algos.cpp 37.7 KB
Newer Older
1 2 3 4 5 6 7 8
/**
 * \file dnn/src/x86/conv_bias/f32/algos.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
 * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
9 10
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
 * implied.
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
 */

#include "src/x86/conv_bias/f32/algos.h"
#include <unordered_map>
#include "src/common/opr_delegate.h"
#include "src/common/utils.h"
#include "src/fallback/convolution/img2col_helper.h"
#include "src/x86/conv_bias/f32/do_conv_stride2.h"
#include "src/x86/conv_bias/opr_impl.h"
#include "src/x86/conv_bias/postprocess_helper.h"
#include "src/x86/convolution/convolution_direct_special_cases.h"
#include "src/x86/handle.h"
#include "src/x86/profile.h"

#include "midout.h"

using namespace megdnn;
using namespace x86;
namespace {
bool need_dst_copy(const fallback::ConvBiasImpl::NCBKernSizeParam& param) {
    if (param.osz[0] % 8 != 0 || param.osz[1] % 8 != 0) {
        // If the size of output is not multiples of 8, we need to copy it.
        return true;
    }
    return false;
}

bool need_src_copy(const fallback::ConvBiasImpl::NCBKernSizeParam& param) {
    if (param.filter_meta.padding[0] || param.filter_meta.padding[1]) {
        // If padding is not zero, we need to copy to eliminate padding effect.
        return true;
    }
    return need_dst_copy(param);
}

void get_rectified_size(size_t IH, size_t IW, size_t OH, size_t OW, size_t FH,
                        size_t FW, size_t PH, size_t PW, size_t& IH2,
                        size_t& IW2, size_t& OH2, size_t& OW2) {
    MEGDNN_MARK_USED_VAR(PH);
    MEGDNN_MARK_USED_VAR(PW);
    OH2 = (OH + 7) & ~7;
    OW2 = (OW + 7) & ~7;
    IH2 = 2 * OH2 + FH - 2;
    IW2 = 2 * OW2 + FW - 2;
    // Because stride is 2, sometimes IH/W == IH/W2 + 1
    // Do a max update to handle this case.
    IH2 = std::max(IH2, IH);
    IW2 = std::max(IW2, IW);
}
}  // namespace

62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
#define GET_KERN                                                               \
    auto fm = param.filter_meta;                                               \
    size_t N = param.n;                                                        \
    size_t IC = param.filter_meta.icpg;                                        \
    size_t OC = param.filter_meta.ocpg;                                        \
    size_t group = fm.group;                                                   \
    WorkspaceBundle bundle = get_bundle(param);                                \
    SmallVector<NCBKern> ret_kerns;                                            \
    if (m_large_group) {                                                       \
        auto exec_one_group = [bundle](                                        \
                                      const NCBKernParam& kern_param,          \
                                      const NCBKernIndex& ncb_index) mutable { \
            bundle.set(kern_param.workspace_ptr);                              \
            auto fm = kern_param.filter_meta;                                  \
            size_t IC = fm.icpg;                                               \
            size_t OC = fm.ocpg;                                               \
            for (size_t ic = 0; ic < IC; ic++) {                               \
                copy_padding_kern(bundle, kern_param, ncb_index,               \
                                  {ncb_index.thread_id, 0, ic});               \
            }                                                                  \
            for (size_t oc = 0; oc < OC; oc++) {                               \
                do_conv_kern(bundle, kern_param, ncb_index,                    \
                             {ncb_index.thread_id, 0, oc});                    \
            }                                                                  \
        };                                                                     \
        ret_kerns.push_back({exec_one_group, {group, N, 1_z}});                \
    } else {                                                                   \
        auto copy_padding = [bundle](const NCBKernParam& kern_param,           \
                                     const NCBKernIndex& ncb_index) mutable {  \
            bundle.set(kern_param.workspace_ptr);                              \
            copy_padding_kern(bundle, kern_param, ncb_index,                   \
                              ncb_index.ndrange_id);                           \
        };                                                                     \
        ret_kerns.push_back({copy_padding, {group, N, IC}});                   \
        auto do_conv = [bundle](const NCBKernParam& kern_param,                \
                                const NCBKernIndex& ncb_index) mutable {       \
            bundle.set(kern_param.workspace_ptr);                              \
            do_conv_kern(bundle, kern_param, ncb_index, ncb_index.ndrange_id); \
        };                                                                     \
        ret_kerns.push_back({do_conv, {group, N, OC}});                        \
    }                                                                          \
103 104 105 106 107
    return ret_kerns;

