opr_impl.cpp 31.1 KB
Newer Older
1 2 3 4
/**
 * \file dnn/src/fallback/convolution/opr_impl.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
5
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
6 7 8
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
9 10
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
 * implied.
11 12 13 14 15 16 17
 */

#include "src/common/algo_chooser.h"
#include "src/common/metahelper.h"
#include "src/common/opr_delegate.h"
#include "src/common/utils.h"
#include "src/fallback/convolution/algos.h"
18
#include "src/fallback/convolution/opr_impl.h"
19 20 21 22 23 24
#include "src/fallback/convolution/run_conv.h"
#include "src/naive/convolution/helper.h"
#include "src/naive/handle.h"

#include "midout.h"

25 26 27 28
#if MEGDNN_AARCH64 || MEGDNN_ARMV7
#include "src/arm_common/convolution/opr_impl.h"
#endif

29
#include <cstring>
30
#include <unordered_map>
31 32 33 34 35 36 37 38 39 40 41

MIDOUT_DECL(megdnn_fb_convbwd_float)

using namespace megdnn;
using namespace fallback;

namespace {
template <typename T>
void incr_ptr(T*& dst, ptrdiff_t delta) {
    dst = reinterpret_cast<T*>(reinterpret_cast<uintptr_t>(dst) + delta);
}
42

43 44 45 46 47 48
}  // namespace

class ConvolutionImpl::AlgoPack : NonCopyableObj {
    AlgoFallback algo_fallback;
    AlgoNaive algo_naive;
    SmallVector<std::unique_ptr<AlgoBase>> refhold;
49 50
    SmallVector<AlgoBase*> m_all_algos;
    AlgoBase::Mapper m_all_algos_map;
51 52 53 54 55
public:
    AlgoPack() {
        static CpuOprDelegationStorage<1> storage;
        auto conv_bias_opr = storage.get<ConvBias, 0>();
        auto&& conv_bias_algo =
56
                static_cast<ConvBiasImpl*>(conv_bias_opr)->get_all_packed_algo();
57 58
        for (auto&& algorithm : conv_bias_algo) {
            // fallback algo
59
            refhold.emplace_back(new AlgoDefault(algorithm));
60
            m_all_algos.emplace_back(refhold.back().get());
61 62
        }

63 64 65 66 67 68
        m_all_algos.emplace_back(&algo_fallback);
        m_all_algos.emplace_back(&algo_naive);

        for (auto&& algo : m_all_algos) {
            m_all_algos_map.emplace(algo->info().desc, algo);
        }
69
    }
70 71 72

    const SmallVector<AlgoBase*>& all_algos() const { return m_all_algos; }
    const AlgoBase::Mapper& all_algos_map() const { return m_all_algos_map; }
73 74
};

75 76 77 78 79 80 81
const ConvolutionImpl::AlgoPack& ConvolutionImpl::algo_pack() {
    static AlgoPack algo_pack;
    return algo_pack;
}

SmallVector<ConvolutionImpl::AlgoBase*> ConvolutionImpl::get_all_packed_algo() {
    return algo_pack().all_algos();
82
}
83 84 85 86 87 88

SmallVector<ConvolutionImpl::AlgoBase*> ConvolutionImpl::select_algo_type(
        ConvAlgoTypePack target_type) {
    megdnn_assert(nr_type_contain(target_type.data_type),
                  "ConvBias algo selection only support one type");
    SmallVector<ConvolutionImpl::AlgoBase*> algos;
89
    for (auto&& algo : get_all_packed_algo()) {
90 91 92 93 94 95 96 97 98
        auto algo_type = algo->get_algo_type();
        if (contain_data_type(algo_type.data_type, target_type.data_type) &&
            algo_type.algo_category == target_type.algo_category) {
            algos.push_back(algo);
        }
    }
    return algos;
}

99 100 101
bool ConvolutionImpl::is_naive_algo(ConvolutionImpl::Algorithm* algo) {
    return algo == nullptr || strcmp(algo->name(), "DEFAULT") == 0;
}
102 103

#define NCB_ALGO_FUNC(name, algo, param) \
104
    static_cast<AlgoBase*>(algo)->name(param)
105

106 107
void ConvolutionImpl::exec(_megdnn_tensor_in src, _megdnn_tensor_in filter,
                           _megdnn_tensor_out dst,
108
                           const PreprocessedFilter* preprocessed_filter,
109
                           _megdnn_workspace workspace) {
110 111
    auto fparam = make_ncb_kern_param(src, filter, dst, preprocessed_filter,
                                      workspace);
112
    auto&& algo = get_algorithm(fparam, workspace.size);
113
    if (!is_naive_algo(algo) &&
114
        NCB_ALGO_FUNC(get_workspace, algo, fparam) <= workspace.size) {
115 116
        exec_with_ncb_kern(fparam, algo);
    } else {
117 118
        naive::ConvolutionForwardImpl::exec(src, filter, dst,
                                            preprocessed_filter, workspace);
119 120 121
    }
}

