opr_impl.cpp 32.9 KB
Newer Older
1 2 3 4
/**
 * \file dnn/src/fallback/convolution/opr_impl.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
5
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
6 7 8
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
9 10
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
 * implied.
11 12 13 14 15 16 17
 */

#include "src/common/algo_chooser.h"
#include "src/common/metahelper.h"
#include "src/common/opr_delegate.h"
#include "src/common/utils.h"
#include "src/fallback/convolution/algos.h"
18
#include "src/fallback/convolution/opr_impl.h"
19 20 21 22 23 24
#include "src/fallback/convolution/run_conv.h"
#include "src/naive/convolution/helper.h"
#include "src/naive/handle.h"

#include "midout.h"

25 26 27 28
#if MEGDNN_AARCH64 || MEGDNN_ARMV7
#include "src/arm_common/convolution/opr_impl.h"
#endif

29
#include <cstring>
30
#include <unordered_map>
31 32 33 34 35 36 37 38 39 40 41

MIDOUT_DECL(megdnn_fb_convbwd_float)

using namespace megdnn;
using namespace fallback;

namespace {
template <typename T>
void incr_ptr(T*& dst, ptrdiff_t delta) {
    dst = reinterpret_cast<T*>(reinterpret_cast<uintptr_t>(dst) + delta);
}
42

43 44 45 46 47 48
}  // namespace

class ConvolutionImpl::AlgoPack : NonCopyableObj {
    AlgoFallback algo_fallback;
    AlgoNaive algo_naive;
    SmallVector<std::unique_ptr<AlgoBase>> refhold;
49 50
    SmallVector<AlgoBase*> m_all_algos;
    AlgoBase::Mapper m_all_algos_map;
51 52 53 54 55
public:
    AlgoPack() {
        static CpuOprDelegationStorage<1> storage;
        auto conv_bias_opr = storage.get<ConvBias, 0>();
        auto&& conv_bias_algo =
56
                static_cast<ConvBiasImpl*>(conv_bias_opr)->get_all_packed_algo();
57 58
        for (auto&& algorithm : conv_bias_algo) {
            // fallback algo
59
            refhold.emplace_back(new AlgoDefault(algorithm));
60
            m_all_algos.emplace_back(refhold.back().get());
61 62
        }

63 64 65 66 67 68
        m_all_algos.emplace_back(&algo_fallback);
        m_all_algos.emplace_back(&algo_naive);

        for (auto&& algo : m_all_algos) {
            m_all_algos_map.emplace(algo->info().desc, algo);
        }
69
    }
70 71 72

    const SmallVector<AlgoBase*>& all_algos() const { return m_all_algos; }
    const AlgoBase::Mapper& all_algos_map() const { return m_all_algos_map; }
73 74
};

75 76 77 78 79 80 81
const ConvolutionImpl::AlgoPack& ConvolutionImpl::algo_pack() {
    static AlgoPack algo_pack;
    return algo_pack;
}

SmallVector<ConvolutionImpl::AlgoBase*> ConvolutionImpl::get_all_packed_algo() {
    return algo_pack().all_algos();
82
}
83 84 85 86 87 88

SmallVector<ConvolutionImpl::AlgoBase*> ConvolutionImpl::select_algo_type(
        ConvAlgoTypePack target_type) {
    megdnn_assert(nr_type_contain(target_type.data_type),
                  "ConvBias algo selection only support one type");
    SmallVector<ConvolutionImpl::AlgoBase*> algos;
89
    for (auto&& algo : get_all_packed_algo()) {
90 91 92 93 94 95 96 97 98
        auto algo_type = algo->get_algo_type();
        if (contain_data_type(algo_type.data_type, target_type.data_type) &&
            algo_type.algo_category == target_type.algo_category) {
            algos.push_back(algo);
        }
    }
    return algos;
}

99 100 101
bool ConvolutionImpl::is_naive_algo(ConvolutionImpl::Algorithm* algo) {
    return algo == nullptr || strcmp(algo->name(), "DEFAULT") == 0;
}
102 103

#define NCB_ALGO_FUNC(name, algo, param) \
104
    static_cast<AlgoBase*>(algo)->name(param)
105

106 107
void ConvolutionImpl::exec(_megdnn_tensor_in src, _megdnn_tensor_in filter,
                           _megdnn_tensor_out dst,
108
                           const PreprocessedFilter* preprocessed_filter,
109
                           _megdnn_workspace workspace) {
110 111
    auto fparam = make_ncb_kern_param(src, filter, dst, preprocessed_filter,
                                      workspace);
112
    auto&& algo = get_algorithm(fparam, workspace.size);
113
    if (!is_naive_algo(algo) &&
114
        NCB_ALGO_FUNC(get_workspace, algo, fparam) <= workspace.size) {
115 116
        exec_with_ncb_kern(fparam, algo);
    } else {
117 118
        naive::ConvolutionForwardImpl::exec(src, filter, dst,
                                            preprocessed_filter, workspace);
119 120 121
    }
}