/* ===================== direct algo ===================== */

bool ConvBiasImpl::AlgoDirect::usable(
108
        const NCBKernSizeParam& param,
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
        AlgoSelectionStrategy algo_selection_strategy) const {
    auto&& fm = param.filter_meta;
    bool aviliable = fm.format == Param::Format::NCHW && fm.spatial_ndim == 2 &&
                     param.src_type.enumv() == DTypeEnum::Float32 &&
                     param.filter_type.enumv() == DTypeEnum::Float32 &&
                     param.dst_type.enumv() == DTypeEnum::Float32 &&
                     fm.dilation[0] == 1 && fm.dilation[1] == 1 &&
                     fm.spatial[0] <= 7 && fm.stride[0] == 1 &&
                     fm.stride[1] == 1;
    if (algo_selection_strategy == AlgoSelectionStrategy::HEURISTIC) {
        bool large_group = param.filter_meta.group >= param.nr_threads;
        aviliable &= (large_group == m_large_group);
    }
    return aviliable;
}
WorkspaceBundle ConvBiasImpl::AlgoDirect::get_bundle(
        const NCBKernSizeParam& param) const {
    auto&& fm = param.filter_meta;
    size_t nr_threads = param.nr_threads;
    size_t group = fm.group, batch = param.n;
    auto IC = fm.icpg, IH = param.isz[0], IW = param.isz[1];
    auto FH = fm.spatial[0], FW = fm.spatial[1];
    auto OH = param.osz[0], OW = param.osz[1];
    size_t OH2, OW2, IH2, IW2;
    get_rectified_img_size(IH, IW, FH, FW, OH, OW, fm.padding[0], fm.padding[1],
                           IH2, IW2, OH2, OW2);
    size_t part0 = 0u, part1 = 0u;
    if (IH != IH2 || IW != IW2) {
        part0 = m_large_group ? IC * IH2 * IW2 * sizeof(float) * nr_threads
                              : IC * IH2 * IW2 * sizeof(float) * group * batch;
    }
    if (OH != OH2 || OW != OW2) {
        part1 = OH2 * OW2 * sizeof(float) * nr_threads;
    }
    return {nullptr, {part0, part1}};
}
size_t ConvBiasImpl::AlgoDirect::get_workspace(
146
        const NCBKernSizeParam& param) const {
147 148 149 150 151
    return get_bundle(param).total_size_in_bytes();
}

//! Process one input channel copy padding
void ConvBiasImpl::AlgoDirect::copy_padding_kern(
152 153
        const WorkspaceBundle& bundle,
        const ConvBiasImpl::NCBKernParam& kern_param,
154 155
        const ConvBiasImpl::NCBKernIndex& ncb_index,
        const CpuNDRange& workspace_ids) {
156 157 158 159 160 161 162 163 164 165 166 167 168 169
    size_t IH = kern_param.isz[0];
    size_t IW = kern_param.isz[1];
    size_t IC = kern_param.filter_meta.icpg;
    size_t OH = kern_param.osz[0];
    size_t OW = kern_param.osz[1];
    size_t PH = kern_param.filter_meta.padding[0];
    size_t PW = kern_param.filter_meta.padding[1];
    size_t FH = kern_param.filter_meta.spatial[0];
    size_t FW = kern_param.filter_meta.spatial[1];
    size_t GROUP = kern_param.filter_meta.group;
    size_t OH2, OW2, IH2, IW2;
    get_rectified_img_size(IH, IW, FH, FW, OH, OW, PH, PW, IH2, IW2, OH2, OW2);
    bool rectify_src = (IH != IH2 || IW != IW2);
    size_t padding_group_size = IH2 * IW2 * IC;
170 171 172 173 174 175
    size_t batch_id = ncb_index.ndrange_id[1];
    size_t group_id = ncb_index.ndrange_id[0];
    size_t channel_id = workspace_ids[2];
    const float* sptr = static_cast<const float*>(
                                kern_param.src<float>(batch_id, group_id)) +
                        channel_id * IH * IW;
176 177

    //! Used for get the workspace offset
178 179 180
    size_t workspace_group_id = workspace_ids[0],
           workspace_batch_id = workspace_ids[1],
           workspace_channel_id = workspace_ids[2];
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
    //! If large group, each thread has its own worspace, set group_id with
    //! thread_id
    if (rectify_src) {
        //! copy to sptr_base to eliminate padding effect
        float* sptr_base = static_cast<float*>(bundle.get(0)) +
                           workspace_group_id * padding_group_size +
                           workspace_batch_id * GROUP * padding_group_size +
                           workspace_channel_id * IH2 * IW2;
        std::memset(sptr_base, 0, sizeof(float) * IH2 * IW2);
        rep(ih, IH) {
            std::memcpy(sptr_base + (ih + PH) * IW2 + PW, sptr + ih * IW,
                        sizeof(float) * IW);
        }
    }
};
#define DISPATCH                                                \
    if (is_supported(SIMDType::FMA)) {                          \
        DISPATCH_SIMD(fma)                                      \
    } else if (is_supported(SIMDType::AVX)) {                   \
        DISPATCH_SIMD(avx)                                      \
    } else if (is_supported(SIMDType::SSE)) {                   \
        DISPATCH_SIMD(sse)                                      \
    } else {                                                    \
        megdnn_throw(megdnn_mangle("no fma/avx/sse detected")); \
    }

#define DISPATCH_SIMD(simd)             \
    if (is_xcorr) {                     \
        DISPATCH_SIMD_MODE(simd, xcorr) \
    } else {                            \
        DISPATCH_SIMD_MODE(simd, conv)  \
    }

