Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
MegEngine 天元
MegEngine
提交
4348960c
MegEngine
项目概览
MegEngine 天元
/
MegEngine
1 年多 前同步成功
通知
411
Star
4707
Fork
583
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
DevOps
流水线
流水线任务
计划
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
MegEngine
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
DevOps
DevOps
流水线
流水线任务
计划
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
流水线任务
提交
Issue看板
提交
4348960c
编写于
7月 29, 2020
作者:
M
Megvii Engine Team
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix(mge/gopt): fix fp16 compute mode
GitOrigin-RevId: 350625d1aaa9e714da2c27708a33d5f4d74beb11
上级
9f4060b0
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
98 addition
and
1 deletion
+98
-1
src/gopt/impl/inference.cpp
src/gopt/impl/inference.cpp
+40
-1
src/gopt/test/inference.cpp
src/gopt/test/inference.cpp
+58
-0
未找到文件。
src/gopt/impl/inference.cpp
浏览文件 @
4348960c
...
...
@@ -754,6 +754,42 @@ std::unique_ptr<ConvertF32ToF16Pass> ConvertF32ToF16Pass::make(
return
new_conv_opr
.
node
()
->
owner_opr
();
};
auto
replace_convbias_opr
=
[
use_f32_comp
](
OperatorNodeBase
*
opr
,
const
VarNodeArray
&
new_inp
)
{
auto
&
convbias_opr
=
opr
->
cast_final_safe
<
opr
::
ConvBiasForward
>
();
auto
new_param
=
convbias_opr
.
param
();
if
(
use_f32_comp
)
{
new_param
.
compute_mode
=
megdnn
::
param
::
ConvBias
::
ComputeMode
::
FLOAT32
;
}
mgb_assert
(
new_inp
[
0
]
->
dtype
()
==
dtype
::
Float16
(),
"inp %s:%s, owner_opr:%s"
,
new_inp
[
0
]
->
dtype
().
name
(),
new_inp
[
0
]
->
name
().
c_str
(),
new_inp
[
0
]
->
owner_opr
()
->
name
().
c_str
());
mgb_assert
(
new_inp
[
1
]
->
dtype
()
==
dtype
::
Float16
(),
"inp %s:%s, owner_opr:%s"
,
new_inp
[
1
]
->
dtype
().
name
(),
new_inp
[
1
]
->
name
().
c_str
(),
new_inp
[
1
]
->
owner_opr
()
->
name
().
c_str
());
if
(
opr
->
input
().
size
()
==
2
)
{
auto
new_conv_opr
=
opr
::
ConvBias
::
make
(
new_inp
[
0
],
new_inp
[
1
],
new_param
,
convbias_opr
.
execution_policy
(),
convbias_opr
.
config
());
return
new_conv_opr
.
node
()
->
owner_opr
();
}
else
if
(
opr
->
input
().
size
()
==
3
)
{
auto
new_conv_opr
=
opr
::
ConvBias
::
make
(
new_inp
[
0
],
new_inp
[
1
],
new_inp
[
2
],
new_param
,
convbias_opr
.
execution_policy
(),
convbias_opr
.
config
());
return
new_conv_opr
.
node
()
->
owner_opr
();
}
else
{
mgb_assert
(
opr
->
input
().
size
()
==
4
,
"invalid input size %zu"
,
opr
->
input
().
size
());
auto
new_conv_opr
=
opr
::
ConvBias
::
make
(
new_inp
[
0
],
new_inp
[
1
],
new_inp
[
2
],
new_inp
[
3
],
new_param
,
convbias_opr
.
execution_policy
(),
convbias_opr
.
config
());
return
new_conv_opr
.
node
()
->
owner_opr
();
}
};
auto
replace_matmul_opr
=
[
use_f32_comp
](
OperatorNodeBase
*
opr
,
const
VarNodeArray
&
new_inp
)
{
mgb_assert
(
opr
->
input
().
size
()
==
new_inp
.
size
());
...
...
@@ -888,6 +924,7 @@ std::unique_ptr<ConvertF32ToF16Pass> ConvertF32ToF16Pass::make(
replace_func
[
opr
::
Host2DeviceCopy
::
typeinfo
()]
=
replace_h2d_opr
;
replace_func
[
opr
::
SharedDeviceTensor
::
typeinfo
()]
=
replace_sdt_opr
;
replace_func
[
opr
::
Convolution
::
typeinfo
()]
=
replace_conv_opr
;
replace_func
[
opr
::
ConvBias
::
typeinfo
()]
=
replace_convbias_opr
;
replace_func
[
opr
::
MatrixMul
::
typeinfo
()]
=
replace_matmul_opr
;
replace_func
[
opr
::
Reduce
::
typeinfo
()]
=
replace_reduce_opr
;
replace_func
[
opr
::
ImmutableTensor
::
typeinfo
()]
=
replace_imt_opr
;
...