122
void ConvolutionImpl::exec_preprocess(const TensorLayout& src_layout,
123 124 125 126
                                      _megdnn_tensor_in filter,
                                      const TensorLayout& dst_layout,
                                      PreprocessedFilter* preprocessed_filter,
                                      _megdnn_workspace workspace) {
127 128 129 130 131
    //! exec_preprocess currently only support preprocess weights before exec,
    //! src/dst will be ignored, just set to nullptr
    TensorND src{nullptr, src_layout}, dst{nullptr, dst_layout};
    auto fparam = make_ncb_kern_param(src, filter, dst, preprocessed_filter,
                                      workspace);
132 133

    //! should not pass workspace_size limit otherwise can not find match algo
134 135 136 137
    auto&& algo = get_algorithm(fparam);
    if (!is_naive_algo(algo) &&
        NCB_ALGO_FUNC(get_preprocess_workspace, algo, fparam) <=
                workspace.size) {
138 139 140 141 142 143 144
        exec_preprocess_with_ncb_kern(fparam, algo);
    } else {
        naive::ConvolutionForwardImpl::exec_preprocess(
                src_layout, filter, dst_layout, preprocessed_filter, workspace);
    }
}

145 146 147 148
size_t ConvolutionImpl::get_workspace_in_bytes(
        const TensorLayout& src, const TensorLayout& filter,
        const TensorLayout& dst,
        const PreprocessedFilter* preprocessed_filter) {
149 150 151 152 153 154 155 156 157
    TensorLayoutArray layouts{src, filter, dst};
    HeuristicCache::Key key{this->handle(), this->get_opr_type(),
                            layouts.data(), layouts.size(), &this->param(),
                            sizeof(this->param())};
    auto rst = HeuristicCache::instance().get(key);
    if (rst.policy.algo.valid()) {
        return rst.workspace;
    }

158 159
    auto fparam =
            make_ncb_kern_size_param(src, filter, dst, preprocessed_filter);
160
    auto&& algo = get_algorithm(fparam);
161 162
    if (is_naive_algo(algo)) {
        return naive::ConvolutionForwardImpl::get_workspace_in_bytes(
163
                src, filter, dst, preprocessed_filter);
164
    } else {
165
        return NCB_ALGO_FUNC(get_workspace, algo, fparam);
166 167 168 169 170 171 172
    }
}

size_t ConvolutionImpl::get_preprocess_workspace_in_bytes(
        const TensorLayout& src, const TensorLayout& filter,
        const TensorLayout& dst) {
    auto fparam = make_ncb_kern_size_param(src, filter, dst, nullptr);
173
    auto&& algo = get_algorithm(fparam);
174 175 176 177
    if (is_naive_algo(algo)) {
        return naive::ConvolutionForwardImpl::get_preprocess_workspace_in_bytes(
                src, filter, dst);
    } else {
178
        return NCB_ALGO_FUNC(get_preprocess_workspace, algo, fparam);
179 180 181 182 183
    }
}

SmallVector<TensorLayout> ConvolutionImpl::deduce_preprocessed_filter_layout(
        const TensorLayout& src, const TensorLayout& filter,
184
        const TensorLayout& dst) {
185
    auto fparam = make_ncb_kern_size_param(src, filter, dst, nullptr);
186
    auto&& algo = get_algorithm(fparam);
187 188 189 190
    if (is_naive_algo(algo)) {
        return naive::ConvolutionForwardImpl::deduce_preprocessed_filter_layout(
                src, filter, dst);
    } else {
191
        return NCB_ALGO_FUNC(deduce_preprocessed_filter_layout, algo, fparam);
192 193 194 195 196 197
    }
}

std::vector<ConvolutionImpl::Algorithm*> ConvolutionImpl::get_all_algorithms(
        const TensorLayout& src, const TensorLayout& filter,
        const TensorLayout& dst) {
198
    auto fparam = make_ncb_kern_size_param(src, filter, dst, nullptr);
199 200
    auto ret = get_all_algorithms_with_ncb(fparam);
    if (ret.empty()) {
201
        return naive::ConvolutionForwardImpl::get_all_algorithms_safe(src, filter,
202 203 204 205 206
                                                                 dst);
    }
    return ret;
}

207 208 209 210 211 212 213
std::vector<ConvolutionImpl::Algorithm*> ConvolutionImpl::get_all_algorithms_safe(
        const TensorLayout& src, const TensorLayout& filter,
        const TensorLayout& dst) {
    auto ret_safe = ConvolutionImpl::get_all_algorithms(src,filter,dst);
    return ret_safe;
}