122
void ConvolutionImpl::exec_preprocess(const TensorLayout& src_layout,
123 124 125 126
                                      _megdnn_tensor_in filter,
                                      const TensorLayout& dst_layout,
                                      PreprocessedFilter* preprocessed_filter,
                                      _megdnn_workspace workspace) {
127 128 129 130 131
    //! exec_preprocess currently only support preprocess weights before exec,
    //! src/dst will be ignored, just set to nullptr
    TensorND src{nullptr, src_layout}, dst{nullptr, dst_layout};
    auto fparam = make_ncb_kern_param(src, filter, dst, preprocessed_filter,
                                      workspace);
132 133

    //! should not pass workspace_size limit otherwise can not find match algo
134 135 136 137
    auto&& algo = get_algorithm(fparam);
    if (!is_naive_algo(algo) &&
        NCB_ALGO_FUNC(get_preprocess_workspace, algo, fparam) <=
                workspace.size) {
138 139 140 141 142 143 144
        exec_preprocess_with_ncb_kern(fparam, algo);
    } else {
        naive::ConvolutionForwardImpl::exec_preprocess(
                src_layout, filter, dst_layout, preprocessed_filter, workspace);
    }
}

145 146 147 148
size_t ConvolutionImpl::get_workspace_in_bytes(
        const TensorLayout& src, const TensorLayout& filter,
        const TensorLayout& dst,
        const PreprocessedFilter* preprocessed_filter) {
149 150
    auto fparam =
            make_ncb_kern_size_param(src, filter, dst, preprocessed_filter);
151
    auto&& algo = get_algorithm(fparam);
152 153
    if (is_naive_algo(algo)) {
        return naive::ConvolutionForwardImpl::get_workspace_in_bytes(
154
                src, filter, dst, preprocessed_filter);
155
    } else {
156
        return NCB_ALGO_FUNC(get_workspace, algo, fparam);
157 158 159 160 161 162 163
    }
}

size_t ConvolutionImpl::get_preprocess_workspace_in_bytes(
        const TensorLayout& src, const TensorLayout& filter,
        const TensorLayout& dst) {
    auto fparam = make_ncb_kern_size_param(src, filter, dst, nullptr);
164
    auto&& algo = get_algorithm(fparam);
165 166 167 168
    if (is_naive_algo(algo)) {
        return naive::ConvolutionForwardImpl::get_preprocess_workspace_in_bytes(
                src, filter, dst);
    } else {
169
        return NCB_ALGO_FUNC(get_preprocess_workspace, algo, fparam);
170 171 172 173 174
    }
}

SmallVector<TensorLayout> ConvolutionImpl::deduce_preprocessed_filter_layout(
        const TensorLayout& src, const TensorLayout& filter,
175
        const TensorLayout& dst) {
176
    auto fparam = make_ncb_kern_size_param(src, filter, dst, nullptr);
177
    auto&& algo = get_algorithm(fparam);
178 179 180 181
    if (is_naive_algo(algo)) {
        return naive::ConvolutionForwardImpl::deduce_preprocessed_filter_layout(
                src, filter, dst);
    } else {
182
        return NCB_ALGO_FUNC(deduce_preprocessed_filter_layout, algo, fparam);
183 184 185 186 187 188
    }
}

std::vector<ConvolutionImpl::Algorithm*> ConvolutionImpl::get_all_algorithms(
        const TensorLayout& src, const TensorLayout& filter,
        const TensorLayout& dst) {
189
    auto fparam = make_ncb_kern_size_param(src, filter, dst, nullptr);
190 191 192 193 194 195 196 197 198 199 200
    auto ret = get_all_algorithms_with_ncb(fparam);
    if (ret.empty()) {
        return naive::ConvolutionForwardImpl::get_all_algorithms(src, filter,
                                                                 dst);
    }
    return ret;
}

ConvolutionImpl::Algorithm* ConvolutionImpl::get_algorithm_heuristic(
        const TensorLayout& src, const TensorLayout& filter,
        const TensorLayout& dst, size_t workspace_limit_in_bytes,
201 202
        const AlgoAttribute& positive_attr,
        const AlgoAttribute& negative_attr) {
203
    auto fparam = make_ncb_kern_size_param(src, filter, dst, nullptr);
204
    auto result = get_algorithm_heuristic_with_ncb(
205
            fparam, workspace_limit_in_bytes, positive_attr, negative_attr);
206 207
    if (result == nullptr) {
        result = naive::ConvolutionForwardImpl::get_algorithm_heuristic(
208 209
                src, filter, dst, workspace_limit_in_bytes, positive_attr,
                negative_attr);
210 211 212 213 214 215
    }
    return result;
}

