提交 ba5a43b8 编写于 作者: M Megvii Engine Team 提交者: Xu Xinran

fix(dnn/fallback): delete ConvBias* opr param of conv_bias algo

GitOrigin-RevId: ee5a6874fb3698b0c79698c1bb4f90997be715a1
上级 55844d3e
......@@ -6,7 +6,8 @@
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
* implied.
*/
#include "src/aarch64/conv_bias/fp16/algos.h"
......@@ -22,7 +23,7 @@ using namespace aarch64;
MIDOUT_DECL(megdnn_aarch64_conv_bias_stride2_conv2357_fp16)
bool ConvBiasImpl::AlgoF16DirectStride2::usable(
FallbackConvBiasImpl*, const NCBKernSizeParam& param,
const NCBKernSizeParam& param,
AlgoSelectionStrategy algo_selection_strategy) const {
MIDOUT_BEGIN(megdnn_aarch64_conv_bias_stride2_conv2357_fp16, 0, 0) {
auto&& fm = param.filter_meta;
......@@ -47,7 +48,7 @@ bool ConvBiasImpl::AlgoF16DirectStride2::usable(
}
size_t ConvBiasImpl::AlgoF16DirectStride2::get_workspace(
FallbackConvBiasImpl*, const NCBKernSizeParam& param) const {
const NCBKernSizeParam& param) const {
MIDOUT_BEGIN(megdnn_aarch64_conv_bias_stride2_conv2357_fp16, 0, 1) {
auto wbundle = arm_common::MultithreadDirectConvCommon<
dt_float16, __fp16>::get_bundle_stride(param, m_large_group);
......@@ -59,7 +60,7 @@ size_t ConvBiasImpl::AlgoF16DirectStride2::get_workspace(
SmallVector<ConvBiasImpl::NCBKern>
ConvBiasImpl::AlgoF16DirectStride2::dispatch_kerns(
FallbackConvBiasImpl*, const NCBKernSizeParam& param) const {
const NCBKernSizeParam& param) const {
MIDOUT_BEGIN(megdnn_aarch64_conv_bias_stride2_conv2357_fp32, 0, 2) {
return get_kimpls(param);
}
......
......@@ -19,6 +19,7 @@ namespace aarch64 {
class ConvBiasImpl::AlgoF16DirectStride2 final : public AlgoBase {
SmallVector<NCBKern> get_kimpls(const NCBKernSizeParam& param) const;
bool m_large_group;
public:
AlgoF16DirectStride2(bool large_group) : m_large_group(large_group) {}
bool is_reproducible() const override { return true; }
......@@ -26,15 +27,12 @@ public:
return m_large_group ? "ARMV8F16STRD2_LARGE_GROUP"
: "ARMV8F16STRD2_SMALL_GROUP";
}
bool usable(FallbackConvBiasImpl*, const NCBKernSizeParam& param,
bool usable(const NCBKernSizeParam& param,
AlgoSelectionStrategy algo_selection_strategy) const override;
size_t get_workspace(FallbackConvBiasImpl*,
const NCBKernSizeParam& param) const override;
size_t get_workspace(const NCBKernSizeParam& param) const override;
SmallVector<NCBKern> dispatch_kerns(FallbackConvBiasImpl*,
const NCBKernSizeParam&) const override;
SmallVector<NCBKern> dispatch_kerns(const NCBKernSizeParam&) const override;
};
} // namespace aarch64
} // namespace megdnn
......
......@@ -22,7 +22,7 @@ using namespace aarch64;
MIDOUT_DECL(megdnn_aarch64_conv_bias_stride2_conv2357_fp32)
bool ConvBiasImpl::AlgoF32DirectStride2::usable(
FallbackConvBiasImpl*, const NCBKernSizeParam& param,
const NCBKernSizeParam& param,
AlgoSelectionStrategy algo_selection_strategy) const {
MIDOUT_BEGIN(megdnn_aarch64_conv_bias_stride2_conv2357_fp32, 0, 0) {
auto&& fm = param.filter_meta;
......@@ -47,7 +47,7 @@ bool ConvBiasImpl::AlgoF32DirectStride2::usable(
}
size_t ConvBiasImpl::AlgoF32DirectStride2::get_workspace(
FallbackConvBiasImpl*, const NCBKernSizeParam& param) const {
const NCBKernSizeParam& param) const {
MIDOUT_BEGIN(megdnn_aarch64_conv_bias_stride2_conv2357_fp32, 0, 1) {
auto wbundle = arm_common::MultithreadDirectConvCommon<
float, float>::get_bundle_stride(param, m_large_group);
......@@ -58,7 +58,7 @@ size_t ConvBiasImpl::AlgoF32DirectStride2::get_workspace(
}
SmallVector<ConvBiasImpl::NCBKern>
ConvBiasImpl::AlgoF32DirectStride2::dispatch_kerns(
FallbackConvBiasImpl*, const NCBKernSizeParam& param) const {
const NCBKernSizeParam& param) const {
MIDOUT_BEGIN(megdnn_aarch64_conv_bias_stride2_conv2357_fp32, 0, 2) {
return get_kimpls(param);
}
......
......@@ -23,6 +23,7 @@ using FallbackConvBiasImpl = fallback::ConvBiasImpl;
class ConvBiasImpl::AlgoF32DirectStride2 final : public AlgoBase {
SmallVector<NCBKern> get_kimpls(const NCBKernSizeParam& param) const;
bool m_large_group;
public:
AlgoF32DirectStride2(bool large_group) : m_large_group(large_group) {}
bool is_reproducible() const override { return true; }
......@@ -31,14 +32,12 @@ public:
: "ARMV8F32STRD2_SMALL_GROUP";
}
bool usable(FallbackConvBiasImpl*, const NCBKernSizeParam& param,
bool usable(const NCBKernSizeParam& param,
AlgoSelectionStrategy algo_selection_strategy) const override;
size_t get_workspace(FallbackConvBiasImpl*,
const NCBKernSizeParam& param) const override;
size_t get_workspace(const NCBKernSizeParam& param) const override;
SmallVector<NCBKern> dispatch_kerns(FallbackConvBiasImpl*,
const NCBKernSizeParam&) const override;
SmallVector<NCBKern> dispatch_kerns(const NCBKernSizeParam&) const override;
};
} // namespace aarch64
......
......@@ -30,9 +30,8 @@ using megdnn::arm_common::TypeCvtOp;
/* ===================== matrix mul algo ===================== */
bool ConvBiasImpl::AlgoS8MatrixMul::usable(
FallbackConvBiasImpl* opr, const NCBKernSizeParam& param,
const NCBKernSizeParam& param,
AlgoSelectionStrategy /*algo_selection_strategy*/) const {
MEGDNN_MARK_USED_VAR(opr);
auto&& fm = param.filter_meta;
return param.src_type.enumv() == DTypeEnum::QuantizedS8 &&
param.dst_type.enumv() == DTypeEnum::QuantizedS8 &&
......