#define DISPATCH_SIMD_MODE(simd, mode)                              \
    switch (FH) {                                                   \
        case 1:                                                     \
            DISPATCH_SIMD_MODE_FSIZE(simd, mode, 1);                \
            break;                                                  \
        case 2:                                                     \
            DISPATCH_SIMD_MODE_FSIZE(simd, mode, 2);                \
            break;                                                  \
        case 3:                                                     \
            DISPATCH_SIMD_MODE_FSIZE(simd, mode, 3);                \
            break;                                                  \
        case 4:                                                     \
            DISPATCH_SIMD_MODE_FSIZE(simd, mode, 4);                \
            break;                                                  \
        case 5:                                                     \
            DISPATCH_SIMD_MODE_FSIZE(simd, mode, 5);                \
            break;                                                  \
        case 6:                                                     \
            DISPATCH_SIMD_MODE_FSIZE(simd, mode, 6);                \
            break;                                                  \
        case 7:                                                     \
            DISPATCH_SIMD_MODE_FSIZE(simd, mode, 7);                \
            break;                                                  \
        default:                                                    \
            megdnn_throw(megdnn_mangle("unsupported filter size")); \
    }

#define DISPATCH_SIMD_MODE_FSIZE(simd, mode, fsize) \
    func = detail::convolution_##mode##_fh##fsize##_##simd;

//! compute one output channel
245
void ConvBiasImpl::AlgoDirect::do_conv_kern(const WorkspaceBundle& bundle,
246
                                            const NCBKernParam& kern_param,
247 248
                                            const NCBKernIndex& ncb_index,
                                            const CpuNDRange& workspace_ids) {
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
    size_t OH = kern_param.osz[0];
    size_t OW = kern_param.osz[1];
    size_t IH = kern_param.isz[0];
    size_t IW = kern_param.isz[1];
    size_t FH = kern_param.filter_meta.spatial[0];
    size_t FW = kern_param.filter_meta.spatial[1];
    size_t IC = kern_param.filter_meta.icpg;
    size_t PH = kern_param.filter_meta.padding[0];
    size_t PW = kern_param.filter_meta.padding[1];
    auto is_xcorr = !kern_param.filter_meta.should_flip;
    size_t GROUP = kern_param.filter_meta.group;
    size_t OH2, OW2, IH2, IW2;
    get_rectified_img_size(IH, IW, FH, FW, OH, OW, PH, PW, IH2, IW2, OH2, OW2);
    bool rectify_src = (IH != IH2 || IW != IW2);
    bool rectify_dst = (OH != OH2 || OW != OW2);
    size_t padding_group_size = IH2 * IW2 * IC;
    //! Choose the compute kernel
    std::function<void(const float*, const float*, float*, size_t, size_t,
                       size_t, size_t, size_t)>
            func = nullptr;
    DISPATCH;

    size_t bias_offset = 0;
    if (kern_param.bias_mode == megdnn::BiasMode::BIAS) {
        bias_offset = OH * OW;
    } else if (kern_param.bias_mode ==
               megdnn::BiasMode::BROADCAST_CHANNEL_BIAS) {
        bias_offset = 1_z;
    }
278 279
    size_t group_id = ncb_index.ndrange_id[0];
    size_t batch_id = ncb_index.ndrange_id[1];
280
    //! Used for get the workspace offset
281 282 283
    size_t workspace_group_id = workspace_ids[0],
           workspace_batch_id = workspace_ids[1], oc = workspace_ids[2];
    const float* sptr = kern_param.src<float>(batch_id, group_id);
284 285
    const float* filter =
            kern_param.filter<float>(group_id) + oc * FH * FW * IC;
286 287 288
    const float* bias_ptr =
            kern_param.bias<float>(batch_id, group_id) + oc * bias_offset;
    float* dst = kern_param.dst<float>(batch_id, group_id) + oc * OH * OW;
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
    if (rectify_src) {
        sptr = static_cast<float*>(bundle.get(0)) +
               workspace_group_id * padding_group_size +
               workspace_batch_id * GROUP * padding_group_size;
    }
    float* dptr = nullptr;
    if (rectify_dst) {
        dptr = static_cast<float*>(bundle.get(1)) +
               ncb_index.thread_id * OH2 * OW2;
    } else {
        dptr = dst;
    }
    std::memset(dptr, 0, sizeof(float) * OH2 * OW2);
    rep(ic, IC) {
        func(sptr + ic * IH2 * IW2, filter + ic * FH * FW, dptr, IH2, IW2, OH2,
             OW2, FW);
    }
    if (rectify_dst) {
        rep(oh, OH) {
            std::memcpy(dst + oh * OW, dptr + oh * OW2, sizeof(float) * OW);
        }
    }
    PostProcess<dt_float32>::run(dst, const_cast<float*>(bias_ptr), dst,
                                 kern_param.bias_mode, kern_param.nonlineMode,
                                 kern_param.bias_type, kern_param.dst_type, 1_z,
                                 1_z, OH, OW);
}

SmallVector<ConvBiasImpl::NCBKern> ConvBiasImpl::AlgoDirect::get_kimpls(
        const NCBKernSizeParam& param) const {
    GET_KERN;
}
/* ===================== direct-stride2 algo ===================== */
bool ConvBiasImpl::AlgoDirectStride2::usable(
323
        const NCBKernSizeParam& param,
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
        AlgoSelectionStrategy algo_selection_strategy) const {
    auto&& fm = param.filter_meta;
    auto FH = fm.spatial[0];
    bool aviliable =
            param.filter_meta.format == param::ConvBias::Format::NCHW &&
            param.src_type.enumv() == DTypeEnum::Float32 &&
            param.filter_type.enumv() == DTypeEnum::Float32 &&
            param.dst_type.enumv() == DTypeEnum::Float32 && !fm.should_flip &&
            fm.spatial_ndim == 2 && fm.dilation[0] == 1 &&
            fm.dilation[1] == 1 && fm.stride[0] == 2 && fm.stride[1] == 2 &&
            FH == fm.spatial[1] && (FH == 2 || FH == 3 || FH == 5 || FH == 7);
    if (algo_selection_strategy == AlgoSelectionStrategy::HEURISTIC) {
        bool large_group = param.filter_meta.group >= param.nr_threads;
        aviliable &= (large_group == m_large_group);
    }
    return aviliable;
}