ConvolutionImpl::NCBKernSizeParam ConvolutionImpl::make_ncb_kern_size_param(
        const TensorLayout& src, const TensorLayout& filter,
216 217
        const TensorLayout& dst,
        const PreprocessedFilter* preprocessed_filter) {
218 219 220 221 222 223 224 225
    auto safe_u32 = [](size_t v) -> uint32_t {
        megdnn_assert(v <= std::numeric_limits<uint32_t>::max(),
                      "value too large: %zu", v);
        return v;
    };
    size_t spatial_pos;
    if (param().format == Param::Format::NCHW88 ||
        param().format == Param::Format::NCHW8 ||
226
        param().format == Param::Format::NCHW4 ||
227
        param().format == Param::Format::NCHW44_DOT ||
228
        param().format == Param::Format::NCHW44) {
229
        spatial_pos = 2;
230
    } else if (param().format == Param::Format::NCHW) {
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
        spatial_pos = 2;
    } else if (param().format == Param::Format::NHWC) {
        spatial_pos = 1;
    } else {
        megdnn_assert(0, "invalid conv format %d",
                      static_cast<int>(param().format));
    }
    size_t nr_threads = static_cast<naive::HandleImpl*>(handle())
                                ->megcore_dispatcher()
                                ->nr_threads();

    return {safe_u32(src[0]),
            {{safe_u32(src[spatial_pos]), safe_u32(src[spatial_pos + 1])}},
            {{safe_u32(dst[spatial_pos]), safe_u32(dst[spatial_pos + 1])}},
            check_layout_fwd(src, filter, dst),
            src.dtype,
            filter.dtype,
            dst.dtype,
            src.stride[0],
            dst.stride[0],
            {src.stride[0], src.stride[1], src.stride[2], src.stride[3]},
            {dst.stride[0], dst.stride[1], dst.stride[2], dst.stride[3]},
            param().compute_mode,
254 255
            nr_threads,
            preprocessed_filter};
256 257 258 259
}

ConvolutionImpl::NCBKernParam ConvolutionImpl::make_ncb_kern_param(
        _megdnn_tensor_in src, _megdnn_tensor_in filter, _megdnn_tensor_out dst,
260
        const PreprocessedFilter* preprocessed_filter,
261 262
        _megdnn_workspace workspace) {
    NCBKernParam ret;
263 264
    static_cast<NCBKernSizeParam&>(ret) = make_ncb_kern_size_param(
            src.layout, filter.layout, dst.layout, preprocessed_filter);
265 266 267 268 269 270 271 272
    ret.src_ptr = src.raw_ptr;
    ret.filter_ptr = filter.raw_ptr;
    ret.dst_ptr = dst.raw_ptr;
    ret.workspace_ptr = workspace.raw_ptr;
    ret.workspace_size = workspace.size;
    return ret;
}

273 274
void ConvolutionImpl::exec_preprocess_with_ncb_kern(const NCBKernParam& param,
                                                    Algorithm* algo) {
275 276 277
    auto&& kerns = NCB_ALGO_FUNC(dispatch_preprocess_kern, algo, param);
    auto&& fallback_handle = handle();
    for (auto&& kernel : kerns) {
278 279 280 281
        megdnn_assert(
                param.filter_meta.format == Param::Format::NCHW ||
                        param.filter_meta.format == Param::Format::NHWC ||
                        param.filter_meta.format == Param::Format::NCHW88 ||
282 283
                        param.filter_meta.format == Param::Format::NCHW44 ||
                        param.filter_meta.format == Param::Format::NCHW44_DOT,
284 285 286 287 288 289 290 291 292 293
                "invalid conv format");
        auto run = [param, kernel](size_t index, size_t thread_id) {
            CpuNDRange ndrange_id(kernel.global_size, index);
            kernel.kern(param, {thread_id, ndrange_id});
        };
        static_cast<naive::HandleImpl*>(fallback_handle)
                ->dispatch_kern(run, kernel.global_size.total_size());
    }
}

