opr_impl.cpp 30.2 KB
Newer Older
1 2 3 4 5 6 7 8
/**
 * \file dnn/src/fallback/convolution/opr_impl.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
 * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
9 10
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
 * implied.
11 12 13 14 15 16 17
 */

#include "src/common/algo_chooser.h"
#include "src/common/metahelper.h"
#include "src/common/opr_delegate.h"
#include "src/common/utils.h"
#include "src/fallback/convolution/algos.h"
18
#include "src/fallback/convolution/opr_impl.h"
19 20 21 22 23 24 25
#include "src/fallback/convolution/run_conv.h"
#include "src/naive/convolution/helper.h"
#include "src/naive/handle.h"

#include "midout.h"

#include <cstring>
26
#include <unordered_map>
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61

MIDOUT_DECL(megdnn_fb_convbwd_float)

using namespace megdnn;
using namespace fallback;

namespace {
class NaiveConvolutionBackwardData final
        : public megdnn::ConvolutionBackwardData::Algorithm {
    bool is_reproducible() const override { return true; }
    const char* name() const override { return "NCBD"; }
};
NaiveConvolutionBackwardData naive_conv_backward_data;
uint8_t fallback_deconv_algo_type_storage;
uint8_t fallback_conv_algo_type_storage;

template <typename T>
void incr_ptr(T*& dst, ptrdiff_t delta) {
    dst = reinterpret_cast<T*>(reinterpret_cast<uintptr_t>(dst) + delta);
}
}  // namespace

class ConvolutionImpl::AlgoPack : NonCopyableObj {
    AlgoFallback algo_fallback;
    AlgoNaive algo_naive;
    SmallVector<std::unique_ptr<AlgoBase>> refhold;

public:
    AlgoPack() {
        static CpuOprDelegationStorage<1> storage;
        auto conv_bias_opr = storage.get<ConvBias, 0>();
        auto&& conv_bias_algo =
                static_cast<ConvBiasImpl*>(conv_bias_opr)->algo_pack();
        for (auto&& algorithm : conv_bias_algo) {
            // fallback algo
62
            refhold.emplace_back(new AlgoDefault(algorithm));
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
            all_algos.emplace_back(refhold.back().get());
        }

        all_algos.emplace_back(&algo_fallback);
        all_algos.emplace_back(&algo_naive);
    }
    SmallVector<AlgoBase*> all_algos;
};

void* const ConvolutionImpl::sm_fallback_conv_algo_type =
        &fallback_conv_algo_type_storage;

SmallVector<ConvolutionImpl::AlgoBase*> ConvolutionImpl::algo_pack() {
    static AlgoPack sl_algo_pack;
    return sl_algo_pack.all_algos;
}
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94

SmallVector<ConvolutionImpl::AlgoBase*> ConvolutionImpl::select_algo_type(
        ConvAlgoTypePack target_type) {
    megdnn_assert(nr_type_contain(target_type.data_type),
                  "ConvBias algo selection only support one type");
    SmallVector<ConvolutionImpl::AlgoBase*> algos;
    for (auto&& algo : algo_pack()) {
        auto algo_type = algo->get_algo_type();
        if (contain_data_type(algo_type.data_type, target_type.data_type) &&
            algo_type.algo_category == target_type.algo_category) {
            algos.push_back(algo);
        }
    }
    return algos;
}

95 96 97
bool ConvolutionImpl::is_naive_algo(ConvolutionImpl::Algorithm* algo) {
    return algo == nullptr || strcmp(algo->name(), "DEFAULT") == 0;
}
98 99

#define NCB_ALGO_FUNC(name, algo, param) \
100
    static_cast<AlgoBase*>(algo)->name(param)
101

102 103
void ConvolutionImpl::exec(_megdnn_tensor_in src, _megdnn_tensor_in filter,
                           _megdnn_tensor_out dst,
104
                           const PreprocessedFilter* preprocessed_filter,
105
                           _megdnn_workspace workspace) {
106 107
    auto fparam = make_ncb_kern_param(src, filter, dst, preprocessed_filter,
                                      workspace);
108 109
    ConvolutionImpl::Algorithm* algo = get_algorithm(fparam, workspace.size);
    if (!is_naive_algo(algo) &&
110
        NCB_ALGO_FUNC(get_workspace, algo, fparam) <= workspace.size) {
111 112
        exec_with_ncb_kern(fparam, algo);
    } else {
113 114
        naive::ConvolutionForwardImpl::exec(src, filter, dst,
                                            preprocessed_filter, workspace);
115 116 117
    }
}