WorkspaceBundle ConvBiasImpl::AlgoDirectStride2::get_bundle(
        const NCBKernSizeParam& param) const {
    UNPACK_CONV_F32_NCB_KERN_SIZES(param);
    MEGDNN_MARK_USED_VAR(N);
    MEGDNN_MARK_USED_VAR(OC);
    MEGDNN_MARK_USED_VAR(SH);
    MEGDNN_MARK_USED_VAR(SW);
    size_t nr_threads = param.nr_threads;
    size_t group = param.filter_meta.group;
    size_t batch = param.n;
    size_t src_size = 0, dst_size = 0;
    size_t IH2, IW2, OH2, OW2;
    get_rectified_size(IH, IW, OH, OW, FH, FW, PH, PW, IH2, IW2, OH2, OW2);
    if (need_src_copy(param)) {
        src_size = m_large_group
                           ? IC * IH2 * IW2 * sizeof(float) * nr_threads
                           : IC * IH2 * IW2 * sizeof(float) * group * batch;
    }
    if (need_dst_copy(param)) {
        // we only need one dst plane
        dst_size = OH2 * OW2 * sizeof(float) * nr_threads;
    }
    return WorkspaceBundle(nullptr, {src_size, dst_size});
}

size_t ConvBiasImpl::AlgoDirectStride2::get_workspace(
368
        const NCBKernSizeParam& param) const {
369 370 371 372
    return get_bundle(param).total_size_in_bytes();
}
//! Process one input channel copy padding
void ConvBiasImpl::AlgoDirectStride2::copy_padding_kern(
373 374
        const WorkspaceBundle& bundle,
        const ConvBiasImpl::NCBKernParam& kern_param,
375 376
        const ConvBiasImpl::NCBKernIndex& ncb_index,
        const CpuNDRange& workspace_ids) {
377 378 379 380 381 382 383 384 385 386 387 388 389 390
    size_t IH = kern_param.isz[0];
    size_t IW = kern_param.isz[1];
    size_t IC = kern_param.filter_meta.icpg;
    size_t OH = kern_param.osz[0];
    size_t OW = kern_param.osz[1];
    size_t PH = kern_param.filter_meta.padding[0];
    size_t PW = kern_param.filter_meta.padding[1];
    size_t FH = kern_param.filter_meta.spatial[0];
    size_t FW = kern_param.filter_meta.spatial[1];
    size_t GROUP = kern_param.filter_meta.group;
    size_t OH2, OW2, IH2, IW2;
    get_rectified_size(IH, IW, OH, OW, FH, FW, PH, PW, IH2, IW2, OH2, OW2);
    bool rectify_src = need_src_copy(kern_param);
    size_t padding_group_size = IH2 * IW2 * IC;
391 392 393 394 395 396
    size_t group_id = ncb_index.ndrange_id[0];
    size_t batch_id = ncb_index.ndrange_id[1];
    size_t channel_id = workspace_ids[2];
    const float* sptr = static_cast<const float*>(
                                kern_param.src<float>(batch_id, group_id)) +
                        channel_id * IH * IW;
397
    //! Used for get the workspace offset
398 399 400
    size_t workspace_group_id = workspace_ids[0],
           workspace_batch_id = workspace_ids[1],
           workspace_channel_id = workspace_ids[2];
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
    if (rectify_src) {
        //! copy to sptr_base to eliminate padding effect
        float* sptr_base = static_cast<float*>(bundle.get(0)) +
                           workspace_group_id * padding_group_size +
                           workspace_batch_id * GROUP * padding_group_size +
                           workspace_channel_id * IH2 * IW2;
        std::memset(sptr_base, 0, sizeof(float) * IH2 * IW2);
        rep(ih, IH) {
            std::memcpy(sptr_base + (ih + PH) * IW2 + PW, sptr + ih * IW,
                        sizeof(float) * IW);
        }
    }
};

