EQ(
                opr::ConvBias::Param::Format::CHWN4,
                find_opr<opr::ConvBias>(y_opt).param().format);
2683
        HostTensorND host_y, host_y_opt;
M
Megvii Engine Team 已提交
2684 2685 2686
        auto func = graph->compile(
                {make_callback_copy(y_cudnn, host_y),
                 make_callback_copy(y_opt, host_y_opt)});
2687 2688
        func->execute();
        MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
2689
    }
2690
}
2691
#endif
2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708

TEST(TestGoptInference, EnableCHWN4WarpPespective) {
    REQUIRE_GPU(1);
    auto cn = CompNode::load("gpu0");
    cn.activate();
    auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
    auto sm_ver = prop.major * 10 + prop.minor;
    if (sm_ver < 61) {
        printf("This testcast ignored due to insufficient cuda cap(got: %d, "
               "expected: %d)\n",
               sm_ver, 61);
        return;
    }

    HostTensorGenerator<dtype::Int8> gen;
    auto graph = ComputingGraph::make();
    graph->options().graph_opt_level = 0;
M
Megvii Engine Team 已提交
2709
    auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
2710
        return opr::TypeCvt::make(
M
Megvii Engine Team 已提交
2711
                opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
2712
    };
M
Megvii Engine Team 已提交
2713
    auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
2714
        return opr::TypeCvt::make(
M
Megvii Engine Team 已提交
2715
                opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
2716 2717
                dtype);
    };
M
Megvii Engine Team 已提交
2718 2719
    std::shared_ptr<HostTensorND> mat =
            std::make_shared<HostTensorND>(cn, TensorShape{32, 3, 3}, dtype::Float32());
2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733
    warp_perspective_mat_gen(*mat, 32, 16, 16);
    auto mat_var = opr::Host2DeviceCopy::make(*graph, mat).rename("mat");

    auto x = mkvar("x", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f)),
         w = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
         b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f));
    opr::ConvBias::Param param;
    param.format = opr::ConvBias::Param::Format::NCHW4;
    param.stride_h = param.stride_w = 1;
    param.pad_h = param.pad_w = 1;
    param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;

    auto y = opr::ConvBiasForward::make(
            x, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
2734

2735 2736
    opr::WarpPerspective::Param warp_param;
    warp_param.format = opr::WarpPerspective::Param::Format::NCHW4;
M
Megvii Engine Team 已提交
2737
    auto y1 = opr::WarpPerspective::make(y, mat_var, TensorShape{16, 16}, warp_param);
2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752
    y1 = opr::TypeCvt::make(y1, dtype::Float32());
    auto nchw42nchw = [](SymbolVar x) {
        auto xshp = opr::GetVarShape::make(x);

        auto cv = [&x](int v) { return x.make_scalar(v); };
        auto sub = [&xshp, &cv](int idx) {
            return opr::IndexAt::make(xshp, {{0, cv(idx)}});
        };
        auto tshp = opr::Concat::make({sub(0), sub(1) * 4, sub(2), sub(3)}, 0);
        auto y0 = opr::Dimshuffle::make(x, {0, 1, 4, 2, 3});
        auto y1 = opr::Reshape::make(y0, tshp);
        return y1;
    };
    y1 = nchw42nchw(y1);
    warp_param.format = opr::WarpPerspective::Param::Format::NCHW;
M
Megvii Engine Team 已提交
2753
    auto y2 = opr::WarpPerspective::make(y1, mat_var, TensorShape{16, 16}, warp_param);
2754 2755
    SymbolVar y_opt;
    SymbolVar y_cudnn;
2756 2757
    {
        auto options = gopt::OptimizeForInferenceOptions{};
2758
        options.enable_chwn4();
2759 2760
        unpack_vector(gopt::optimize_for_inference({y2}, options), y_opt);
    }
M
Megvii Engine Team 已提交
2761 2762 2763 2764 2765 2766 2767
    unpack_vector(
            gopt::GraphOptimizer{}
                    .add_pass<gopt::FuseConvBiasNonlinPass>()
                    .add_pass<gopt::FuseConvBiasZPass>()
                    .apply({{y2}})
                    .endpoint_vars(),
            y_cudnn);
2768 2769

    HostTensorND host_y, host_y_opt;
M
Megvii Engine Team 已提交
2770 2771 2772
    auto func = graph->compile(
            {make_callback_copy(y_cudnn, host_y),
             make_callback_copy(y_opt, host_y_opt)});
2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792
    func->execute();
    MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
}

TEST(TestGoptInference, EnableCHWN4Pooling) {
    REQUIRE_GPU(1);
    auto cn = CompNode::load("gpu0");
    cn.activate();
    auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
    auto sm_ver = prop.major * 10 + prop.minor;
    if (sm_ver < 61) {
        printf("This testcast ignored due to insufficient cuda cap(got: %d, "
               "expected: %d)\n",
               sm_ver, 61);
        return;
    }

    HostTensorGenerator<dtype::Int8> gen;
    auto graph = ComputingGraph::make();
    graph->options().graph_opt_level = 0;
M
Megvii Engine Team 已提交
2793
    auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
2794
        return opr::TypeCvt::make(
M
Megvii Engine Team 已提交
2795
                opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
2796 2797
    };

M
Megvii Engine Team 已提交
2798
    auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
2799
        return opr::TypeCvt::make(
M
Megvii Engine Team 已提交
2800
                opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846
                dtype);
    };

    auto x = mkvar("x", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f)),
         w = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
         b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f));
    opr::ConvBias::Param param;
    param.format = opr::ConvBias::Param::Format::NCHW4;
    param.stride_h = param.stride_w = 1;
    param.pad_h = param.pad_w = 1;
    param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;

    auto y = opr::ConvBiasForward::make(
            x, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8{2.5f}});

    opr::Pooling::Param pool_param;
    pool_param.format = opr::Pooling::Param::Format::NCHW4;
    y = opr::Pooling::make(y, pool_param);
    y = opr::TypeCvt::make(y, dtype::Float32());

    auto nchw42nchw = [](SymbolVar x) {
        auto xshp = opr::GetVarShape::make(x);

        auto cv = [&x](int v) { return x.make_scalar(v); };
        auto sub = [&xshp, &cv](int idx) {
            return opr::IndexAt::make(xshp, {{0, cv(idx)}});
        };
        auto tshp = opr::Concat::make({sub(0), sub(1) * 4, sub(2), sub(3)}, 0);
        auto y0 = opr::Dimshuffle::make(x, {0, 1, 4, 2, 3});
        auto y1 = opr::Reshape::make(y0, tshp);
        return y1;
    };
    y = nchw42nchw(y);
    pool_param.format = opr::Pooling::Param::Format::NCHW;
    auto y1 = opr::Pooling::make(y, pool_param);

    SymbolVar y_opt;
    SymbolVar y_cudnn;
    unpack_vector(
            gopt::GraphOptimizer{}
                    .add_pass<gopt::FuseConvBiasNonlinPass>()
                    .add_pass(gopt::EnableCHWN4Pass::make_chwn4_converter())
                    .add_pass<gopt::FuseConvBiasZPass>()
                    .apply({{y1}})
                    .endpoint_vars(),
            y_opt);
M
Megvii Engine Team 已提交
2847 2848 2849 2850 2851 2852 2853
    unpack_vector(
            gopt::GraphOptimizer{}
                    .add_pass<gopt::FuseConvBiasNonlinPass>()
                    .add_pass<gopt::FuseConvBiasZPass>()
                    .apply({{y1}})
                    .endpoint_vars(),
            y_cudnn);
2854 2855

    HostTensorND host_y, host_y_opt;
M
Megvii Engine Team 已提交
2856 2857 2858
    auto func = graph->compile(
            {make_callback_copy(y_cudnn, host_y),
             make_callback_copy(y_opt, host_y_opt)});
2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878
    func->execute();
    MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
}

TEST(TestGoptInference, EnableCHWN4ShuffleRemove) {
    REQUIRE_GPU(1);
    auto cn = CompNode::load("gpu0");
    cn.activate();
    auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
    auto sm_ver = prop.major * 10 + prop.minor;
    if (sm_ver < 61) {
        printf("This testcast ignored due to insufficient cuda cap(got: %d, "
               "expected: %d)\n",
               sm_ver, 61);
        return;
    }

    HostTensorGenerator<dtype::Int8> gen;
    auto graph = ComputingGraph::make();
    graph->options().graph_opt_level = 0;
M
Megvii Engine Team 已提交
2879
    auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
2880
        return opr::TypeCvt::make(
M
Megvii Engine Team 已提交
2881
                opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
2882
    };
M
Megvii Engine Team 已提交
2883
    auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
2884
        return opr::TypeCvt::make(
M
Megvii Engine Team 已提交
2885
                opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
                dtype);
    };

    auto nchw2nchw4 = [](SymbolVar x) {
        auto xshp = opr::GetVarShape::make(x);

        auto cv = [&x](int v) { return x.make_scalar(v); };
        auto sub = [&xshp, &cv](int idx) {
            return opr::IndexAt::make(xshp, {{0, cv(idx)}});
        };
M
Megvii Engine Team 已提交
2896
        auto tshp = opr::Concat::make({sub(0), sub(1) / 4, cv(4), sub(2), sub(3)}, 0);
2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960
        auto y0 = opr::Reshape::make(x, tshp);
        auto y1 = opr::Dimshuffle::make(y0, {0, 1, 3, 4, 2});
        return y1;
    };

    auto nchw42nchw = [](SymbolVar x) {
        auto xshp = opr::GetVarShape::make(x);

        auto cv = [&x](int v) { return x.make_scalar(v); };
        auto sub = [&xshp, &cv](int idx) {
            return opr::IndexAt::make(xshp, {{0, cv(idx)}});
        };
        auto tshp = opr::Concat::make({sub(0), sub(1) * 4, sub(2), sub(3)}, 0);
        auto y0 = opr::Dimshuffle::make(x, {0, 1, 4, 2, 3});
        auto y1 = opr::Reshape::make(y0, tshp);
        return y1;
    };

    auto x = mkvar("x", {32, 64, 16, 16}, dtype::QuantizedS8(2.5f)),
         w = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
         b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
         b1 = mkcvar("b1", {32, 16, 16, 16, 4}, dtype::QuantizedS8{2.5f});
    x = nchw2nchw4(x);
    opr::ConvBias::Param param;
    param.format = opr::ConvBias::Param::Format::NCHW4;
    param.stride_h = param.stride_w = 1;
    param.pad_h = param.pad_w = 1;
    param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;

    auto y = opr::ConvBiasForward::make(
            x, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
    auto y1 = opr::ElemwiseMultiType::make(
            {y, b1}, opr::ElemwiseMultiType::Mode::QFUSE_ADD_RELU,
            OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
    auto y2 = opr::ConvBiasForward::make(
            y, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
    auto y3 = opr::ElemwiseMultiType::make(
            {y, b1}, opr::ElemwiseMultiType::Param::Mode::QSUB,
            OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
    auto y4 = opr::ElemwiseMultiType::make(
            {y1, y2}, opr::ElemwiseMultiType::Param::Mode::QADD,
            OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
    y4 = opr::ElemwiseMultiType::make(
            {y3, y4}, opr::ElemwiseMultiType::Param::Mode::QADD,
            OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
    y4 = opr::TypeCvt::make(y4, dtype::Float32());
    y4 = nchw42nchw(y4);

    SymbolVar y_opt;
    SymbolVar y_cudnn;
    unpack_vector(
            gopt::GraphOptimizer{}
                    .add_pass<gopt::ParamRedistributePass>()
                    .add_pass<gopt::ParamFusePass>()
                    .add_pass<gopt::FuseConvBiasNonlinPass>()
                    .add_pass<gopt::FuseConvBiasZPass>()
                    .add_pass(gopt::EnableCHWN4Pass::make_chwn4_converter())
                    .add_pass<gopt::ShuffleShuffleRemovePass>()
                    .add_pass<gopt::ParamFusePass>()
                    .apply({{y4}})
                    .endpoint_vars(),
            y_opt);
    graph->compile({{y_opt, {}}})
            ->to_json()
M
Megvii Engine Team 已提交
2961 2962
            ->writeto_fpath(
                    output_file("TestGoptInference.EnableCHWN4ShuffleRemove.json"));
2963 2964 2965 2966
    auto nr_dimshuffle = find_opr_num<mgb::opr::Dimshuffle>(y_opt);
    ASSERT_EQ(2u, nr_dimshuffle);
    auto nr_reformat = find_opr_num<mgb::opr::RelayoutFormat>(y_opt);
    ASSERT_EQ(0u, nr_reformat);
M
Megvii Engine Team 已提交
2967 2968 2969 2970 2971 2972 2973
    unpack_vector(
            gopt::GraphOptimizer{}
                    .add_pass<gopt::FuseConvBiasNonlinPass>()
                    .add_pass<gopt::FuseConvBiasZPass>()
                    .apply({{y4}})
                    .endpoint_vars(),
            y_cudnn);
2974 2975

    HostTensorND host_y, host_y_opt;
M
Megvii Engine Team 已提交
2976 2977 2978
    auto func = graph->compile(
            {make_callback_copy(y_cudnn, host_y),
             make_callback_copy(y_opt, host_y_opt)});
2979 2980 2981 2982
    func->execute();
    MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
}

2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998
TEST(TestGoptInference, ConvertFormatNCHW4GPU) {
    REQUIRE_GPU(1);
    auto cn = CompNode::load("gpu0");
    cn.activate();
    auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
    auto sm_ver = prop.major * 10 + prop.minor;
    if (sm_ver < 61) {
        printf("This testcast ignored due to insufficient cuda cap(got: %d, "
               "expected: %d)\n",
               sm_ver, 61);
        return;
    }