......@@ -13,6 +13,7 @@
#include "src/aarch64/conv_bias/opr_impl.h"
#include "src/fallback/conv_bias/opr_impl.h"
#include "src/common/opr_delegate.h"
namespace megdnn {
namespace aarch64 {
......@@ -27,21 +28,21 @@ public:
bool is_reproducible() const override { return true; }
const char* name() const override { return "S8MATMUL"; }
bool usable(FallbackConvBiasImpl* opr, const NCBKernSizeParam& param,
bool usable(const NCBKernSizeParam& param,
AlgoSelectionStrategy algo_selection_strategy) const override;
size_t get_workspace(FallbackConvBiasImpl*,
const NCBKernSizeParam& param) const override {
size_t get_workspace(const NCBKernSizeParam& param) const override {
return get_bundle(param).total_size_in_bytes();
}
SmallVector<NCBKern> dispatch_kerns(
FallbackConvBiasImpl*, const NCBKernSizeParam& param) const override {
const NCBKernSizeParam& param) const override {
size_t group = param.filter_meta.group;
return {{kimpl, {group, 1_z, 1_z}}};
}
//! select matmul to the highest preference
bool is_preferred(FallbackConvBiasImpl* opr,
const NCBKernSizeParam& param) const override {
return static_cast<arm_common::ConvBiasImpl*>(opr)
bool is_preferred(const NCBKernSizeParam& param) const override {
static CpuOprDelegationStorage<1> storage;
auto conv_bias_opr = storage.get<ConvBias, 0>();
return static_cast<ConvBiasImpl*>(conv_bias_opr)
->is_matmul_quantized_prefer(param);
}
};
......
......@@ -32,9 +32,8 @@ using megdnn::arm_common::TypeCvtOp;
/* ===================== matrix mul algo ===================== */
bool ConvBiasImpl::AlgoQU8MatrixMul::usable(
FallbackConvBiasImpl* opr, const NCBKernSizeParam& param,
const NCBKernSizeParam& param,
AlgoSelectionStrategy /*algo_selection_strategy*/) const {
MEGDNN_MARK_USED_VAR(opr);
auto&& fm = param.filter_meta;
return param.src_type.enumv() == DTypeEnum::Quantized8Asymm &&
param.dst_type.enumv() == DTypeEnum::Quantized8Asymm &&
......
......@@ -13,6 +13,7 @@
#include "src/aarch64/conv_bias/opr_impl.h"
#include "src/fallback/conv_bias/opr_impl.h"
#include "src/common/opr_delegate.h"
namespace megdnn {
namespace aarch64 {
......@@ -27,22 +28,21 @@ public:
bool is_reproducible() const override { return true; }
const char* name() const override { return "QU8MATMUL"; }
bool usable(FallbackConvBiasImpl* opr, const NCBKernSizeParam& param,
bool usable(const NCBKernSizeParam& param,
AlgoSelectionStrategy algo_selection_strategy) const override;
size_t get_workspace(FallbackConvBiasImpl*,
const NCBKernSizeParam& param) const override {
size_t get_workspace(const NCBKernSizeParam& param) const override {
return get_bundle(param).total_size_in_bytes();
}
SmallVector<NCBKern> dispatch_kerns(
FallbackConvBiasImpl*,
const NCBKernSizeParam& param) const override {
size_t group = param.filter_meta.group;
return {{kimpl, {group, 1_z, 1_z}}};
}
//! select matmul to the highest preference
bool is_preferred(FallbackConvBiasImpl* opr,
const NCBKernSizeParam& param) const override {
return static_cast<arm_common::ConvBiasImpl*>(opr)
bool is_preferred(const NCBKernSizeParam& param) const override {
static CpuOprDelegationStorage<1> storage;
auto conv_bias_opr = storage.get<ConvBias, 0>();
return static_cast<ConvBiasImpl*>(conv_bias_opr)
->is_matmul_quantized_prefer(param);
}
};
......
......@@ -27,10 +27,9 @@ using namespace arm_common;
/* ======================= AlgoFP16WinogradF23 ======================== */
bool ConvBiasImpl::AlgoFP16WinogradF23::usable(
fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param,
const NCBKernSizeParam& param,
AlgoSelectionStrategy /*algo_selection_strategy*/) const {
MEGDNN_MARK_USED_VAR(param);
MEGDNN_MARK_USED_VAR(opr);
MIDOUT_BEGIN(megdnn_arm_common_winograd_fp16, 0, 0) {
using Strategy = winograd::winograd_2x3_4x4_f16;
Strategy strategy(param.src_type, param.filter_type, param.dst_type);
......@@ -38,13 +37,13 @@ bool ConvBiasImpl::AlgoFP16WinogradF23::usable(
strategy, m_tile_size, param)
.get_matmul_kern_param(param);
return m_matmul_algo->usable(matmul_param) &&
(opr->param().format == param::ConvBias::Format::NCHW ||
(opr->param().format ==
(param.filter_meta.format == param::ConvBias::Format::NCHW ||
(param.filter_meta.format ==
param::ConvBias::Format::NCHW_WINOGRAD &&
opr->param().output_block_size == 2 &&
param.output_block_size == 2 &&
param.winograd_matmul_format ==
param::MatrixMul::Format::DEFAULT)) &&
opr->param().mode == param::ConvBias::Mode::CROSS_CORRELATION &&
!param.filter_meta.should_flip &&
(param.filter_meta.spatial[0] == param.filter_meta.spatial[1] &&
param.filter_meta.spatial[0] == 3) &&
(param.filter_meta.stride[0] == param.filter_meta.stride[1] &&
......@@ -69,10 +68,9 @@ MEGDNN_WINOGRAD_ALGO_FUN_DEFINE_ALL(AlgoFP16WinogradF23,
/* ======================= AlgoFP16WinogradF45 ======================== */
bool ConvBiasImpl::AlgoFP16WinogradF45::usable(
fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param,
const NCBKernSizeParam& param,
AlgoSelectionStrategy /*algo_selection_strategy*/) const {
MEGDNN_MARK_USED_VAR(param);
MEGDNN_MARK_USED_VAR(opr);
MIDOUT_BEGIN(megdnn_arm_common_winograd_fp16, 1, 0) {
using Strategy = winograd::winograd_4x5_1x1_f16;
Strategy strategy(param.src_type, param.filter_type, param.dst_type);
......@@ -80,13 +78,13 @@ bool ConvBiasImpl::AlgoFP16WinogradF45::usable(
strategy, m_tile_size, param)
.get_matmul_kern_param(param);
return m_matmul_algo->usable(matmul_param) &&
(opr->param().format == param::ConvBias::Format::NCHW ||
(opr->param().format ==
(param.filter_meta.format == param::ConvBias::Format::NCHW ||
(param.filter_meta.format ==
param::ConvBias::Format::NCHW_WINOGRAD &&
opr->param().output_block_size == 4 &&
param.output_block_size == 4 &&
param.winograd_matmul_format ==
param::MatrixMul::Format::DEFAULT)) &&
opr->param().mode == param::ConvBias::Mode::CROSS_CORRELATION &&
!param.filter_meta.should_flip &&
(param.filter_meta.spatial[0] == param.filter_meta.spatial[1] &&
param.filter_meta.spatial[0] == 5) &&
(param.filter_meta.stride[0] == param.filter_meta.stride[1] &&
......@@ -109,10 +107,9 @@ MEGDNN_WINOGRAD_ALGO_FUN_DEFINE_ALL(AlgoFP16WinogradF45,
/* ======================= AlgoFP16WinogradF63 ======================== */