118
void ConvolutionImpl::exec_preprocess(const TensorLayout& src_layout,
119 120 121 122
                                      _megdnn_tensor_in filter,
                                      const TensorLayout& dst_layout,
                                      PreprocessedFilter* preprocessed_filter,
                                      _megdnn_workspace workspace) {
123 124 125 126 127
    //! exec_preprocess currently only support preprocess weights before exec,
    //! src/dst will be ignored, just set to nullptr
    TensorND src{nullptr, src_layout}, dst{nullptr, dst_layout};
    auto fparam = make_ncb_kern_param(src, filter, dst, preprocessed_filter,
                                      workspace);
128 129 130

    //! should not pass workspace_size limit otherwise can not find match algo
    ConvolutionImpl::Algorithm* algo = get_algorithm(fparam);
131 132 133 134 135 136 137 138 139
    if (!is_naive_algo(algo) && NCB_ALGO_FUNC(get_preprocess_workspace, algo,
                                              fparam) <= workspace.size) {
        exec_preprocess_with_ncb_kern(fparam, algo);
    } else {
        naive::ConvolutionForwardImpl::exec_preprocess(
                src_layout, filter, dst_layout, preprocessed_filter, workspace);
    }
}

140 141 142 143
size_t ConvolutionImpl::get_workspace_in_bytes(
        const TensorLayout& src, const TensorLayout& filter,
        const TensorLayout& dst,
        const PreprocessedFilter* preprocessed_filter) {
144 145
    auto fparam =
            make_ncb_kern_size_param(src, filter, dst, preprocessed_filter);
146 147 148
    Algorithm* algo = get_algorithm(fparam);
    if (is_naive_algo(algo)) {
        return naive::ConvolutionForwardImpl::get_workspace_in_bytes(
149
                src, filter, dst, preprocessed_filter);
150
    } else {
151
        return NCB_ALGO_FUNC(get_workspace, algo, fparam);
152 153 154 155 156 157 158 159 160 161 162 163
    }
}

size_t ConvolutionImpl::get_preprocess_workspace_in_bytes(
        const TensorLayout& src, const TensorLayout& filter,
        const TensorLayout& dst) {
    auto fparam = make_ncb_kern_size_param(src, filter, dst, nullptr);
    Algorithm* algo = get_algorithm(fparam);
    if (is_naive_algo(algo)) {
        return naive::ConvolutionForwardImpl::get_preprocess_workspace_in_bytes(
                src, filter, dst);
    } else {
164
        return NCB_ALGO_FUNC(get_preprocess_workspace, algo, fparam);
165 166 167 168 169
    }
}

SmallVector<TensorLayout> ConvolutionImpl::deduce_preprocessed_filter_layout(
        const TensorLayout& src, const TensorLayout& filter,
170
        const TensorLayout& dst) {
171 172 173 174 175 176
    auto fparam = make_ncb_kern_size_param(src, filter, dst, nullptr);
    Algorithm* algo = get_algorithm(fparam);
    if (is_naive_algo(algo)) {
        return naive::ConvolutionForwardImpl::deduce_preprocessed_filter_layout(
                src, filter, dst);
    } else {
177
        return NCB_ALGO_FUNC(deduce_preprocessed_filter_layout, algo, fparam);
178 179 180 181 182 183
    }
}

std::vector<ConvolutionImpl::Algorithm*> ConvolutionImpl::get_all_algorithms(
        const TensorLayout& src, const TensorLayout& filter,
        const TensorLayout& dst) {
184
    auto fparam = make_ncb_kern_size_param(src, filter, dst, nullptr);
185 186 187 188 189 190 191 192 193 194 195 196
    auto ret = get_all_algorithms_with_ncb(fparam);
    if (ret.empty()) {
        return naive::ConvolutionForwardImpl::get_all_algorithms(src, filter,
                                                                 dst);
    }
    return ret;
}