...
@@ -1622,7 +1659,9 @@ void FuseConvBiasNonlinPass::apply(OptState& state) const {
param
.
stride_h
,
param
.
stride_w
,
param
.
dilate_h
,
param
.
dilate_w
};
param
.
dilate_w
,
0
,
param
.
compute_mode
};
};
auto
check_bias_shape
=
[
&
](
opr
::
Convolution
*
conv
,
VarNode
*
bias
)
->
bool
{
...
...
src/gopt/test/inference.cpp
浏览文件 @
4348960c
...
...
@@ -880,6 +880,64 @@ TEST(TestGoptInference, Float32TOFloat16) {
MGB_ASSERT_TENSOR_NEAR
(
host_y
,
host_y_opt
,
1e-3
);
}
TEST
(
TestGoptInference
,
Float32TOFloat16C32
)
{
CompNode
cn
=
CompNode
::
load
(
"cpu0"
);
HostTensorGenerator
<>
gen
(
0
,
1
,
0
);
auto
host_x0
=
gen
({
1
,
4
,
1
,
1
},
cn
),
host_x1
=
gen
({
2
,
3
,
16
,
8
},
cn
),
host_x2
=
gen
({
4
,
3
,
1
,
1
},
cn
);
auto
graph
=
ComputingGraph
::
make
();
auto
make_f32_to_f16_graph
=
[
&
]()
{
graph
->
options
().
graph_opt_level
=
0
;
auto
d0
=
opr
::
Host2DeviceCopy
::
make
(
*
graph
,
host_x0
),
d1
=
opr
::
Host2DeviceCopy
::
make
(
*
graph
,
host_x1
),
d2
=
opr
::
SharedDeviceTensor
::
make
(
*
graph
,
*
host_x2
);
auto
y
=
opr
::
ConvBias
::
make
(
d1
,
d2
,
d0
);
y
=
opr
::
Reduce
::
make
(
y
,
{},
y
.
make_scalar
(
1
));
SymbolVar
y_opt
;
auto
options
=
gopt
::
OptimizeForInferenceOptions
{};
options
.
enable_f16_io_f32_comp
();
unpack_vector
(
gopt
::
optimize_for_inference
({
y
},
options
),
y_opt
);
return
y_opt
;
};
auto
make_f16_graph
=
[
&
]()
{
auto
d0
=
opr
::
TypeCvt
::
make
(
opr
::
TypeCvt
::
make
(
opr
::
Host2DeviceCopy
::
make
(
*
graph
,
host_x0
),
dtype
::
Float16
{}),
dtype
::
Float32
{}),
d1
=
opr
::
TypeCvt
::
make
(
opr
::
TypeCvt
::
make
(
opr
::
Host2DeviceCopy
::
make
(
*
graph
,
host_x1
),
dtype
::
Float16
{}),
dtype
::
Float32
{}),
d2
=
opr
::
TypeCvt
::
make
(
opr
::
TypeCvt
::
make
(
opr
::
SharedDeviceTensor
::
make
(
*
graph
,
*
host_x2
),
dtype
::
Float16
{}),
dtype
::
Float32
{});
auto
y
=
opr
::
ConvBias
::
make
(
d1
,
d2
,
d0
);
y
=
opr
::
Reduce
::
make
(
y
,
{},
y
.
make_scalar
(
1
));
y
=
opr
::
TypeCvt
::
make
(
opr
::
TypeCvt
::
make
(
y
,
dtype
::
Float16
{}),
dtype
::
Float32
{});
return
y
;
};
auto
y_opt
=
make_f32_to_f16_graph
();
auto
y
=
make_f16_graph
();
ASSERT_EQ
(
find_opr
<
opr
::
ConvBias
>
(
y_opt
).
param
().
compute_mode
,
opr
::
ConvBias
::
Param
::
ConvBias
::
ComputeMode
::
FLOAT32
);
ASSERT_EQ
(
y_opt
.
dtype
(),
dtype
::
Float32
{});
ASSERT_EQ
(
y
.
dtype
(),
dtype
::
Float32
{});
HostTensorND
host_y_opt
,
host_y
;
auto
func
=
graph
->
compile
({
make_callback_copy
(
y
,
host_y
),
make_callback_copy
(
y_opt
,
host_y_opt
)});
func
->
execute
();
MGB_ASSERT_TENSOR_NEAR
(
host_y
,
host_y_opt
,
1e-3
);
}
TEST
(
TestGoptInference
,
Float32TOFloat16EndpointElemwise
)
{
CompNode
cn
=
CompNode
::
load
(
"cpu0"
);
HostTensorGenerator
<>
gen
(
0
,
1
,
0
);
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录