    HostTensorGenerator<dtype::Int8> gen;
    auto graph = ComputingGraph::make();
    graph->options().graph_opt_level = 0;
M
Megvii Engine Team 已提交
2999
    auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
3000
        return opr::TypeCvt::make(
M
Megvii Engine Team 已提交
3001
                opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
3002
    };
M
Megvii Engine Team 已提交
3003
    auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
3004
        return opr::TypeCvt::make(
M
Megvii Engine Team 已提交
3005
                opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
3006 3007
                dtype);
    };
3008

3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019
    auto x = mkvar("x", {2, 4, 16, 16}, dtype::QuantizedS8(2.5f));
    opr::ConvBias::Param param_conv_bias;
    param_conv_bias.format = opr::ConvBias::Param::Format::NCHW;
    param_conv_bias.stride_h = param_conv_bias.stride_w = 1;
    param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
    param_conv_bias.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
    // dense
    param_conv_bias.sparse = opr::ConvBias::Param::Sparse::DENSE;
    auto w1 = mkcvar("w1", {8, 4, 3, 3}, dtype::QuantizedS8(2.5f)),
         b1 = mkcvar("b1", {1, 8, 1, 1}, dtype::QuantizedS32(6.25f));
    auto conv1 = opr::ConvBiasForward::make(
3020 3021
            x, w1, b1, param_conv_bias, {},
            OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
3022

3023 3024 3025 3026 3027
    // group
    // icpg != 1 && ocpg != 1
    param_conv_bias.sparse = opr::ConvBias::Param::Sparse::GROUP;
    auto w2 = mkcvar("w2", {2, 4, 4, 3, 3}, dtype::QuantizedS8(2.5f)),
         b2 = mkcvar("b2", {1, 8, 1, 1}, dtype::QuantizedS32(6.25f));
3028 3029 3030
    auto conv2 = opr::ConvBiasForward::make(
            conv1, w2, b2, param_conv_bias, {},
            OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
3031

3032 3033 3034 3035 3036 3037 3038 3039
    opr::Convolution::Param param_deconv;
    param_deconv.format = opr::Convolution::Param::Format::NCHW;
    param_deconv.stride_h = param_deconv.stride_w = 2;
    param_deconv.pad_h = param_deconv.pad_w = 2;
    // dense
    param_deconv.sparse = opr::Convolution::Param::Sparse::DENSE;
    auto w3 = mkcvar("w3", {8, 8, 4, 4}, dtype::QuantizedS8(2.5f));
    auto deconv1 = opr::ConvolutionBackwardData::make_deconv(
M
Megvii Engine Team 已提交
3040
            conv2, w3, param_deconv, {}, OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
3041 3042 3043

    auto deconv1_fp32 = opr::TypeCvt::make(deconv1, dtype::Float32());
    auto y = deconv1_fp32 + opr::TypeCvt::make(b2, dtype::Float32());
3044 3045 3046 3047 3048 3049 3050 3051

    SymbolVar y_opt;
    {
        auto options = gopt::OptimizeForInferenceOptions{};
        options.enable_nchw4();
        unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
    }

M
Megvii Engine Team 已提交
3052 3053 3054 3055 3056 3057
    ASSERT_EQ(
            opr::ConvBias::Param::Format::NCHW4,
            find_opr<opr::ConvBias>(y_opt).param().format);
    ASSERT_EQ(
            opr::ConvolutionBackwardData::Param::Format::NCHW4,
            find_opr<opr::ConvolutionBackwardData>(y_opt).param().format);
3058 3059
    auto nr_reshape = find_opr_num<mgb::opr::Reshape>(y_opt);
    ASSERT_EQ(2u, nr_reshape);
3060 3061 3062

    graph->compile({{y_opt, {}}})
            ->to_json()
M
Megvii Engine Team 已提交
3063 3064
            ->writeto_fpath(
                    output_file("TestGoptInference.ConvertFormatNCHW4GPU.json"));
3065 3066

    HostTensorND host_y, host_y_opt;
M
Megvii Engine Team 已提交
3067 3068
    auto func = graph->compile(
            {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
3069 3070 3071 3072
    func->execute();
    MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
}

3073 3074 3075 3076 3077 3078 3079 3080 3081 3082
TEST(TestGoptInference, ConvertFormatNCHW4FloatGPU) {
    REQUIRE_GPU(1);
    auto cn = CompNode::load("gpu0");
    cn.activate();
    REQUIRE_CUDA_COMPUTE_CAPABILITY_EQ(6, 1);

    HostTensorGenerator<> gen;
    auto graph = ComputingGraph::make();
    graph->options().graph_opt_level = 0;

M
Megvii Engine Team 已提交
3083
    auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
3084
        return opr::TypeCvt::make(
M
Megvii Engine Team 已提交
3085
                opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
3086 3087
    };

M
Megvii Engine Team 已提交
3088
    auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
3089
        return opr::TypeCvt::make(
M
Megvii Engine Team 已提交
3090
                opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101
                dtype);
    };

    auto x = mkvar("x", {2, 4, 16, 16}, dtype::QuantizedS8(1.2f));
    opr::ConvBias::Param param_conv_bias;
    param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
    param_conv_bias.sparse = opr::ConvBias::Param::Sparse::DENSE;

    // conv1, with bias
    auto w1 = mkcvar("w1", {8, 4, 3, 3}, dtype::QuantizedS8(1.3f)),
         b1 = mkcvar("b1", {1, 8, 1, 1}, dtype::Float32());
M
Megvii Engine Team 已提交
3102 3103
    auto conv1 = opr::ConvBias::make(
            x, w1, b1, param_conv_bias, {}, OperatorNodeConfig{dtype::Float32()});
3104 3105 3106 3107 3108

    // conv2, with bias and z
    auto w2 = mkcvar("w2", {8, 4, 3, 3}, dtype::QuantizedS8(1.3f)),
         b2 = mkcvar("b2", {1, 8, 1, 1}, dtype::Float32()),
         z2 = mkcvar("z2", {2, 8, 16, 16}, dtype::Float32());
M
Megvii Engine Team 已提交
3109 3110
    auto conv2 = opr::ConvBias::make(
            x, w2, b2, z2, param_conv_bias, {}, OperatorNodeConfig{dtype::Float32()});
3111 3112 3113 3114 3115 3116

    // conv3, relu
    param_conv_bias.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
    auto w3 = mkcvar("w3", {8, 4, 3, 3}, dtype::QuantizedS8(1.3f)),
         b3 = mkcvar("b3", {1, 8, 1, 1}, dtype::Float32()),
         z3 = mkcvar("z3", {2, 8, 16, 16}, dtype::Float32());
M
Megvii Engine Team 已提交
3117 3118
    auto conv3 = opr::ConvBias::make(
            x, w3, b3, z3, param_conv_bias, {}, OperatorNodeConfig{dtype::Float32()});
3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132

    auto y = conv1 + conv2 + conv3;

    SymbolVar y_opt;
    {
        auto options = gopt::OptimizeForInferenceOptions{};
        options.enable_nchw4();
        unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
    }

    bool succ = true;
    auto cb = [&succ](cg::OperatorNodeBase* opr) {
        if (opr->same_type<opr::ConvBias>()) {
            auto& conv_bias = opr->cast_final_safe<opr::ConvBias>();
M
Megvii Engine Team 已提交
3133
            if (conv_bias.param().format != opr::ConvBias::Param::Format::NCHW4_NCHW) {
3134 3135 3136 3137 3138 3139 3140 3141 3142
                succ = false;
            }
        }
    };

    cg::DepOprIter{cb}.add(y_opt);
    ASSERT_TRUE(succ);

    HostTensorND host_y, host_y_opt;
M
Megvii Engine Team 已提交
3143 3144
    auto func = graph->compile(
            {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
3145 3146 3147 3148 3149
    func->execute();

    MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-5);
}

3150 3151
#endif

3152 3153 3154 3155 3156
TEST(TestGoptInference, ConvertFormatNCHW4NonConvOpr) {
    auto cn = CompNode::load("xpu0");
    HostTensorGenerator<dtype::Int8> gen;
    auto graph = ComputingGraph::make();
    graph->options().graph_opt_level = 0;
M
Megvii Engine Team 已提交
3157
    auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
3158
        return opr::TypeCvt::make(
M
Megvii Engine Team 已提交
3159
                opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
3160
    };
M
Megvii Engine Team 已提交
3161
    auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
3162
        return opr::TypeCvt::make(
M
Megvii Engine Team 已提交
3163
                opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
3164 3165 3166
                dtype);
    };
    auto mkcvarf32 = [&](const char* name, const TensorShape& shp) {
M
Megvii Engine Team 已提交
3167
        return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name);
3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220
    };

    auto x = mkvar("x", {2, 4, 16, 16}, dtype::QuantizedS8(2.5f));
    opr::ConvBias::Param param_conv_bias;
    param_conv_bias.format = opr::ConvBias::Param::Format::NCHW;
    param_conv_bias.stride_h = param_conv_bias.stride_w = 1;
    param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
    param_conv_bias.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
    // dense
    param_conv_bias.sparse = opr::ConvBias::Param::Sparse::DENSE;
    auto w1 = mkcvar("w1", {8, 4, 3, 3}, dtype::QuantizedS8(2.5f)),
         b1 = mkcvar("b1", {1, 8, 1, 1}, dtype::QuantizedS32(6.25f));
    auto conv1 = opr::ConvBiasForward::make(
            x, w1, b1, param_conv_bias, {},
            OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
    // test Resize
    auto shape_of = opr::GetVarShape::make(x);
    auto subtensor = opr::Subtensor::make(
            shape_of, {opr::Subtensor::AxisIndexer::make_interval(
                              0, x.make_scalar(2), None, x.make_scalar(1))});
    opr::Resize::Param param_resize;
    param_resize.format = opr::Resize::Param::Format::NCHW;
    auto resize = opr::ResizeForward::make(conv1, subtensor * 2, param_resize);
    // test WarpPerspective
    auto mat = mkcvarf32("mat", {2, 3, 3}),
         warp = opr::WarpPerspectiveForward::make(
                 resize, mat, nullptr, cg::var_from_tensor_shape(x, {32, 32}));
    opr::Pooling::Param pool_param;
    pool_param.format = opr::Pooling::Param::Format::NCHW;
    // test Pooling
    auto pool = opr::Pooling::make(warp, pool_param);
    // group
    // icpg != 1 && ocpg != 1
    param_conv_bias.sparse = opr::ConvBias::Param::Sparse::GROUP;
    auto w2 = mkcvar("w2", {2, 4, 4, 3, 3}, dtype::QuantizedS8(2.5f)),
         b2 = mkcvar("b2", {1, 8, 1, 1}, dtype::QuantizedS32(6.25f));
    auto conv2 = opr::ConvBiasForward::make(
            pool, w2, b2, param_conv_bias, {},
            OperatorNodeConfig{dtype::QuantizedS8{2.5f}});

    auto add = opr::ElemwiseMultiType::make(
            {conv1, conv2}, {opr::ElemwiseMultiType::Param::Mode::QADD},
            OperatorNodeConfig{dtype::QuantizedS8{1.2f}});
    auto y = opr::TypeCvt::make(add, dtype::Float32());

    SymbolVar y_opt;
    {
        auto options = gopt::OptimizeForInferenceOptions{};
        options.enable_nchw4();
        unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
    }
    auto nr_dimshuffle = find_opr_num<mgb::opr::Dimshuffle>(y_opt);
    ASSERT_EQ(2u, nr_dimshuffle);
M
Megvii Engine Team 已提交
3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232
    ASSERT_EQ(
            opr::ConvBias::Param::Format::NCHW4,
            find_opr<opr::ConvBias>(y_opt).param().format);
    ASSERT_EQ(
            opr::ResizeForward::Param::Format::NCHW4,
            find_opr<opr::ResizeForward>(y_opt).param().format);
    ASSERT_EQ(
            opr::WarpPerspectiveForward::Param::Format::NCHW4,
            find_opr<opr::WarpPerspectiveForward>(y_opt).param().format);
    ASSERT_EQ(
            opr::PoolingForward::Param::Format::NCHW4,
            find_opr<opr::PoolingForward>(y_opt).param().format);
3233 3234
}

3235 3236 3237 3238 3239 3240 3241 3242 3243
TEST(TestGoptInference, ConvertFormatNCHW4) {
    HostTensorGenerator<> gen;
    auto cn = CompNode::load("cpu0");
    auto graph = ComputingGraph::make();
    graph->options().graph_opt_level = 0;
    auto mkvar = [&](const char* name, const TensorShape& shp) {
        return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
    };
    auto mkcvar = [&](const char* name, const TensorShape& shp) {
M
Megvii Engine Team 已提交
3244
        return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name);
3245 3246 3247
    };

    auto x = mkvar("x", {2, 4, 16, 16});
3248
    // ConvBias test dense
3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270
    opr::ConvBias::Param param_conv_bias;
    param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
    param_conv_bias.sparse = opr::ConvBias::Param::Sparse::DENSE;
    auto w1 = mkcvar("w1", {8, 4, 3, 3}), b1 = mkcvar("b1", {1, 8, 1, 1});
    auto conv1 = opr::ConvBias::make(x, w1, b1, param_conv_bias);
    param_conv_bias.sparse = opr::ConvBias::Param::Sparse::GROUP;
    auto w2 = mkcvar("w2", {2, 4, 4, 3, 3}), b2 = mkcvar("b2", {1, 8, 1, 1});
    auto conv2 = opr::ConvBias::make(conv1, w2, b2, param_conv_bias);
    // Convolution
    opr::Convolution::Param param_conv;
    param_conv.pad_h = param_conv.pad_w = 1;
    param_conv.sparse = opr::Convolution::Param::Sparse::DENSE;
    auto w3 = mkcvar("w3", {8, 8, 3, 3});
    auto y = opr::Convolution::make(conv2, w3, param_conv);