ConvolutionImpl::Algorithm* ConvolutionImpl::get_algorithm_heuristic(
        const TensorLayout& src, const TensorLayout& filter,
        const TensorLayout& dst, size_t workspace_limit_in_bytes,
        bool reproducible) {
197
    auto fparam = make_ncb_kern_size_param(src, filter, dst, nullptr);
198 199 200 201 202 203 204 205 206 207 208
    auto result = get_algorithm_heuristic_with_ncb(
            fparam, workspace_limit_in_bytes, reproducible);
    if (result == nullptr) {
        result = naive::ConvolutionForwardImpl::get_algorithm_heuristic(
                src, filter, dst, workspace_limit_in_bytes, reproducible);
    }
    return result;
}

ConvolutionImpl::NCBKernSizeParam ConvolutionImpl::make_ncb_kern_size_param(
        const TensorLayout& src, const TensorLayout& filter,
209 210
        const TensorLayout& dst,
        const PreprocessedFilter* preprocessed_filter) {
211 212 213 214 215 216 217 218
    auto safe_u32 = [](size_t v) -> uint32_t {
        megdnn_assert(v <= std::numeric_limits<uint32_t>::max(),
                      "value too large: %zu", v);
        return v;
    };
    size_t spatial_pos;
    if (param().format == Param::Format::NCHW88 ||
        param().format == Param::Format::NCHW8 ||
219
        param().format == Param::Format::NCHW4 ||
220
        param().format == Param::Format::NCHW44_DOT ||
221
        param().format == Param::Format::NCHW44) {
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
        spatial_pos = 2;
    } else if (param().format == Param::Format::NCHW ||
               param().format == Param::Format::NCHW_WINOGRAD) {
        spatial_pos = 2;
    } else if (param().format == Param::Format::NHWC) {
        spatial_pos = 1;
    } else {
        megdnn_assert(0, "invalid conv format %d",
                      static_cast<int>(param().format));
    }
    size_t nr_threads = static_cast<naive::HandleImpl*>(handle())
                                ->megcore_dispatcher()
                                ->nr_threads();

    return {safe_u32(src[0]),
            {{safe_u32(src[spatial_pos]), safe_u32(src[spatial_pos + 1])}},
            {{safe_u32(dst[spatial_pos]), safe_u32(dst[spatial_pos + 1])}},
            check_layout_fwd(src, filter, dst),
            src.dtype,
            filter.dtype,
            dst.dtype,
            src.stride[0],
            dst.stride[0],
            {src.stride[0], src.stride[1], src.stride[2], src.stride[3]},
            {dst.stride[0], dst.stride[1], dst.stride[2], dst.stride[3]},
            param().compute_mode,
248 249
            nr_threads,
            preprocessed_filter};
250 251 252 253
}

ConvolutionImpl::NCBKernParam ConvolutionImpl::make_ncb_kern_param(
        _megdnn_tensor_in src, _megdnn_tensor_in filter, _megdnn_tensor_out dst,
254
        const PreprocessedFilter* preprocessed_filter,
255 256
        _megdnn_workspace workspace) {
    NCBKernParam ret;
257 258
    static_cast<NCBKernSizeParam&>(ret) = make_ncb_kern_size_param(
            src.layout, filter.layout, dst.layout, preprocessed_filter);
259 260 261 262 263 264 265 266
    ret.src_ptr = src.raw_ptr;
    ret.filter_ptr = filter.raw_ptr;
    ret.dst_ptr = dst.raw_ptr;
    ret.workspace_ptr = workspace.raw_ptr;
    ret.workspace_size = workspace.size;
    return ret;
}

267 268
void ConvolutionImpl::exec_preprocess_with_ncb_kern(const NCBKernParam& param,
                                                    Algorithm* algo) {
269 270 271
    auto&& kerns = NCB_ALGO_FUNC(dispatch_preprocess_kern, algo, param);
    auto&& fallback_handle = handle();
    for (auto&& kernel : kerns) {
272 273 274 275
        megdnn_assert(
                param.filter_meta.format == Param::Format::NCHW ||
                        param.filter_meta.format == Param::Format::NHWC ||
                        param.filter_meta.format == Param::Format::NCHW88 ||
276 277
                        param.filter_meta.format == Param::Format::NCHW44 ||
                        param.filter_meta.format == Param::Format::NCHW44_DOT,
278 279 280 281 282 283 284 285 286 287
                "invalid conv format");
        auto run = [param, kernel](size_t index, size_t thread_id) {
            CpuNDRange ndrange_id(kernel.global_size, index);
            kernel.kern(param, {thread_id, ndrange_id});
        };
        static_cast<naive::HandleImpl*>(fallback_handle)
                ->dispatch_kern(run, kernel.global_size.total_size());
    }
}