214 215 216
ConvolutionImpl::Algorithm* ConvolutionImpl::get_algorithm_heuristic(
        const TensorLayout& src, const TensorLayout& filter,
        const TensorLayout& dst, size_t workspace_limit_in_bytes,
217 218
        const AlgoAttribute& positive_attr,
        const AlgoAttribute& negative_attr) {
219
    auto fparam = make_ncb_kern_size_param(src, filter, dst, nullptr);
220
    auto result = get_algorithm_heuristic_with_ncb(
221
            fparam, workspace_limit_in_bytes, positive_attr, negative_attr);
222 223
    if (result == nullptr) {
        result = naive::ConvolutionForwardImpl::get_algorithm_heuristic(
224 225
                src, filter, dst, workspace_limit_in_bytes, positive_attr,
                negative_attr);
226 227 228 229 230 231
    }
    return result;
}

ConvolutionImpl::NCBKernSizeParam ConvolutionImpl::make_ncb_kern_size_param(
        const TensorLayout& src, const TensorLayout& filter,
232 233
        const TensorLayout& dst,
        const PreprocessedFilter* preprocessed_filter) {
234 235 236 237 238 239 240 241
    auto safe_u32 = [](size_t v) -> uint32_t {
        megdnn_assert(v <= std::numeric_limits<uint32_t>::max(),
                      "value too large: %zu", v);
        return v;
    };
    size_t spatial_pos;
    if (param().format == Param::Format::NCHW88 ||
        param().format == Param::Format::NCHW8 ||
242
        param().format == Param::Format::NCHW4 ||
243
        param().format == Param::Format::NCHW44_DOT ||
244
        param().format == Param::Format::NCHW44) {
245
        spatial_pos = 2;
246
    } else if (param().format == Param::Format::NCHW) {
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
        spatial_pos = 2;
    } else if (param().format == Param::Format::NHWC) {
        spatial_pos = 1;
    } else {
        megdnn_assert(0, "invalid conv format %d",
                      static_cast<int>(param().format));
    }
    size_t nr_threads = static_cast<naive::HandleImpl*>(handle())
                                ->megcore_dispatcher()
                                ->nr_threads();

    return {safe_u32(src[0]),
            {{safe_u32(src[spatial_pos]), safe_u32(src[spatial_pos + 1])}},
            {{safe_u32(dst[spatial_pos]), safe_u32(dst[spatial_pos + 1])}},
            check_layout_fwd(src, filter, dst),
            src.dtype,
            filter.dtype,
            dst.dtype,
            src.stride[0],
            dst.stride[0],
            {src.stride[0], src.stride[1], src.stride[2], src.stride[3]},
            {dst.stride[0], dst.stride[1], dst.stride[2], dst.stride[3]},
            param().compute_mode,
270 271
            nr_threads,
            preprocessed_filter};
272 273 274 275
}

ConvolutionImpl::NCBKernParam ConvolutionImpl::make_ncb_kern_param(
        _megdnn_tensor_in src, _megdnn_tensor_in filter, _megdnn_tensor_out dst,
276
        const PreprocessedFilter* preprocessed_filter,
277 278
        _megdnn_workspace workspace) {
    NCBKernParam ret;
279 280
    static_cast<NCBKernSizeParam&>(ret) = make_ncb_kern_size_param(
            src.layout, filter.layout, dst.layout, preprocessed_filter);
281 282 283 284 285 286 287 288
    ret.src_ptr = src.raw_ptr;
    ret.filter_ptr = filter.raw_ptr;
    ret.dst_ptr = dst.raw_ptr;
    ret.workspace_ptr = workspace.raw_ptr;
    ret.workspace_size = workspace.size;
    return ret;
}

289 290
void ConvolutionImpl::exec_preprocess_with_ncb_kern(const NCBKernParam& param,
                                                    Algorithm* algo) {
291 292 293
    auto&& kerns = NCB_ALGO_FUNC(dispatch_preprocess_kern, algo, param);
    auto&& fallback_handle = handle();
    for (auto&& kernel : kerns) {
294 295 296 297
        megdnn_assert(
                param.filter_meta.format == Param::Format::NCHW ||
                        param.filter_meta.format == Param::Format::NHWC ||
                        param.filter_meta.format == Param::Format::NCHW88 ||
298 299
                        param.filter_meta.format == Param::Format::NCHW44 ||
                        param.filter_meta.format == Param::Format::NCHW44_DOT,
300 301 302 303 304 305 306 307 308 309
                "invalid conv format");
        auto run = [param, kernel](size_t index, size_t thread_id) {
            CpuNDRange ndrange_id(kernel.global_size, index);
            kernel.kern(param, {thread_id, ndrange_id});
        };
        static_cast<naive::HandleImpl*>(fallback_handle)
                ->dispatch_kern(run, kernel.global_size.total_size());
    }
}