    SymbolVar y_opt;
    {
        auto options = gopt::OptimizeForInferenceOptions{};
        options.enable_nchw4();
        unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
    }

M
Megvii Engine Team 已提交
3271 3272 3273
    ASSERT_EQ(
            opr::ConvBias::Param::Format::NCHW,
            find_opr<opr::ConvBias>(y_opt).param().format);
3274 3275 3276

    graph->compile({{y_opt, {}}})
            ->to_json()
M
Megvii Engine Team 已提交
3277
            ->writeto_fpath(output_file("TestGoptInference.ConvertFormatNCHW4.json"));
3278 3279

    HostTensorND host_y_opt, host_y;
M
Megvii Engine Team 已提交
3280 3281
    auto func = graph->compile(
            {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
3282 3283 3284 3285
    func->execute();
    MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
}

3286 3287
TEST(TestGoptInference, ConvertFormatNCHW4Ic3) {
    REQUIRE_GPU(1);
3288 3289 3290
    auto cn = CompNode::load("gpu0");
    cn.activate();
    REQUIRE_CUDA_COMPUTE_CAPABILITY(6, 1);
3291 3292 3293 3294
    HostTensorGenerator<dtype::Float32, RandomDistribution::UNIFORM> gen{
            1.2f, 127 * 127};
    auto graph = ComputingGraph::make();
    graph->options().graph_opt_level = 0;
M
Megvii Engine Team 已提交
3295
    auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
3296
        return opr::TypeCvt::make(
M
Megvii Engine Team 已提交
3297
                opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name), dtype);
3298
    };
M
Megvii Engine Team 已提交
3299
    auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
3300
        return opr::TypeCvt::make(
M
Megvii Engine Team 已提交
3301
                opr::SharedDeviceTensor::make(*graph, *gen(shp)).rename(name), dtype);
3302 3303 3304 3305 3306 3307 3308 3309 3310
    };

    auto x = mkvar("x", {2, 3, 16, 16}, dtype::QuantizedS8(2.5f));
    // ConvBias test dense
    opr::ConvBias::Param param_conv_bias;
    param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
    param_conv_bias.sparse = opr::ConvBias::Param::Sparse::DENSE;
    auto w1 = mkcvar("w1", {8, 3, 3, 3}, dtype::QuantizedS8(2.5f)),
         b1 = mkcvar("b1", {1, 8, 1, 1}, dtype::QuantizedS32(6.25f));
M
Megvii Engine Team 已提交
3311 3312 3313
    auto conv1 = opr::ConvBias::make(
            x, w1, b1, param_conv_bias, {},
            OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
3314 3315 3316
    param_conv_bias.sparse = opr::ConvBias::Param::Sparse::GROUP;
    auto w2 = mkcvar("w2", {2, 4, 4, 3, 3}, dtype::QuantizedS8(2.5f)),
         b2 = mkcvar("b2", {1, 8, 1, 1}, dtype::QuantizedS32(6.25f));
M
Megvii Engine Team 已提交
3317 3318 3319
    auto conv2 = opr::ConvBias::make(
            conv1, w2, b2, param_conv_bias, {},
            OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
3320 3321 3322 3323 3324 3325 3326 3327 3328
    auto y = opr::TypeCvt::make(conv2, dtype::Float32());

    SymbolVar y_opt;
    {
        auto options = gopt::OptimizeForInferenceOptions{};
        options.enable_nchw4();
        unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
    }

M
Megvii Engine Team 已提交
3329 3330 3331
    ASSERT_EQ(
            opr::ConvBias::Param::Format::NCHW4,
            find_opr<opr::ConvBias>(y_opt).param().format);
3332 3333 3334

    graph->compile({{y_opt, {}}})
            ->to_json()
M
Megvii Engine Team 已提交
3335 3336
            ->writeto_fpath(
                    output_file("TestGoptInference.ConvertFormatNCHW4Ic3.json"));
3337 3338

    HostTensorND host_y_opt, host_y;
M
Megvii Engine Team 已提交
3339 3340
    auto func = graph->compile(
            {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
3341 3342 3343 3344
    func->execute();
    MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
}

3345 3346 3347 3348 3349 3350 3351 3352 3353
TEST(TestGoptInference, ConvertFormatNCHW88) {
    HostTensorGenerator<> gen;
    auto cn = CompNode::load("cpu0");
    auto graph = ComputingGraph::make();
    graph->options().graph_opt_level = 0;
    auto mkvar = [&](const char* name, const TensorShape& shp) {
        return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
    };
    auto mkcvar = [&](const char* name, const TensorShape& shp) {
M
Megvii Engine Team 已提交
3354
        return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name);
3355 3356 3357 3358
    };

    auto host_x = gen({2, 3, 16, 16}, cn);
    auto x = opr::Host2DeviceCopy::make(*graph, host_x);
M
Megvii Engine Team 已提交
3359
    //! Hybrid nchw88 mode
3360 3361 3362
    opr::Convolution::Param param_conv;
    param_conv.pad_h = param_conv.pad_w = 1;
    auto w1 = mkcvar("w1", {8, 3, 3, 3}),
M
Megvii Engine Team 已提交
3363 3364
         conv1 = opr::Convolution::make(
                 x, w1, param_conv, {}, OperatorNodeConfig("conv1"));
M
Megvii Engine Team 已提交
3365
    //! channel wise
3366 3367 3368 3369 3370 3371 3372 3373
    opr::ConvBias::Param param_conv_bias;
    param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
    param_conv_bias.sparse = opr::ConvBias::Param::Sparse::GROUP;
    auto w2 = mkcvar("w2", {8, 1, 1, 3, 3}), b2 = mkcvar("b2", {1, 8, 1, 1}),
         conv2 = opr::ConvBias::make(conv1, w2, b2, param_conv_bias);
    //! group
    auto w3 = mkcvar("w3", {1, 8, 8, 3, 3}), b3 = mkcvar("b3", {1, 8, 1, 1}),
         conv3 = opr::ConvBias::make(conv2, w3, b3, param_conv_bias);
3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384
    //! reduce
    opr::Reduce::Param param_reduce1;
    param_reduce1.axis = 2;
    param_reduce1.mode = opr::Reduce::Mode::SUM;
    opr::Reduce::Param param_reduce2;
    param_reduce2.axis = 0;
    param_reduce2.mode = opr::Reduce::Mode::MAX;
    auto reduce1 = conv3 + opr::Reduce::make(conv3, param_reduce1) +
                   opr::Reduce::make(conv3, param_reduce2);

    auto shape_of = opr::GetVarShape::make(reduce1);
3385 3386 3387 3388 3389
    auto subtensor = opr::Subtensor::make(
            shape_of, {opr::Subtensor::AxisIndexer::make_interval(
                              0, x.make_scalar(2), None, x.make_scalar(1))});
    opr::Resize::Param param_resize;
    param_resize.format = opr::Resize::Param::Format::NCHW;
M
Megvii Engine Team 已提交
3390
    auto resize = opr::ResizeForward::make(reduce1, subtensor * 2, param_resize);
3391 3392 3393 3394 3395
    auto mat = mkcvar("mat", {2, 3, 3}),
         warp = opr::WarpPerspectiveForward::make(
                 resize, mat, nullptr, cg::var_from_tensor_shape(x, {4, 4}));

    auto b = mkvar("b", {1, 8, 1, 1}),
M
Megvii Engine Team 已提交
3396
         elem = opr::Elemwise::make({warp + b}, opr::Elemwise::Param::Mode::RELU);
3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407
    //! Dense
    param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
    auto w4 = mkcvar("w4", {2, 6, 4, 3, 3}), b4 = mkcvar("b4", {1, 12, 1, 1}),
         conv4 = opr::ConvBias::make(elem, w4, b4, param_conv_bias);
    param_conv_bias.sparse = opr::ConvBias::Param::Sparse::DENSE;
    auto w5 = mkcvar("w5", {8, 12, 3, 3}), b5 = mkcvar("b5", {1, 8, 1, 1}),
         conv5 = opr::ConvBias::make(conv4, w5, b5, param_conv_bias);
    auto w6 = mkcvar("w6", {8, 8, 3, 3}), b6 = mkcvar("b6", {1, 8, 1, 1}),
         y = opr::ConvBias::make(conv5, w6, b6, param_conv_bias);

    SymbolVar y_opt;
3408 3409
    {
        auto options = gopt::OptimizeForInferenceOptions{};
3410
        options.enable_nchw88();
3411 3412
        unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
    }
M
Megvii Engine Team 已提交
3413 3414 3415 3416 3417 3418
    ASSERT_EQ(
            opr::ConvBias::Param::Format::NCHW88,
            find_opr<opr::Convolution>(y_opt, "conv1").param().format);
    ASSERT_EQ(
            opr::ConvBias::Param::Format::NCHW88,
            find_opr<opr::ConvBias>(y_opt).param().format);
3419 3420 3421

    graph->compile({{y_opt, {}}})
            ->to_json()
M
Megvii Engine Team 已提交
3422
            ->writeto_fpath(output_file("TestGoptInference.ConvertFormatNCHW88.json"));
3423 3424

    HostTensorND host_y_opt, host_y;
M
Megvii Engine Team 已提交
3425 3426
    auto func = graph->compile(
            {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
3427 3428 3429 3430 3431 3432 3433 3434 3435 3436
    func->execute();
    //! meybe go to winograd in x86-32, so set error 1e-1
    MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-1);

    *host_x = *gen({2, 3, 32, 32}, cn);
    func->execute();
    //! meybe go to winograd in x86-32, so set error 1e-1
    MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-1);
}

3437 3438 3439 3440 3441 3442 3443 3444 3445
TEST(TestGoptInference, ConvertFormatNCHW44) {
    HostTensorGenerator<> gen;
    auto cn = CompNode::load("cpu0");
    auto graph = ComputingGraph::make();
    graph->options().graph_opt_level = 0;
    auto mkvar = [&](const char* name, const TensorShape& shp) {
        return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
    };
    auto mkcvar = [&](const char* name, const TensorShape& shp) {
M
Megvii Engine Team 已提交
3446
        return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name);
3447
    };
3448 3449 3450
    auto mkcvar_dtype = [&](const char* name, const TensorShape& shp,
                            const DType& dtype) {
        return opr::TypeCvt::make(
M
Megvii Engine Team 已提交
3451
                opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
3452 3453
                dtype);
    };
3454 3455 3456

    auto host_x = gen({2, 3, 16, 16}, cn);
    auto x = opr::Host2DeviceCopy::make(*graph, host_x);
3457
    //! Hybrid nchw44 mode
3458 3459 3460
    opr::Convolution::Param param_conv;
    param_conv.pad_h = param_conv.pad_w = 1;
    auto w1 = mkcvar("w1", {8, 3, 3, 3}),
M
Megvii Engine Team 已提交
3461 3462
         conv1 = opr::Convolution::make(
                 x, w1, param_conv, {}, OperatorNodeConfig("conv1"));
3463 3464 3465 3466 3467

    //! no supported hybrid nchw44
    opr::ConvBias::Param param_conv_bias_pad0;
    param_conv_bias_pad0.pad_h = param_conv_bias_pad0.pad_w = 0;
    auto w1_f1 = mkcvar("w1_1", {8, 3, 1, 1});
M
Megvii Engine Team 已提交
3468 3469
    auto conv1_f1 = opr::ConvBias::make(
            x, w1_f1, param_conv_bias_pad0, {}, OperatorNodeConfig("conv1_f1"));
3470 3471 3472 3473 3474

    auto conv1_add = conv1_f1 * conv1;
    auto conv_1_q8 = opr::TypeCvt::make(conv1_add, dtype::QuantizedS8(2.5f));

    //! s8 dense conv
3475 3476
    opr::ConvBias::Param param_conv_bias;
    param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
3477 3478 3479 3480 3481 3482 3483 3484
    auto w1_2 = mkcvar_dtype("w1_2", {8, 8, 3, 3}, dtype::QuantizedS8(2.5f));
    auto b1_2 = mkcvar_dtype("b1_2", {1, 8, 1, 1}, dtype::QuantizedS32(6.25f));
    auto conv_1_2 = opr::ConvBias::make(
            conv_1_q8, w1_2, b1_2, param_conv_bias, {},
            OperatorNodeConfig{"conv_1_2", cn, dtype::QuantizedS8{6.25f}});
    auto conv_1_2_fp32 = opr::TypeCvt::make(conv_1_2, dtype::Float32());