288 289
void ConvolutionImpl::exec_with_ncb_kern(const NCBKernParam& param,
                                         Algorithm* algo) {
290 291 292
    auto&& kerns = NCB_ALGO_FUNC(dispatch_kern, algo, param);
    auto&& fallback_handle = handle();
    for (auto&& kernel : kerns) {
293 294 295 296
        megdnn_assert(
                param.filter_meta.format == Param::Format::NCHW ||
                        param.filter_meta.format == Param::Format::NHWC ||
                        param.filter_meta.format == Param::Format::NCHW88 ||
297 298
                        param.filter_meta.format == Param::Format::NCHW44 ||
                        param.filter_meta.format == Param::Format::NCHW44_DOT,
299
                "invalid conv format");
300
        auto run = [param, kernel](size_t index, size_t thread_id) {
301
            CpuNDRange ndrange_id(kernel.global_size, index);
302
            kernel.kern(param, {thread_id, ndrange_id});
303 304 305 306 307 308 309 310 311
        };
        static_cast<naive::HandleImpl*>(fallback_handle)
                ->dispatch_kern(run, kernel.global_size.total_size());
    }
}

ConvolutionImpl::Algorithm* ConvolutionImpl::get_algorithm_heuristic_with_ncb(
        const NCBKernSizeParam& param, size_t workspace_limit_in_bytes,
        bool reproducible) {
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
    auto algo_data_type = param.deduce_algo_data_type();
    auto suggest_category_order = suggest_algo_category_order(param);
    for (auto category : suggest_category_order) {
        auto&& origin_algos = select_algo_type({algo_data_type, category});
        ConvolutionImpl::Algorithm* heuristic_algo = nullptr;
        for (auto i : origin_algos) {
            bool usable_reproducible =
                    static_cast<AlgoBase*>(i)->usable_reproducible(
                            param, AlgoSelectionStrategy::HEURISTIC,
                            reproducible);
            if (usable_reproducible &&
                static_cast<AlgoBase*>(i)->get_workspace(param) <=
                        workspace_limit_in_bytes) {
                //! store the first usable algo if no prefer algo, choose it as
                //! the target algo
                if (!heuristic_algo) {
                    heuristic_algo = i;
                }
                //! choose the first prefer algo
                if (i->is_preferred(param)) {
                    return i;
                }
            }
        }
        if (heuristic_algo) {
            return heuristic_algo;
338 339 340 341 342 343 344 345 346 347
        }
    }
    return nullptr;
}

std::vector<ConvolutionImpl::Algorithm*>
ConvolutionImpl::get_all_algorithms_with_ncb(const NCBKernSizeParam& param) {
    std::vector<Algorithm*> ret;
    std::vector<Algorithm*> prefer_algos;
    for (auto&& i : algo_pack()) {
348 349
        if (i->usable(param, AlgoSelectionStrategy::FULL_RUN)) {
            if (i->is_preferred(param)) {
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
                prefer_algos.push_back(i);
            } else {
                ret.push_back(i);
            }
        }
    }
    ret.insert(ret.begin(), prefer_algos.begin(), prefer_algos.end());
    return ret;
}

ConvolutionImpl::Algorithm* ConvolutionImpl::get_algorithm(
        const NCBKernSizeParam& param, size_t workspace_size) {
    if (auto set = execution_policy().algorithm) {
        return set;
    }
    if (!m_prev_selected_algo ||
        memcmp(&m_prev_selected_algo_sizep, &param, sizeof(NCBKernSizeParam))) {
        m_prev_selected_algo =
                get_algorithm_heuristic_with_ncb(param, workspace_size);
        m_prev_selected_algo_sizep = param;
    }
    return m_prev_selected_algo;
}

374 375 376 377 378 379 380 381 382 383
SmallVector<AlgoCategory> ConvolutionImpl::suggest_algo_category_order(
        const NCBKernSizeParam& param) const {
    static CpuOprDelegationStorage<1> storage;
    auto conv_bias_opr = storage.get<ConvBias, 0>();
    auto conv_bias_param =
            ConvolutionImpl::AlgoDefault::init_conv_bias_param(param);
    return static_cast<ConvBiasImpl*>(conv_bias_opr)
            ->suggest_algo_category_order(conv_bias_param);
}