294 295
void ConvolutionImpl::exec_with_ncb_kern(const NCBKernParam& param,
                                         Algorithm* algo) {
296 297 298
    auto&& kerns = NCB_ALGO_FUNC(dispatch_kern, algo, param);
    auto&& fallback_handle = handle();
    for (auto&& kernel : kerns) {
299 300 301 302
        megdnn_assert(
                param.filter_meta.format == Param::Format::NCHW ||
                        param.filter_meta.format == Param::Format::NHWC ||
                        param.filter_meta.format == Param::Format::NCHW88 ||
303 304
                        param.filter_meta.format == Param::Format::NCHW44 ||
                        param.filter_meta.format == Param::Format::NCHW44_DOT,
305
                "invalid conv format");
306
        auto run = [param, kernel](size_t index, size_t thread_id) {
307
            CpuNDRange ndrange_id(kernel.global_size, index);
308
            kernel.kern(param, {thread_id, ndrange_id});
309 310 311 312 313 314 315 316
        };
        static_cast<naive::HandleImpl*>(fallback_handle)
                ->dispatch_kern(run, kernel.global_size.total_size());
    }
}

ConvolutionImpl::Algorithm* ConvolutionImpl::get_algorithm_heuristic_with_ncb(
        const NCBKernSizeParam& param, size_t workspace_limit_in_bytes,
317 318
        const AlgoAttribute& positive_attr,
        const AlgoAttribute& negative_attr) {
319 320 321 322 323 324
    auto algo_data_type = param.deduce_algo_data_type();
    auto suggest_category_order = suggest_algo_category_order(param);
    for (auto category : suggest_category_order) {
        auto&& origin_algos = select_algo_type({algo_data_type, category});
        ConvolutionImpl::Algorithm* heuristic_algo = nullptr;
        for (auto i : origin_algos) {
325
            bool usable_attribute = static_cast<AlgoBase*>(i)->usable_attribute(
326 327
                    param, AlgoSelectionStrategy::HEURISTIC, positive_attr,
                    negative_attr);
328
            if (usable_attribute &&
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
                static_cast<AlgoBase*>(i)->get_workspace(param) <=
                        workspace_limit_in_bytes) {
                //! store the first usable algo if no prefer algo, choose it as
                //! the target algo
                if (!heuristic_algo) {
                    heuristic_algo = i;
                }
                //! choose the first prefer algo
                if (i->is_preferred(param)) {
                    return i;
                }
            }
        }
        if (heuristic_algo) {
            return heuristic_algo;
344 345 346 347 348 349 350 351 352
        }
    }
    return nullptr;
}

std::vector<ConvolutionImpl::Algorithm*>
ConvolutionImpl::get_all_algorithms_with_ncb(const NCBKernSizeParam& param) {
    std::vector<Algorithm*> ret;
    std::vector<Algorithm*> prefer_algos;
353
    for (auto&& i : get_all_packed_algo()) {
354 355
        if (i->usable(param, AlgoSelectionStrategy::FULL_RUN)) {
            if (i->is_preferred(param)) {
356 357 358 359 360 361 362 363 364 365
                prefer_algos.push_back(i);
            } else {
                ret.push_back(i);
            }
        }
    }
    ret.insert(ret.begin(), prefer_algos.begin(), prefer_algos.end());
    return ret;
}

366 367
ConvolutionImpl::Algorithm* ConvolutionImpl::get_algorithm_from_desc(
        const AlgorithmDesc& desc) {
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
    if (!desc.valid()) {
        return nullptr;
    } else {
        switch (desc.handle_type) {
            case Handle::HandleType::FALLBACK: {
                const auto& map = algo_pack().all_algos_map();
                megdnn_assert(map.find(desc) != map.end());
                return map.at(desc);
            }
            case Handle::HandleType::NAIVE: {
                auto algo = static_cast<naive::HandleImpl*>(handle())
                                    ->default_conv_fwd_algo();
                megdnn_assert(algo->info().desc == desc);
                return algo;
            }
            default:
                megdnn_throw("Unknown handle type");
                return nullptr;
        }
    }
}

390 391
ConvolutionImpl::Algorithm* ConvolutionImpl::get_algorithm(
        const NCBKernSizeParam& param, size_t workspace_size) {
392
    if (auto algo = get_algorithm_from_desc(execution_policy().algo)) {
393
        return algo;
394 395 396
    }
    if (!m_prev_selected_algo ||
        memcmp(&m_prev_selected_algo_sizep, &param, sizeof(NCBKernSizeParam))) {
397
        m_prev_selected_algo = get_algorithm_heuristic_with_ncb(
398 399
                param, workspace_size, AlgoAttribute::DEFAULT,
                AlgoAttribute::DEFAULT);
400 401 402 403 404
        m_prev_selected_algo_sizep = param;
    }
    return m_prev_selected_algo;
}