    //! channel wise
3485 3486
    param_conv_bias.sparse = opr::ConvBias::Param::Sparse::GROUP;
    auto w2 = mkcvar("w2", {8, 1, 1, 3, 3}), b2 = mkcvar("b2", {1, 8, 1, 1}),
3487
         conv2 = opr::ConvBias::make(conv_1_2_fp32, w2, b2, param_conv_bias);
3488 3489 3490
    //! group
    auto w3 = mkcvar("w3", {2, 4, 4, 3, 3}), b3 = mkcvar("b3", {1, 8, 1, 1}),
         conv3 = opr::ConvBias::make(conv2, w3, b3, param_conv_bias);
3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501
    //! reduce
    opr::Reduce::Param param_reduce1;
    param_reduce1.axis = 1;
    param_reduce1.mode = opr::Reduce::Mode::MIN;
    opr::Reduce::Param param_reduce2;
    param_reduce2.axis = 3;
    param_reduce2.mode = opr::Reduce::Mode::SUM_SQR;
    auto reduce1 = conv3 + opr::Reduce::make(conv3, param_reduce1) +
                   opr::Reduce::make(conv3, param_reduce2);

    auto shape_of = opr::GetVarShape::make(reduce1);
3502 3503 3504 3505 3506
    auto subtensor = opr::Subtensor::make(
            shape_of, {opr::Subtensor::AxisIndexer::make_interval(
                              0, x.make_scalar(2), None, x.make_scalar(1))});
    opr::Resize::Param param_resize;
    param_resize.format = opr::Resize::Param::Format::NCHW;
M
Megvii Engine Team 已提交
3507
    auto resize = opr::ResizeForward::make(reduce1, subtensor * 2, param_resize);
3508 3509 3510 3511 3512
    auto mat = mkcvar("mat", {2, 3, 3}),
         warp = opr::WarpPerspectiveForward::make(
                 resize, mat, nullptr, cg::var_from_tensor_shape(x, {4, 4}));

    auto b = mkvar("b", {1, 8, 1, 1}),
M
Megvii Engine Team 已提交
3513
         elem = opr::Elemwise::make({warp + b}, opr::Elemwise::Param::Mode::RELU);
3514 3515 3516
    //! Dense
    param_conv_bias.sparse = opr::ConvBias::Param::Sparse::DENSE;
    param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
M
Megvii Engine Team 已提交
3517 3518 3519
    auto w3_2 = mkcvar("w3_2", {16, 8, 3, 3}), b3_2 = mkcvar("b3_2", {1, 16, 1, 1}),
         conv3_2 = opr::ConvBias::make(
                 elem, w3_2, b3_2, param_conv_bias, {}, OperatorNodeConfig("conv3_2"));
3520 3521 3522 3523 3524 3525 3526
    //! s8 group conv
    param_conv_bias.sparse = opr::ConvBias::Param::Sparse::GROUP;
    auto conv3_2_q8 = opr::TypeCvt::make(conv3_2, dtype::QuantizedS8(2.5f));
    auto w3_3 = mkcvar_dtype("w3_3", {4, 8, 4, 3, 3}, dtype::QuantizedS8(2.5f)),
         b3_3 = mkcvar_dtype("b3_3", {1, 32, 1, 1}, dtype::QuantizedS32(6.25f)),
         conv3_3_q = opr::ConvBias::make(
                 conv3_2_q8, w3_3, b3_3, param_conv_bias, {},
M
Megvii Engine Team 已提交
3527
                 OperatorNodeConfig{"conv_3_3_q", cn, dtype::QuantizedS8{6.25f}});
3528 3529 3530 3531
    auto conv3_3 = opr::TypeCvt::make(conv3_3_q, dtype::Float32());

    //! Dense
    param_conv_bias.sparse = opr::ConvBias::Param::Sparse::DENSE;
3532
    auto w4 = mkcvar("w4", {16, 32, 3, 3}), b4 = mkcvar("b4", {1, 16, 1, 1}),
M
Megvii Engine Team 已提交
3533 3534 3535 3536 3537 3538
         conv4 = opr::ConvBias::make(
                 conv3_3, w4, b4, param_conv_bias, {}, OperatorNodeConfig("conv4"));
    auto w4_1 = mkcvar("w4_1", {16, 32, 1, 1}), b4_1 = mkcvar("b4_1", {2, 16, 4, 4}),
         conv4_1 = opr::ConvBias::make(
                 conv3_3, w4_1, b4_1, param_conv_bias_pad0, {},
                 OperatorNodeConfig("conv4_1"));
3539 3540 3541
    auto conv4_add = conv4 + conv4_1;

    auto w5 = mkcvar("w5", {6, 16, 3, 3}), b5 = mkcvar("b5", {1, 6, 1, 1}),
M
Megvii Engine Team 已提交
3542 3543
         conv5 = opr::ConvBias::make(
                 conv4_add, w5, b5, param_conv_bias, {}, OperatorNodeConfig("conv5"));
3544
    auto w6 = mkcvar("w6", {4, 6, 3, 3}), b6 = mkcvar("b6", {1, 4, 1, 1}),
M
Megvii Engine Team 已提交
3545 3546
         y = opr::ConvBias::make(
                 conv5, w6, b6, param_conv_bias, {}, OperatorNodeConfig("conv6"));
3547

3548
    SymbolVar y_opt;
3549
    auto options = gopt::OptimizeForInferenceOptions{};
3550
    options.enable_fuse_conv_bias_nonlinearity();
3551
    options.enable_nchw44();
3552
    unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
3553

M
Megvii Engine Team 已提交
3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574
    ASSERT_EQ(
            opr::Convolution::Param::Format::NCHW44,
            find_opr<opr::Convolution>(y_opt, "conv1").param().format);
    ASSERT_EQ(
            opr::Convolution::Param::Format::NCHW,
            find_opr<opr::ConvBias>(y_opt, "conv1_f1").param().format);
    ASSERT_EQ(
            opr::Convolution::Param::Format::NCHW44,
            find_opr<opr::ConvBias>(y_opt, "conv_1_2").param().format);
    ASSERT_EQ(
            opr::Convolution::Param::Format::NCHW44,
            find_opr<opr::ConvBias>(y_opt, "conv3_2").param().format);
    ASSERT_EQ(
            opr::Convolution::Param::Format::NCHW44,
            find_opr<opr::ConvBias>(y_opt, "conv_3_3_q").param().format);
    ASSERT_EQ(
            opr::Convolution::Param::Format::NCHW44,
            find_opr<opr::ConvBias>(y_opt, "conv4").param().format);
    ASSERT_EQ(
            opr::Convolution::Param::Format::NCHW,
            find_opr<opr::ConvBias>(y_opt, "conv5").param().format);
3575 3576

    graph->compile({{y_opt, {}}})
3577
            ->to_json()
M
Megvii Engine Team 已提交
3578
            ->writeto_fpath(output_file("TestGoptInference.ConvertFormatNCHW44.json"));
3579 3580

    HostTensorND host_y_opt, host_y;
M
Megvii Engine Team 已提交
3581 3582
    auto func = graph->compile(
            {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
3583 3584 3585 3586 3587 3588 3589 3590 3591
    func->execute();
    //! meybe go to winograd in x86-32, so set error 1e-1
    MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-1);

    *host_x = *gen({2, 3, 32, 32}, cn);
    func->execute();
    //! meybe go to winograd in x86-32, so set error 1e-1
    MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-1);
}
3592

3593 3594 3595 3596 3597 3598 3599 3600 3601
TEST(TestGoptInference, ConvertFormatNCHW44MultiInput) {
    HostTensorGenerator<> gen;
    auto cn = CompNode::load("cpu0");
    auto graph = ComputingGraph::make();
    graph->options().graph_opt_level = 0;
    auto mkvar = [&](const char* name, const TensorShape& shp) {
        return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
    };
    auto mkcvar = [&](const char* name, const TensorShape& shp) {
M
Megvii Engine Team 已提交
3602
        return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name);
3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613
    };

    auto host_x1 = gen({1, 8, 16, 16}, cn);
    auto host_x2 = gen({1, 1, 16, 16}, cn);
    auto x = opr::Host2DeviceCopy::make(*graph, host_x1);
    opr::Convolution::Param param_conv;
    param_conv.pad_h = param_conv.pad_w = 1;
    auto w1 = mkcvar("w1", {8, 8, 3, 3}),
         conv1 = opr::Convolution::make(x, w1, param_conv);

    auto b = mkvar("b", {1, 1, 16, 16}),
M
Megvii Engine Team 已提交
3614
         elem0 = opr::Elemwise::make({conv1 + b + b}, opr::Elemwise::Param::Mode::RELU);
3615 3616 3617 3618 3619

    auto w2 = mkcvar("w2", {8, 8, 3, 3}),
         conv2 = opr::Convolution::make(elem0, w2, param_conv);

    auto b1 = mkvar("b1", {1}),
M
Megvii Engine Team 已提交
3620
         y = opr::Elemwise::make({conv2 + b1 + b}, opr::Elemwise::Param::Mode::RELU);
3621 3622 3623 3624 3625 3626

    SymbolVar y_opt;
    auto options = gopt::OptimizeForInferenceOptions{};
    options.enable_nchw44();
    unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);

M
Megvii Engine Team 已提交
3627 3628 3629
    ASSERT_EQ(
            opr::Convolution::Param::Format::NCHW44,
            find_opr<opr::Convolution>(y_opt).param().format);
3630 3631 3632 3633 3634 3635 3636

    graph->compile({{y_opt, {}}})
            ->to_json()
            ->writeto_fpath(output_file(
                    "TestGoptInference.ConvertFormatNCHW44MultiInput.json"));

    HostTensorND host_y_opt, host_y;
M
Megvii Engine Team 已提交
3637 3638
    auto func = graph->compile(
            {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649
    func->execute();
    //! meybe go to winograd in x86-32, so set error 1e-1
    MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-1);
}

TEST(TestGoptInference, ConvertFormatNCHW44Reshape) {
    HostTensorGenerator<> gen;
    auto cn = CompNode::load("cpu0");
    auto graph = ComputingGraph::make();
    graph->options().graph_opt_level = 0;
    auto mkcvar = [&](const char* name, const TensorShape& shp) {
M
Megvii Engine Team 已提交
3650
        return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name);
3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665
    };

    auto host_x1 = gen({1, 8, 16, 16}, cn);
    auto x = opr::Host2DeviceCopy::make(*graph, host_x1);
    opr::Convolution::Param param_conv;
    param_conv.pad_h = param_conv.pad_w = 1;
    auto w1 = mkcvar("w1", {8, 8, 3, 3}),
         conv1 = opr::Convolution::make(x, w1, param_conv);
    auto y = opr::Reshape::make(conv1, {8, 16 * 16});

    SymbolVar y_opt;
    auto options = gopt::OptimizeForInferenceOptions{};
    options.enable_nchw44();
    unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);

M
Megvii Engine Team 已提交
3666 3667 3668
    ASSERT_EQ(
            opr::Convolution::Param::Format::NCHW44,
            find_opr<opr::Convolution>(y_opt).param().format);
3669 3670 3671

    graph->compile({{y_opt, {}}})
            ->to_json()
M
Megvii Engine Team 已提交
3672 3673
            ->writeto_fpath(
                    output_file("TestGoptInference.ConvertFormatNCHW44Reshape.json"));
3674 3675

    HostTensorND host_y_opt, host_y;
M
Megvii Engine Team 已提交
3676 3677
    auto func = graph->compile(
            {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
3678 3679 3680 3681 3682
    func->execute();
    //! meybe go to winograd in x86-32, so set error 1e-1
    MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-1);
}

3683 3684 3685 3686 3687 3688 3689 3690 3691
TEST(TestGoptInference, ConvertFormatNCHW44_DOT) {
    HostTensorGenerator<> gen;
    auto cn = CompNode::load("cpu0");
    auto graph = ComputingGraph::make();
    graph->options().graph_opt_level = 0;
    auto mkvar = [&](const char* name, const TensorShape& shp) {
        return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
    };
    auto mkcvar = [&](const char* name, const TensorShape& shp) {
M
Megvii Engine Team 已提交
3692
        return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name);
3693
    };
3694 3695 3696
    auto mkcvar_dtype = [&](const char* name, const TensorShape& shp,
                            const DType& dtype) {
        return opr::TypeCvt::make(
M
Megvii Engine Team 已提交
3697
                opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
3698 3699
                dtype);
    };
3700 3701 3702

    auto host_x = gen({2, 3, 16, 16}, cn);
    auto x = opr::Host2DeviceCopy::make(*graph, host_x);
3703
    //! Hybrid nchw44 mode
3704 3705 3706
    opr::Convolution::Param param_conv;
    param_conv.pad_h = param_conv.pad_w = 1;
    auto w1 = mkcvar("w1", {8, 3, 3, 3}),
M
Megvii Engine Team 已提交
3707 3708 3709
         conv1 = opr::Convolution::make(
                 x, w1, param_conv, {}, OperatorNodeConfig("conv1"));
    printf("create conv1 %s\n", conv1.node()->owner_opr()->dyn_typeinfo()->name);
3710 3711 3712 3713 3714 3715
    param_conv.pad_h = param_conv.pad_w = 1;
    //! no supported hybrid nchw44
    opr::ConvBias::Param param_conv_bias_pad0;
    param_conv_bias_pad0.pad_h = param_conv_bias_pad0.pad_w = 0;
    auto b1 = mkcvar("b1", {1, 8, 1, 1});
    auto w1_f1 = mkcvar("w1_1", {8, 3, 1, 1});
M
Megvii Engine Team 已提交
3716 3717
    auto conv1_f1 = opr::ConvBias::make(
            x, w1_f1, b1, param_conv_bias_pad0, {}, OperatorNodeConfig("conv1_f1"));
3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730

    //! hybrid dot
    auto x_s = opr::TypeCvt::make(x, dtype::QuantizedS8(2.5f));
    auto w1_3 = mkcvar_dtype("w1_3", {8, 3, 3, 3}, dtype::QuantizedS8(2.5f));
    auto conv1_3_q = opr::Convolution::make(
            x_s, w1_3, param_conv, {},
            OperatorNodeConfig{"conv1_3_q", cn, dtype::QuantizedS8{6.25f}});
    auto conv1_3 = opr::TypeCvt::make(conv1_3_q, dtype::Float32());

    auto conv1_add = conv1_f1 * conv1 * conv1_3;
    auto conv_1_q8 = opr::TypeCvt::make(conv1_add, dtype::QuantizedS8(2.5f));

    //! s8 dense conv
3731 3732
    opr::ConvBias::Param param_conv_bias;
    param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
3733 3734
    auto w1_2 = mkcvar_dtype("w1_2", {8, 8, 3, 3}, dtype::QuantizedS8(2.5f));
    auto conv_1_2 = opr::ConvBias::make(
3735
            conv_1_q8, w1_2, param_conv_bias, {},
3736 3737 3738 3739
            OperatorNodeConfig{"conv_1_2", cn, dtype::QuantizedS8{6.25f}});
    auto conv_1_2_fp32 = opr::TypeCvt::make(conv_1_2, dtype::Float32());