384 385 386 387 388
const char* ConvolutionImpl::get_algorithm_set_name() const {
    // fallback version 0
    return "F0";
}

389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
ConvolutionImpl::AlgoDataType
ConvolutionImpl::NCBKernSizeParam::deduce_algo_data_type() const {
    if (src_type.enumv() == DTypeEnum::Float32) {
        return ConvolutionImpl::AlgoDataType::FLOAT32;
#if !MEGDNN_DISABLE_FLOAT16
    } else if (src_type.enumv() == DTypeEnum::Float16) {
        return ConvolutionImpl::AlgoDataType::FLOAT16;
#endif
    } else if (src_type.enumv() == DTypeEnum::Int8 ||
               src_type.enumv() == DTypeEnum::QuantizedS8) {
        if (dst_type.enumv() == DTypeEnum::Int16) {
            return ConvolutionImpl::AlgoDataType::INT8X8X16;
        } else {
            return ConvolutionImpl::AlgoDataType::QINT8X8X32;
        }
    } else if (src_type.enumv() == DTypeEnum::Quantized8Asymm) {
        return ConvolutionImpl::AlgoDataType::QUINT8X8X32;
    } else {
        megdnn_throw(ssprintf("megdnn not support data type of %s * %s -> %s\n",
                              src_type.name(), filter_type.name(),
                              dst_type.name()));
    }
}

413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
/* ===================== ConvolutionBackwardData ===================== */

void* const ConvolutionBackwardDataImpl::sm_fallback_deconv_algo_type =
        &fallback_deconv_algo_type_storage;

struct ConvolutionBackwardDataImpl::AlgoPack {
    AlgoDirect direct;
    AlgoMatrixMul matmul;
};
ConvolutionBackwardDataImpl::AlgoPack ConvolutionBackwardDataImpl::sm_algo_pack;

void ConvolutionBackwardDataImpl::exec(_megdnn_tensor_in filter,
                                       _megdnn_tensor_in diff,
                                       _megdnn_tensor_out grad,
                                       _megdnn_workspace workspace) {
    if (param().format == param::Convolution::Format::NHWCD4 ||
        param().format == param::Convolution::Format::NCHW4) {
        return naive::ConvolutionBackwardDataImpl::exec(filter, diff, grad,
                                                        workspace);
    }
    auto fparam = make_ncb_kern_param(filter, diff, grad, workspace);
    return exec_with_ncb_kern(fparam);
}

size_t ConvolutionBackwardDataImpl::get_workspace_in_bytes(
        const TensorLayout& filter, const TensorLayout& diff,
        const TensorLayout& grad) {
    if (param().format == param::Convolution::Format::NHWCD4 ||
        param().format == param::Convolution::Format::NCHW4) {
        return naive::ConvolutionBackwardDataImpl::get_workspace_in_bytes(
                filter, diff, grad);
    }
    auto fparam = make_ncb_kern_size_param(filter, diff, grad);
    return get_workspace_with_ncb(fparam);
}

std::vector<ConvolutionBackwardDataImpl::Algorithm*>
ConvolutionBackwardDataImpl::get_all_algorithms(const TensorLayout& filter,
                                                const TensorLayout& diff,
                                                const TensorLayout& grad) {
    if (param().format == param::Convolution::Format::NHWCD4 ||
        param().format == param::Convolution::Format::NCHW4) {
        return naive::ConvolutionBackwardDataImpl::get_all_algorithms(
                filter, diff, grad);
    }
    auto fparam = make_ncb_kern_size_param(filter, diff, grad);
    auto ret = get_all_algorithms_with_ncb(fparam);
    megdnn_assert(!ret.empty(), "no usable conv fwd algorithm");
    return ret;
}