310 311
void ConvolutionImpl::exec_with_ncb_kern(const NCBKernParam& param,
                                         Algorithm* algo) {
312 313 314
    auto&& kerns = NCB_ALGO_FUNC(dispatch_kern, algo, param);
    auto&& fallback_handle = handle();
    for (auto&& kernel : kerns) {
315 316 317 318
        megdnn_assert(
                param.filter_meta.format == Param::Format::NCHW ||
                        param.filter_meta.format == Param::Format::NHWC ||
                        param.filter_meta.format == Param::Format::NCHW88 ||
319 320
                        param.filter_meta.format == Param::Format::NCHW44 ||
                        param.filter_meta.format == Param::Format::NCHW44_DOT,
321
                "invalid conv format");
322
        auto run = [param, kernel](size_t index, size_t thread_id) {
323
            CpuNDRange ndrange_id(kernel.global_size, index);
324
            kernel.kern(param, {thread_id, ndrange_id});
325 326 327 328 329 330 331 332
        };
        static_cast<naive::HandleImpl*>(fallback_handle)
                ->dispatch_kern(run, kernel.global_size.total_size());
    }
}

ConvolutionImpl::Algorithm* ConvolutionImpl::get_algorithm_heuristic_with_ncb(
        const NCBKernSizeParam& param, size_t workspace_limit_in_bytes,
333 334
        const AlgoAttribute& positive_attr,
        const AlgoAttribute& negative_attr) {
335 336 337 338 339 340
    auto algo_data_type = param.deduce_algo_data_type();
    auto suggest_category_order = suggest_algo_category_order(param);
    for (auto category : suggest_category_order) {
        auto&& origin_algos = select_algo_type({algo_data_type, category});
        ConvolutionImpl::Algorithm* heuristic_algo = nullptr;
        for (auto i : origin_algos) {
341
            bool usable_attribute = static_cast<AlgoBase*>(i)->usable_attribute(
342 343
                    param, AlgoSelectionStrategy::HEURISTIC, positive_attr,
                    negative_attr);
344
            if (usable_attribute &&
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
                static_cast<AlgoBase*>(i)->get_workspace(param) <=
                        workspace_limit_in_bytes) {
                //! store the first usable algo if no prefer algo, choose it as
                //! the target algo
                if (!heuristic_algo) {
                    heuristic_algo = i;
                }
                //! choose the first prefer algo
                if (i->is_preferred(param)) {
                    return i;
                }
            }
        }
        if (heuristic_algo) {
            return heuristic_algo;
360 361 362 363 364 365 366 367 368
        }
    }
    return nullptr;
}

std::vector<ConvolutionImpl::Algorithm*>
ConvolutionImpl::get_all_algorithms_with_ncb(const NCBKernSizeParam& param) {
    std::vector<Algorithm*> ret;
    std::vector<Algorithm*> prefer_algos;
369
    for (auto&& i : get_all_packed_algo()) {
370 371
        if (i->usable(param, AlgoSelectionStrategy::FULL_RUN)) {
            if (i->is_preferred(param)) {
372 373 374 375 376 377 378 379 380 381
                prefer_algos.push_back(i);
            } else {
                ret.push_back(i);
            }
        }
    }
    ret.insert(ret.begin(), prefer_algos.begin(), prefer_algos.end());
    return ret;
}

382 383
ConvolutionImpl::Algorithm* ConvolutionImpl::get_algorithm_from_desc(
        const AlgorithmDesc& desc) {
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
    if (!desc.valid()) {
        return nullptr;
    } else {
        switch (desc.handle_type) {
            case Handle::HandleType::FALLBACK: {
                const auto& map = algo_pack().all_algos_map();
                megdnn_assert(map.find(desc) != map.end());
                return map.at(desc);
            }
            case Handle::HandleType::NAIVE: {
                auto algo = static_cast<naive::HandleImpl*>(handle())
                                    ->default_conv_fwd_algo();
                megdnn_assert(algo->info().desc == desc);
                return algo;
            }
            default:
                megdnn_throw("Unknown handle type");
                return nullptr;
        }
    }
}

406 407
ConvolutionImpl::Algorithm* ConvolutionImpl::get_algorithm(
        const NCBKernSizeParam& param, size_t workspace_size) {
408
    if (auto algo = get_algorithm_from_desc(execution_policy().algo)) {
409
        return algo;
410 411 412
    }
    if (!m_prev_selected_algo ||
        memcmp(&m_prev_selected_algo_sizep, &param, sizeof(NCBKernSizeParam))) {
413
        m_prev_selected_algo = get_algorithm_heuristic_with_ncb(
414 415
                param, workspace_size, AlgoAttribute::DEFAULT,
                AlgoAttribute::DEFAULT);
416 417 418 419 420
        m_prev_selected_algo_sizep = param;
    }
    return m_prev_selected_algo;
}

421 422 423 424 425 426 427 428 429 430
SmallVector<AlgoCategory> ConvolutionImpl::suggest_algo_category_order(
        const NCBKernSizeParam& param) const {
    static CpuOprDelegationStorage<1> storage;
    auto conv_bias_opr = storage.get<ConvBias, 0>();
    auto conv_bias_param =
            ConvolutionImpl::AlgoDefault::init_conv_bias_param(param);
    return static_cast<ConvBiasImpl*>(conv_bias_opr)
            ->suggest_algo_category_order(conv_bias_param);
}