405 406 407 408 409 410 411 412 413 414
SmallVector<AlgoCategory> ConvolutionImpl::suggest_algo_category_order(
        const NCBKernSizeParam& param) const {
    static CpuOprDelegationStorage<1> storage;
    auto conv_bias_opr = storage.get<ConvBias, 0>();
    auto conv_bias_param =
            ConvolutionImpl::AlgoDefault::init_conv_bias_param(param);
    return static_cast<ConvBiasImpl*>(conv_bias_opr)
            ->suggest_algo_category_order(conv_bias_param);
}

415 416 417 418 419
const char* ConvolutionImpl::get_algorithm_set_name() const {
    // fallback version 0
    return "F0";
}

420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
ConvolutionImpl::AlgoDataType
ConvolutionImpl::NCBKernSizeParam::deduce_algo_data_type() const {
    if (src_type.enumv() == DTypeEnum::Float32) {
        return ConvolutionImpl::AlgoDataType::FLOAT32;
#if !MEGDNN_DISABLE_FLOAT16
    } else if (src_type.enumv() == DTypeEnum::Float16) {
        return ConvolutionImpl::AlgoDataType::FLOAT16;
#endif
    } else if (src_type.enumv() == DTypeEnum::Int8 ||
               src_type.enumv() == DTypeEnum::QuantizedS8) {
        if (dst_type.enumv() == DTypeEnum::Int16) {
            return ConvolutionImpl::AlgoDataType::INT8X8X16;
        } else {
            return ConvolutionImpl::AlgoDataType::QINT8X8X32;
        }
    } else if (src_type.enumv() == DTypeEnum::Quantized8Asymm) {
        return ConvolutionImpl::AlgoDataType::QUINT8X8X32;
437 438
    } else if (src_type.enumv() == DTypeEnum::QuantizedS4) {
        return ConvolutionImpl::AlgoDataType::QINT4x4x32;
439
    } else {
M
Megvii Engine Team 已提交
440
        megdnn_throw(ssprintf("not support data type of %s * %s -> %s\n",
441 442 443 444 445
                              src_type.name(), filter_type.name(),
                              dst_type.name()));
    }
}

446 447
/* ===================== ConvolutionBackwardData ===================== */

448 449 450 451
class ConvolutionBackwardDataImpl::AlgoPack : NonCopyableObj {
    AlgoNaive algo_naive;
    AlgoDirect algo_direct;
    AlgoMatrixMul algo_matmul;
452 453
    SmallVector<AlgoBase*> m_all_algos;
    AlgoBase::Mapper m_all_algos_map;
454 455 456

public:
    AlgoPack() {
457 458 459 460 461 462 463
        m_all_algos.emplace_back(&algo_matmul);
        m_all_algos.emplace_back(&algo_direct);
        m_all_algos.emplace_back(&algo_naive);

        for (auto&& algo : m_all_algos) {
            m_all_algos_map.emplace(algo->info().desc, algo);
        }
464
    }
465 466
    const SmallVector<AlgoBase*>& all_algos() const { return m_all_algos; }
    const AlgoBase::Mapper& all_algos_map() const { return m_all_algos_map; }
467
};
468 469 470 471 472
const ConvolutionBackwardDataImpl::AlgoPack&
ConvolutionBackwardDataImpl::algo_pack() {
    static AlgoPack algo_pack;
    return algo_pack;
}
473 474

SmallVector<ConvolutionBackwardDataImpl::AlgoBase*>
475 476
ConvolutionBackwardDataImpl::get_all_packed_algo() {
    return algo_pack().all_algos();
477
}
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522

void ConvolutionBackwardDataImpl::exec(_megdnn_tensor_in filter,
                                       _megdnn_tensor_in diff,
                                       _megdnn_tensor_out grad,
                                       _megdnn_workspace workspace) {
    if (param().format == param::Convolution::Format::NHWCD4 ||
        param().format == param::Convolution::Format::NCHW4) {
        return naive::ConvolutionBackwardDataImpl::exec(filter, diff, grad,
                                                        workspace);
    }
    auto fparam = make_ncb_kern_param(filter, diff, grad, workspace);
    return exec_with_ncb_kern(fparam);
}

size_t ConvolutionBackwardDataImpl::get_workspace_in_bytes(
        const TensorLayout& filter, const TensorLayout& diff,
        const TensorLayout& grad) {
    if (param().format == param::Convolution::Format::NHWCD4 ||
        param().format == param::Convolution::Format::NCHW4) {
        return naive::ConvolutionBackwardDataImpl::get_workspace_in_bytes(
                filter, diff, grad);
    }
    auto fparam = make_ncb_kern_size_param(filter, diff, grad);
    return get_workspace_with_ncb(fparam);
}