ConvolutionBackwardDataImpl::Algorithm*
ConvolutionBackwardDataImpl::get_algorithm_heuristic(
        const TensorLayout& filter, const TensorLayout& diff,
        const TensorLayout& grad, size_t workspace_limit_in_bytes,
        bool reproducible) {
    if (param().format == param::Convolution::Format::NHWCD4 ||
        param().format == param::Convolution::Format::NCHW4) {
        return naive::ConvolutionBackwardDataImpl::get_algorithm_heuristic(
                filter, diff, grad, workspace_limit_in_bytes, reproducible);
    }
    auto fparam = make_ncb_kern_size_param(filter, diff, grad);
    return get_algorithm_heuristic_with_ncb(fparam, workspace_limit_in_bytes,
                                            reproducible);
}

ConvolutionBackwardDataImpl::NCBKernSizeParam
ConvolutionBackwardDataImpl::make_ncb_kern_size_param(
        const TensorLayout& filter, const TensorLayout& diff,
        const TensorLayout& grad) {
    auto safe_u32 = [](size_t v) -> uint32_t {
        megdnn_assert(v <= std::numeric_limits<uint32_t>::max(),
                      "value too large: %zu", v);
        return v;
    };
    size_t spatial_pos;
    if (param().format == Param::Format::NCHW) {
        spatial_pos = 2;
    } else {
        megdnn_assert(param().format == Param::Format::NHWC,
                      "invalid conv format");
        spatial_pos = 1;
    }
    auto grad_fwd = grad;
    auto filter_fwd = filter;
    auto diff_fwd = diff;

    std::swap(grad_fwd.dtype, diff_fwd.dtype);

    return {
            safe_u32(diff[0]),
            {{safe_u32(diff[spatial_pos]), safe_u32(diff[spatial_pos + 1])}},
            {{safe_u32(grad[spatial_pos]), safe_u32(grad[spatial_pos + 1])}},
            check_layout_fwd(grad_fwd, filter_fwd, diff_fwd),
            diff.dtype,
            filter.dtype,
            grad.dtype,
            diff,
            filter,
            grad,
            diff.stride[0],
            grad.stride[0],
            0,
            0,
            0,
            param().compute_mode,
    };
}

ConvolutionBackwardDataImpl::NCBKernParam
ConvolutionBackwardDataImpl::make_ncb_kern_param(_megdnn_tensor_in filter,
                                                 _megdnn_tensor_in diff,
                                                 _megdnn_tensor_out grad,
                                                 _megdnn_workspace workspace) {
    NCBKernParam ret;
    static_cast<NCBKernSizeParam&>(ret) =
            make_ncb_kern_size_param(filter.layout, diff.layout, grad.layout);

    auto required_workspace_in_bytes = get_workspace_with_ncb(ret);
    megdnn_assert(workspace.size >= required_workspace_in_bytes,
                  "required workspace: %zu; provided workspace: %zu",
                  required_workspace_in_bytes, workspace.size);
    ret.filter_ptr = filter.raw_ptr;
    ret.diff_ptr = diff.raw_ptr;
    ret.grad_ptr = grad.raw_ptr;
    ret.workspace_ptr = workspace.raw_ptr;
    ret.workspace_size = workspace.size;
    return ret;
}

void ConvolutionBackwardDataImpl::exec_with_ncb_kern(
        const NCBKernParam& param) {
    auto p1g = param;
    auto group = p1g.filter_meta.group;
    p1g.filter_meta.group = 1;
    auto algo = get_algorithm(p1g);
    auto kptr = ncb_1g_dispatch_kern(algo, p1g);
    if (algo == &naive_conv_backward_data || group == 1) {
        auto run = [kptr, param]() { kptr(param); };
        static_cast<naive::HandleImpl*>(handle())->dispatch_kern(run);
    } else {
        megdnn_assert(p1g.filter_meta.format == Param::Format::NCHW ||
                              p1g.filter_meta.format == Param::Format::NHWC,
                      "invalid conv format");
        auto run = [kptr, p1g_orig = p1g, group]() {
            auto p1g = p1g_orig;
            ptrdiff_t istrd, fstrd, ostrd;
            fstrd = p1g.filter_meta.icpg * p1g.filter_meta.ocpg *
                    p1g.filter_meta.spatial[0] * p1g.filter_meta.spatial[1] *
                    p1g.filter_type.size();
            istrd = p1g.filter_meta.ocpg * p1g.diff_type.size();
            ostrd = p1g.filter_meta.icpg * p1g.grad_type.size();
            p1g.diff_extra_mem_size =
                    (group - 1) * p1g.filter_meta.ocpg * p1g.diff_type.size();
            p1g.filter_extra_mem_size =
                    (group - 1) * p1g.filter_meta.icpg * p1g.filter_meta.ocpg *
                    p1g.filter_meta.spatial[0] * p1g.filter_meta.spatial[1] *
                    p1g.filter_type.size();
            p1g.grad_extra_mem_size =
                    (group - 1) * p1g.filter_meta.icpg * p1g.grad_type.size();
            if (p1g.filter_meta.format == Param::Format::NCHW) {
                istrd *= p1g.isz[0] * p1g.isz[1];
                ostrd *= p1g.osz[0] * p1g.osz[1];
                p1g.diff_extra_mem_size *= p1g.isz[0] * p1g.isz[1];
                p1g.grad_extra_mem_size *= p1g.osz[0] * p1g.osz[1];
            } else {
                // must be NHWC. No action performed.
            }
            for (size_t i = 0; i < group; ++i) {
                kptr(p1g);
                incr_ptr(p1g.diff_ptr, istrd);
                incr_ptr(p1g.filter_ptr, fstrd);
                incr_ptr(p1g.grad_ptr, ostrd);
                p1g.diff_extra_mem_size -= istrd;
                p1g.filter_extra_mem_size -= fstrd;
                p1g.grad_extra_mem_size -= ostrd;
            }
        };
        static_cast<naive::HandleImpl*>(handle())->dispatch_kern(run);
    }
}