bool ConvBiasImpl::AlgoFP16WinogradF63::usable(
fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param,
const NCBKernSizeParam& param,
AlgoSelectionStrategy /*algo_selection_strategy*/) const {
MEGDNN_MARK_USED_VAR(param);
MEGDNN_MARK_USED_VAR(opr);
MIDOUT_BEGIN(megdnn_arm_common_winograd_fp16, 2, 0) {
using Strategy = winograd::winograd_6x3_1x1_f16;
Strategy strategy(param.src_type, param.filter_type, param.dst_type);
......@@ -120,13 +117,13 @@ bool ConvBiasImpl::AlgoFP16WinogradF63::usable(
strategy, m_tile_size, param)
.get_matmul_kern_param(param);
return m_matmul_algo->usable(matmul_param) &&
(opr->param().format == param::ConvBias::Format::NCHW ||
(opr->param().format ==
(param.filter_meta.format == param::ConvBias::Format::NCHW ||
(param.filter_meta.format ==
param::ConvBias::Format::NCHW_WINOGRAD &&
opr->param().output_block_size == 6 &&
param.output_block_size == 6 &&
param.winograd_matmul_format ==
param::MatrixMul::Format::DEFAULT)) &&
opr->param().mode == param::ConvBias::Mode::CROSS_CORRELATION &&
!param.filter_meta.should_flip &&
(param.filter_meta.spatial[0] == param.filter_meta.spatial[1] &&
param.filter_meta.spatial[0] == 3) &&
(param.filter_meta.stride[0] == param.filter_meta.stride[1] &&
......@@ -149,10 +146,9 @@ MEGDNN_WINOGRAD_ALGO_FUN_DEFINE_ALL(AlgoFP16WinogradF63,
/* ======================= AlgoFP16WinogradF23_8x8 ======================== */
bool ConvBiasImpl::AlgoFP16WinogradF23_8x8::usable(
fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param,
const NCBKernSizeParam& param,
AlgoSelectionStrategy /*algo_selection_strategy*/) const {
MEGDNN_MARK_USED_VAR(param);
MEGDNN_MARK_USED_VAR(opr);
MIDOUT_BEGIN(megdnn_arm_common_winograd_fp16, 3, 0) {
if (param.filter_meta.icpg % 8 != 0 || param.filter_meta.ocpg % 8 != 0)
return false;
......@@ -166,13 +162,13 @@ bool ConvBiasImpl::AlgoFP16WinogradF23_8x8::usable(
.get_matmul_kern_param(param);
return m_matmul_algo->usable(matmul_param) &&
m_matmul_algo->packmode() == PackMode::NO_PACK &&
(opr->param().format == param::ConvBias::Format::NCHW ||
(opr->param().format ==
(param.filter_meta.format == param::ConvBias::Format::NCHW ||
(param.filter_meta.format ==
param::ConvBias::Format::NCHW_WINOGRAD &&
opr->param().output_block_size == 2 &&
param.output_block_size == 2 &&
param.winograd_matmul_format ==
param::MatrixMul::Format::MK8)) &&
opr->param().mode == param::ConvBias::Mode::CROSS_CORRELATION &&
!param.filter_meta.should_flip &&
(param.filter_meta.spatial[0] == param.filter_meta.spatial[1] &&
param.filter_meta.spatial[0] == 3) &&
(param.filter_meta.stride[0] == param.filter_meta.stride[1] &&
......@@ -197,7 +193,7 @@ MEGDNN_WINOGRAD_ALGO_FUN_DEFINE_ALL(AlgoFP16WinogradF23_8x8,
MIDOUT_DECL(megdnn_arm_common_conv_bias_fp16_kimpl)
bool ConvBiasImpl::AlgoF16Direct::usable(
fallback::ConvBiasImpl*, const NCBKernSizeParam& param,
const NCBKernSizeParam& param,
AlgoSelectionStrategy algo_selection_strategy) const {
MIDOUT_BEGIN(megdnn_arm_common_conv_bias_fp16_kimpl, 0, 0) {
auto&& fm = param.filter_meta;
......@@ -227,7 +223,7 @@ bool ConvBiasImpl::AlgoF16Direct::usable(
}
size_t ConvBiasImpl::AlgoF16Direct::get_workspace(
fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const {
const NCBKernSizeParam& param) const {
MIDOUT_BEGIN(megdnn_arm_common_conv_bias_fp16_kimpl, 0, 1) {
auto wbundle =
MultithreadDirectConvCommon<dt_float16, __fp16>::get_bundle(
......@@ -310,7 +306,7 @@ SmallVector<ConvBiasImpl::NCBKern> ConvBiasImpl::AlgoF16Direct::get_kimpls(
}
SmallVector<ConvBiasImpl::NCBKern> ConvBiasImpl::AlgoF16Direct::dispatch_kerns(
fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const {
const NCBKernSizeParam& param) const {
MIDOUT_BEGIN(megdnn_arm_common_conv_bias_fp16_kimpl, 0, 1) {
return get_kimpls(param);
}
......@@ -321,7 +317,7 @@ SmallVector<ConvBiasImpl::NCBKern> ConvBiasImpl::AlgoF16Direct::dispatch_kerns(
/* ===================== stride-1 algo ===================== */
bool ConvBiasImpl::AlgoF16DirectStride1::usable(
fallback::ConvBiasImpl*, const NCBKernSizeParam& param,
const NCBKernSizeParam& param,
AlgoSelectionStrategy algo_selection_strategy) const {
MIDOUT_BEGIN(megdnn_arm_common_conv_bias_fp16_kimpl, 1, 0) {
auto&& fm = param.filter_meta;
......@@ -425,7 +421,7 @@ ConvBiasImpl::AlgoF16DirectStride1::get_kimpls(
}
size_t ConvBiasImpl::AlgoF16DirectStride1::get_workspace(
fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const {
const NCBKernSizeParam& param) const {
MIDOUT_BEGIN(megdnn_arm_common_conv_bias_fp16_kimpl, 1, 1) {
auto bundle = MultithreadDirectConvCommon<
dt_float16, __fp16>::get_bundle_stride(param, m_large_group);
......@@ -437,7 +433,7 @@ size_t ConvBiasImpl::AlgoF16DirectStride1::get_workspace(
SmallVector<ConvBiasImpl::NCBKern>
ConvBiasImpl::AlgoF16DirectStride1::dispatch_kerns(
fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const {
const NCBKernSizeParam& param) const {
MIDOUT_BEGIN(megdnn_arm_common_conv_bias_fp16_kimpl, 1, 2) {
return get_kimpls(param);
}
......
......@@ -88,14 +88,12 @@ public:
return m_large_group ? "F16DIRECT_LARGE_GROUP"
: "F16DIRECT_SMALL_GROUP";
}
bool usable(fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param,
bool usable(const NCBKernSizeParam& param,
AlgoSelectionStrategy algo_selection_strategy) const override;
size_t get_workspace(fallback::ConvBiasImpl* opr,
const NCBKernSizeParam& param) const override;
size_t get_workspace(const NCBKernSizeParam& param) const override;
virtual SmallVector<NCBKern> dispatch_kerns(
fallback::ConvBiasImpl* opr,
const NCBKernSizeParam& param) const override;
};
......@@ -109,12 +107,10 @@ public:
const char* name() const override {
return m_large_group ? "F16STRD1_LARGE_GROUP" : "F16STRD1_SMALL_GROUP";
}
bool usable(fallback::ConvBiasImpl*, const NCBKernSizeParam& param,
bool usable(const NCBKernSizeParam& param,
AlgoSelectionStrategy algo_selection_strategy) const override;
size_t get_workspace(fallback::ConvBiasImpl*,
const NCBKernSizeParam& param) const override;
size_t get_workspace(const NCBKernSizeParam& param) const override;
virtual SmallVector<NCBKern> dispatch_kerns(
fallback::ConvBiasImpl* opr,
const NCBKernSizeParam& param) const override;
};
......