std::vector<ConvolutionBackwardDataImpl::Algorithm*>
ConvolutionBackwardDataImpl::get_all_algorithms(const TensorLayout& filter,
                                                const TensorLayout& diff,
                                                const TensorLayout& grad) {
    if (param().format == param::Convolution::Format::NHWCD4 ||
        param().format == param::Convolution::Format::NCHW4) {
        return naive::ConvolutionBackwardDataImpl::get_all_algorithms(
                filter, diff, grad);
    }
    auto fparam = make_ncb_kern_size_param(filter, diff, grad);
    auto ret = get_all_algorithms_with_ncb(fparam);
    megdnn_assert(!ret.empty(), "no usable conv fwd algorithm");
    return ret;
}

ConvolutionBackwardDataImpl::Algorithm*
ConvolutionBackwardDataImpl::get_algorithm_heuristic(
        const TensorLayout& filter, const TensorLayout& diff,
        const TensorLayout& grad, size_t workspace_limit_in_bytes,
523 524
        const AlgoAttribute& positive_attr,
        const AlgoAttribute& negative_attr) {
525 526 527
    if (param().format == param::Convolution::Format::NHWCD4 ||
        param().format == param::Convolution::Format::NCHW4) {
        return naive::ConvolutionBackwardDataImpl::get_algorithm_heuristic(
528 529
                filter, diff, grad, workspace_limit_in_bytes, positive_attr,
                negative_attr);
530 531 532
    }
    auto fparam = make_ncb_kern_size_param(filter, diff, grad);
    return get_algorithm_heuristic_with_ncb(fparam, workspace_limit_in_bytes,
533
                                            positive_attr, negative_attr);
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
}

ConvolutionBackwardDataImpl::NCBKernSizeParam
ConvolutionBackwardDataImpl::make_ncb_kern_size_param(
        const TensorLayout& filter, const TensorLayout& diff,
        const TensorLayout& grad) {
    auto safe_u32 = [](size_t v) -> uint32_t {
        megdnn_assert(v <= std::numeric_limits<uint32_t>::max(),
                      "value too large: %zu", v);
        return v;
    };
    size_t spatial_pos;
    if (param().format == Param::Format::NCHW) {
        spatial_pos = 2;
    } else {
        megdnn_assert(param().format == Param::Format::NHWC,
                      "invalid conv format");
        spatial_pos = 1;
    }
    auto grad_fwd = grad;
    auto filter_fwd = filter;
    auto diff_fwd = diff;

    std::swap(grad_fwd.dtype, diff_fwd.dtype);

    return {
            safe_u32(diff[0]),
            {{safe_u32(diff[spatial_pos]), safe_u32(diff[spatial_pos + 1])}},
            {{safe_u32(grad[spatial_pos]), safe_u32(grad[spatial_pos + 1])}},
            check_layout_fwd(grad_fwd, filter_fwd, diff_fwd),
            diff.dtype,
            filter.dtype,
            grad.dtype,
            diff,
            filter,
            grad,
            diff.stride[0],
            grad.stride[0],
            0,
            0,
            0,
            param().compute_mode,
    };
}

ConvolutionBackwardDataImpl::NCBKernParam
ConvolutionBackwardDataImpl::make_ncb_kern_param(_megdnn_tensor_in filter,
                                                 _megdnn_tensor_in diff,
                                                 _megdnn_tensor_out grad,
                                                 _megdnn_workspace workspace) {
    NCBKernParam ret;
    static_cast<NCBKernSizeParam&>(ret) =
            make_ncb_kern_size_param(filter.layout, diff.layout, grad.layout);

    auto required_workspace_in_bytes = get_workspace_with_ncb(ret);
    megdnn_assert(workspace.size >= required_workspace_in_bytes,
                  "required workspace: %zu; provided workspace: %zu",
                  required_workspace_in_bytes, workspace.size);
    ret.filter_ptr = filter.raw_ptr;
    ret.diff_ptr = diff.raw_ptr;
    ret.grad_ptr = grad.raw_ptr;
    ret.workspace_ptr = workspace.raw_ptr;
    ret.workspace_size = workspace.size;
    return ret;
}