size_t ConvolutionBackwardDataImpl::get_workspace_with_ncb(
        const NCBKernSizeParam& param) {
    if (param.filter_meta.group != 1) {
        auto p1g = param;
        p1g.filter_meta.group = 1;
        return ncb_1g_get_workspace(get_algorithm(p1g), p1g);
    }
    return ncb_1g_get_workspace(get_algorithm(param), param);
}

std::vector<ConvolutionBackwardDataImpl::Algorithm*>
ConvolutionBackwardDataImpl::get_all_algorithms_with_ncb(
        const NCBKernSizeParam& param) {
    if (param.filter_meta.group != 1) {
        auto p1g = param;
        p1g.filter_meta.group = 1;
        return ncb_1g_get_all_algorithms(p1g);
    }
    return ncb_1g_get_all_algorithms(param);
}

ConvolutionBackwardDataImpl::Algorithm*
ConvolutionBackwardDataImpl::get_algorithm_heuristic_with_ncb(
        const NCBKernSizeParam& param, size_t workspace_limit_in_bytes,
        bool reproducible) {
    if (param.filter_meta.group != 1) {
        auto p1g = param;
        p1g.filter_meta.group = 1;
        return ncb_1g_get_algorithm_heuristic(p1g, workspace_limit_in_bytes,
                                              reproducible);
    }
    return ncb_1g_get_algorithm_heuristic(param, workspace_limit_in_bytes,
                                          reproducible);
}

size_t ConvolutionBackwardDataImpl::ncb_1g_get_workspace(
        Algorithm* algo, const NCBKernSizeParam& param) {
    megdnn_assert(param.filter_meta.group == 1);
    if (algo->type() == sm_fallback_deconv_algo_type) {
        return static_cast<AlgoBase*>(algo)->get_workspace(this, param);
    }
    megdnn_assert(algo == &naive_conv_backward_data);
    return 0;
}

ConvolutionBackwardDataImpl::ncb_kern_t
ConvolutionBackwardDataImpl::ncb_1g_dispatch_kern(
        Algorithm* algo, const NCBKernSizeParam& param) {
    megdnn_assert(param.filter_meta.group == 1);

    if (algo->type() == sm_fallback_deconv_algo_type) {
        return static_cast<AlgoBase*>(algo)->dispatch_kern(this, param);
    }