    //! channel wise
3740 3741
    param_conv_bias.sparse = opr::ConvBias::Param::Sparse::GROUP;
    auto w2 = mkcvar("w2", {8, 1, 1, 3, 3}), b2 = mkcvar("b2", {1, 8, 1, 1}),
3742
         conv2 = opr::ConvBias::make(conv_1_2_fp32, w2, b2, param_conv_bias);
3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758
    //! group
    auto w3 = mkcvar("w3", {2, 4, 4, 3, 3}), b3 = mkcvar("b3", {1, 8, 1, 1}),
         conv3 = opr::ConvBias::make(conv2, w3, b3, param_conv_bias);

    auto shape_of = opr::GetVarShape::make(conv3);
    auto subtensor = opr::Subtensor::make(
            shape_of, {opr::Subtensor::AxisIndexer::make_interval(
                              0, x.make_scalar(2), None, x.make_scalar(1))});
    opr::Resize::Param param_resize;
    param_resize.format = opr::Resize::Param::Format::NCHW;
    auto resize = opr::ResizeForward::make(conv3, subtensor * 2, param_resize);
    auto mat = mkcvar("mat", {2, 3, 3}),
         warp = opr::WarpPerspectiveForward::make(
                 resize, mat, nullptr, cg::var_from_tensor_shape(x, {4, 4}));

    auto b = mkvar("b", {1, 8, 1, 1}),
M
Megvii Engine Team 已提交
3759
         elem = opr::Elemwise::make({warp + b}, opr::Elemwise::Param::Mode::RELU);
3760 3761 3762
    //! Dense
    param_conv_bias.sparse = opr::ConvBias::Param::Sparse::DENSE;
    param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
M
Megvii Engine Team 已提交
3763 3764 3765
    auto w3_2 = mkcvar("w3_2", {16, 8, 3, 3}), b3_2 = mkcvar("b3_2", {1, 16, 1, 1}),
         conv3_2 = opr::ConvBias::make(
                 elem, w3_2, b3_2, param_conv_bias, {}, OperatorNodeConfig("conv3_2"));
3766 3767 3768 3769 3770 3771 3772
    //! s8 group conv
    param_conv_bias.sparse = opr::ConvBias::Param::Sparse::GROUP;
    auto conv3_2_q8 = opr::TypeCvt::make(conv3_2, dtype::QuantizedS8(2.5f));
    auto w3_3 = mkcvar_dtype("w3_3", {4, 8, 4, 3, 3}, dtype::QuantizedS8(2.5f)),
         b3_3 = mkcvar_dtype("b3_3", {1, 32, 1, 1}, dtype::QuantizedS32(6.25f)),
         conv3_3_q = opr::ConvBias::make(
                 conv3_2_q8, w3_3, b3_3, param_conv_bias, {},
M
Megvii Engine Team 已提交
3773
                 OperatorNodeConfig{"conv_3_3_q", cn, dtype::QuantizedS8{6.25f}});
3774 3775 3776 3777 3778
    auto conv3_3 = opr::TypeCvt::make(conv3_3_q, dtype::Float32());

    //! Dense
    param_conv_bias.sparse = opr::ConvBias::Param::Sparse::DENSE;
    auto w4 = mkcvar("w4", {4, 32, 3, 3}), b4 = mkcvar("b4", {1, 4, 1, 1}),
M
Megvii Engine Team 已提交
3779 3780
         conv4 = opr::ConvBias::make(
                 conv3_3, w4, b4, param_conv_bias, {}, OperatorNodeConfig("conv4"));
3781

3782
    auto w5 = mkcvar("w5", {6, 4, 3, 3}), b5 = mkcvar("b5", {1, 6, 1, 1}),
M
Megvii Engine Team 已提交
3783 3784
         conv5 = opr::ConvBias::make(
                 conv4, w5, b5, param_conv_bias, {}, OperatorNodeConfig("conv5"));
3785
    auto w6 = mkcvar("w6", {4, 6, 3, 3}), b6 = mkcvar("b6", {1, 4, 1, 1}),
M
Megvii Engine Team 已提交
3786 3787
         y = opr::ConvBias::make(
                 conv5, w6, b6, param_conv_bias, {}, OperatorNodeConfig("conv6"));
3788

3789
    SymbolVar y_opt;
3790
    auto options = gopt::OptimizeForInferenceOptions{};
3791
    options.enable_fuse_conv_bias_nonlinearity();
3792
    options.enable_nchw44_dot();
3793 3794
    unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);

M
Megvii Engine Team 已提交
3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818
    ASSERT_EQ(
            opr::Convolution::Param::Format::NCHW44,
            find_opr<opr::Convolution>(y_opt, "conv1").param().format);
    ASSERT_EQ(
            opr::Convolution::Param::Format::NCHW44_DOT,
            find_opr<opr::Convolution>(y_opt, "conv1_3_q").param().format);
    ASSERT_EQ(
            opr::Convolution::Param::Format::NCHW,
            find_opr<opr::ConvBias>(y_opt, "conv1_f1").param().format);
    ASSERT_EQ(
            opr::Convolution::Param::Format::NCHW44_DOT,
            find_opr<opr::ConvBias>(y_opt, "conv_1_2").param().format);
    ASSERT_EQ(
            opr::Convolution::Param::Format::NCHW44,
            find_opr<opr::ConvBias>(y_opt, "conv3_2").param().format);
    ASSERT_EQ(
            opr::Convolution::Param::Format::NCHW44_DOT,
            find_opr<opr::ConvBias>(y_opt, "conv_3_3_q").param().format);
    ASSERT_EQ(
            opr::Convolution::Param::Format::NCHW44,
            find_opr<opr::ConvBias>(y_opt, "conv4").param().format);
    ASSERT_EQ(
            opr::Convolution::Param::Format::NCHW,
            find_opr<opr::ConvBias>(y_opt, "conv5").param().format);
3819 3820 3821

    graph->compile({{y_opt, {}}})
            ->to_json()
M
Megvii Engine Team 已提交
3822 3823
            ->writeto_fpath(
                    output_file("TestGoptInference.ConvertFormatNCHW44_DOT.json"));
3824 3825

    HostTensorND host_y_opt, host_y;
M
Megvii Engine Team 已提交
3826 3827
    auto func = graph->compile(
            {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
3828 3829 3830 3831 3832 3833 3834 3835 3836 3837
    func->execute();
    //! meybe go to winograd in x86-32, so set error 1e-1
    MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-1);

    *host_x = *gen({2, 3, 32, 32}, cn);
    func->execute();
    //! meybe go to winograd in x86-32, so set error 1e-1
    MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-1);
}

3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849
TEST(TestGoptInference, ConvertFormatCD4GroupOneConv) {
    // hwcd4 is only supported in naive handle
    NaiveMegDNNHandleScope naive_megdnn_handle;

    HostTensorGenerator<> gen;
    auto cn = CompNode::load("cpu0");
    auto graph = ComputingGraph::make();
    graph->options().graph_opt_level = 0;
    auto mkvar = [&](const char* name, const TensorShape& shp) {
        return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
    };
    auto mkcvar = [&](const char* name, const TensorShape& shp) {
M
Megvii Engine Team 已提交
3850
        return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name);
3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875
    };

    auto x = mkvar("x", {1, 3, 128, 128});
    // ConvBias
    opr::ConvBias::Param param_conv_bias;
    param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
    param_conv_bias.sparse = opr::ConvBias::Param::Sparse::GROUP;
    auto w1 = mkcvar("w1", {1, 16, 3, 3, 3}), b1 = mkcvar("b1", {1, 16, 1, 1});
    auto conv1 = opr::ConvBias::make(x, w1, b1, param_conv_bias);
    param_conv_bias.sparse = opr::ConvBias::Param::Sparse::GROUP;
    // Convolution
    opr::Convolution::Param param_conv;
    param_conv.pad_h = param_conv.pad_w = 1;
    param_conv.sparse = opr::Convolution::Param::Sparse::GROUP;
    auto w3 = mkcvar("w3", {1, 16, 16, 3, 3});
    auto y = opr::Convolution::make(conv1, w3, param_conv);

    SymbolVar y_opt;
    {
        auto options = gopt::OptimizeForInferenceOptions{};
        options.enable_nhwcd4();
        unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
    }

    HostTensorND host_y_opt, host_y;
M
Megvii Engine Team 已提交
3876 3877
    auto func = graph->compile(
            {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
3878 3879 3880 3881
    func->execute();
    MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
}

3882 3883 3884
#if MGB_CUDA
TEST(TestGoptInference, PreProcessCase0) {
    REQUIRE_GPU(1);
M
Megvii Engine Team 已提交
3885 3886
    HostTensorGenerator<dtype::Quantized8Asymm, RandomDistribution::UNIFORM> gen(
            dt_quint8(0), dt_quint8(50), 1, 128, 1234);
3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900
    auto cn = CompNode::load("gpu0");
    auto graph = ComputingGraph::make();
    graph->options().graph_opt_level = 0;

    size_t n = 1;
    size_t c = 3;
    size_t h = 16;
    size_t w = 16;
    auto host_x1 = gen({n, c, h, w}, cn);

    auto x = opr::Host2DeviceCopy::make(*graph, host_x1);
    auto x_q8 = opr::TypeCvt::make(x, dtype::QuantizedS8(1.f), cn);
    auto zero = DTypeScalar(dtype::QuantizedS8(1.f));
    auto zero_tensor = opr::ImmutableTensor::make(*graph, zero, cn);
M
Megvii Engine Team 已提交
3901
    auto pad_channel_tensor = opr::Broadcast::make(zero_tensor, {n, 1, h, w}, cn);
3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914
    auto paded_x = opr::Concat::make({x_q8, pad_channel_tensor}, 1, cn)
                           .reshape({n, 1, 4, h, w});

    auto result = opr::Dimshuffle::make(paded_x, {0, 1, 3, 4, 2}, 5, cn);

    auto y = result;
    SymbolVar y_opt;
    auto options = gopt::OptimizeForInferenceOptions{};
    options.enable_fuse_preprocess();
    unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);

    graph->compile({{y_opt, {}}})
            ->to_json()
M
Megvii Engine Team 已提交
3915
            ->writeto_fpath(output_file("TestGoptInference.PreProcessCase0.json"));
3916 3917

    HostTensorND host_y_opt, host_y;
M
Megvii Engine Team 已提交
3918 3919
    auto func = graph->compile(
            {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943
    func->execute();
    MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-5);

    ASSERT_TRUE(y_opt.node()->owner_opr()->same_type<opr::RelayoutFormat>());
}

TEST(TestGoptInference, PreProcessCase1) {
    REQUIRE_GPU(1);
    HostTensorGenerator<dtype::Uint8, RandomDistribution::UNIFORM> gen(0, 255);
    auto cn = CompNode::load("gpu0");
    auto graph = ComputingGraph::make();
    graph->options().graph_opt_level = 0;

    size_t n = 1;
    size_t c = 3;
    size_t h = 16;
    size_t w = 16;
    auto host_x1 = gen({n, c, h, w}, cn);

    auto x = opr::Host2DeviceCopy::make(*graph, host_x1);
    auto x_u8 = opr::TypeCvt::make(x, dtype::Float32(), cn);
    auto x_s8 = x_u8 - 128;
    auto zero = DTypeScalar(dtype::Float32());
    auto zero_tensor = opr::ImmutableTensor::make(*graph, zero, cn);
M
Megvii Engine Team 已提交
3944
    auto pad_channel_tensor = opr::Broadcast::make(zero_tensor, {n, 1, h, w}, cn);
3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958
    auto paded_x = opr::Concat::make({x_s8, pad_channel_tensor}, 1, cn)
                           .reshape({n, 1, 4, h, w});

    auto nchw4_out = opr::Dimshuffle::make(paded_x, {0, 1, 3, 4, 2}, 5, cn);
    auto result = opr::TypeCvt::make(nchw4_out, dtype::QuantizedS8(1.f));

    auto y = result;
    SymbolVar y_opt;
    auto options = gopt::OptimizeForInferenceOptions{};
    options.enable_fuse_preprocess();
    unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);

    graph->compile({{y_opt, {}}})
            ->to_json()
M
Megvii Engine Team 已提交
3959
            ->writeto_fpath(output_file("TestGoptInference.PreProcessCase1.json"));
3960 3961

    HostTensorND host_y_opt, host_y;
M
Megvii Engine Team 已提交
3962 3963
    auto func = graph->compile(
            {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
3964 3965 3966 3967 3968
    func->execute();
    MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-5);

    ASSERT_TRUE(y_opt.node()->owner_opr()->same_type<opr::RelayoutFormat>());
}
3969

3970
TEST(TestGoptInference, WarpAndPreProcessCase0) {
3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983
    REQUIRE_GPU(1);
    HostTensorGenerator<dtype::Uint8, RandomDistribution::UNIFORM> gen(0, 255);
    auto cn = CompNode::load("gpu0");
    auto graph = ComputingGraph::make();
    graph->options().graph_opt_level = 0;

    size_t n = 1;
    size_t c = 3;
    size_t h = 16;
    size_t w = 16;
    auto host_x1 = gen({n, h, w, c}, cn);
    auto x = opr::Host2DeviceCopy::make(*graph, host_x1);