//! compute one output channel
void ConvBiasImpl::AlgoDirectStride2::do_conv_kern(
417
        const WorkspaceBundle& bundle, const NCBKernParam& kern_param,
418
        const NCBKernIndex& ncb_index, const CpuNDRange& workspace_ids) {
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
    size_t OH = kern_param.osz[0];
    size_t OW = kern_param.osz[1];
    size_t IH = kern_param.isz[0];
    size_t IW = kern_param.isz[1];
    size_t FH = kern_param.filter_meta.spatial[0];
    size_t FW = kern_param.filter_meta.spatial[1];
    size_t IC = kern_param.filter_meta.icpg;
    size_t PH = kern_param.filter_meta.padding[0];
    size_t PW = kern_param.filter_meta.padding[1];
    size_t GROUP = kern_param.filter_meta.group;
    size_t OH2, OW2, IH2, IW2;
    get_rectified_size(IH, IW, OH, OW, FH, FW, PH, PW, IH2, IW2, OH2, OW2);
    bool rectify_src = need_src_copy(kern_param);
    bool rectify_dst = need_dst_copy(kern_param);
    size_t padding_group_size = IH2 * IW2 * IC;
    //! Choose the compute kernel
    using Func = std::function<void(const float*, const float*, float*, size_t,
                                    size_t, size_t, size_t, size_t, size_t)>;
    Func func_no_add_dst = nullptr, func_add_dst = nullptr;
    if (FH == 2) {
        func_no_add_dst = conv_general_simd::do_conv_2x2_stride2<false>;
        func_add_dst = conv_general_simd::do_conv_2x2_stride2<true>;
    } else if (FH == 3) {
        func_no_add_dst = conv_general_simd::do_conv_3x3_stride2<false>;
        func_add_dst = conv_general_simd::do_conv_3x3_stride2<true>;
    } else if (FH == 5) {
        func_no_add_dst = conv_general_simd::do_conv_5x5_stride2<false>;
        func_add_dst = conv_general_simd::do_conv_5x5_stride2<true>;
    } else if (FH == 7) {
        func_no_add_dst = conv_general_simd::do_conv_7x7_stride2<false>;
        func_add_dst = conv_general_simd::do_conv_7x7_stride2<true>;
    }

    size_t bias_offset = 0;
    if (kern_param.bias_mode == megdnn::BiasMode::BIAS) {
        bias_offset = OH * OW;
    } else if (kern_param.bias_mode ==
               megdnn::BiasMode::BROADCAST_CHANNEL_BIAS) {
        bias_offset = 1_z;
    }
459 460
    size_t group_id = ncb_index.ndrange_id[0];
    size_t batch_id = ncb_index.ndrange_id[1];
461
    //! Used for get the workspace offset
462 463 464 465 466 467 468 469
    size_t workspace_group_id = workspace_ids[0],
           workspace_batch_id = workspace_ids[1], oc = workspace_ids[2];
    const float* sptr = kern_param.src<float>(batch_id, group_id);
    const float* filter =
            kern_param.filter<float>(group_id) + oc * FH * FW * IC;
    const float* bias_ptr =
            kern_param.bias<float>(batch_id, group_id) + oc * bias_offset;
    float* dst = kern_param.dst<float>(batch_id, group_id) + oc * OH * OW;
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
    if (rectify_src) {
        sptr = static_cast<float*>(bundle.get(0)) +
               workspace_group_id * padding_group_size +
               workspace_batch_id * GROUP * padding_group_size;
    }
    float* dptr = nullptr;
    if (rectify_dst) {
        dptr = static_cast<float*>(bundle.get(1)) +
               ncb_index.thread_id * OH2 * OW2;
    } else {
        dptr = dst;
    }
    func_no_add_dst(sptr, filter, dptr, IH2, IW2, OH2, OW2, 0, 0);
    for (size_t ic = 1; ic < IC; ++ic) {
        func_add_dst(sptr + ic * IH2 * IW2, filter + ic * FH * FW, dptr, IH2,
                     IW2, OH2, OW2, 0, 0);
    }
    if (rectify_dst) {
        rep(oh, OH) {
            std::memcpy(dst + oh * OW, dptr + oh * OW2, sizeof(float) * OW);
        }
    }
    PostProcess<dt_float32>::run(dst, const_cast<float*>(bias_ptr), dst,
                                 kern_param.bias_mode, kern_param.nonlineMode,
                                 kern_param.bias_type, kern_param.dst_type, 1_z,
                                 1_z, OH, OW);
}

SmallVector<ConvBiasImpl::NCBKern> ConvBiasImpl::AlgoDirectStride2::get_kimpls(
        const NCBKernSizeParam& param) const {
    GET_KERN;
}
/* ===================== matmul algo ===================== */
WorkspaceBundle ConvBiasImpl::AlgoMatrixMul::get_bundle(
        const NCBKernSizeParam& param) {
    UNPACK_CONV_F32_NCB_KERN_SIZES(param);
    MEGDNN_MARK_USED_VAR(N);
    MEGDNN_MARK_USED_VAR(OC);
    auto IW2 = IH + 2 * PH;
    auto IH2 = IW + 2 * PW;
    bool can_matrix_mul_direct =
            (FH == 1 && FW == 1 && SH == 1 && SW == 1 && PH == 0 && PW == 0);
    // temp space to store padding-free src (with 4 extra floats)
    // temp space to store unrolled matrix (with 4 extra floats)
    // workspace for matrix mul opr
    size_t part0, part1, part2;
    if (can_matrix_mul_direct) {
        part0 = part1 = 0;
    } else {
        part0 = (IC * IH2 * IW2 + 4) * sizeof(float);
        part1 = (IC * FH * FW * OH * OW + 4) * sizeof(float);
    }
    {
        TensorLayout A_, B_, C_;
        A_ = TensorLayout({OC, IC * FH * FW}, dtype::Float32());
        B_ = TensorLayout({IC * FH * FW, OH * OW}, dtype::Float32());
        C_ = TensorLayout({OC, OH * OW}, dtype::Float32());
        part2 = get_matmul_opr()->get_workspace_in_bytes(A_, B_, C_);
    }
    return {nullptr, {part0, part1, part2}};
}

bool ConvBiasImpl::AlgoMatrixMul::is_preferred(
533
        const NCBKernSizeParam& param) const {
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
    auto&& fm = param.filter_meta;
    if (fm.dilation[0] != 1 || fm.dilation[1] != 1) {
        return false;
    }