431 432 433 434 435
const char* ConvolutionImpl::get_algorithm_set_name() const {
    // fallback version 0
    return "F0";
}

436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
ConvolutionImpl::AlgoDataType
ConvolutionImpl::NCBKernSizeParam::deduce_algo_data_type() const {
    if (src_type.enumv() == DTypeEnum::Float32) {
        return ConvolutionImpl::AlgoDataType::FLOAT32;
#if !MEGDNN_DISABLE_FLOAT16
    } else if (src_type.enumv() == DTypeEnum::Float16) {
        return ConvolutionImpl::AlgoDataType::FLOAT16;
#endif
    } else if (src_type.enumv() == DTypeEnum::Int8 ||
               src_type.enumv() == DTypeEnum::QuantizedS8) {
        if (dst_type.enumv() == DTypeEnum::Int16) {
            return ConvolutionImpl::AlgoDataType::INT8X8X16;
        } else {
            return ConvolutionImpl::AlgoDataType::QINT8X8X32;
        }
    } else if (src_type.enumv() == DTypeEnum::Quantized8Asymm) {
        return ConvolutionImpl::AlgoDataType::QUINT8X8X32;
453 454
    } else if (src_type.enumv() == DTypeEnum::QuantizedS4) {
        return ConvolutionImpl::AlgoDataType::QINT4x4x32;
455
    } else {
M
Megvii Engine Team 已提交
456
        megdnn_throw(ssprintf("not support data type of %s * %s -> %s\n",
457 458 459 460 461
                              src_type.name(), filter_type.name(),
                              dst_type.name()));
    }
}

462 463
/* ===================== ConvolutionBackwardData ===================== */

464 465 466 467
class ConvolutionBackwardDataImpl::AlgoPack : NonCopyableObj {
    AlgoNaive algo_naive;
    AlgoDirect algo_direct;
    AlgoMatrixMul algo_matmul;
468 469
    SmallVector<AlgoBase*> m_all_algos;
    AlgoBase::Mapper m_all_algos_map;
470 471 472

public:
    AlgoPack() {
473 474 475 476 477 478 479
        m_all_algos.emplace_back(&algo_matmul);
        m_all_algos.emplace_back(&algo_direct);
        m_all_algos.emplace_back(&algo_naive);

        for (auto&& algo : m_all_algos) {
            m_all_algos_map.emplace(algo->info().desc, algo);
        }
480
    }
481 482
    const SmallVector<AlgoBase*>& all_algos() const { return m_all_algos; }
    const AlgoBase::Mapper& all_algos_map() const { return m_all_algos_map; }
483
};
484 485 486 487 488
const ConvolutionBackwardDataImpl::AlgoPack&
ConvolutionBackwardDataImpl::algo_pack() {
    static AlgoPack algo_pack;
    return algo_pack;
}
489 490

SmallVector<ConvolutionBackwardDataImpl::AlgoBase*>
491 492
ConvolutionBackwardDataImpl::get_all_packed_algo() {
    return algo_pack().all_algos();
493
}
494 495 496 497 498 499

void ConvolutionBackwardDataImpl::exec(_megdnn_tensor_in filter,
                                       _megdnn_tensor_in diff,
                                       _megdnn_tensor_out grad,
                                       _megdnn_workspace workspace) {
    if (param().format == param::Convolution::Format::NHWCD4 ||
500 501 502
        param().format == param::Convolution::Format::NCHW4 ||
        (param().format == param::Convolution::Format::NCHW &&
         grad.layout.dtype.enumv() == DTypeEnum::QuantizedS8)) {
503 504 505 506 507 508 509 510 511 512
        return naive::ConvolutionBackwardDataImpl::exec(filter, diff, grad,
                                                        workspace);
    }
    auto fparam = make_ncb_kern_param(filter, diff, grad, workspace);
    return exec_with_ncb_kern(fparam);
}

size_t ConvolutionBackwardDataImpl::get_workspace_in_bytes(
        const TensorLayout& filter, const TensorLayout& diff,
        const TensorLayout& grad) {
513 514 515 516 517 518 519 520 521
    TensorLayoutArray layouts{filter, diff, grad};
    HeuristicCache::Key key{this->handle(), this->get_opr_type(),
                            layouts.data(), layouts.size(), &this->param(),
                            sizeof(this->param())};
    auto rst = HeuristicCache::instance().get(key);
    if (rst.policy.algo.valid()) {
        return rst.workspace;
    }