M
Megvii Engine Team 已提交
3984 3985
    auto mat_host =
            std::make_shared<HostTensorND>(cn, TensorShape{n, 3, 3}, dtype::Float32());
3986 3987 3988 3989 3990
    warp_perspective_mat_gen(*mat_host, n, h, w);
    auto mat = opr::Host2DeviceCopy::make(*graph, mat_host).rename("mat");

    opr::WarpPerspective::Param warp_param;
    warp_param.format = opr::WarpPerspective::Param::Format::NHWC;
M
Megvii Engine Team 已提交
3991
    auto x_warp = opr::WarpPerspective::make(x, mat, TensorShape{h, w}, warp_param);
3992 3993 3994 3995 3996 3997
    auto x_nchw = opr::Dimshuffle::make(x_warp, {0, 3, 1, 2}, 4, cn);

    auto x_u8 = opr::TypeCvt::make(x_nchw, dtype::Float32(), cn);
    auto x_s8 = x_u8 - 128;
    auto zero = DTypeScalar(dtype::Float32());
    auto zero_tensor = opr::ImmutableTensor::make(*graph, zero, cn);
M
Megvii Engine Team 已提交
3998
    auto pad_channel_tensor = opr::Broadcast::make(zero_tensor, {n, 1, h, w}, cn);
3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012
    auto paded_x = opr::Concat::make({x_s8, pad_channel_tensor}, 1, cn)
                           .reshape({n, 1, 4, h, w});

    auto nchw4_out = opr::Dimshuffle::make(paded_x, {0, 1, 3, 4, 2}, 5, cn);
    auto result = opr::TypeCvt::make(nchw4_out, dtype::QuantizedS8(1.f));

    auto y = result;
    SymbolVar y_opt;
    auto options = gopt::OptimizeForInferenceOptions{};
    options.enable_fuse_preprocess();
    unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);

    ASSERT_TRUE(y_opt.node()->owner_opr()->same_type<opr::WarpPerspective>());

M
Megvii Engine Team 已提交
4013 4014 4015
    ASSERT_EQ(
            opr::WarpPerspective::Param::Format::NHWC_NCHW4_IC_SMALL,
            find_opr<opr::WarpPerspective>(y_opt).param().format);
4016 4017 4018

    graph->compile({{y_opt, {}}})
            ->to_json()
M
Megvii Engine Team 已提交
4019 4020
            ->writeto_fpath(
                    output_file("TestGoptInference.WarpAndPreProcessCase0.json"));
4021 4022

    HostTensorND host_y_opt, host_y;
M
Megvii Engine Team 已提交
4023 4024
    auto func = graph->compile(
            {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
4025 4026 4027 4028
    func->execute();
    MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-5);
}

4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042
TEST(TestGoptInference, PreProcessCaseAutopadNCHW64) {
    REQUIRE_GPU(1);
    HostTensorGenerator<dtype::Uint8, RandomDistribution::UNIFORM> gen(0, 255);
    auto cn = CompNode::load("gpu0");
    auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
    auto sm_ver = prop.major * 10 + prop.minor;
    if (sm_ver < 75) {
        printf("This testcast ignored due to insufficient cuda cap(got: %d, "
               "expected: %d)\n",
               sm_ver, 75);
        return;
    }
    auto graph = ComputingGraph::make();
    graph->options().graph_opt_level = 0;
M
Megvii Engine Team 已提交
4043
    auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
4044
        return opr::TypeCvt::make(
M
Megvii Engine Team 已提交
4045
                opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064
                dtype);
    };
    size_t n = 2;
    size_t c = 3;
    size_t h = 32;
    size_t w = 32;
    auto host_x1 = gen({n, c, h, w}, cn);

    auto x = opr::Host2DeviceCopy::make(*graph, host_x1);
    auto x_u8_fp32 = opr::TypeCvt::make(x, dtype::Float32(), cn);
    auto x_s8_fp32 = x_u8_fp32 - 128;
    auto x_s8 = opr::TypeCvt::make(x_s8_fp32, dtype::QuantizedS8(2.5f), cn);
    auto weight = mkcvar("weight", {16, 3, 3, 3}, dtype::QuantizedS8(2.5f)),
         bias = mkcvar("bias", {1, 16, 1, 1}, dtype::QuantizedS32(6.25f));
    opr::ConvBias::Param param;
    param.format = opr::ConvBias::Param::Format::NCHW;
    param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
    param.stride_h = param.stride_w = 2;
    param.pad_h = param.pad_w = 1;
M
Megvii Engine Team 已提交
4065 4066 4067
    auto result = opr::ConvBias::make(
            x_s8, weight, bias, param, {},
            OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
4068 4069 4070 4071 4072 4073 4074 4075 4076

    auto y = result;
    SymbolVar y_opt;
    auto options = gopt::OptimizeForInferenceOptions{};
    options.enable_nchw64();
    unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);

    graph->compile({{y_opt, {}}})
            ->to_json()
M
Megvii Engine Team 已提交
4077 4078
            ->writeto_fpath(
                    output_file("TestGoptInference.PreProcessCaseAutopadNCHW64.json"));
4079 4080

    HostTensorND host_y_opt, host_y;
M
Megvii Engine Team 已提交
4081 4082
    auto func = graph->compile(
            {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
4083 4084
    func->execute();
    MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-5);
M
Megvii Engine Team 已提交
4085 4086 4087
    ASSERT_TRUE(
            find_opr<opr::RelayoutFormat>(y_opt).param().mode ==
            opr::RelayoutFormat::Param::Mode::NCHW_NCHW4);
4088 4089
}

4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103
TEST(TestGoptInference, PreProcessCaseAutopadNHWC) {
    REQUIRE_GPU(1);
    HostTensorGenerator<dtype::Uint8, RandomDistribution::UNIFORM> gen(0, 255);
    auto cn = CompNode::load("gpu0");
    auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
    auto sm_ver = prop.major * 10 + prop.minor;
    if (sm_ver < 75) {
        printf("This testcast ignored due to insufficient cuda cap(got: %d, "
               "expected: %d)\n",
               sm_ver, 75);
        return;
    }
    auto graph = ComputingGraph::make();
    graph->options().graph_opt_level = 0;
M
Megvii Engine Team 已提交
4104
    auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
4105
        return opr::TypeCvt::make(
M
Megvii Engine Team 已提交
4106
                opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118
                dtype);
    };
    size_t n = 2;
    size_t c = 3;
    size_t h = 32;
    size_t w = 32;
    auto host_x1 = gen({n, c, h, w}, cn);

    auto x = opr::Host2DeviceCopy::make(*graph, host_x1);
    auto x_u8_fp32 = opr::TypeCvt::make(x, dtype::Float32(), cn);
    auto x_s8_fp32 = x_u8_fp32 - 128;
    auto x_s8 = opr::TypeCvt::make(x_s8_fp32, dtype::QuantizedS8(2.5f), cn);
M
Megvii Engine Team 已提交
4119
    auto host_val = std::make_shared<HostTensorND>(cn, dtype::QuantizedS8(2.5f));
4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136
    TensorShape scalar{1, 1, 1, 1};
    host_val->resize(scalar);
    auto ptr = host_val->raw_ptr();
    size_t size_bytes =
            TensorLayout{scalar, dtype::QuantizedS8(2.5f)}.span().dist_byte();
    std::memset(ptr, 0, size_bytes);
    auto padding = opr::ImmutableTensor::make(*graph, *host_val);
    padding = opr::Broadcast::make(padding, {n, 1, h, w});
    auto padded_x = opr::Concat::make({x_s8, padding}, 1);
    auto nhwc_x = opr::Dimshuffle::make(padded_x, {0, 2, 3, 1});
    auto weight = mkcvar("weight", {16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
         bias = mkcvar("bias", {1, 1, 1, 16}, dtype::QuantizedS32(6.25f));
    opr::ConvBias::Param param;
    param.format = opr::ConvBias::Param::Format::NHWC;
    param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
    param.stride_h = param.stride_w = 2;
    param.pad_h = param.pad_w = 1;
M
Megvii Engine Team 已提交
4137 4138 4139
    auto result = opr::ConvBias::make(
            nhwc_x, weight, bias, param, {},
            OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
4140 4141 4142 4143 4144 4145 4146 4147
    auto y = opr::TypeCvt::make(result, dtype::Float32());
    SymbolVar y_opt;
    auto options = gopt::OptimizeForInferenceOptions{};
    options.enable_fuse_preprocess();
    unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);

    graph->compile({{y_opt, {}}})
            ->to_json()
M
Megvii Engine Team 已提交
4148 4149
            ->writeto_fpath(
                    output_file("TestGoptInference.PreProcessCaseAutopadNHWC.json"));
4150 4151

    HostTensorND host_y_opt, host_y;
M
Megvii Engine Team 已提交
4152 4153
    auto func = graph->compile(
            {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
4154 4155
    func->execute();
    MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-5);
M
Megvii Engine Team 已提交
4156 4157 4158
    ASSERT_TRUE(
            find_opr<opr::RelayoutFormat>(y_opt).param().mode ==
            opr::RelayoutFormat::Param::Mode::NCHW_NCHW4);
4159 4160
}

4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174
TEST(TestGoptInference, WarpAndPreProcessCase1) {
    REQUIRE_GPU(1);
    HostTensorGenerator<dtype::Uint8, RandomDistribution::UNIFORM> gen(0, 255);
    auto cn = CompNode::load("gpu0");
    auto graph = ComputingGraph::make();
    graph->options().graph_opt_level = 0;

    size_t n = 1;
    size_t c = 3;
    size_t h = 16;
    size_t w = 16;
    auto host_x1 = gen({n, h, w, c}, cn);
    auto x = opr::Host2DeviceCopy::make(*graph, host_x1);

M
Megvii Engine Team 已提交
4175 4176
    auto mat_host =
            std::make_shared<HostTensorND>(cn, TensorShape{n, 3, 3}, dtype::Float32());
4177 4178 4179 4180 4181
    warp_perspective_mat_gen(*mat_host, n, h, w);
    auto mat = opr::Host2DeviceCopy::make(*graph, mat_host).rename("mat");

    opr::WarpPerspective::Param warp_param;
    warp_param.format = opr::WarpPerspective::Param::Format::NHWC;
M
Megvii Engine Team 已提交
4182
    auto x_warp = opr::WarpPerspective::make(x, mat, TensorShape{h, w}, warp_param);
4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194
    auto x_nchw = opr::Dimshuffle::make(x_warp, {0, 3, 1, 2}, 4, cn);

    auto result = opr::TypeCvt::make(x_nchw, dtype::Float32(), cn);

    auto y = result;
    SymbolVar y_opt;
    auto options = gopt::OptimizeForInferenceOptions{};
    options.enable_fuse_preprocess();
    unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);

    ASSERT_TRUE(y_opt.node()->owner_opr()->same_type<opr::WarpPerspective>());

M
Megvii Engine Team 已提交
4195 4196 4197
    ASSERT_EQ(
            opr::WarpPerspective::Param::Format::NHWC_NCHW,
            find_opr<opr::WarpPerspective>(y_opt).param().format);
4198 4199 4200

    graph->compile({{y_opt, {}}})
            ->to_json()
M
Megvii Engine Team 已提交
4201 4202
            ->writeto_fpath(
                    output_file("TestGoptInference.WarpAndPreProcessCase1.json"));
4203 4204

    HostTensorND host_y_opt, host_y;
M
Megvii Engine Team 已提交
4205 4206
    auto func = graph->compile(
            {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
4207 4208 4209
    func->execute();
    MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-5);
}
4210

4211
#if CUDA_VERSION >= 10020
4212 4213 4214 4215
TEST(TestGoptInference, FoldingConvDimshuffle) {
    REQUIRE_GPU(1);
    auto cn = CompNode::load("gpu0");
    cn.activate();
4216
    REQUIRE_CUDA_COMPUTE_CAPABILITY(6, 1);
4217 4218 4219 4220

    HostTensorGenerator<dtype::Int8> gen;
    auto graph = ComputingGraph::make();
    graph->options().graph_opt_level = 0;
M
Megvii Engine Team 已提交
4221
    auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
4222
        return opr::TypeCvt::make(
M
Megvii Engine Team 已提交
4223
                opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
4224
    };
M
Megvii Engine Team 已提交
4225
    auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
4226
        return opr::TypeCvt::make(
M
Megvii Engine Team 已提交
4227
                opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250
                dtype);
    };
    auto nchw42nchw = [](SymbolVar x) {
        auto xshp = opr::GetVarShape::make(x);
        auto cv = [&x](int v) { return x.make_scalar(v); };
        auto sub = [&xshp, &cv](int idx) {
            return opr::IndexAt::make(xshp, {{0, cv(idx)}});
        };
        auto tshp0 = opr::Concat::make({sub(0), sub(1) * 4, sub(2), sub(3)}, 0);
        auto y0 = opr::Dimshuffle::make(x, {0, 1, 4, 2, 3});
        auto y1 = opr::Reshape::make(y0, tshp0);
        return y1;
    };

    auto x = mkvar("x", {32, 16, 4, 8, 4}, dtype::QuantizedS8(2.5f)),
         w = mkcvar("w", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
         b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f));
    opr::ConvBias::Param param;
    param.format = opr::ConvBias::Param::Format::NCHW4;
    param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
    param.stride_h = param.stride_w = 2;
    param.pad_h = param.pad_w = 1;