......@@ -6,7 +6,8 @@
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
* implied.
*/
#include "src/arm_common/conv_bias/fp32/algos.h"
......@@ -30,9 +31,8 @@ using namespace arm_common;
/* ======================= AlgoFP32WinogradF23_4x4 ======================== */
bool ConvBiasImpl::AlgoFP32WinogradF23_4x4::usable(
fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param,
const NCBKernSizeParam& param,
AlgoSelectionStrategy /*algo_selection_strategy*/) const {
MEGDNN_MARK_USED_VAR(opr);
MEGDNN_MARK_USED_VAR(param);
MIDOUT_BEGIN(megdnn_arm_common_winograd_fp32, 0, 0) {
if (param.filter_meta.icpg % 4 != 0 || param.filter_meta.ocpg % 4 != 0)
......@@ -47,13 +47,13 @@ bool ConvBiasImpl::AlgoFP32WinogradF23_4x4::usable(
.get_matmul_kern_param(param);
return m_matmul_algo->usable(matmul_param) &&
m_matmul_algo->packmode() == PackMode::NO_PACK &&
(opr->param().format == param::ConvBias::Format::NCHW ||
(opr->param().format ==
(param.filter_meta.format == param::ConvBias::Format::NCHW ||
(param.filter_meta.format ==
param::ConvBias::Format::NCHW_WINOGRAD &&
opr->param().output_block_size == 2 &&
param.output_block_size == 2 &&
param.winograd_matmul_format ==
param::MatrixMul::Format::MK4)) &&
opr->param().mode == param::ConvBias::Mode::CROSS_CORRELATION &&
!param.filter_meta.should_flip &&
(param.filter_meta.spatial[0] == param.filter_meta.spatial[1] &&
param.filter_meta.spatial[0] == 3) &&
(param.filter_meta.stride[0] == param.filter_meta.stride[1] &&
......@@ -76,10 +76,9 @@ MEGDNN_WINOGRAD_ALGO_FUN_DEFINE_ALL(AlgoFP32WinogradF23_4x4,
/* ======================= AlgoFP32WinogradF63 ======================== */
bool ConvBiasImpl::AlgoFP32WinogradF63::usable(
fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param,
const NCBKernSizeParam& param,
AlgoSelectionStrategy /*algo_selection_strategy*/) const {
MEGDNN_MARK_USED_VAR(param);
MEGDNN_MARK_USED_VAR(opr);
MIDOUT_BEGIN(megdnn_arm_common_winograd_fp32, 1, 0) {
using Strategy = winograd::winograd_6x3_1x1_f;
Strategy strategy(param.src_type, param.filter_type, param.dst_type);
......@@ -87,13 +86,13 @@ bool ConvBiasImpl::AlgoFP32WinogradF63::usable(
strategy, m_tile_size, param)
.get_matmul_kern_param(param);
return m_matmul_algo->usable(matmul_param) &&
(opr->param().format == param::ConvBias::Format::NCHW ||
(opr->param().format ==
(param.filter_meta.format == param::ConvBias::Format::NCHW ||
(param.filter_meta.format ==
param::ConvBias::Format::NCHW_WINOGRAD &&
opr->param().output_block_size == 6 &&
param.output_block_size == 6 &&
param.winograd_matmul_format ==
param::MatrixMul::Format::DEFAULT)) &&
opr->param().mode == param::ConvBias::Mode::CROSS_CORRELATION &&
!param.filter_meta.should_flip &&
(param.filter_meta.spatial[0] == param.filter_meta.spatial[1] &&
param.filter_meta.spatial[0] == 3) &&
(param.filter_meta.stride[0] == param.filter_meta.stride[1] &&
......@@ -116,10 +115,9 @@ MEGDNN_WINOGRAD_ALGO_FUN_DEFINE_ALL(AlgoFP32WinogradF63,
/* ======================= AlgoFP32WinogradF54 ======================== */
bool ConvBiasImpl::AlgoFP32WinogradF54::usable(
fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param,
const NCBKernSizeParam& param,
AlgoSelectionStrategy /*algo_selection_strategy*/) const {
MEGDNN_MARK_USED_VAR(param);
MEGDNN_MARK_USED_VAR(opr);
MIDOUT_BEGIN(megdnn_arm_common_winograd_fp32, 2, 0) {
using Strategy = winograd::winograd_5x4_1x1_f;
Strategy strategy(param.src_type, param.filter_type, param.dst_type);
......@@ -127,13 +125,13 @@ bool ConvBiasImpl::AlgoFP32WinogradF54::usable(
strategy, m_tile_size, param)
.get_matmul_kern_param(param);
return m_matmul_algo->usable(matmul_param) &&
(opr->param().format == param::ConvBias::Format::NCHW ||
(opr->param().format ==
(param.filter_meta.format == param::ConvBias::Format::NCHW ||
(param.filter_meta.format ==
param::ConvBias::Format::NCHW_WINOGRAD &&
opr->param().output_block_size == 5 &&
param.output_block_size == 5 &&
param.winograd_matmul_format ==
param::MatrixMul::Format::DEFAULT)) &&
opr->param().mode == param::ConvBias::Mode::CROSS_CORRELATION &&
!param.filter_meta.should_flip &&
(param.filter_meta.spatial[0] == param.filter_meta.spatial[1] &&
param.filter_meta.spatial[0] == 4) &&
(param.filter_meta.stride[0] == param.filter_meta.stride[1] &&
......@@ -156,10 +154,9 @@ MEGDNN_WINOGRAD_ALGO_FUN_DEFINE_ALL(AlgoFP32WinogradF54,
/* ======================= AlgoFP32WinogradF45 ======================== */
bool ConvBiasImpl::AlgoFP32WinogradF45::usable(
fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param,
const NCBKernSizeParam& param,
AlgoSelectionStrategy /*algo_selection_strategy*/) const {
MEGDNN_MARK_USED_VAR(param);
MEGDNN_MARK_USED_VAR(opr);
MIDOUT_BEGIN(megdnn_arm_common_winograd_fp32, 3, 0) {
using Strategy = winograd::winograd_4x5_1x1_f;
Strategy strategy(param.src_type, param.filter_type, param.dst_type);
......@@ -167,13 +164,13 @@ bool ConvBiasImpl::AlgoFP32WinogradF45::usable(
strategy, m_tile_size, param)
.get_matmul_kern_param(param);
return m_matmul_algo->usable(matmul_param) &&
(opr->param().format == param::ConvBias::Format::NCHW ||
(opr->param().format ==
(param.filter_meta.format == param::ConvBias::Format::NCHW ||
(param.filter_meta.format ==
param::ConvBias::Format::NCHW_WINOGRAD &&
opr->param().output_block_size == 4 &&
param.output_block_size == 4 &&
param.winograd_matmul_format ==
param::MatrixMul::Format::DEFAULT)) &&
opr->param().mode == param::ConvBias::Mode::CROSS_CORRELATION &&
!param.filter_meta.should_flip &&
(param.filter_meta.spatial[0] == param.filter_meta.spatial[1] &&
param.filter_meta.spatial[0] == 5) &&
(param.filter_meta.stride[0] == param.filter_meta.stride[1] &&
......@@ -196,10 +193,9 @@ MEGDNN_WINOGRAD_ALGO_FUN_DEFINE_ALL(AlgoFP32WinogradF45,
/* ======================= AlgoFP32WinogradF63_4x4 ======================== */
bool ConvBiasImpl::AlgoFP32WinogradF63_4x4::usable(
fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param,
const NCBKernSizeParam& param,
AlgoSelectionStrategy /*algo_selection_strategy*/) const {
MEGDNN_MARK_USED_VAR(param);
MEGDNN_MARK_USED_VAR(opr);
MIDOUT_BEGIN(megdnn_arm_common_winograd_fp32, 4, 0) {
if (param.filter_meta.icpg % 4 != 0 || param.filter_meta.ocpg % 4 != 0)
return false;
......@@ -213,13 +209,13 @@ bool ConvBiasImpl::AlgoFP32WinogradF63_4x4::usable(
.get_matmul_kern_param(param);
return m_matmul_algo->usable(matmul_param) &&
m_matmul_algo->packmode() == PackMode::NO_PACK &&
(opr->param().format == param::ConvBias::Format::NCHW ||
(opr->param().format ==
(param.filter_meta.format == param::ConvBias::Format::NCHW ||
(param.filter_meta.format ==
param::ConvBias::Format::NCHW_WINOGRAD &&
opr->param().output_block_size == 6 &&
param.output_block_size == 6 &&
param.winograd_matmul_format ==
param::MatrixMul::Format::MK4)) &&
opr->param().mode == param::ConvBias::Mode::CROSS_CORRELATION &&
!param.filter_meta.should_flip &&
(param.filter_meta.spatial[0] == param.filter_meta.spatial[1] &&
param.filter_meta.spatial[0] == 3) &&
(param.filter_meta.stride[0] == param.filter_meta.stride[1] &&
......@@ -244,9 +240,8 @@ MEGDNN_WINOGRAD_ALGO_FUN_DEFINE_ALL(AlgoFP32WinogradF63_4x4,
/* =================== AlgoFP32WinogradF23_4x4_NCHW44 =================== */
bool ConvBiasImpl::AlgoFP32WinogradF23_4x4_NCHW44::usable(
fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param,
const NCBKernSizeParam& param,
AlgoSelectionStrategy /*algo_selection_strategy*/) const {
MEGDNN_MARK_USED_VAR(opr);
MEGDNN_MARK_USED_VAR(param);
MIDOUT_BEGIN(megdnn_arm_common_winograd_fp32,
midout_iv("AlgoFP32WinogradF23_4x4_NCHW44"_hash)) {
......@@ -262,13 +257,13 @@ bool ConvBiasImpl::AlgoFP32WinogradF23_4x4_NCHW44::usable(
return m_matmul_algo->usable(matmul_param) &&
m_matmul_algo->packmode() ==
fallback::MatrixMulImpl::AlgoBase::PackMode::NO_PACK &&
(opr->param().format == param::ConvBias::Format::NCHW44 ||
(opr->param().format ==
(param.filter_meta.format == param::ConvBias::Format::NCHW44 ||
(param.filter_meta.format ==
param::ConvBias::Format::NCHW44_WINOGRAD &&
opr->param().output_block_size == 2 &&
param.output_block_size == 2 &&
param.winograd_matmul_format ==
param::MatrixMul::Format::MK4)) &&
opr->param().mode == param::ConvBias::Mode::CROSS_CORRELATION &&
!param.filter_meta.should_flip &&
(param.filter_meta.spatial[0] == param.filter_meta.spatial[1] &&
param.filter_meta.spatial[0] == 3) &&
(param.filter_meta.stride[0] == param.filter_meta.stride[1] &&
......@@ -291,10 +286,9 @@ MEGDNN_WINOGRAD_ALGO_FUN_DEFINE_ALL(AlgoFP32WinogradF23_4x4_NCHW44,
/* =================== AlgoFP32WinogradF63_4x4_NCHW44 ===================== */
bool ConvBiasImpl::AlgoFP32WinogradF63_4x4_NCHW44::usable(
fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param,
const NCBKernSizeParam& param,
AlgoSelectionStrategy /*algo_selection_strategy*/) const {
MEGDNN_MARK_USED_VAR(param);
MEGDNN_MARK_USED_VAR(opr);
MIDOUT_BEGIN(megdnn_arm_common_winograd_fp32,
midout_iv("AlgoFP32WinogradF63_4x4_NCHW44"_hash)) {
if (param.filter_meta.icpg % 4 != 0 || param.filter_meta.ocpg % 4 != 0)
......@@ -309,13 +303,13 @@ bool ConvBiasImpl::AlgoFP32WinogradF63_4x4_NCHW44::usable(
return m_matmul_algo->usable(matmul_param) &&
m_matmul_algo->packmode() ==
fallback::MatrixMulImpl::AlgoBase::PackMode::NO_PACK &&
(opr->param().format == param::ConvBias::Format::NCHW44 ||
(opr->param().format ==
(param.filter_meta.format == param::ConvBias::Format::NCHW44 ||
(param.filter_meta.format ==
param::ConvBias::Format::NCHW44_WINOGRAD &&
opr->param().output_block_size == 6 &&
param.output_block_size == 6 &&
param.winograd_matmul_format ==
param::MatrixMul::Format::MK4)) &&
opr->param().mode == param::ConvBias::Mode::CROSS_CORRELATION &&
!param.filter_meta.should_flip &&
(param.filter_meta.spatial[0] == param.filter_meta.spatial[1] &&
param.filter_meta.spatial[0] == 3) &&
(param.filter_meta.stride[0] == param.filter_meta.stride[1] &&
......@@ -341,7 +335,7 @@ MEGDNN_WINOGRAD_ALGO_FUN_DEFINE_ALL(AlgoFP32WinogradF63_4x4_NCHW44,
MIDOUT_DECL(megdnn_arm_common_conv_bias_f32_kimpl);
bool ConvBiasImpl::AlgoF32Direct::usable(
fallback::ConvBiasImpl*, const NCBKernSizeParam& param,
const NCBKernSizeParam& param,
AlgoSelectionStrategy algo_selection_strategy) const {
MIDOUT_BEGIN(megdnn_arm_common_conv_bias_f32_kimpl, 0, 0) {
auto&& fm = param.filter_meta;
......@@ -370,7 +364,7 @@ bool ConvBiasImpl::AlgoF32Direct::usable(
return false;
}
size_t ConvBiasImpl::AlgoF32Direct::get_workspace(
fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const {
const NCBKernSizeParam& param) const {
MIDOUT_BEGIN(megdnn_arm_common_conv_bias_f32_kimpl, 0, 1) {
auto wbundle = MultithreadDirectConvCommon<float, float>::get_bundle(
param, m_large_group);
......@@ -409,7 +403,8 @@ SmallVector<ConvBiasImpl::NCBKern> ConvBiasImpl::AlgoF32Direct::get_kimpls(
}
for (size_t ic = 0; ic < IC; ic++) {
MultithreadDirectConvCommon<float, float>::copy_padding_kern(
bundle, kern_param, ncb_index, {ncb_index.thread_id, 0, ic});
bundle, kern_param, ncb_index,
{ncb_index.thread_id, 0, ic});
}
for (size_t oc = 0; oc < OC; oc++) {
MultithreadDirectConvCommon<float, float>::do_conv_kern(
......@@ -449,7 +444,7 @@ SmallVector<ConvBiasImpl::NCBKern> ConvBiasImpl::AlgoF32Direct::get_kimpls(
}
SmallVector<ConvBiasImpl::NCBKern> ConvBiasImpl::AlgoF32Direct::dispatch_kerns(
fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const {
const NCBKernSizeParam& param) const {
MIDOUT_BEGIN(megdnn_arm_common_conv_bias_f32_kimpl, 0, 1) {
return get_kimpls(param);
}
......@@ -458,7 +453,7 @@ SmallVector<ConvBiasImpl::NCBKern> ConvBiasImpl::AlgoF32Direct::dispatch_kerns(
}
/* ===================== stride-1 algo ===================== */
bool ConvBiasImpl::AlgoF32DirectStride1::usable(
fallback::ConvBiasImpl*, const NCBKernSizeParam& param,