522
    if (param().format == param::Convolution::Format::NHWCD4 ||
523 524 525
        param().format == param::Convolution::Format::NCHW4 ||
        (param().format == param::Convolution::Format::NCHW &&
         grad.dtype.enumv() == DTypeEnum::QuantizedS8)) {
526 527 528 529 530 531 532 533 534 535 536 537
        return naive::ConvolutionBackwardDataImpl::get_workspace_in_bytes(
                filter, diff, grad);
    }
    auto fparam = make_ncb_kern_size_param(filter, diff, grad);
    return get_workspace_with_ncb(fparam);
}

std::vector<ConvolutionBackwardDataImpl::Algorithm*>
ConvolutionBackwardDataImpl::get_all_algorithms(const TensorLayout& filter,
                                                const TensorLayout& diff,
                                                const TensorLayout& grad) {
    if (param().format == param::Convolution::Format::NHWCD4 ||
538 539 540
        param().format == param::Convolution::Format::NCHW4 ||
        (param().format == param::Convolution::Format::NCHW &&
         grad.dtype.enumv() == DTypeEnum::QuantizedS8)) {
541 542 543 544 545 546 547 548
        return naive::ConvolutionBackwardDataImpl::get_all_algorithms(
                filter, diff, grad);
    }
    auto fparam = make_ncb_kern_size_param(filter, diff, grad);
    auto ret = get_all_algorithms_with_ncb(fparam);
    return ret;
}

549 550 551 552 553 554 555 556 557 558
std::vector<ConvolutionBackwardDataImpl::Algorithm*>
ConvolutionBackwardDataImpl::get_all_algorithms_safe(const TensorLayout& filter,
                                                const TensorLayout& diff,
                                                const TensorLayout& grad) {
    
    auto ret_safe = ConvolutionBackwardDataImpl::get_all_algorithms(filter,diff,grad);
    megdnn_assert(!ret_safe.empty(), "no usable conv bwd algorithm");
    return ret_safe;
}

559 560 561 562
ConvolutionBackwardDataImpl::Algorithm*
ConvolutionBackwardDataImpl::get_algorithm_heuristic(
        const TensorLayout& filter, const TensorLayout& diff,
        const TensorLayout& grad, size_t workspace_limit_in_bytes,
563 564
        const AlgoAttribute& positive_attr,
        const AlgoAttribute& negative_attr) {
565
    if (param().format == param::Convolution::Format::NHWCD4 ||
566 567 568
        param().format == param::Convolution::Format::NCHW4 ||
        (param().format == param::Convolution::Format::NCHW &&
         grad.dtype.enumv() == DTypeEnum::QuantizedS8)) {
569
        return naive::ConvolutionBackwardDataImpl::get_algorithm_heuristic(
570 571
                filter, diff, grad, workspace_limit_in_bytes, positive_attr,
                negative_attr);
572 573 574
    }
    auto fparam = make_ncb_kern_size_param(filter, diff, grad);
    return get_algorithm_heuristic_with_ncb(fparam, workspace_limit_in_bytes,
575
                                            positive_attr, negative_attr);
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
}

ConvolutionBackwardDataImpl::NCBKernSizeParam
ConvolutionBackwardDataImpl::make_ncb_kern_size_param(
        const TensorLayout& filter, const TensorLayout& diff,
        const TensorLayout& grad) {
    auto safe_u32 = [](size_t v) -> uint32_t {
        megdnn_assert(v <= std::numeric_limits<uint32_t>::max(),
                      "value too large: %zu", v);
        return v;
    };
    size_t spatial_pos;
    if (param().format == Param::Format::NCHW) {
        spatial_pos = 2;
    } else {
        megdnn_assert(param().format == Param::Format::NHWC,
                      "invalid conv format");
        spatial_pos = 1;
    }
    auto grad_fwd = grad;
    auto filter_fwd = filter;
    auto diff_fwd = diff;

    std::swap(grad_fwd.dtype, diff_fwd.dtype);

    return {
            safe_u32(diff[0]),
            {{safe_u32(diff[spatial_pos]), safe_u32(diff[spatial_pos + 1])}},
            {{safe_u32(grad[spatial_pos]), safe_u32(grad[spatial_pos + 1])}},
            check_layout_fwd(grad_fwd, filter_fwd, diff_fwd),
            diff.dtype,
            filter.dtype,
            grad.dtype,
            diff,
            filter,
            grad,
            diff.stride[0],
            grad.stride[0],
            0,
            0,
            0,
            param().compute_mode,
    };
}

ConvolutionBackwardDataImpl::NCBKernParam
ConvolutionBackwardDataImpl::make_ncb_kern_param(_megdnn_tensor_in filter,
                                                 _megdnn_tensor_in diff,
                                                 _megdnn_tensor_out grad,
                                                 _megdnn_workspace workspace) {
    NCBKernParam ret;
    static_cast<NCBKernSizeParam&>(ret) =
            make_ncb_kern_size_param(filter.layout, diff.layout, grad.layout);

    auto required_workspace_in_bytes = get_workspace_with_ncb(ret);
    megdnn_assert(workspace.size >= required_workspace_in_bytes,
                  "required workspace: %zu; provided workspace: %zu",
                  required_workspace_in_bytes, workspace.size);
    ret.filter_ptr = filter.raw_ptr;
    ret.diff_ptr = diff.raw_ptr;
    ret.grad_ptr = grad.raw_ptr;
    ret.workspace_ptr = workspace.raw_ptr;
    ret.workspace_size = workspace.size;
    return ret;
}

