/** * \file dnn/src/x86/conv_bias/f32/algos.cpp * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") * * Copyright (c) 2014-2020 Megvii Inc. All rights reserved. * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or * implied. */ #include "src/x86/conv_bias/f32/algos.h" #include #include "src/common/opr_delegate.h" #include "src/common/utils.h" #include "src/fallback/convolution/img2col_helper.h" #include "src/x86/conv_bias/f32/do_conv_stride2.h" #include "src/x86/conv_bias/opr_impl.h" #include "src/x86/conv_bias/postprocess_helper.h" #include "src/x86/convolution/convolution_direct_special_cases.h" #include "src/x86/handle.h" #include "src/x86/profile.h" #include "midout.h" using namespace megdnn; using namespace x86; namespace { bool need_dst_copy(const fallback::ConvBiasImpl::NCBKernSizeParam& param) { if (param.osz[0] % 8 != 0 || param.osz[1] % 8 != 0) { // If the size of output is not multiples of 8, we need to copy it. return true; } return false; } bool need_src_copy(const fallback::ConvBiasImpl::NCBKernSizeParam& param) { if (param.filter_meta.padding[0] || param.filter_meta.padding[1]) { // If padding is not zero, we need to copy to eliminate padding effect. return true; } return need_dst_copy(param); } void get_rectified_size(size_t IH, size_t IW, size_t OH, size_t OW, size_t FH, size_t FW, size_t PH, size_t PW, size_t& IH2, size_t& IW2, size_t& OH2, size_t& OW2) { MEGDNN_MARK_USED_VAR(PH); MEGDNN_MARK_USED_VAR(PW); OH2 = (OH + 7) & ~7; OW2 = (OW + 7) & ~7; IH2 = 2 * OH2 + FH - 2; IW2 = 2 * OW2 + FW - 2; // Because stride is 2, sometimes IH/W == IH/W2 + 1 // Do a max update to handle this case. IH2 = std::max(IH2, IH); IW2 = std::max(IW2, IW); } } // namespace #define GET_KERN \ auto fm = param.filter_meta; \ size_t N = param.n; \ size_t IC = param.filter_meta.icpg; \ size_t OC = param.filter_meta.ocpg; \ size_t group = fm.group; \ WorkspaceBundle bundle = get_bundle(param); \ SmallVector ret_kerns; \ if (m_large_group) { \ auto exec_one_group = [bundle]( \ const NCBKernParam& kern_param, \ const NCBKernIndex& ncb_index) mutable { \ bundle.set(kern_param.workspace_ptr); \ auto fm = kern_param.filter_meta; \ size_t IC = fm.icpg; \ size_t OC = fm.ocpg; \ for (size_t ic = 0; ic < IC; ic++) { \ copy_padding_kern(bundle, kern_param, ncb_index, \ {ncb_index.thread_id, 0, ic}); \ } \ for (size_t oc = 0; oc < OC; oc++) { \ do_conv_kern(bundle, kern_param, ncb_index, \ {ncb_index.thread_id, 0, oc}); \ } \ }; \ ret_kerns.push_back({exec_one_group, {group, N, 1_z}}); \ } else { \ auto copy_padding = [bundle](const NCBKernParam& kern_param, \ const NCBKernIndex& ncb_index) mutable { \ bundle.set(kern_param.workspace_ptr); \ copy_padding_kern(bundle, kern_param, ncb_index, \ ncb_index.ndrange_id); \ }; \ ret_kerns.push_back({copy_padding, {group, N, IC}}); \ auto do_conv = [bundle](const NCBKernParam& kern_param, \ const NCBKernIndex& ncb_index) mutable { \ bundle.set(kern_param.workspace_ptr); \ do_conv_kern(bundle, kern_param, ncb_index, ncb_index.ndrange_id); \ }; \ ret_kerns.push_back({do_conv, {group, N, OC}}); \ } \ return ret_kerns; /* ===================== direct algo ===================== */ bool ConvBiasImpl::AlgoDirect::usable( const NCBKernSizeParam& param, AlgoSelectionStrategy algo_selection_strategy) const { auto&& fm = param.filter_meta; bool aviliable = fm.format == Param::Format::NCHW && fm.spatial_ndim == 2 && param.src_type.enumv() == DTypeEnum::Float32 && param.filter_type.enumv() == DTypeEnum::Float32 && param.dst_type.enumv() == DTypeEnum::Float32 && fm.dilation[0] == 1 && fm.dilation[1] == 1 && fm.spatial[0] <= 7 && fm.stride[0] == 1 && fm.stride[1] == 1; if (algo_selection_strategy == AlgoSelectionStrategy::HEURISTIC) { bool large_group = param.filter_meta.group >= param.nr_threads; aviliable &= (large_group == m_large_group); } return aviliable; } WorkspaceBundle ConvBiasImpl::AlgoDirect::get_bundle( const NCBKernSizeParam& param) const { auto&& fm = param.filter_meta; size_t nr_threads = param.nr_threads; size_t group = fm.group, batch = param.n; auto IC = fm.icpg, IH = param.isz[0], IW = param.isz[1]; auto FH = fm.spatial[0], FW = fm.spatial[1]; auto OH = param.osz[0], OW = param.osz[1]; size_t OH2, OW2, IH2, IW2; get_rectified_img_size(IH, IW, FH, FW, OH, OW, fm.padding[0], fm.padding[1], IH2, IW2, OH2, OW2); size_t part0 = 0u, part1 = 0u; if (IH != IH2 || IW != IW2) { part0 = m_large_group ? IC * IH2 * IW2 * sizeof(float) * nr_threads : IC * IH2 * IW2 * sizeof(float) * group * batch; } if (OH != OH2 || OW != OW2) { part1 = OH2 * OW2 * sizeof(float) * nr_threads; } return {nullptr, {part0, part1}}; } size_t ConvBiasImpl::AlgoDirect::get_workspace( const NCBKernSizeParam& param) const { return get_bundle(param).total_size_in_bytes(); } //! Process one input channel copy padding void ConvBiasImpl::AlgoDirect::copy_padding_kern( const WorkspaceBundle& bundle, const ConvBiasImpl::NCBKernParam& kern_param, const ConvBiasImpl::NCBKernIndex& ncb_index, const CpuNDRange& workspace_ids) { size_t IH = kern_param.isz[0]; size_t IW = kern_param.isz[1]; size_t IC = kern_param.filter_meta.icpg; size_t OH = kern_param.osz[0]; size_t OW = kern_param.osz[1]; size_t PH = kern_param.filter_meta.padding[0]; size_t PW = kern_param.filter_meta.padding[1]; size_t FH = kern_param.filter_meta.spatial[0]; size_t FW = kern_param.filter_meta.spatial[1]; size_t GROUP = kern_param.filter_meta.group; size_t OH2, OW2, IH2, IW2; get_rectified_img_size(IH, IW, FH, FW, OH, OW, PH, PW, IH2, IW2, OH2, OW2); bool rectify_src = (IH != IH2 || IW != IW2); size_t padding_group_size = IH2 * IW2 * IC; size_t batch_id = ncb_index.ndrange_id[1]; size_t group_id = ncb_index.ndrange_id[0]; size_t channel_id = workspace_ids[2]; const float* sptr = static_cast( kern_param.src(batch_id, group_id)) + channel_id * IH * IW; //! Used for get the workspace offset size_t workspace_group_id = workspace_ids[0], workspace_batch_id = workspace_ids[1], workspace_channel_id = workspace_ids[2]; //! If large group, each thread has its own worspace, set group_id with //! thread_id if (rectify_src) { //! copy to sptr_base to eliminate padding effect float* sptr_base = static_cast(bundle.get(0)) + workspace_group_id * padding_group_size + workspace_batch_id * GROUP * padding_group_size + workspace_channel_id * IH2 * IW2; std::memset(sptr_base, 0, sizeof(float) * IH2 * IW2); rep(ih, IH) { std::memcpy(sptr_base + (ih + PH) * IW2 + PW, sptr + ih * IW, sizeof(float) * IW); } } }; #define DISPATCH \ if (is_supported(SIMDType::FMA)) { \ DISPATCH_SIMD(fma) \ } else if (is_supported(SIMDType::AVX)) { \ DISPATCH_SIMD(avx) \ } else if (is_supported(SIMDType::SSE)) { \ DISPATCH_SIMD(sse) \ } else { \ megdnn_throw(megdnn_mangle("no fma/avx/sse detected")); \ } #define DISPATCH_SIMD(simd) \ if (is_xcorr) { \ DISPATCH_SIMD_MODE(simd, xcorr) \ } else { \ DISPATCH_SIMD_MODE(simd, conv) \ } #define DISPATCH_SIMD_MODE(simd, mode) \ switch (FH) { \ case 1: \ DISPATCH_SIMD_MODE_FSIZE(simd, mode, 1); \ break; \ case 2: \ DISPATCH_SIMD_MODE_FSIZE(simd, mode, 2); \ break; \ case 3: \ DISPATCH_SIMD_MODE_FSIZE(simd, mode, 3); \ break; \ case 4: \ DISPATCH_SIMD_MODE_FSIZE(simd, mode, 4); \ break; \ case 5: \ DISPATCH_SIMD_MODE_FSIZE(simd, mode, 5); \ break; \ case 6: \ DISPATCH_SIMD_MODE_FSIZE(simd, mode, 6); \ break; \ case 7: \ DISPATCH_SIMD_MODE_FSIZE(simd, mode, 7); \ break; \ default: \ megdnn_throw(megdnn_mangle("unsupported filter size")); \ } #define DISPATCH_SIMD_MODE_FSIZE(simd, mode, fsize) \ func = detail::convolution_##mode##_fh##fsize##_##simd; //! compute one output channel void ConvBiasImpl::AlgoDirect::do_conv_kern(const WorkspaceBundle& bundle, const NCBKernParam& kern_param, const NCBKernIndex& ncb_index, const CpuNDRange& workspace_ids) { size_t OH = kern_param.osz[0]; size_t OW = kern_param.osz[1]; size_t IH = kern_param.isz[0]; size_t IW = kern_param.isz[1]; size_t FH = kern_param.filter_meta.spatial[0]; size_t FW = kern_param.filter_meta.spatial[1]; size_t IC = kern_param.filter_meta.icpg; size_t PH = kern_param.filter_meta.padding[0]; size_t PW = kern_param.filter_meta.padding[1]; auto is_xcorr = !kern_param.filter_meta.should_flip; size_t GROUP = kern_param.filter_meta.group; size_t OH2, OW2, IH2, IW2; get_rectified_img_size(IH, IW, FH, FW, OH, OW, PH, PW, IH2, IW2, OH2, OW2); bool rectify_src = (IH != IH2 || IW != IW2); bool rectify_dst = (OH != OH2 || OW != OW2); size_t padding_group_size = IH2 * IW2 * IC; //! Choose the compute kernel std::function func = nullptr; DISPATCH; size_t bias_offset = 0; if (kern_param.bias_mode == megdnn::BiasMode::BIAS) { bias_offset = OH * OW; } else if (kern_param.bias_mode == megdnn::BiasMode::BROADCAST_CHANNEL_BIAS) { bias_offset = 1_z; } size_t group_id = ncb_index.ndrange_id[0]; size_t batch_id = ncb_index.ndrange_id[1]; //! Used for get the workspace offset size_t workspace_group_id = workspace_ids[0], workspace_batch_id = workspace_ids[1], oc = workspace_ids[2]; const float* sptr = kern_param.src(batch_id, group_id); const float* filter = kern_param.filter(group_id) + oc * FH * FW * IC; const float* bias_ptr = kern_param.bias(batch_id, group_id) + oc * bias_offset; float* dst = kern_param.dst(batch_id, group_id) + oc * OH * OW; if (rectify_src) { sptr = static_cast(bundle.get(0)) + workspace_group_id * padding_group_size + workspace_batch_id * GROUP * padding_group_size; } float* dptr = nullptr; if (rectify_dst) { dptr = static_cast(bundle.get(1)) + ncb_index.thread_id * OH2 * OW2; } else { dptr = dst; } std::memset(dptr, 0, sizeof(float) * OH2 * OW2); rep(ic, IC) { func(sptr + ic * IH2 * IW2, filter + ic * FH * FW, dptr, IH2, IW2, OH2, OW2, FW); } if (rectify_dst) { rep(oh, OH) { std::memcpy(dst + oh * OW, dptr + oh * OW2, sizeof(float) * OW); } } PostProcess::run(dst, const_cast(bias_ptr), dst, kern_param.bias_mode, kern_param.nonlineMode, kern_param.bias_type, kern_param.dst_type, 1_z, 1_z, OH, OW); } SmallVector ConvBiasImpl::AlgoDirect::get_kimpls( const NCBKernSizeParam& param) const { GET_KERN; } /* ===================== direct-stride2 algo ===================== */ bool ConvBiasImpl::AlgoDirectStride2::usable( const NCBKernSizeParam& param, AlgoSelectionStrategy algo_selection_strategy) const { auto&& fm = param.filter_meta; auto FH = fm.spatial[0]; bool aviliable = param.filter_meta.format == param::ConvBias::Format::NCHW && param.src_type.enumv() == DTypeEnum::Float32 && param.filter_type.enumv() == DTypeEnum::Float32 && param.dst_type.enumv() == DTypeEnum::Float32 && !fm.should_flip && fm.spatial_ndim == 2 && fm.dilation[0] == 1 && fm.dilation[1] == 1 && fm.stride[0] == 2 && fm.stride[1] == 2 && FH == fm.spatial[1] && (FH == 2 || FH == 3 || FH == 5 || FH == 7); if (algo_selection_strategy == AlgoSelectionStrategy::HEURISTIC) { bool large_group = param.filter_meta.group >= param.nr_threads; aviliable &= (large_group == m_large_group); } return aviliable; } WorkspaceBundle ConvBiasImpl::AlgoDirectStride2::get_bundle( const NCBKernSizeParam& param) const { UNPACK_CONV_F32_NCB_KERN_SIZES(param); MEGDNN_MARK_USED_VAR(N); MEGDNN_MARK_USED_VAR(OC); MEGDNN_MARK_USED_VAR(SH); MEGDNN_MARK_USED_VAR(SW); size_t nr_threads = param.nr_threads; size_t group = param.filter_meta.group; size_t batch = param.n; size_t src_size = 0, dst_size = 0; size_t IH2, IW2, OH2, OW2; get_rectified_size(IH, IW, OH, OW, FH, FW, PH, PW, IH2, IW2, OH2, OW2); if (need_src_copy(param)) { src_size = m_large_group ? IC * IH2 * IW2 * sizeof(float) * nr_threads : IC * IH2 * IW2 * sizeof(float) * group * batch; } if (need_dst_copy(param)) { // we only need one dst plane dst_size = OH2 * OW2 * sizeof(float) * nr_threads; } return WorkspaceBundle(nullptr, {src_size, dst_size}); } size_t ConvBiasImpl::AlgoDirectStride2::get_workspace( const NCBKernSizeParam& param) const { return get_bundle(param).total_size_in_bytes(); } //! Process one input channel copy padding void ConvBiasImpl::AlgoDirectStride2::copy_padding_kern( const WorkspaceBundle& bundle, const ConvBiasImpl::NCBKernParam& kern_param, const ConvBiasImpl::NCBKernIndex& ncb_index, const CpuNDRange& workspace_ids) { size_t IH = kern_param.isz[0]; size_t IW = kern_param.isz[1]; size_t IC = kern_param.filter_meta.icpg; size_t OH = kern_param.osz[0]; size_t OW = kern_param.osz[1]; size_t PH = kern_param.filter_meta.padding[0]; size_t PW = kern_param.filter_meta.padding[1]; size_t FH = kern_param.filter_meta.spatial[0]; size_t FW = kern_param.filter_meta.spatial[1]; size_t GROUP = kern_param.filter_meta.group; size_t OH2, OW2, IH2, IW2; get_rectified_size(IH, IW, OH, OW, FH, FW, PH, PW, IH2, IW2, OH2, OW2); bool rectify_src = need_src_copy(kern_param); size_t padding_group_size = IH2 * IW2 * IC; size_t group_id = ncb_index.ndrange_id[0]; size_t batch_id = ncb_index.ndrange_id[1]; size_t channel_id = workspace_ids[2]; const float* sptr = static_cast( kern_param.src(batch_id, group_id)) + channel_id * IH * IW; //! Used for get the workspace offset size_t workspace_group_id = workspace_ids[0], workspace_batch_id = workspace_ids[1], workspace_channel_id = workspace_ids[2]; if (rectify_src) { //! copy to sptr_base to eliminate padding effect float* sptr_base = static_cast(bundle.get(0)) + workspace_group_id * padding_group_size + workspace_batch_id * GROUP * padding_group_size + workspace_channel_id * IH2 * IW2; std::memset(sptr_base, 0, sizeof(float) * IH2 * IW2); rep(ih, IH) { std::memcpy(sptr_base + (ih + PH) * IW2 + PW, sptr + ih * IW, sizeof(float) * IW); } } }; //! compute one output channel void ConvBiasImpl::AlgoDirectStride2::do_conv_kern( const WorkspaceBundle& bundle, const NCBKernParam& kern_param, const NCBKernIndex& ncb_index, const CpuNDRange& workspace_ids) { size_t OH = kern_param.osz[0]; size_t OW = kern_param.osz[1]; size_t IH = kern_param.isz[0]; size_t IW = kern_param.isz[1]; size_t FH = kern_param.filter_meta.spatial[0]; size_t FW = kern_param.filter_meta.spatial[1]; size_t IC = kern_param.filter_meta.icpg; size_t PH = kern_param.filter_meta.padding[0]; size_t PW = kern_param.filter_meta.padding[1]; size_t GROUP = kern_param.filter_meta.group; size_t OH2, OW2, IH2, IW2; get_rectified_size(IH, IW, OH, OW, FH, FW, PH, PW, IH2, IW2, OH2, OW2); bool rectify_src = need_src_copy(kern_param); bool rectify_dst = need_dst_copy(kern_param); size_t padding_group_size = IH2 * IW2 * IC; //! Choose the compute kernel using Func = std::function; Func func_no_add_dst = nullptr, func_add_dst = nullptr; if (FH == 2) { func_no_add_dst = conv_general_simd::do_conv_2x2_stride2; func_add_dst = conv_general_simd::do_conv_2x2_stride2; } else if (FH == 3) { func_no_add_dst = conv_general_simd::do_conv_3x3_stride2; func_add_dst = conv_general_simd::do_conv_3x3_stride2; } else if (FH == 5) { func_no_add_dst = conv_general_simd::do_conv_5x5_stride2; func_add_dst = conv_general_simd::do_conv_5x5_stride2; } else if (FH == 7) { func_no_add_dst = conv_general_simd::do_conv_7x7_stride2; func_add_dst = conv_general_simd::do_conv_7x7_stride2; } size_t bias_offset = 0; if (kern_param.bias_mode == megdnn::BiasMode::BIAS) { bias_offset = OH * OW; } else if (kern_param.bias_mode == megdnn::BiasMode::BROADCAST_CHANNEL_BIAS) { bias_offset = 1_z; } size_t group_id = ncb_index.ndrange_id[0]; size_t batch_id = ncb_index.ndrange_id[1]; //! Used for get the workspace offset size_t workspace_group_id = workspace_ids[0], workspace_batch_id = workspace_ids[1], oc = workspace_ids[2]; const float* sptr = kern_param.src(batch_id, group_id); const float* filter = kern_param.filter(group_id) + oc * FH * FW * IC; const float* bias_ptr = kern_param.bias(batch_id, group_id) + oc * bias_offset; float* dst = kern_param.dst(batch_id, group_id) + oc * OH * OW; if (rectify_src) { sptr = static_cast(bundle.get(0)) + workspace_group_id * padding_group_size + workspace_batch_id * GROUP * padding_group_size; } float* dptr = nullptr; if (rectify_dst) { dptr = static_cast(bundle.get(1)) + ncb_index.thread_id * OH2 * OW2; } else { dptr = dst; } func_no_add_dst(sptr, filter, dptr, IH2, IW2, OH2, OW2, 0, 0); for (size_t ic = 1; ic < IC; ++ic) { func_add_dst(sptr + ic * IH2 * IW2, filter + ic * FH * FW, dptr, IH2, IW2, OH2, OW2, 0, 0); } if (rectify_dst) { rep(oh, OH) { std::memcpy(dst + oh * OW, dptr + oh * OW2, sizeof(float) * OW); } } PostProcess::run(dst, const_cast(bias_ptr), dst, kern_param.bias_mode, kern_param.nonlineMode, kern_param.bias_type, kern_param.dst_type, 1_z, 1_z, OH, OW); } SmallVector ConvBiasImpl::AlgoDirectStride2::get_kimpls( const NCBKernSizeParam& param) const { GET_KERN; } /* ===================== matmul algo ===================== */ WorkspaceBundle ConvBiasImpl::AlgoMatrixMul::get_bundle( const NCBKernSizeParam& param) { UNPACK_CONV_F32_NCB_KERN_SIZES(param); MEGDNN_MARK_USED_VAR(N); MEGDNN_MARK_USED_VAR(OC); auto IW2 = IH + 2 * PH; auto IH2 = IW + 2 * PW; bool can_matrix_mul_direct = (FH == 1 && FW == 1 && SH == 1 && SW == 1 && PH == 0 && PW == 0); // temp space to store padding-free src (with 4 extra floats) // temp space to store unrolled matrix (with 4 extra floats) // workspace for matrix mul opr size_t part0, part1, part2; if (can_matrix_mul_direct) { part0 = part1 = 0; } else { part0 = (IC * IH2 * IW2 + 4) * sizeof(float); part1 = (IC * FH * FW * OH * OW + 4) * sizeof(float); } { TensorLayout A_, B_, C_; A_ = TensorLayout({OC, IC * FH * FW}, dtype::Float32()); B_ = TensorLayout({IC * FH * FW, OH * OW}, dtype::Float32()); C_ = TensorLayout({OC, OH * OW}, dtype::Float32()); part2 = get_matmul_opr()->get_workspace_in_bytes(A_, B_, C_); } return {nullptr, {part0, part1, part2}}; } bool ConvBiasImpl::AlgoMatrixMul::is_preferred( const NCBKernSizeParam& param) const { auto&& fm = param.filter_meta; if (fm.dilation[0] != 1 || fm.dilation[1] != 1) { return false; } // single channel conv should never use matrix mul if (fm.ocpg == 1 || fm.icpg == 1) return false; // 1x1 conv should always use matrix mul if (fm.spatial[0] == 1 && fm.spatial[1] == 1) return true; // if stride is not 1x1, always use matrix mul if (fm.stride[0] != 1 || fm.stride[1] != 1) return true; int f = find_nearest_elem( std::round(geometric_mean(fm.spatial[0], fm.spatial[1])), {2, 3, 4, 5, 6, 7}); int oc = find_nearest_elem(fm.ocpg, {4, 8, 16, 32, 64, 96, 128}); int ic = find_nearest_elem(fm.icpg, {4, 8, 16, 32, 64, 96, 128}); int on = std::round(geometric_mean(param.osz[0], param.osz[1])); ProfileElement cur(f, oc, ic, on); auto H = static_cast(inplace_cpu_handle().get()); auto&& target = std::lower_bound(H->profile_cache().begin(), H->profile_cache().end(), cur); megdnn_assert_internal(target->f == cur.f); megdnn_assert_internal(target->oc == cur.oc); megdnn_assert_internal(target->ic == cur.ic); return on < target->on_threshold; } MatrixMul* ConvBiasImpl::AlgoMatrixMul::get_matmul_opr() { static CpuOprDelegationStorage<> storage; return storage.get(); } void ConvBiasImpl::AlgoMatrixMul::kimpl(const NCBKernParam& param, const NCBKernIndex& ncb_index) { UNPACK_CONV_F32_NCB_KERN_SIZES(param); auto IH2 = IH + 2 * PH; auto IW2 = IW + 2 * PW; size_t group_id = ncb_index.ndrange_id[0]; bool is_xcorr = !param.filter_meta.should_flip; auto bundle = get_bundle(param); bundle.set(param.workspace_ptr); // workspace = tmp..src2 for (size_t n = 0; n < N; ++n) { float* src = const_cast(param.src(n, group_id)); float* dst = param.dst(n, group_id); float* bias_ptr = static_cast( const_cast(param.bias(n, group_id))); float *B, *src2; if (FH == 1 && FW == 1 && SH == 1 && SW == 1 && PH == 0 && PW == 0) { // special case: 1x1 B = src; } else { src2 = static_cast(bundle.get(0)); // copy src to src2; float* src2_ptr = src2; const float* src_ptr = src; rep(ic, IC) { if (PH != 0) { std::memset(src2_ptr, 0, sizeof(float) * PH * IW2); src2_ptr += PH * IW2; } rep(ih, IH) { if (PW != 0) rep(pw, PW) * (src2_ptr++) = 0.0f; std::memcpy(src2_ptr, src_ptr, sizeof(float) * IW); src2_ptr += IW; src_ptr += IW; if (PW != 0) rep(pw, PW) * (src2_ptr++) = 0.0f; } if (PH != 0) { std::memset(src2_ptr, 0, sizeof(float) * PH * IW2); src2_ptr += PH * IW2; } } B = static_cast(bundle.get(1)); if (SH == 1 && SW == 1) { if (is_xcorr) { img2col(src2, B, OC, OH, OW, IC, IH2, IW2, FH, FW); } else { img2col(src2, B, OC, OH, OW, IC, IH2, IW2, FH, FW); } } else { if (is_xcorr) { img2col_stride(src2, B, OC, OH, OW, IC, IH2, IW2, FH, FW, SH, SW); } else { img2col_stride(src2, B, OC, OH, OW, IC, IH2, IW2, FH, FW, SH, SW); } } } { TensorND A_, B_, C_; A_.layout = TensorLayout({OC, IC * FH * FW}, dtype::Float32()); A_.raw_ptr = const_cast(param.filter(group_id)); B_.layout = TensorLayout({IC * FH * FW, OH * OW}, dtype::Float32()); B_.raw_ptr = B; C_.layout = TensorLayout({OC, OH * OW}, dtype::Float32()); C_.raw_ptr = dst; Workspace workspace(static_cast(bundle.get(2)), bundle.get_size(2)); get_matmul_opr()->exec(A_, B_, C_, workspace); } PostProcess::run(dst, bias_ptr, dst, param.bias_mode, param.nonlineMode, param.bias_type, param.dst_type, 1_z, OC, OH, OW); } } #if MEGDNN_X86_WITH_MKL_DNN static inline void mkldnn_fp32_conv_instance( const