    // single channel conv should never use matrix mul
    if (fm.ocpg == 1 || fm.icpg == 1)
        return false;
    // 1x1 conv should always use matrix mul
    if (fm.spatial[0] == 1 && fm.spatial[1] == 1)
        return true;
    // if stride is not 1x1, always use matrix mul
    if (fm.stride[0] != 1 || fm.stride[1] != 1)
        return true;
    int f = find_nearest_elem<int>(
            std::round(geometric_mean(fm.spatial[0], fm.spatial[1])),
            {2, 3, 4, 5, 6, 7});
    int oc = find_nearest_elem<int>(fm.ocpg, {4, 8, 16, 32, 64, 96, 128});
    int ic = find_nearest_elem<int>(fm.icpg, {4, 8, 16, 32, 64, 96, 128});
    int on = std::round(geometric_mean(param.osz[0], param.osz[1]));
    ProfileElement cur(f, oc, ic, on);
555
    auto H = static_cast<HandleImpl*>(inplace_cpu_handle().get());
556 557 558 559 560 561 562 563 564 565 566 567 568 569
    auto&& target = std::lower_bound(H->profile_cache().begin(),
                                     H->profile_cache().end(), cur);
    megdnn_assert_internal(target->f == cur.f);
    megdnn_assert_internal(target->oc == cur.oc);
    megdnn_assert_internal(target->ic == cur.ic);
    return on < target->on_threshold;
}

MatrixMul* ConvBiasImpl::AlgoMatrixMul::get_matmul_opr() {
    static CpuOprDelegationStorage<> storage;
    return storage.get<MatrixMul>();
}

void ConvBiasImpl::AlgoMatrixMul::kimpl(const NCBKernParam& param,
570
                                        const NCBKernIndex& ncb_index) {
571 572 573
    UNPACK_CONV_F32_NCB_KERN_SIZES(param);
    auto IH2 = IH + 2 * PH;
    auto IW2 = IW + 2 * PW;
574
    size_t group_id = ncb_index.ndrange_id[0];
575 576 577 578 579 580
    bool is_xcorr = !param.filter_meta.should_flip;
    auto bundle = get_bundle(param);
    bundle.set(param.workspace_ptr);
    // workspace = tmp..src2

    for (size_t n = 0; n < N; ++n) {
581 582 583 584 585
        float* src = const_cast<float*>(param.src<float>(n, group_id));
        float* dst = param.dst<float>(n, group_id);
        float* bias_ptr = static_cast<float*>(
                const_cast<void*>(param.bias<void>(n, group_id)));

586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
        float *B, *src2;
        if (FH == 1 && FW == 1 && SH == 1 && SW == 1 && PH == 0 && PW == 0) {
            // special case: 1x1
            B = src;
        } else {
            src2 = static_cast<float*>(bundle.get(0));
            // copy src to src2;
            float* src2_ptr = src2;
            const float* src_ptr = src;
            rep(ic, IC) {
                if (PH != 0) {
                    std::memset(src2_ptr, 0, sizeof(float) * PH * IW2);
                    src2_ptr += PH * IW2;
                }
                rep(ih, IH) {
                    if (PW != 0)
                        rep(pw, PW) * (src2_ptr++) = 0.0f;
                    std::memcpy(src2_ptr, src_ptr, sizeof(float) * IW);
                    src2_ptr += IW;
                    src_ptr += IW;
                    if (PW != 0)
                        rep(pw, PW) * (src2_ptr++) = 0.0f;
                }
                if (PH != 0) {
                    std::memset(src2_ptr, 0, sizeof(float) * PH * IW2);
                    src2_ptr += PH * IW2;
                }
            }

            B = static_cast<float*>(bundle.get(1));
            if (SH == 1 && SW == 1) {
                if (is_xcorr) {
                    img2col<true>(src2, B, OC, OH, OW, IC, IH2, IW2, FH, FW);
                } else {
                    img2col<false>(src2, B, OC, OH, OW, IC, IH2, IW2, FH, FW);
                }
            } else {
                if (is_xcorr) {
                    img2col_stride<true>(src2, B, OC, OH, OW, IC, IH2, IW2, FH,
                                         FW, SH, SW);
                } else {
                    img2col_stride<false>(src2, B, OC, OH, OW, IC, IH2, IW2, FH,
                                          FW, SH, SW);
                }
            }
        }
        {
            TensorND A_, B_, C_;
            A_.layout = TensorLayout({OC, IC * FH * FW}, dtype::Float32());
635
            A_.raw_ptr = const_cast<float*>(param.filter<float>(group_id));
636 637 638 639 640 641 642 643 644 645 646 647 648 649
            B_.layout = TensorLayout({IC * FH * FW, OH * OW}, dtype::Float32());
            B_.raw_ptr = B;
            C_.layout = TensorLayout({OC, OH * OW}, dtype::Float32());
            C_.raw_ptr = dst;
            Workspace workspace(static_cast<dt_byte*>(bundle.get(2)),
                                bundle.get_size(2));
            get_matmul_opr()->exec(A_, B_, C_, workspace);
        }
        PostProcess<float>::run(dst, bias_ptr, dst, param.bias_mode,
                                param.nonlineMode, param.bias_type,
                                param.dst_type, 1_z, OC, OH, OW);
    }
}