void ConvolutionBackwardDataImpl::exec_with_ncb_kern(
        const NCBKernParam& param) {
    auto p1g = param;
    auto group = p1g.filter_meta.group;
    p1g.filter_meta.group = 1;
647
    auto&& algo = get_algorithm(p1g);
648
    auto kptr = ncb_1g_dispatch_kern(algo, p1g);
649
    if (group == 1 || static_cast<AlgoBase*>(algo)->is_naive()) {
650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
        auto run = [kptr, param]() { kptr(param); };
        static_cast<naive::HandleImpl*>(handle())->dispatch_kern(run);
    } else {
        megdnn_assert(p1g.filter_meta.format == Param::Format::NCHW ||
                              p1g.filter_meta.format == Param::Format::NHWC,
                      "invalid conv format");
        auto run = [kptr, p1g_orig = p1g, group]() {
            auto p1g = p1g_orig;
            ptrdiff_t istrd, fstrd, ostrd;
            fstrd = p1g.filter_meta.icpg * p1g.filter_meta.ocpg *
                    p1g.filter_meta.spatial[0] * p1g.filter_meta.spatial[1] *
                    p1g.filter_type.size();
            istrd = p1g.filter_meta.ocpg * p1g.diff_type.size();
            ostrd = p1g.filter_meta.icpg * p1g.grad_type.size();
            p1g.diff_extra_mem_size =
                    (group - 1) * p1g.filter_meta.ocpg * p1g.diff_type.size();
            p1g.filter_extra_mem_size =
                    (group - 1) * p1g.filter_meta.icpg * p1g.filter_meta.ocpg *
                    p1g.filter_meta.spatial[0] * p1g.filter_meta.spatial[1] *
                    p1g.filter_type.size();
            p1g.grad_extra_mem_size =
                    (group - 1) * p1g.filter_meta.icpg * p1g.grad_type.size();
            if (p1g.filter_meta.format == Param::Format::NCHW) {
                istrd *= p1g.isz[0] * p1g.isz[1];
                ostrd *= p1g.osz[0] * p1g.osz[1];
                p1g.diff_extra_mem_size *= p1g.isz[0] * p1g.isz[1];
                p1g.grad_extra_mem_size *= p1g.osz[0] * p1g.osz[1];
            } else {
                // must be NHWC. No action performed.
            }
            for (size_t i = 0; i < group; ++i) {
                kptr(p1g);
                incr_ptr(p1g.diff_ptr, istrd);
                incr_ptr(p1g.filter_ptr, fstrd);
                incr_ptr(p1g.grad_ptr, ostrd);
                p1g.diff_extra_mem_size -= istrd;
                p1g.filter_extra_mem_size -= fstrd;
                p1g.grad_extra_mem_size -= ostrd;
            }
        };
        static_cast<naive::HandleImpl*>(handle())->dispatch_kern(run);
    }
}

size_t ConvolutionBackwardDataImpl::get_workspace_with_ncb(
        const NCBKernSizeParam& param) {
    if (param.filter_meta.group != 1) {
        auto p1g = param;
        p1g.filter_meta.group = 1;
699 700
        auto algo = get_algorithm(p1g);
        return ncb_1g_get_workspace(algo, p1g);
701
    }
702 703
    auto algo = get_algorithm(param);
    return ncb_1g_get_workspace(algo, param);
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
}

std::vector<ConvolutionBackwardDataImpl::Algorithm*>
ConvolutionBackwardDataImpl::get_all_algorithms_with_ncb(
        const NCBKernSizeParam& param) {
    if (param.filter_meta.group != 1) {
        auto p1g = param;
        p1g.filter_meta.group = 1;
        return ncb_1g_get_all_algorithms(p1g);
    }
    return ncb_1g_get_all_algorithms(param);
}

ConvolutionBackwardDataImpl::Algorithm*
ConvolutionBackwardDataImpl::get_algorithm_heuristic_with_ncb(
        const NCBKernSizeParam& param, size_t workspace_limit_in_bytes,
720 721
        const AlgoAttribute& positive_attr,
        const AlgoAttribute& negative_attr) {
722 723 724 725
    if (param.filter_meta.group != 1) {
        auto p1g = param;
        p1g.filter_meta.group = 1;
        return ncb_1g_get_algorithm_heuristic(p1g, workspace_limit_in_bytes,
726
                                              positive_attr, negative_attr);
727 728
    }
    return ncb_1g_get_algorithm_heuristic(param, workspace_limit_in_bytes,
729
                                          positive_attr, negative_attr);
730 731 732 733 734
}

size_t ConvolutionBackwardDataImpl::ncb_1g_get_workspace(
        Algorithm* algo, const NCBKernSizeParam& param) {
    megdnn_assert(param.filter_meta.group == 1);
735
    if (algo->handle_type() == Handle::HandleType::FALLBACK) {
736 737 738 739 740 741 742 743 744 745
        return static_cast<AlgoBase*>(algo)->get_workspace(this, param);
    }
    return 0;
}