M
Megvii Engine Team 已提交
4251 4252
    auto y = opr::ConvBias::make(
            x, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
4253 4254 4255
    y = opr::TypeCvt::make(y, dtype::Float32());
    y = nchw42nchw(y);
    SymbolVar y_fuse, y_non_fuse;
M
Megvii Engine Team 已提交
4256 4257 4258 4259 4260 4261 4262 4263
    unpack_vector(
            gopt::GraphOptimizer{}
                    .add_pass<gopt::ShuffleShuffleRemovePass>()
                    .add_pass<gopt::FoldingConvBiasDimshufflePass>()
                    .add_pass<gopt::ParamFusePass>()
                    .apply({{y}})
                    .endpoint_vars(),
            y_fuse);
4264 4265 4266
    gopt::modify_opr_algo_strategy_inplace(
            {y_fuse},
            opr::mixin::AlgoChooserHelper::ExecutionPolicy::Strategy::PROFILE);
4267 4268
    graph->compile({{y_fuse, {}}})
            ->to_json()
M
Megvii Engine Team 已提交
4269 4270 4271 4272 4273
            ->writeto_fpath(
                    output_file("TestGoptInference.FoldingConvDimshuffle.json"));
    ASSERT_EQ(
            opr::ConvBias::Param::Format::NCHW4_NCHW,
            find_opr<opr::ConvBias>(y_fuse).param().format);
4274
    ASSERT_EQ(0u, find_opr_num<opr::Dimshuffle>(y_fuse));
M
Megvii Engine Team 已提交
4275
    unpack_vector(gopt::GraphOptimizer{}.apply({{y}}).endpoint_vars(), y_non_fuse);
4276
    HostTensorND host_y_fuse, host_y_non_fuse;
M
Megvii Engine Team 已提交
4277 4278 4279
    auto func = graph->compile(
            {make_callback_copy(y_fuse, host_y_fuse),
             make_callback_copy(y_non_fuse, host_y_non_fuse)});
4280 4281 4282 4283 4284 4285 4286
    func->execute();
}

TEST(TestGoptInference, FoldingConvDimshuffleNCHW4NCHW32) {
    REQUIRE_GPU(1);
    auto cn = CompNode::load("gpu0");
    cn.activate();
4287
    REQUIRE_CUDA_COMPUTE_CAPABILITY(6, 1);
4288 4289 4290 4291

    HostTensorGenerator<dtype::Int8> gen;
    auto graph = ComputingGraph::make();
    graph->options().graph_opt_level = 0;
M
Megvii Engine Team 已提交
4292
    auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
4293
        return opr::TypeCvt::make(
M
Megvii Engine Team 已提交
4294
                opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
4295
    };
M
Megvii Engine Team 已提交
4296
    auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
4297
        return opr::TypeCvt::make(
M
Megvii Engine Team 已提交
4298
                opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325
                dtype);
    };
    auto nchw42nchw32 = [](SymbolVar x) {
        auto xshp = opr::GetVarShape::make(x);
        auto cv = [&x](int v) { return x.make_scalar(v); };
        auto sub = [&xshp, &cv](int idx) {
            return opr::IndexAt::make(xshp, {{0, cv(idx)}});
        };
        auto tshp0 = opr::Concat::make(
                     {sub(0), sub(1) / 8, cv(8), sub(2), sub(3), sub(4)}, 0),
             tshp1 = opr::Concat::make(
                     {sub(0), sub(1) / 8, sub(2), sub(3), sub(4) * 8}, 0);
        auto y0 = opr::Reshape::make(x, tshp0);
        auto y1 = opr::Dimshuffle::make(y0, {0, 1, 3, 4, 2, 5});
        auto y2 = opr::Reshape::make(y1, tshp1);
        return y2;
    };

    auto x = mkvar("x", {32, 16, 4, 8, 4}, dtype::QuantizedS8(2.5f)),
         w = mkcvar("w", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
         b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f));
    opr::ConvBias::Param param;
    param.format = opr::ConvBias::Param::Format::NCHW4;
    param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
    param.stride_h = param.stride_w = 2;
    param.pad_h = param.pad_w = 1;

M
Megvii Engine Team 已提交
4326 4327
    auto y = opr::ConvBias::make(
            x, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
4328 4329 4330
    y = nchw42nchw32(y);
    y = opr::TypeCvt::make(y, dtype::Float32());
    SymbolVar y_fuse, y_non_fuse;
M
Megvii Engine Team 已提交
4331 4332 4333 4334 4335 4336 4337
    unpack_vector(
            gopt::GraphOptimizer{}
                    .add_pass<gopt::FoldingConvBiasDimshufflePass>()
                    .add_pass<gopt::ParamFusePass>()
                    .apply({{y}})
                    .endpoint_vars(),
            y_fuse);
4338 4339 4340
    gopt::modify_opr_algo_strategy_inplace(
            {y_fuse},
            opr::mixin::AlgoChooserHelper::ExecutionPolicy::Strategy::PROFILE);
4341 4342 4343 4344
    graph->compile({{y_fuse, {}}})
            ->to_json()
            ->writeto_fpath(output_file(
                    "TestGoptInference.FoldingConvDimshuffleNCHW4NCHW32.json"));
M
Megvii Engine Team 已提交
4345 4346 4347
    ASSERT_EQ(
            opr::ConvBias::Param::Format::NCHW4_NCHW32,
            find_opr<opr::ConvBias>(y_fuse).param().format);
4348
    ASSERT_EQ(0u, find_opr_num<opr::Dimshuffle>(y_fuse));
M
Megvii Engine Team 已提交
4349
    unpack_vector(gopt::GraphOptimizer{}.apply({{y}}).endpoint_vars(), y_non_fuse);
4350
    HostTensorND host_y_fuse, host_y_non_fuse;
M
Megvii Engine Team 已提交
4351 4352 4353
    auto func = graph->compile(
            {make_callback_copy(y_fuse, host_y_fuse),
             make_callback_copy(y_non_fuse, host_y_non_fuse)});
4354 4355 4356 4357 4358 4359 4360 4361
    func->execute();
    MGB_ASSERT_TENSOR_EQ(host_y_fuse, host_y_non_fuse);
}

TEST(TestGoptInference, FoldingConvDimshuffleNCHW32NCHW4) {
    REQUIRE_GPU(1);
    auto cn = CompNode::load("gpu0");
    cn.activate();
4362
    REQUIRE_CUDA_COMPUTE_CAPABILITY(7, 5);
4363 4364 4365 4366

    HostTensorGenerator<dtype::Int8> gen;
    auto graph = ComputingGraph::make();
    graph->options().graph_opt_level = 0;
M
Megvii Engine Team 已提交
4367
    auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
4368
        return opr::TypeCvt::make(
M
Megvii Engine Team 已提交
4369
                opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
4370
    };
M
Megvii Engine Team 已提交
4371
    auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
4372
        return opr::TypeCvt::make(
M
Megvii Engine Team 已提交
4373
                opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387
                dtype);
    };

    auto x = mkvar("x", {32, 16, 4, 8, 4}, dtype::QuantizedS8(2.5f)),
         w = mkcvar("w", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
         b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
         w1 = mkcvar("w1", {16, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
         b1 = mkcvar("b1", {1, 4, 1, 1, 4}, dtype::QuantizedS32(6.25f));
    opr::ConvBias::Param param;
    param.format = opr::ConvBias::Param::Format::NCHW4;
    param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
    param.stride_h = param.stride_w = 2;
    param.pad_h = param.pad_w = 1;

M
Megvii Engine Team 已提交
4388 4389
    auto y = opr::ConvBias::make(
            x, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
4390
    param.stride_h = param.stride_w = 1;
M
Megvii Engine Team 已提交
4391 4392
    y = opr::ConvBias::make(
            y, w1, b1, param, {}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408
    y = opr::TypeCvt::make(y, dtype::Float32());
    SymbolVar y_fuse, y_non_fuse;
    {
        auto options = gopt::OptimizeForInferenceOptions{};
        options.enable_nchw32().enable_fuse_conv_bias_nonlinearity();
        unpack_vector(gopt::optimize_for_inference({y}, options), y_fuse);
    }
    graph->compile({{y_fuse, {}}})
            ->to_json()
            ->writeto_fpath(output_file(
                    "TestGoptInference.FoldingConvDimshuffleNCHW32NCHW4.json"));
    ASSERT_EQ(1u, find_opr_num<opr::Dimshuffle>(y_fuse));
    bool found = false;
    cg::DepOprIter{[&found](cg::OperatorNodeBase* opr) {
        if (!found && opr->same_type<opr::ConvBias>()) {
            opr::ConvBias* cb = &opr->cast_final_safe<opr::ConvBias>();
M
Megvii Engine Team 已提交
4409
            if (cb->param().format == opr::ConvBias::Param::Format::NCHW32_NCHW4)
4410 4411
                found = true;
        }
M
Megvii Engine Team 已提交
4412
    }}.add(y_fuse.node()->owner_opr());
4413
    EXPECT_TRUE(found);
M
Megvii Engine Team 已提交
4414
    unpack_vector(gopt::GraphOptimizer{}.apply({{y}}).endpoint_vars(), y_non_fuse);
4415
    HostTensorND host_y_fuse, host_y_non_fuse;
M
Megvii Engine Team 已提交
4416 4417 4418
    auto func = graph->compile(
            {make_callback_copy(y_fuse, host_y_fuse),
             make_callback_copy(y_non_fuse, host_y_non_fuse)});
4419 4420 4421
    func->execute();
    MGB_ASSERT_TENSOR_EQ(host_y_fuse, host_y_non_fuse);
}
4422 4423 4424 4425 4426

TEST(TestGoptInference, FoldingConvDimshuffleNCHW4NHWC) {
    REQUIRE_GPU(1);
    auto cn = CompNode::load("gpu0");
    cn.activate();
4427
    REQUIRE_CUDA_COMPUTE_CAPABILITY(7, 5);
4428 4429 4430 4431

    HostTensorGenerator<dtype::Int8> gen;
    auto graph = ComputingGraph::make();
    graph->options().graph_opt_level = 0;
M
Megvii Engine Team 已提交
4432
    auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
4433
        return opr::TypeCvt::make(
M
Megvii Engine Team 已提交
4434
                opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
4435
    };
M
Megvii Engine Team 已提交
4436
    auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
4437
        return opr::TypeCvt::make(
M
Megvii Engine Team 已提交
4438
                opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
4439 4440 4441 4442
                dtype);
    };

    auto x = mkvar("x", {32, 4, 23, 40}, dtype::QuantizedS8(2.5f)),
4443 4444 4445
         w = mkcvar("w", {32, 4, 3, 3}, dtype::QuantizedS8(2.5f)),
         b = mkcvar("b", {1, 32, 1, 1}, dtype::QuantizedS32(6.25f)),
         w1 = mkcvar("w1", {32, 32, 3, 3}, dtype::QuantizedS4(1.234f)),
M
Megvii Engine Team 已提交
4446
         b1 = mkcvar("b1", {1, 32, 1, 1}, dtype::QuantizedS32(12.34567f * 1.234f));
4447 4448 4449 4450 4451 4452 4453
    opr::ConvBias::Param param;
    param.format = opr::ConvBias::Param::Format::NCHW;
    param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
    param.stride_h = param.stride_w = 1;
    param.pad_h = param.pad_w = 1;

    auto y = opr::ConvBias::make(
M
Megvii Engine Team 已提交
4454
            x, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8(12.34567f)});
4455
    y = opr::TypeCvt::make(y, dtype::QuantizedS4(12.34567f));
M
Megvii Engine Team 已提交
4456 4457
    y = opr::ConvBias::make(
            y, w1, b1, param, {}, OperatorNodeConfig{dtype::QuantizedS4(56.71234f)});
4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475
    y = opr::TypeCvt::make(y, dtype::Float32());
    SymbolVar y_fuse, y_non_fuse;
    {
        auto options = gopt::OptimizeForInferenceOptions{};
        options.enable_nchw64();
        unpack_vector(gopt::optimize_for_inference({y}, options), y_fuse);
    }
    using S = opr::mixin::AlgoChooserHelper::ExecutionPolicy::Strategy;
    S strategy = S::PROFILE;
    gopt::modify_opr_algo_strategy_inplace({y_fuse}, strategy);
    HostTensorND host_y_fuse;
    auto func1 = graph->compile({make_callback_copy(y_fuse, host_y_fuse)});
    func1->execute();
    graph->compile({{y_fuse, {}}})
            ->to_json()
            ->writeto_fpath(output_file(
                    "TestGoptInference.FoldingConvDimshuffleNCHW4NHWC.json"));
    size_t nr_dimshuffle = find_opr_num<opr::TypeCvt>(y_fuse);
4476
    ASSERT_EQ(2u, nr_dimshuffle);
4477 4478 4479 4480 4481 4482 4483
    bool found = false;
    cg::DepOprIter{[&found](cg::OperatorNodeBase* opr) {
        if (!found && opr->same_type<opr::ConvBias>()) {
            opr::ConvBias* cb = &opr->cast_final_safe<opr::ConvBias>();
            if (cb->param().format == opr::ConvBias::Param::Format::NCHW4_NHWC)
                found = true;
        }
M
Megvii Engine Team 已提交
4484
    }}.add(y_fuse.node()->owner_opr());
4485
    EXPECT_TRUE(found);
M
Megvii Engine Team 已提交
4486
    unpack_vector(gopt::GraphOptimizer{}.apply({{y}}).endpoint_vars(), y_non_fuse);
4487 4488
    gopt::modify_opr_algo_strategy_inplace({y_non_fuse}, strategy);
    HostTensorND host_y_non_fuse;
M
Megvii Engine Team 已提交
4489
    auto func2 = graph->compile({make_callback_copy(y_non_fuse, host_y_non_fuse)});
4490 4491 4492
    func2->execute();
    MGB_ASSERT_TENSOR_EQ(host_y_fuse, host_y_non_fuse);
}
4493
#endif
4494 4495 4496 4497 4498

TEST(TestGoptInference, PaddingChannels) {
    REQUIRE_GPU(1);
    auto cn = CompNode::load("gpu0");
    cn.activate();
4499
    REQUIRE_CUDA_COMPUTE_CAPABILITY(6, 1);
4500 4501 4502 4503