650
#if MEGDNN_X86_WITH_MKL_DNN
651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
static inline void mkldnn_fp32_conv_instance(
        const ConvBiasImpl::NCBKernParam& param, const uint32_t ocpg,
        const uint32_t icpg, const uint32_t group, const uint32_t in,
        const uint32_t ic, const uint32_t oc, const uint32_t ih,
        const uint32_t iw, const uint32_t kh, const uint32_t kw,
        const uint32_t pad_h, const uint32_t pad_w, const uint32_t stride_h,
        const uint32_t stride_w, const uint32_t oh, const uint32_t ow,
        std::vector<dnnl::primitive>& net,
        std::vector<std::unordered_map<int, dnnl::memory>>& net_args,
        dnnl::engine& eng_mkldnn) {
    dnnl::memory::dims src_shape = {in, ic, ih, iw};
    dnnl::memory::dims weight_shape = {oc, ic, kh, kw};
    dnnl::memory::dims bias_shape = {oc};
    dnnl::memory::dims dst_shape = {in, oc, oh, ow};
    dnnl::memory::dims strides_shape = {stride_h, stride_w};
    dnnl::memory::dims padding_shape = {pad_h, pad_w};

    auto user_src_desc =
            dnnl::memory::desc({src_shape}, dnnl::memory::data_type::f32,
                               dnnl::memory::format_tag::nChw8c);
    if (group == 1 && ic < 8) {
        user_src_desc =
                dnnl::memory::desc({src_shape}, dnnl::memory::data_type::f32,
                                   dnnl::memory::format_tag::nchw);
    }
    auto user_src_mem = dnnl::memory(user_src_desc, eng_mkldnn,
                                     const_cast<void*>(param.src_ptr));

    auto weight_tag = dnnl::memory::format_tag::OIhw8i8o;
    if (group > 1) {
        weight_shape = {group, ocpg, icpg, kh, kw};
        if (oc == group && ic == group) {
            weight_tag = dnnl::memory::format_tag::Goihw8g;
        } else {
            weight_tag = dnnl::memory::format_tag::gOIhw8i8o;
        }
    } else if (group == 1 && ic < 8) {
        weight_tag = dnnl::memory::format_tag::Ohwi8o;
    }

    auto user_weights_desc = dnnl::memory::desc(
            {weight_shape}, dnnl::memory::data_type::f32, weight_tag);

    auto user_weights_mem = dnnl::memory(user_weights_desc, eng_mkldnn,
                                         const_cast<void*>(param.filter_ptr));
    auto user_bias_desc = dnnl::memory::desc();
    if (param.bias_mode == megdnn::BiasMode::BROADCAST_CHANNEL_BIAS) {
        user_bias_desc =
                dnnl::memory::desc({bias_shape}, dnnl::memory::data_type::f32,
                                   dnnl::memory::format_tag::x);
    }
    auto user_bias_mem = dnnl::memory(user_bias_desc, eng_mkldnn,
                                      const_cast<void*>(param.bias_ptr));
    auto user_dst_desc =
            dnnl::memory::desc({dst_shape}, dnnl::memory::data_type::f32,
                               dnnl::memory::format_tag::nChw8c);
    auto user_dst_mem = dnnl::memory(user_dst_desc, eng_mkldnn,
                                     const_cast<void*>(param.dst_ptr));
    auto conv_desc = dnnl::convolution_forward::desc(
            dnnl::prop_kind::forward_inference,
            dnnl::algorithm::convolution_auto, user_src_mem.get_desc(),
            user_weights_mem.get_desc(), user_bias_mem.get_desc(),
            user_dst_mem.get_desc(), strides_shape, padding_shape,
            padding_shape);

    dnnl::primitive_attr attr;
    if ((param.nonlineMode == NonlineMode::RELU ||
         param.nonlineMode == NonlineMode::SIGMOID) &&
        (param.bias_mode == megdnn::BiasMode::NO_BIAS ||
         param.bias_mode == megdnn::BiasMode::BROADCAST_CHANNEL_BIAS)) {
        auto post_tag = dnnl::algorithm::eltwise_linear;
        switch (param.nonlineMode) {
            case NonlineMode::RELU:
                post_tag = dnnl::algorithm::eltwise_relu;
                break;
            case NonlineMode::SIGMOID:
                post_tag = dnnl::algorithm::eltwise_logistic;
                break;
            default:
                megdnn_assert(0, "not supported nonline mode %d\n",
                              static_cast<int>(param.nonlineMode));
        }
        dnnl::post_ops ops;
        ops.append_eltwise(1.f, post_tag, 0.f, 0.f);
        attr.set_post_ops(ops);
    }

    auto conv_prim_desc = dnnl::convolution_forward::primitive_desc(
            conv_desc, attr, eng_mkldnn);

    net.push_back(dnnl::convolution_forward(conv_prim_desc));
    net_args.push_back({{DNNL_ARG_SRC, user_src_mem},
                        {DNNL_ARG_WEIGHTS, user_weights_mem},
                        {DNNL_ARG_BIAS, user_bias_mem},
                        {DNNL_ARG_DST, user_dst_mem}});
}