ConvolutionBackwardDataImpl::ncb_kern_t
ConvolutionBackwardDataImpl::ncb_1g_dispatch_kern(
        Algorithm* algo, const NCBKernSizeParam& param) {
    megdnn_assert(param.filter_meta.group == 1);

746
    if (algo->handle_type() == Handle::HandleType::FALLBACK) {
747 748 749
        return static_cast<AlgoBase*>(algo)->dispatch_kern(this, param);
    }

M
Megvii Engine Team 已提交
750
    megdnn_throw("no suitable ConvolutionBackwardData algorithm");
751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
}

bool ConvolutionBackwardDataImpl::is_matrix_mul_preferred(
        const NCBKernSizeParam& param) {
    auto&& fm = param.filter_meta;
    auto OC = fm.ocpg, IC = fm.icpg;

    return (OC * IC >= 32) ||
           (fm.spatial[0] == 1 && fm.spatial[1] == 1 && fm.padding[0] == 0 &&
            fm.padding[1] == 0 && fm.stride[0] == 1 && fm.stride[1] == 1);
}

std::vector<ConvolutionBackwardDataImpl::Algorithm*>
ConvolutionBackwardDataImpl::ncb_1g_get_all_algorithms(
        const NCBKernSizeParam& param) {
    std::vector<Algorithm*> ret;
767
    std::vector<Algorithm*> prefer_algos;
768
    for (auto&& i : get_all_packed_algo()) {
769 770 771
        if (i->usable(this, param)) {
            if (i->is_preferred(param)) {
                prefer_algos.push_back(i);
772
            } else {
773
                ret.push_back(i);
774 775 776
            }
        }
    }
777
    ret.insert(ret.begin(), prefer_algos.begin(), prefer_algos.end());
778 779 780 781 782 783
    return ret;
}

ConvolutionBackwardDataImpl::Algorithm*
ConvolutionBackwardDataImpl::ncb_1g_get_algorithm_heuristic(
        const NCBKernSizeParam& param, size_t workspace_limit_in_bytes,
784 785
        const AlgoAttribute& positive_attr,
        const AlgoAttribute& negative_attr) {
786 787
    for (auto i : ncb_1g_get_all_algorithms(param)) {
        if (ncb_1g_get_workspace(i, param) <= workspace_limit_in_bytes) {
788 789
            if (i->contain_attribute_all(positive_attr) &&
                !i->contain_attribute_any(negative_attr)) {
790 791 792 793 794 795 796 797
                return i;
            }
        }
    }
    megdnn_assert(0,
                  "no suitable algorithm found within given workspace limit");
}

798
ConvolutionBackwardDataImpl::Algorithm*
799 800
ConvolutionBackwardDataImpl::get_algorithm_from_desc(
        const AlgorithmDesc& desc) {
801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
    if (!desc.valid()) {
        return nullptr;
    } else {
        switch (desc.handle_type) {
            case Handle::HandleType::FALLBACK: {
                const auto& map = algo_pack().all_algos_map();
                megdnn_assert(map.find(desc) != map.end());
                return map.at(desc);
            }
#if MEGDNN_AARCH64 || MEGDNN_ARMV7
            case Handle::HandleType::ARM_COMMON:
            case Handle::HandleType::AARCH64:
            case Handle::HandleType::ARMV7:
                return arm_common::ConvolutionBackwardDataImpl::
                        get_algo_from_desc(desc);
#endif
            case Handle::HandleType::NAIVE: {
                auto algo = static_cast<naive::HandleImpl*>(handle())
                                    ->default_conv_bwd_data_algo();
                megdnn_assert(algo->info().desc == desc);
                return algo;
            }
            default:
                megdnn_throw("Unknown handle type");
                return nullptr;
        }
    }
}


831 832
ConvolutionBackwardDataImpl::Algorithm*
ConvolutionBackwardDataImpl::get_algorithm(const NCBKernSizeParam& param) {
833
    if (auto algo = get_algorithm_from_desc(execution_policy().algo)) {
834
        return algo;
835 836 837 838
    }
    if (!m_prev_selected_algo ||
        memcmp(&m_prev_selected_algo_sizep, &param, sizeof(NCBKernSizeParam))) {
        m_prev_selected_algo = ncb_1g_get_algorithm_heuristic(
839
                param, std::numeric_limits<size_t>::max(),
840
                AlgoAttribute::DEFAULT, AlgoAttribute::DEFAULT);
841 842 843 844 845 846 847 848 849 850 851
        m_prev_selected_algo_sizep = param;
    }
    return m_prev_selected_algo;
}

const char* ConvolutionBackwardDataImpl::get_algorithm_set_name() const {
    // fallback version 0
    return "FALLBACK_CONVOLUTION_BACKWARD_DATA_IMPL0";
}

// vim: syntax=cpp.doxygen