const NCBKernSizeParam& param,
AlgoSelectionStrategy algo_selection_strategy) const {
MIDOUT_BEGIN(megdnn_arm_common_conv_bias_f32_kimpl, 1, 1) {
auto&& fm = param.filter_meta;
......@@ -484,7 +479,7 @@ bool ConvBiasImpl::AlgoF32DirectStride1::usable(
}
size_t ConvBiasImpl::AlgoF32DirectStride1::get_workspace(
fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const {
const NCBKernSizeParam& param) const {
MIDOUT_BEGIN(megdnn_arm_common_conv_bias_f32_kimpl, 1, 1) {
auto bundle =
MultithreadDirectConvCommon<float, float>::get_bundle_stride(
......@@ -575,7 +570,7 @@ ConvBiasImpl::AlgoF32DirectStride1::get_kimpls(
SmallVector<ConvBiasImpl::NCBKern>
ConvBiasImpl::AlgoF32DirectStride1::dispatch_kerns(
fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const {
const NCBKernSizeParam& param) const {
MIDOUT_BEGIN(megdnn_arm_common_conv_bias_f32_kimpl, 1, 2) {
return get_kimpls(param);
}
......@@ -586,7 +581,7 @@ ConvBiasImpl::AlgoF32DirectStride1::dispatch_kerns(
/* ===================== stride-2 algo ===================== */
bool ConvBiasImpl::AlgoF32DirectStride2::usable(
fallback::ConvBiasImpl*, const NCBKernSizeParam& param,
const NCBKernSizeParam& param,
AlgoSelectionStrategy algo_selection_strategy) const {
MIDOUT_BEGIN(megdnn_arm_common_conv_bias_f32_kimpl, 2, 0) {
auto&& fm = param.filter_meta;
......@@ -611,7 +606,7 @@ bool ConvBiasImpl::AlgoF32DirectStride2::usable(
return false;
}
size_t ConvBiasImpl::AlgoF32DirectStride2::get_workspace(
fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const {
const NCBKernSizeParam& param) const {
MIDOUT_BEGIN(megdnn_arm_common_conv_bias_f32_kimpl, 2, 1) {
auto bundle =
MultithreadDirectConvCommon<float, float>::get_bundle_stride(
......@@ -701,7 +696,7 @@ ConvBiasImpl::AlgoF32DirectStride2::get_kimpls(
SmallVector<ConvBiasImpl::NCBKern>
ConvBiasImpl::AlgoF32DirectStride2::dispatch_kerns(
fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const {
const NCBKernSizeParam& param) const {
MIDOUT_BEGIN(megdnn_arm_common_conv_bias_f32_kimpl, 2, 2) {
return get_kimpls(param);
}
......
......@@ -137,13 +137,11 @@ public:
return m_large_group ? "F32DIRECT_LARGE_GROUP"
: "F32DIRECT_SMALL_GROUP";
}
bool usable(fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param,
bool usable(const NCBKernSizeParam& param,
AlgoSelectionStrategy algo_selection_strategy) const override;
size_t get_workspace(fallback::ConvBiasImpl* opr,
const NCBKernSizeParam& param) const override;
size_t get_workspace(const NCBKernSizeParam& param) const override;
virtual SmallVector<NCBKern> dispatch_kerns(
fallback::ConvBiasImpl* opr,
const NCBKernSizeParam& param) const override;
};
......@@ -157,13 +155,11 @@ public:
const char* name() const override {
return m_large_group ? "F32STRD1_LARGE_GROUP" : "F32STRD1_SMALL_GROUP";
}
bool usable(fallback::ConvBiasImpl*, const NCBKernSizeParam& param,
bool usable(const NCBKernSizeParam& param,
AlgoSelectionStrategy algo_selection_strategy) const override;
size_t get_workspace(fallback::ConvBiasImpl*,
const NCBKernSizeParam& param) const override;
size_t get_workspace(const NCBKernSizeParam& param) const override;
virtual SmallVector<NCBKern> dispatch_kerns(
fallback::ConvBiasImpl* opr,
const NCBKernSizeParam& param) const override;
};
......@@ -177,13 +173,11 @@ public:
const char* name() const override {
return m_large_group ? "F32STRD2_LARGE_GROUP" : "F32STRD2_SMALL_GROUP";
}
bool usable(fallback::ConvBiasImpl*, const NCBKernSizeParam& param,
bool usable(const NCBKernSizeParam& param,
AlgoSelectionStrategy algo_selection_strategy) const override;
size_t get_workspace(fallback::ConvBiasImpl*,
const NCBKernSizeParam& param) const override;
size_t get_workspace(const NCBKernSizeParam& param) const override;
virtual SmallVector<NCBKern> dispatch_kerns(
fallback::ConvBiasImpl* opr,
const NCBKernSizeParam& param) const override;
};
......@@ -194,13 +188,11 @@ public:
AlgoF32DirectNCHW44() {}
bool is_reproducible() const override { return true; }
const char* name() const override { return "F32_CONV_NCHW44_DIRECT"; }
bool usable(fallback::ConvBiasImpl*, const NCBKernSizeParam& param,
bool usable(const NCBKernSizeParam& param,
AlgoSelectionStrategy algo_selection_strategy) const override;
size_t get_workspace(fallback::ConvBiasImpl*,
const NCBKernSizeParam& param) const override;
size_t get_workspace(const NCBKernSizeParam& param) const override;
virtual SmallVector<NCBKern> dispatch_kerns(
fallback::ConvBiasImpl* opr,
const NCBKernSizeParam& param) const override;
};
......@@ -211,13 +203,11 @@ public:
AlgoF32DirectNCHWNCHW44() {}
bool is_reproducible() const override { return true; }
const char* name() const override { return "F32_CONV_NCHW_NCHW44"; }
bool usable(fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param,
bool usable(const NCBKernSizeParam& param,
AlgoSelectionStrategy algo_selection_strategy) const override;
size_t get_workspace(fallback::ConvBiasImpl* opr,
const NCBKernSizeParam& param) const override;
size_t get_workspace(const NCBKernSizeParam& param) const override;
virtual SmallVector<NCBKern> dispatch_kerns(
fallback::ConvBiasImpl* opr,
const NCBKernSizeParam& param) const override;
};
......@@ -227,13 +217,11 @@ class ConvBiasImpl::AlgoF32ChannelWiseNCHW44 final : public AlgoBase {
public:
bool is_reproducible() const override { return true; }
const char* name() const override { return "F32_CHANNEL_WISE_NCHW44"; }
bool usable(fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param,
bool usable(const NCBKernSizeParam& param,
AlgoSelectionStrategy algo_selection_strategy) const override;
size_t get_workspace(fallback::ConvBiasImpl* opr,
const NCBKernSizeParam& param) const override;
size_t get_workspace(const NCBKernSizeParam& param) const override;
virtual SmallVector<NCBKern> dispatch_kerns(
fallback::ConvBiasImpl* opr,
const NCBKernSizeParam& param) const override;
};
......