ConvBiasImpl::NCBKernParam& param, const uint32_t ocpg, const uint32_t icpg, const uint32_t group, const uint32_t in, const uint32_t ic, const uint32_t oc, const uint32_t ih, const uint32_t iw, const uint32_t kh, const uint32_t kw, const uint32_t pad_h, const uint32_t pad_w, const uint32_t stride_h, const uint32_t stride_w, const uint32_t oh, const uint32_t ow, std::vector& net, std::vector>& net_args, dnnl::engine& eng_mkldnn) { dnnl::memory::dims src_shape = {in, ic, ih, iw}; dnnl::memory::dims weight_shape = {oc, ic, kh, kw}; dnnl::memory::dims bias_shape = {oc}; dnnl::memory::dims dst_shape = {in, oc, oh, ow}; dnnl::memory::dims strides_shape = {stride_h, stride_w}; dnnl::memory::dims padding_shape = {pad_h, pad_w}; auto user_src_desc = dnnl::memory::desc({src_shape}, dnnl::memory::data_type::f32, dnnl::memory::format_tag::nChw8c); if (group == 1 && ic < 8) { user_src_desc = dnnl::memory::desc({src_shape}, dnnl::memory::data_type::f32, dnnl::memory::format_tag::nchw); } auto user_src_mem = dnnl::memory(user_src_desc, eng_mkldnn, const_cast(param.src_ptr)); auto weight_tag = dnnl::memory::format_tag::OIhw8i8o; if (group > 1) { weight_shape = {group, ocpg, icpg, kh, kw}; if (oc == group && ic == group) { weight_tag = dnnl::memory::format_tag::Goihw8g; } else { weight_tag = dnnl::memory::format_tag::gOIhw8i8o; } } else if (group == 1 && ic < 8) { weight_tag = dnnl::memory::format_tag::Ohwi8o; } auto user_weights_desc = dnnl::memory::desc( {weight_shape}, dnnl::memory::data_type::f32, weight_tag); auto user_weights_mem = dnnl::memory(user_weights_desc, eng_mkldnn, const_cast(param.filter_ptr)); auto user_bias_desc = dnnl::memory::desc(); if (param.bias_mode == megdnn::BiasMode::BROADCAST_CHANNEL_BIAS) { user_bias_desc = dnnl::memory::desc({bias_shape}, dnnl::memory::data_type::f32, dnnl::memory::format_tag::x); } auto user_bias_mem = dnnl::memory(user_bias_desc, eng_mkldnn, const_cast(param.bias_ptr)); auto user_dst_desc = dnnl::memory::desc({dst_shape}, dnnl::memory::data_type::f32, dnnl::memory::format_tag::nChw8c); auto user_dst_mem = dnnl::memory(user_dst_desc, eng_mkldnn, const_cast(param.dst_ptr)); auto conv_desc = dnnl::convolution_forward::desc( dnnl::prop_kind::forward_inference, dnnl::algorithm::convolution_auto, user_src_mem.get_desc(), user_weights_mem.get_desc(), user_bias_mem.get_desc(), user_dst_mem.get_desc(), strides_shape, padding_shape, padding_shape); dnnl::primitive_attr attr; if ((param.nonlineMode == NonlineMode::RELU || param.nonlineMode == NonlineMode::SIGMOID) && (param.bias_mode == megdnn::BiasMode::NO_BIAS || param.bias_mode == megdnn::BiasMode::BROADCAST_CHANNEL_BIAS)) { auto post_tag = dnnl::algorithm::eltwise_linear; switch (param.nonlineMode) { case NonlineMode::RELU: post_tag = dnnl::algorithm::eltwise_relu; break; case NonlineMode::SIGMOID: post_tag = dnnl::algorithm::eltwise_logistic; break; default: megdnn_assert(0, "not supported nonline mode %d\n", static_cast(param.nonlineMode)); } dnnl::post_ops ops; ops.append_eltwise(1.f, post_tag, 0.f, 0.f); attr.set_post_ops(ops); } auto conv_prim_desc = dnnl::convolution_forward::primitive_desc( conv_desc, attr, eng_mkldnn); net.push_back(dnnl::convolution_forward(conv_prim_desc)); net_args.push_back({{DNNL_ARG_SRC, user_src_mem}, {DNNL_ARG_WEIGHTS, user_weights_mem}, {DNNL_ARG_BIAS, user_bias_mem}, {DNNL_ARG_DST, user_dst_mem}}); } namespace { struct NCBKernParamEqual { bool operator()(const fallback::ConvBiasImpl::NCBKernParam& x, const