void ConvolutionBackwardDataImpl::exec_with_ncb_kern(
        const NCBKernParam& param) {
    auto p1g = param;
    auto group = p1g.filter_meta.group;
    p1g.filter_meta.group = 1;
605
    auto&& algo = get_algorithm(p1g);
606
    auto kptr = ncb_1g_dispatch_kern(algo, p1g);
607
    if (group == 1 || static_cast<AlgoBase*>(algo)->is_naive()) {
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
        auto run = [kptr, param]() { kptr(param); };
        static_cast<naive::HandleImpl*>(handle())->dispatch_kern(run);
    } else {
        megdnn_assert(p1g.filter_meta.format == Param::Format::NCHW ||
                              p1g.filter_meta.format == Param::Format::NHWC,
                      "invalid conv format");
        auto run = [kptr, p1g_orig = p1g, group]() {
            auto p1g = p1g_orig;
            ptrdiff_t istrd, fstrd, ostrd;
            fstrd = p1g.filter_meta.icpg * p1g.filter_meta.ocpg *
                    p1g.filter_meta.spatial[0] * p1g.filter_meta.spatial[1] *
                    p1g.filter_type.size();
            istrd = p1g.filter_meta.ocpg * p1g.diff_type.size();
            ostrd = p1g.filter_meta.icpg * p1g.grad_type.size();
            p1g.diff_extra_mem_size =
                    (group - 1) * p1g.filter_meta.ocpg * p1g.diff_type.size();
            p1g.filter_extra_mem_size =
                    (group - 1) * p1g.filter_meta.icpg * p1g.filter_meta.ocpg *
                    p1g.filter_meta.spatial[0] * p1g.filter_meta.spatial[1] *
                    p1g.filter_type.size();
            p1g.grad_extra_mem_size =
                    (group - 1) * p1g.filter_meta.icpg * p1g.grad_type.size();
            if (p1g.filter_meta.format == Param::Format::NCHW) {
                istrd *= p1g.isz[0] * p1g.isz[1];
                ostrd *= p1g.osz[0] * p1g.osz[1];
                p1g.diff_extra_mem_size *= p1g.isz[0] * p1g.isz[1];
                p1g.grad_extra_mem_size *= p1g.osz[0] * p1g.osz[1];
            } else {
                // must be NHWC. No action performed.
            }
            for (size_t i = 0; i < group; ++i) {
                kptr(p1g);
                incr_ptr(p1g.diff_ptr, istrd);
                incr_ptr(p1g.filter_ptr, fstrd);
                incr_ptr(p1g.grad_ptr, ostrd);
                p1g.diff_extra_mem_size -= istrd;
                p1g.filter_extra_mem_size -= fstrd;
                p1g.grad_extra_mem_size -= ostrd;
            }
        };
        static_cast<naive::HandleImpl*>(handle())->dispatch_kern(run);
    }
}

size_t ConvolutionBackwardDataImpl::get_workspace_with_ncb(
        const NCBKernSizeParam& param) {
    if (param.filter_meta.group != 1) {
        auto p1g = param;
        p1g.filter_meta.group = 1;
657 658
        auto algo = get_algorithm(p1g);
        return ncb_1g_get_workspace(algo, p1g);
659
    }
660 661
    auto algo = get_algorithm(param);
    return ncb_1g_get_workspace(algo, param);
662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
}

std::vector<ConvolutionBackwardDataImpl::Algorithm*>
ConvolutionBackwardDataImpl::get_all_algorithms_with_ncb(
        const NCBKernSizeParam& param) {
    if (param.filter_meta.group != 1) {
        auto p1g = param;
        p1g.filter_meta.group = 1;
        return ncb_1g_get_all_algorithms(p1g);
    }
    return ncb_1g_get_all_algorithms(param);
}

ConvolutionBackwardDataImpl::Algorithm*
ConvolutionBackwardDataImpl::get_algorithm_heuristic_with_ncb(
        const NCBKernSizeParam& param, size_t workspace_limit_in_bytes,
678 679
        const AlgoAttribute& positive_attr,
        const AlgoAttribute& negative_attr) {
680 681 682 683
    if (param.filter_meta.group != 1) {
        auto p1g = param;
        p1g.filter_meta.group = 1;
        return ncb_1g_get_algorithm_heuristic(p1g, workspace_limit_in_bytes,
684
                                              positive_attr, negative_attr);
685 686
    }
    return ncb_1g_get_algorithm_heuristic(param, workspace_limit_in_bytes,
687
                                          positive_attr, negative_attr);
688 689 690 691 692
}

size_t ConvolutionBackwardDataImpl::ncb_1g_get_workspace(
        Algorithm* algo, const NCBKernSizeParam& param) {
    megdnn_assert(param.filter_meta.group == 1);
693
    if (algo->handle_type() == Handle::HandleType::FALLBACK) {
694 695 696 697 698 699 700 701 702 703
        return static_cast<AlgoBase*>(algo)->get_workspace(this, param);
    }
    return 0;
}

ConvolutionBackwardDataImpl::ncb_kern_t
ConvolutionBackwardDataImpl::ncb_1g_dispatch_kern(
        Algorithm* algo, const NCBKernSizeParam& param) {
    megdnn_assert(param.filter_meta.group == 1);