namespace {
struct NCBKernParamEqual {
    bool operator()(const fallback::ConvBiasImpl::NCBKernParam& x,
                    const fallback::ConvBiasImpl::NCBKernParam& y) const {
        bool flag = true;
        flag = flag && (x.src_ptr == y.src_ptr);
        flag = flag && (x.dst_ptr == y.dst_ptr);
        flag = flag && (x.filter_ptr == y.filter_ptr);
        flag = flag && (x.bias_ptr == y.bias_ptr);
        flag = flag && (x.isz == y.isz);
        flag = flag && (x.osz == y.osz);
        flag = flag && (x.src_type == y.src_type);
        flag = flag && (x.dst_type == y.dst_type);
        flag = flag && (x.filter_type == y.filter_type);
        flag = flag && (x.bias_type == y.bias_type);
        flag = flag && (x.filter_meta == y.filter_meta);
        flag = flag && (x.n == y.n);
        flag = flag && (x.bias_mode == y.bias_mode);
        flag = flag && (x.nonlineMode == y.nonlineMode);
        flag = flag && (x.bias_bs == y.bias_bs);
        return flag;
    };
};

struct NCBKernParamHash {
    std::size_t operator()(
            const fallback::ConvBiasImpl::NCBKernParam& param) const {
        std::size_t result = reinterpret_cast<std::size_t>(param.filter_ptr);
        result = result ^ (reinterpret_cast<std::size_t>(param.src_ptr) << 3);
        result = result ^ (reinterpret_cast<std::size_t>(param.dst_ptr) << 7);
        result = result ^ (static_cast<std::size_t>(param.n) << 11);
        return result;
    };
};

}  // namespace

void ConvBiasImpl::AlgoMkldnnConv::kern_mkldnn_fp32(const NCBKernParam& param,
                                                    const NCBKernIndex&) {
    const NCBKernParam& key = param;
    static std::unordered_map<NCBKernParam, std::vector<dnnl::primitive>,
                              NCBKernParamHash, NCBKernParamEqual>
            kern_net_map;
    static std::unordered_map<
            NCBKernParam, std::vector<std::unordered_map<int, dnnl::memory>>,
            NCBKernParamHash, NCBKernParamEqual>
            kern_net_arg_map;

    auto x86_handle = static_cast<HandleImpl*>(inplace_cpu_handle().get());
    megdnn_assert(x86_handle != nullptr, "x86 handle can not be null");
    auto eng_mkldnn = x86_handle->mkldnn_engine();
    auto stream_mkldnn = x86_handle->mkldnn_stream();
    auto&& fm = param.filter_meta;
    const uint32_t group = fm.group;
    const uint32_t in = param.n;
    const uint32_t ic = fm.icpg * group;
    const uint32_t oc = fm.ocpg * group;
    const uint32_t ih = param.isz[0];
    const uint32_t iw = param.isz[1];
    const uint32_t kh = fm.spatial[0];
    const uint32_t kw = fm.spatial[1];
    const uint32_t pad_h = fm.padding[0];
    const uint32_t pad_w = fm.padding[1];
    const uint32_t stride_h = fm.stride[0];
    const uint32_t stride_w = fm.stride[1];
    const uint32_t oh = param.osz[0];
    const uint32_t ow = param.osz[1];

    if (kern_net_map.find(key) == kern_net_map.end()) {
        std::vector<dnnl::primitive> net;
        std::vector<std::unordered_map<int, dnnl::memory>> net_args;
        mkldnn_fp32_conv_instance(param, fm.ocpg, fm.icpg, group, in, ic, oc,
                                  ih, iw, kh, kw, pad_h, pad_w, stride_h,
                                  stride_w, oh, ow, net, net_args, eng_mkldnn);
        kern_net_map[key] = net;
        kern_net_arg_map[key] = net_args;
    }

    const auto& net = kern_net_map[key];
    const auto& net_args = kern_net_arg_map[key];
    for (size_t i = 0; i < net.size(); ++i) {
        net.at(i).execute(stream_mkldnn, net_args.at(i));
    }
    stream_mkldnn.wait();

    if ((param.bias_mode == megdnn::BiasMode::NO_BIAS ||
         param.bias_mode == megdnn::BiasMode::BROADCAST_CHANNEL_BIAS) &&
        (param.nonlineMode != NonlineMode::IDENTITY &&
         param.nonlineMode != NonlineMode::RELU &&
         param.nonlineMode != NonlineMode::SIGMOID)) {
        /**
         *NO_BIAS and BROADCAST_CHANNEL_BIAS has be done in mkldnn conv, but
         *it is necessary to do activition function not supported by mkldnn.
         *do not need any bias op
         **/
        PostProcess<float>::run(
                param.dst_ptr, const_cast<void*>(param.bias_ptr), param.dst_ptr,
                megdnn::BiasMode::NO_BIAS, param.nonlineMode, param.bias_type,
                param.dst_type, in, oc, oh, ow);
    } else if (param.bias_mode == megdnn::BiasMode::BIAS) {
        PostProcess<float>::run(
                param.dst_ptr, const_cast<void*>(param.bias_ptr), param.dst_ptr,
                param.bias_mode, param.nonlineMode, param.bias_type,
                param.dst_type, in, oc, oh, ow);
    }
}
#endif

// vim: syntax=cpp.doxygen