......@@ -10,8 +10,8 @@
* implied.
*/
#include "src/arm_common/conv_bias/fp32/channel_wise_nchw44_kern.h"
#include "src/arm_common/conv_bias/fp32/algos.h"
#include "src/arm_common/conv_bias/fp32/channel_wise_nchw44_kern.h"
#include "src/arm_common/elemwise_op.h"
#include "midout.h"
......@@ -26,8 +26,7 @@ using conv_fun = std::function<void(
MIDOUT_DECL(conv_bias_fp32_channel_wise_nchw44)
bool ConvBiasImpl::AlgoF32ChannelWiseNCHW44::usable(
fallback::ConvBiasImpl*, const NCBKernSizeParam& param,
AlgoSelectionStrategy) const {
const NCBKernSizeParam& param, AlgoSelectionStrategy) const {
auto&& fm = param.filter_meta;
auto FH = fm.spatial[0];
size_t OC = fm.ocpg;
......@@ -49,13 +48,13 @@ bool ConvBiasImpl::AlgoF32ChannelWiseNCHW44::usable(
}
size_t ConvBiasImpl::AlgoF32ChannelWiseNCHW44::get_workspace(
fallback::ConvBiasImpl*, const NCBKernSizeParam&) const {
const NCBKernSizeParam&) const {
return 0;
}
SmallVector<ConvBiasImpl::NCBKern>
ConvBiasImpl::AlgoF32ChannelWiseNCHW44::dispatch_kerns(
fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const {
const NCBKernSizeParam& param) const {
const constexpr size_t pack_group_size = 4_z;
auto fm = param.filter_meta;
const int batch = param.n;
......
......@@ -159,8 +159,7 @@ static void do_conv_kern(const WorkspaceBundle& bundle,
} // namespace
/* ===================== stride1 algo ===================== */
bool ConvBiasImpl::AlgoF32DirectNCHW44::usable(fallback::ConvBiasImpl*,
const NCBKernSizeParam& param,
bool ConvBiasImpl::AlgoF32DirectNCHW44::usable(const NCBKernSizeParam& param,
AlgoSelectionStrategy) const {
auto&& fm = param.filter_meta;
auto fh = fm.spatial[0];
......@@ -182,13 +181,13 @@ bool ConvBiasImpl::AlgoF32DirectNCHW44::usable(fallback::ConvBiasImpl*,
}
size_t ConvBiasImpl::AlgoF32DirectNCHW44::get_workspace(
fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const {
const NCBKernSizeParam& param) const {
return get_bundle(param).total_size_in_bytes();
}
SmallVector<ConvBiasImpl::NCBKern>
ConvBiasImpl::AlgoF32DirectNCHW44::dispatch_kerns(
fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const {
const NCBKernSizeParam& param) const {
auto fm = param.filter_meta;
const int batch = param.n;
const int group = fm.group;
......
......@@ -188,8 +188,7 @@ static void do_conv_kern(const WorkspaceBundle& bundle,
} // namespace
bool ConvBiasImpl::AlgoF32DirectNCHWNCHW44::usable(
fallback::ConvBiasImpl*, const NCBKernSizeParam& param,
AlgoSelectionStrategy) const {
const NCBKernSizeParam& param, AlgoSelectionStrategy) const {
auto&& fm = param.filter_meta;
auto fh = fm.spatial[0];
int oc = fm.ocpg;
......@@ -209,13 +208,13 @@ bool ConvBiasImpl::AlgoF32DirectNCHWNCHW44::usable(
}
size_t ConvBiasImpl::AlgoF32DirectNCHWNCHW44::get_workspace(
fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const {
const NCBKernSizeParam& param) const {
return get_bundle(param).total_size_in_bytes();
}
SmallVector<ConvBiasImpl::NCBKern>
ConvBiasImpl::AlgoF32DirectNCHWNCHW44::dispatch_kerns(
fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const {
const NCBKernSizeParam& param) const {
auto fm = param.filter_meta;
const int batch = param.n;
const int group = fm.group;
......
......@@ -28,7 +28,7 @@ using namespace arm_common;
MIDOUT_DECL(megdnn_arm_common_conv_bias_int8)
/* ===================== stride1 algo ===================== */
bool ConvBiasImpl::AlgoS8DirectStride1::usable(
fallback::ConvBiasImpl*, const NCBKernSizeParam& param,
const NCBKernSizeParam& param,
AlgoSelectionStrategy algo_selection_strategy) const {
bool avaible = direct_int8_stride1::can_conv_direct_stride1_int8(param);
auto fm = param.filter_meta;
......@@ -40,7 +40,7 @@ bool ConvBiasImpl::AlgoS8DirectStride1::usable(
return avaible;
}
bool ConvBiasImpl::AlgoS8DirectStride1::is_preferred(
megdnn::fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const {
const NCBKernSizeParam& param) const {
auto&& fm = param.filter_meta;
auto FH = fm.spatial[0];
auto OC = fm.ocpg;
......@@ -53,14 +53,14 @@ bool ConvBiasImpl::AlgoS8DirectStride1::is_preferred(
}
size_t ConvBiasImpl::AlgoS8DirectStride1::get_workspace(
fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const {
const NCBKernSizeParam& param) const {
auto bundle = direct_int8_stride1::get_bundle(param, m_large_group);
return bundle.total_size_in_bytes();
}
SmallVector<ConvBiasImpl::NCBKern>
ConvBiasImpl::AlgoS8DirectStride1::dispatch_kerns(
fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const {
const NCBKernSizeParam& param) const {
MIDOUT_BEGIN(megdnn_arm_common_conv_bias_int8, 1, 0) {
return direct_int8_stride1::get_kimpls(param, m_large_group);
}
......@@ -70,20 +70,20 @@ ConvBiasImpl::AlgoS8DirectStride1::dispatch_kerns(
/* ===================== stride1 algo ===================== */
bool ConvBiasImpl::AlgoS8ChanWiseStride1NCHW44::usable(
fallback::ConvBiasImpl*, const NCBKernSizeParam& param,
const NCBKernSizeParam& param,
AlgoSelectionStrategy) const {
return channel_wise_nchw44::stride1::is_available(param);
}
size_t ConvBiasImpl::AlgoS8ChanWiseStride1NCHW44::get_workspace(
fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const {
const NCBKernSizeParam& param) const {
auto bundle = channel_wise_nchw44::stride1::get_bundle(param);
return bundle.total_size_in_bytes();
}
SmallVector<ConvBiasImpl::NCBKern>
ConvBiasImpl::AlgoS8ChanWiseStride1NCHW44::dispatch_kerns(
fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const {
const NCBKernSizeParam& param) const {
MIDOUT_BEGIN(megdnn_arm_common_conv_bias_int8,
midout_iv("AlgoS8ChanWiseStride1NCHW44"_hash)) {
return channel_wise_nchw44::stride1::get_kimpls(param);
......@@ -94,20 +94,20 @@ ConvBiasImpl::AlgoS8ChanWiseStride1NCHW44::dispatch_kerns(