704
    if (algo->handle_type() == Handle::HandleType::FALLBACK) {
705 706 707
        return static_cast<AlgoBase*>(algo)->dispatch_kern(this, param);
    }

M
Megvii Engine Team 已提交
708
    megdnn_throw("no suitable ConvolutionBackwardData algorithm");
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
}

bool ConvolutionBackwardDataImpl::is_matrix_mul_preferred(
        const NCBKernSizeParam& param) {
    auto&& fm = param.filter_meta;
    auto OC = fm.ocpg, IC = fm.icpg;

    return (OC * IC >= 32) ||
           (fm.spatial[0] == 1 && fm.spatial[1] == 1 && fm.padding[0] == 0 &&
            fm.padding[1] == 0 && fm.stride[0] == 1 && fm.stride[1] == 1);
}

std::vector<ConvolutionBackwardDataImpl::Algorithm*>
ConvolutionBackwardDataImpl::ncb_1g_get_all_algorithms(
        const NCBKernSizeParam& param) {
    std::vector<Algorithm*> ret;
725
    std::vector<Algorithm*> prefer_algos;
726
    for (auto&& i : get_all_packed_algo()) {
727 728 729
        if (i->usable(this, param)) {
            if (i->is_preferred(param)) {
                prefer_algos.push_back(i);
730
            } else {
731
                ret.push_back(i);
732 733 734
            }
        }
    }
735
    ret.insert(ret.begin(), prefer_algos.begin(), prefer_algos.end());
736 737 738 739 740 741
    return ret;
}

ConvolutionBackwardDataImpl::Algorithm*
ConvolutionBackwardDataImpl::ncb_1g_get_algorithm_heuristic(
        const NCBKernSizeParam& param, size_t workspace_limit_in_bytes,
742 743
        const AlgoAttribute& positive_attr,
        const AlgoAttribute& negative_attr) {
744 745
    for (auto i : ncb_1g_get_all_algorithms(param)) {
        if (ncb_1g_get_workspace(i, param) <= workspace_limit_in_bytes) {
746 747
            if (i->contain_attribute_all(positive_attr) &&
                !i->contain_attribute_any(negative_attr)) {
748 749 750 751 752 753 754 755
                return i;
            }
        }
    }
    megdnn_assert(0,
                  "no suitable algorithm found within given workspace limit");
}

756
ConvolutionBackwardDataImpl::Algorithm*
757 758
ConvolutionBackwardDataImpl::get_algorithm_from_desc(
        const AlgorithmDesc& desc) {
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
    if (!desc.valid()) {
        return nullptr;
    } else {
        switch (desc.handle_type) {
            case Handle::HandleType::FALLBACK: {
                const auto& map = algo_pack().all_algos_map();
                megdnn_assert(map.find(desc) != map.end());
                return map.at(desc);
            }
#if MEGDNN_AARCH64 || MEGDNN_ARMV7
            case Handle::HandleType::ARM_COMMON:
            case Handle::HandleType::AARCH64:
            case Handle::HandleType::ARMV7:
                return arm_common::ConvolutionBackwardDataImpl::
                        get_algo_from_desc(desc);
#endif
            case Handle::HandleType::NAIVE: {
                auto algo = static_cast<naive::HandleImpl*>(handle())
                                    ->default_conv_bwd_data_algo();
                megdnn_assert(algo->info().desc == desc);
                return algo;
            }
            default:
                megdnn_throw("Unknown handle type");
                return nullptr;
        }
    }
}


789 790
ConvolutionBackwardDataImpl::Algorithm*
ConvolutionBackwardDataImpl::get_algorithm(const NCBKernSizeParam& param) {
791
    if (auto algo = get_algorithm_from_desc(execution_policy().algo)) {
792
        return algo;
793 794 795 796
    }
    if (!m_prev_selected_algo ||
        memcmp(&m_prev_selected_algo_sizep, &param, sizeof(NCBKernSizeParam))) {
        m_prev_selected_algo = ncb_1g_get_algorithm_heuristic(
797
                param, std::numeric_limits<size_t>::max(),
798
                AlgoAttribute::DEFAULT, AlgoAttribute::DEFAULT);
799 800 801 802 803 804 805 806 807 808 809
        m_prev_selected_algo_sizep = param;
    }
    return m_prev_selected_algo;
}

const char* ConvolutionBackwardDataImpl::get_algorithm_set_name() const {
    // fallback version 0
    return "FALLBACK_CONVOLUTION_BACKWARD_DATA_IMPL0";
}

// vim: syntax=cpp.doxygen