fallback::ConvBiasImpl::NCBKernParam& y) const { bool flag = true; flag = flag && (x.src_ptr == y.src_ptr); flag = flag && (x.dst_ptr == y.dst_ptr); flag = flag && (x.filter_ptr == y.filter_ptr); flag = flag && (x.bias_ptr == y.bias_ptr); flag = flag && (x.isz == y.isz); flag = flag && (x.osz == y.osz); flag = flag && (x.src_type == y.src_type); flag = flag && (x.dst_type == y.dst_type); flag = flag && (x.filter_type == y.filter_type); flag = flag && (x.bias_type == y.bias_type); flag = flag && (x.filter_meta == y.filter_meta); flag = flag && (x.n == y.n); flag = flag && (x.bias_mode == y.bias_mode); flag = flag && (x.nonlineMode == y.nonlineMode); flag = flag && (x.bias_bs == y.bias_bs); return flag; }; }; struct NCBKernParamHash { std::size_t operator()( const fallback::ConvBiasImpl::NCBKernParam& param) const { std::size_t result = reinterpret_cast(param.filter_ptr); result = result ^ (reinterpret_cast(param.src_ptr) << 3); result = result ^ (reinterpret_cast(param.dst_ptr) << 7); result = result ^ (static_cast(param.n) << 11); return result; }; }; } // namespace void ConvBiasImpl::AlgoMkldnnConv::kern_mkldnn_fp32(const NCBKernParam& param, const NCBKernIndex&) { const NCBKernParam& key = param; static std::unordered_map, NCBKernParamHash, NCBKernParamEqual> kern_net_map; static std::unordered_map< NCBKernParam, std::vector>, NCBKernParamHash, NCBKernParamEqual> kern_net_arg_map; auto x86_handle = static_cast(inplace_cpu_handle().get()); megdnn_assert(x86_handle != nullptr, "x86 handle can not be null"); auto eng_mkldnn = x86_handle->mkldnn_engine(); auto stream_mkldnn = x86_handle->mkldnn_stream(); auto&& fm = param.filter_meta; const uint32_t group = fm.group; const uint32_t in = param.n; const uint32_t ic = fm.icpg * group; const uint32_t oc = fm.ocpg * group; const uint32_t ih = param.isz[0]; const uint32_t iw = param.isz[1]; const uint32_t kh = fm.spatial[0]; const uint32_t kw = fm.spatial[1]; const uint32_t pad_h = fm.padding[0]; const uint32_t pad_w = fm.padding[1]; const uint32_t stride_h = fm.stride[0]; const uint32_t stride_w = fm.stride[1]; const uint32_t oh = param.osz[0]; const uint32_t ow = param.osz[1]; if (kern_net_map.find(key) == kern_net_map.end()) { std::vector net; std::vector> net_args; mkldnn_fp32_conv_instance(param, fm.ocpg, fm.icpg, group, in, ic, oc, ih, iw, kh, kw, pad_h, pad_w, stride_h, stride_w, oh, ow, net, net_args, eng_mkldnn); kern_net_map[key] = net; kern_net_arg_map[key] = net_args; } const auto& net = kern_net_map[key]; const auto& net_args = kern_net_arg_map[key]; for (size_t i = 0; i < net.size(); ++i) { net.at(i).execute(stream_mkldnn, net_args.at(i)); } stream_mkldnn.wait(); if ((param.bias_mode == megdnn::BiasMode::NO_BIAS || param.bias_mode == megdnn::BiasMode::BROADCAST_CHANNEL_BIAS) && (param.nonlineMode != NonlineMode::IDENTITY && param.nonlineMode != NonlineMode::RELU && param.nonlineMode != NonlineMode::SIGMOID)) { /** *NO_BIAS and BROADCAST_CHANNEL_BIAS has be done in mkldnn conv, but *it is necessary to do activition function not supported by mkldnn. *do not need any bias op **/ PostProcess::run( param.dst_ptr, const_cast(param.bias_ptr), param.dst_ptr, megdnn::BiasMode::NO_BIAS, param.nonlineMode, param.bias_type, param.dst_type, in, oc, oh, ow); } else if (param.bias_mode == megdnn::BiasMode::BIAS) { PostProcess::run( param.dst_ptr, const_cast(param.bias_ptr), param.dst_ptr, param.bias_mode, param.nonlineMode, param.bias_type, param.dst_type, in, oc, oh, ow); } } #endif // vim: syntax=cpp.doxygen