    HostTensorGenerator<dtype::Int8> gen;
    auto graph = ComputingGraph::make();
    graph->options().graph_opt_level = 0;
M
Megvii Engine Team 已提交
4504
    auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
4505
        return opr::TypeCvt::make(
M
Megvii Engine Team 已提交
4506
                opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
4507
    };
M
Megvii Engine Team 已提交
4508
    auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
4509
        return opr::TypeCvt::make(
M
Megvii Engine Team 已提交
4510
                opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522
                dtype);
    };

    auto x = mkvar("x", {16, 3, 14, 14}, dtype::QuantizedS8(2.5f)),
         w = mkcvar("w", {20, 3, 3, 3}, dtype::QuantizedS8(2.5f)),
         b = mkcvar("b", {1, 20, 1, 1}, dtype::QuantizedS32(6.25f));
    opr::ConvBias::Param param;
    param.format = opr::ConvBias::Param::Format::NCHW;
    param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
    param.stride_h = param.stride_w = 1;
    param.pad_h = param.pad_w = 1;

M
Megvii Engine Team 已提交
4523 4524
    auto y = opr::ConvBias::make(
            x, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
4525 4526
    auto w1 = mkcvar("w1", {24, 20, 3, 3}, dtype::QuantizedS8(2.5f)),
         b1 = mkcvar("b1", {1, 24, 1, 1}, dtype::QuantizedS32(6.25f));
M
Megvii Engine Team 已提交
4527 4528
    auto y1 = opr::ConvBias::make(
            y, w1, b1, param, {}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
4529 4530
    auto w2 = mkcvar("w2", {20, 24, 3, 3}, dtype::QuantizedS8(2.5f)),
         b2 = mkcvar("b2", {1, 20, 1, 1}, dtype::QuantizedS32(6.25f));
M
Megvii Engine Team 已提交
4531 4532
    auto y2 = opr::ConvBias::make(
            y1, w2, b2, param, {}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
4533 4534 4535 4536 4537 4538
    using ElemMultiMode = opr::ElemwiseMultiType::Param::Mode;
    auto y3 = opr::ElemwiseMultiType::make(
            {y, y2}, {ElemMultiMode::QFUSE_ADD_RELU},
            OperatorNodeConfig{dtype::QuantizedS8{1.2f}});
    y3 = opr::TypeCvt::make(y3, dtype::Float32());
    SymbolVar y3_pad;
M
Megvii Engine Team 已提交
4539 4540 4541 4542 4543 4544
    unpack_vector(
            gopt::GraphOptimizer{}
                    .add_pass<gopt::PaddingChannelPass>()
                    .apply({{y3}})
                    .endpoint_vars(),
            y3_pad);
4545 4546 4547 4548 4549 4550 4551 4552 4553
    ASSERT_EQ(y3_pad.node()->shape()[1], y3.node()->shape()[1]);
    SmallVector<cg::OperatorNodeBase*> oprs;
    auto cb = [&oprs](cg::OperatorNodeBase* opr) {
        if (opr->same_type<opr::ConvBias>()) {
            oprs.push_back(opr);
        }
    };
    cg::DepOprIter{cb}.add(y3_pad.node()->owner_opr());
    ASSERT_EQ(oprs.size(), 3);
4554
    ASSERT_EQ(oprs[0]->output(0)->shape()[1], 32);
4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568
    ASSERT_EQ(oprs[1]->output(0)->shape()[1], 32);
    ASSERT_EQ(oprs[2]->output(0)->shape()[1], 32);
    HostTensorND t1, t2;
    auto func1 = graph->compile({make_callback_copy(y3, t1)});
    func1->execute();
    auto func2 = graph->compile({make_callback_copy(y3_pad, t2)});
    func2->execute();
    MGB_ASSERT_TENSOR_EQ(t1, t2);
}

TEST(TestGoptInference, ConcatAfterPaddingChannels) {
    REQUIRE_GPU(1);
    auto cn = CompNode::load("gpu0");
    cn.activate();
4569
    REQUIRE_CUDA_COMPUTE_CAPABILITY(6, 1);
M
Megvii Engine Team 已提交
4570

4571 4572 4573
    HostTensorGenerator<dtype::Int8> gen;
    auto graph = ComputingGraph::make();
    graph->options().graph_opt_level = 0;
M
Megvii Engine Team 已提交
4574
    auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
4575
        return opr::TypeCvt::make(
M
Megvii Engine Team 已提交
4576
                opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
4577
    };
M
Megvii Engine Team 已提交
4578
    auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
4579
        return opr::TypeCvt::make(
M
Megvii Engine Team 已提交
4580
                opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592
                dtype);
    };

    auto x = mkvar("x", {16, 3, 14, 14}, dtype::QuantizedS8(2.5f)),
         w = mkcvar("w", {18, 3, 3, 3}, dtype::QuantizedS8(2.5f)),
         b = mkcvar("b", {1, 18, 1, 1}, dtype::QuantizedS32(6.25f));
    opr::ConvBias::Param param;
    param.format = opr::ConvBias::Param::Format::NCHW;
    param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
    param.stride_h = param.stride_w = 1;
    param.pad_h = param.pad_w = 1;

M
Megvii Engine Team 已提交
4593 4594
    auto y = opr::ConvBias::make(
            x, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
4595 4596
    auto w1 = mkcvar("w1", {18, 18, 3, 3}, dtype::QuantizedS8(2.5f)),
         b1 = mkcvar("b1", {1, 18, 1, 1}, dtype::QuantizedS32(6.25f));
M
Megvii Engine Team 已提交
4597 4598
    auto y1 = opr::ConvBias::make(
            y, w1, b1, param, {}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
4599 4600 4601 4602
    // concat at batch dim
    auto y2 = opr::Concat::make({y, y1}, 0);
    y2 = opr::TypeCvt::make(y2, dtype::Float32());
    SymbolVar y2_pad;
M
Megvii Engine Team 已提交
4603 4604 4605 4606 4607 4608
    unpack_vector(
            gopt::GraphOptimizer{}
                    .add_pass<gopt::PaddingChannelPass>()
                    .apply({{y2}})
                    .endpoint_vars(),
            y2_pad);
4609 4610 4611 4612 4613 4614 4615 4616 4617
    ASSERT_EQ(y2_pad.node()->shape()[1], y2.node()->shape()[1]);
    SmallVector<cg::OperatorNodeBase*> oprs;
    auto cb = [&oprs](cg::OperatorNodeBase* opr) {
        if (opr->same_type<opr::ConvBias>()) {
            oprs.push_back(opr);
        }
    };
    cg::DepOprIter{cb}.add(y2_pad.node()->owner_opr());
    ASSERT_EQ(oprs.size(), 2);
4618
    ASSERT_EQ(oprs[0]->output(0)->shape()[1], 32);
4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629
    ASSERT_EQ(oprs[1]->output(0)->shape()[1], 32);
    HostTensorND t1, t2;
    auto func1 = graph->compile({make_callback_copy(y2, t1)});
    func1->execute();
    auto func2 = graph->compile({make_callback_copy(y2_pad, t2)});
    func2->execute();
    MGB_ASSERT_TENSOR_EQ(t1, t2);
}

TEST(TestGoptInference, PaddingChannelsWithPooling) {
    REQUIRE_GPU(1);
4630 4631
    auto cn = CompNode::load("gpu0");
    cn.activate();
4632
    REQUIRE_CUDA_COMPUTE_CAPABILITY(6, 1);
4633 4634 4635 4636

    HostTensorGenerator<dtype::Int8> gen;
    auto graph = ComputingGraph::make();
    graph->options().graph_opt_level = 0;
M
Megvii Engine Team 已提交
4637
    auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
4638
        return opr::TypeCvt::make(
M
Megvii Engine Team 已提交
4639
                opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
4640
    };
M
Megvii Engine Team 已提交
4641
    auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
4642
        return opr::TypeCvt::make(
M
Megvii Engine Team 已提交
4643
                opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655
                dtype);
    };

    auto x = mkvar("x", {16, 3, 14, 14}, dtype::QuantizedS8(2.5f)),
         w = mkcvar("w", {20, 3, 3, 3}, dtype::QuantizedS8(2.5f)),
         b = mkcvar("b", {1, 20, 1, 1}, dtype::QuantizedS32(6.25f));
    opr::ConvBias::Param param;
    param.format = opr::ConvBias::Param::Format::NCHW;
    param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
    param.stride_h = param.stride_w = 1;
    param.pad_h = param.pad_w = 1;

M
Megvii Engine Team 已提交
4656 4657
    auto y = opr::ConvBias::make(
            x, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
4658 4659
    auto w1 = mkcvar("w1", {24, 20, 3, 3}, dtype::QuantizedS8(2.5f)),
         b1 = mkcvar("b1", {1, 24, 1, 1}, dtype::QuantizedS32(6.25f));
M
Megvii Engine Team 已提交
4660 4661
    auto y1 = opr::ConvBias::make(
            y, w1, b1, param, {}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
4662 4663 4664 4665 4666 4667

    opr::Pooling::Param pool_param;
    pool_param.format = opr::Pooling::Param::Format::NCHW;
    y1 = opr::Pooling::make(y1, pool_param);
    y1 = opr::TypeCvt::make(y1, dtype::Float32());
    SymbolVar y1_pad;
M
Megvii Engine Team 已提交
4668 4669 4670 4671 4672 4673
    unpack_vector(
            gopt::GraphOptimizer{}
                    .add_pass<gopt::PaddingChannelPass>()
                    .apply({{y1}})
                    .endpoint_vars(),
            y1_pad);
4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697
    ASSERT_EQ(y1_pad.node()->shape()[1], y1.node()->shape()[1]);
    SmallVector<cg::OperatorNodeBase*> oprs;
    auto cb = [&oprs](cg::OperatorNodeBase* opr) {
        if (opr->same_type<opr::Pooling>()) {
            oprs.push_back(opr);
        }
    };
    cg::DepOprIter{cb}.add(y1_pad.node()->owner_opr());
    ASSERT_EQ(oprs[0]->output(0)->shape()[1], 32);
    HostTensorND t1, t2;
    auto func1 = graph->compile({make_callback_copy(y1, t1)});
    func1->execute();
    auto func2 = graph->compile({make_callback_copy(y1_pad, t2)});
    func2->execute();
    MGB_ASSERT_TENSOR_EQ(t1, t2);
}

// FIXME replace cpu with gpu to enable gpu validation
TEST(TestGoptInference, PaddingChannelsWithWarpPerspective) {
    auto cn = CompNode::load("cpu0");

    HostTensorGenerator<dtype::Int8> gen;
    auto graph = ComputingGraph::make();
    graph->options().graph_opt_level = 0;
M
Megvii Engine Team 已提交
4698
    auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
4699
        return opr::TypeCvt::make(
M
Megvii Engine Team 已提交
4700
                opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
4701
    };
M
Megvii Engine Team 已提交
4702
    auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
4703
        return opr::TypeCvt::make(
M
Megvii Engine Team 已提交
4704
                opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
4705 4706 4707
                dtype);
    };

M
Megvii Engine Team 已提交
4708 4709
    std::shared_ptr<HostTensorND> mat =
            std::make_shared<HostTensorND>(cn, TensorShape{16, 3, 3}, dtype::Float32());
4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721
    warp_perspective_mat_gen(*mat, 16, 14, 14);
    auto mat_var = opr::Host2DeviceCopy::make(*graph, mat).rename("mat");

    auto x = mkvar("x", {16, 3, 14, 14}, dtype::QuantizedS8(2.5f)),
         w = mkcvar("w", {20, 3, 3, 3}, dtype::QuantizedS8(2.5f)),
         b = mkcvar("b", {1, 20, 1, 1}, dtype::QuantizedS32(6.25f));
    opr::ConvBias::Param param;
    param.format = opr::ConvBias::Param::Format::NCHW;
    param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
    param.stride_h = param.stride_w = 1;
    param.pad_h = param.pad_w = 1;

M
Megvii Engine Team 已提交
4722 4723
    auto y = opr::ConvBias::make(
            x, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
4724 4725
    auto w1 = mkcvar("w1", {24, 20, 3, 3}, dtype::QuantizedS8(2.5f)),
         b1 = mkcvar("b1", {1, 24, 1, 1}, dtype::QuantizedS32(6.25f));
M
Megvii Engine Team 已提交
4726 4727
    auto y1 = opr::ConvBias::make(
            y, w1, b1, param, {}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
4728 4729 4730

    opr::WarpPerspective::Param warp_param;
    warp_param.format = opr::WarpPerspective::Param::Format::NCHW;
M
Megvii Engine Team 已提交
4731
    y1 = opr::WarpPerspective::make(y1, mat_var, TensorShape{14, 14}, warp_param);
4732 4733
    y1 = opr::TypeCvt::make(y1, dtype::Float32());
    SymbolVar y1_pad;
M
Megvii Engine Team 已提交
4734 4735 4736 4737 4738 4739
    unpack_vector(
            gopt::GraphOptimizer{}
                    .add_pass<gopt::PaddingChannelPass>()
                    .apply({{y1}})
                    .endpoint_vars(),
            y1_pad);
4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755
    ASSERT_EQ(y1_pad.node()->shape()[1], y1.node()->shape()[1]);
    SmallVector<cg::OperatorNodeBase*> oprs;
    auto cb = [&oprs](cg::OperatorNodeBase* opr) {
        if (opr->same_type<opr::WarpPerspective>()) {
            oprs.push_back(opr);
        }
    };
    cg::DepOprIter{cb}.add(y1_pad.node()->owner_opr());
    ASSERT_EQ(oprs[0]->output(0)->shape()[1], 32);
    HostTensorND t1, t2;
    auto func1 = graph->compile({make_callback_copy(y1, t1)});
    func1->execute();
    auto func2 = graph->compile({make_callback_copy(y1_pad, t2)});
    func2->execute();
    MGB_ASSERT_TENSOR_EQ(t1, t2);
}
4756

4757 4758
#endif

4759
// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}