    if (algo == &naive_conv_backward_data) {
#define cb(_dt)                                                    \
    do {                                                           \
        if (param.filter_type.enumv() == DTypeTrait<_dt>::enumv) { \
            MIDOUT_BEGIN(megdnn_fb_convbwd_float,                  \
                         midout_iv(DTypeTrait<_dt>::enumv)) {      \
                using ctype = DTypeTrait<_dt>::ctype;              \
                return kern_naive<ctype, ctype, ctype>;            \
            }                                                      \
            MIDOUT_END();                                          \
        }                                                          \
    } while (0);
        MEGDNN_FOREACH_COMPUTING_DTYPE_FLOAT(cb);
#undef cb
#define cb(dt_src, dt_dst)                                            \
    do {                                                              \
        if (param.diff_type.enumv() == DTypeTrait<dt_src>::enumv &&   \
            param.filter_type.enumv() == DTypeTrait<dt_src>::enumv && \
            param.grad_type.enumv() == DTypeTrait<dt_dst>::enumv) {   \
            return kern_naive<DTypeTrait<dt_src>::ctype,              \
                              DTypeTrait<dt_src>::ctype,              \
                              DTypeTrait<dt_dst>::ctype>;             \
        }                                                             \
    } while (0);
        cb(dtype::Int8, dtype::Int32) cb(dtype::Quantized8Asymm,
                                         dtype::QuantizedS32)
                cb(dtype::QuantizedS8, dtype::QuantizedS32) megdnn_throw(
                        "unsupported data type on ConvolutionBackwardData");
#undef cb
    }
    megdnn_throw(
            megdnn_mangle("no suitable ConvolutionBackwardData algorithm"));
}

bool ConvolutionBackwardDataImpl::is_matrix_mul_preferred(
        const NCBKernSizeParam& param) {
    auto&& fm = param.filter_meta;
    auto OC = fm.ocpg, IC = fm.icpg;

    return (OC * IC >= 32) ||
           (fm.spatial[0] == 1 && fm.spatial[1] == 1 && fm.padding[0] == 0 &&
            fm.padding[1] == 0 && fm.stride[0] == 1 && fm.stride[1] == 1);
}

std::vector<ConvolutionBackwardDataImpl::Algorithm*>
ConvolutionBackwardDataImpl::ncb_1g_get_all_algorithms(
        const NCBKernSizeParam& param) {
    std::vector<Algorithm*> ret;
    ret.reserve(2);
    ret.push_back(&naive_conv_backward_data);

    // insert from lowest to highest preference
    AlgoBase* cand[2] = {nullptr};

    if (param.filter_meta.group == 1 && param.filter_meta.dilation[0] == 1 &&
        param.filter_meta.dilation[1] == 1) {
        // we currently only have non-dilated algos
        if (param.filter_type.enumv() == DTypeEnum::Float32) {
            if (is_matrix_mul_preferred(param)) {
                cand[0] = &sm_algo_pack.direct;
                cand[1] = &sm_algo_pack.matmul;
            } else {
                cand[0] = &sm_algo_pack.matmul;
                cand[1] = &sm_algo_pack.direct;
            }
        } else {
            cand[0] = &sm_algo_pack.matmul;
        }
    }
    for (auto i : cand) {
        if (i && i->usable(this, param)) {
            ret.push_back(i);
        }
    }

    std::reverse(ret.begin(), ret.end());
    return ret;
}

ConvolutionBackwardDataImpl::Algorithm*
ConvolutionBackwardDataImpl::ncb_1g_get_algorithm_heuristic(
        const NCBKernSizeParam& param, size_t workspace_limit_in_bytes,
        bool reproducible) {
    for (auto i : ncb_1g_get_all_algorithms(param)) {
        if (ncb_1g_get_workspace(i, param) <= workspace_limit_in_bytes) {
            if (reproducible) {
                if (i->is_reproducible()) {
                    return i;
                }
            } else {
                return i;
            }
        }
    }
    megdnn_assert(0,
                  "no suitable algorithm found within given workspace limit");
}

ConvolutionBackwardDataImpl::Algorithm*
ConvolutionBackwardDataImpl::get_algorithm(const NCBKernSizeParam& param) {
    if (auto set = execution_policy().algorithm) {
        return set;
    }
    if (!m_prev_selected_algo ||
        memcmp(&m_prev_selected_algo_sizep, &param, sizeof(NCBKernSizeParam))) {
        m_prev_selected_algo = ncb_1g_get_algorithm_heuristic(
                param, std::numeric_limits<size_t>::max());
        m_prev_selected_algo_sizep = param;
    }
    return m_prev_selected_algo;
}

const char* ConvolutionBackwardDataImpl::get_algorithm_set_name() const {
    // fallback version 0
    return "FALLBACK_CONVOLUTION_BACKWARD_DATA_IMPL0";
}

// vim: syntax=cpp.doxygen