/* ===================== stride2 algo ===================== */
bool ConvBiasImpl::AlgoS8ChanWiseStride2NCHW44::usable(
fallback::ConvBiasImpl*, const NCBKernSizeParam& param,
const NCBKernSizeParam& param,
AlgoSelectionStrategy) const {
return channel_wise_nchw44::stride2::is_available(param);
}
size_t ConvBiasImpl::AlgoS8ChanWiseStride2NCHW44::get_workspace(
fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const {
const NCBKernSizeParam& param) const {
auto bundle = channel_wise_nchw44::stride2::get_bundle(param);
return bundle.total_size_in_bytes();
}
SmallVector<ConvBiasImpl::NCBKern>
ConvBiasImpl::AlgoS8ChanWiseStride2NCHW44::dispatch_kerns(
fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const {
const NCBKernSizeParam& param) const {
MIDOUT_BEGIN(megdnn_arm_common_conv_bias_int8,
midout_iv("AlgoS8ChanWiseStride2NCHW44"_hash)) {
return channel_wise_nchw44::stride2::get_kimpls(param);
......@@ -118,7 +118,7 @@ ConvBiasImpl::AlgoS8ChanWiseStride2NCHW44::dispatch_kerns(
/* ===================== stride2 algo ===================== */
bool ConvBiasImpl::AlgoS8DirectStride2::usable(
fallback::ConvBiasImpl*, const NCBKernSizeParam& param,
const NCBKernSizeParam& param,
AlgoSelectionStrategy algo_selection_strategy) const {
bool avaible = direct_int8_stride2::can_conv_direct_stride2_int8(param);
if (algo_selection_strategy ==
......@@ -130,14 +130,14 @@ bool ConvBiasImpl::AlgoS8DirectStride2::usable(
}
size_t ConvBiasImpl::AlgoS8DirectStride2::get_workspace(
fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const {
const NCBKernSizeParam& param) const {
auto bundle = direct_int8_stride2::get_bundle(param, m_large_group);
return bundle.total_size_in_bytes();
}
SmallVector<ConvBiasImpl::NCBKern>
ConvBiasImpl::AlgoS8DirectStride2::dispatch_kerns(
fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const {
const NCBKernSizeParam& param) const {
MIDOUT_BEGIN(megdnn_arm_common_conv_bias_int8, 1, 1) {
return direct_int8_stride2::get_kimpls(param, m_large_group);
}
......@@ -148,7 +148,7 @@ ConvBiasImpl::AlgoS8DirectStride2::dispatch_kerns(
#if __ARM_FEATURE_DOTPROD
/* ===================== dot stride1 algo ======================== */
bool ConvBiasImpl::AlgoDotS8DirectStride1::usable(
FallbackConvBiasImpl*, const NCBKernSizeParam& param,
const NCBKernSizeParam& param,
AlgoSelectionStrategy algo_selection_strategy) const {
bool avaible =
direct_dotprod_int8_stride1::can_conv_direct_stride1_int8(param);
......@@ -163,14 +163,14 @@ bool ConvBiasImpl::AlgoDotS8DirectStride1::usable(
}
size_t ConvBiasImpl::AlgoDotS8DirectStride1::get_workspace(
FallbackConvBiasImpl*, const NCBKernSizeParam& param) const {
const NCBKernSizeParam& param) const {
auto bundle = direct_dotprod_int8_stride1::get_bundle(param, m_large_group);
return bundle.total_size_in_bytes();
}
SmallVector<ConvBiasImpl::NCBKern>
ConvBiasImpl::AlgoDotS8DirectStride1::dispatch_kerns(
FallbackConvBiasImpl*, const NCBKernSizeParam& param) const {
const NCBKernSizeParam& param) const {
MIDOUT_BEGIN(megdnn_arm_common_conv_bias_int8, 2, 1) {
return direct_dotprod_int8_stride1::get_kimpls(param, m_large_group);
}
......@@ -180,7 +180,7 @@ ConvBiasImpl::AlgoDotS8DirectStride1::dispatch_kerns(
/* ===================== dot stride2 algo ======================== */
bool ConvBiasImpl::AlgoDotS8DirectStride2::usable(
FallbackConvBiasImpl*, const NCBKernSizeParam& param,
const NCBKernSizeParam& param,
AlgoSelectionStrategy algo_selection_strategy) const {
bool avaible =
direct_dotprod_int8_stride2::can_conv_direct_stride2_int8(param);
......@@ -193,14 +193,14 @@ bool ConvBiasImpl::AlgoDotS8DirectStride2::usable(
}
size_t ConvBiasImpl::AlgoDotS8DirectStride2::get_workspace(
FallbackConvBiasImpl*, const NCBKernSizeParam& param) const {
const NCBKernSizeParam& param) const {
auto bundle = direct_dotprod_int8_stride2::get_bundle(param, m_large_group);
return bundle.total_size_in_bytes();
}
SmallVector<ConvBiasImpl::NCBKern>
ConvBiasImpl::AlgoDotS8DirectStride2::dispatch_kerns(
FallbackConvBiasImpl*, const NCBKernSizeParam& param) const {
const NCBKernSizeParam& param) const {
MIDOUT_BEGIN(megdnn_arm_common_conv_bias_int8, 2, 2) {
return direct_dotprod_int8_stride2::get_kimpls(param, m_large_group);
}
......@@ -212,7 +212,7 @@ ConvBiasImpl::AlgoDotS8DirectStride2::dispatch_kerns(
/* ======================= AlgoS8WinogradF23_8x8 ======================== */
bool ConvBiasImpl::AlgoS8WinogradF23_8x8::usable(
fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param,
const NCBKernSizeParam& param,
AlgoSelectionStrategy /*algo_selection_strategy*/) const {
if (param.filter_meta.icpg % 8 != 0 || param.filter_meta.ocpg % 8 != 0)
return false;
......@@ -225,13 +225,14 @@ bool ConvBiasImpl::AlgoS8WinogradF23_8x8::usable(
.get_matmul_kern_param(param);
return m_matmul_algo->usable(matmul_param) &&
m_matmul_algo->packmode() == PackMode::NO_PACK &&
((opr->param().format == param::ConvBias::Format::NCHW &&
((param.filter_meta.format == param::ConvBias::Format::NCHW &&
param.filter_type.enumv() == DTypeEnum::QuantizedS8) ||
(opr->param().format == param::ConvBias::Format::NCHW_WINOGRAD &&
opr->param().output_block_size == 2 &&
(param.filter_meta.format ==
param::ConvBias::Format::NCHW_WINOGRAD &&
param.output_block_size == 2 &&
param.winograd_matmul_format == param::MatrixMul::Format::MK8 &&
param.filter_type.enumv() == DTypeEnum::QuantizedS16)) &&
opr->param().mode == param::ConvBias::Mode::CROSS_CORRELATION &&
!param.filter_meta.should_flip &&
(param.filter_meta.spatial[0] == param.filter_meta.spatial[1] &&
param.filter_meta.spatial[0] == 3) &&
(param.filter_meta.stride[0] == param.filter_meta.stride[1] &&
......@@ -251,7 +252,7 @@ MEGDNN_WINOGRAD_ALGO_FUN_DEFINE_ALL(AlgoS8WinogradF23_8x8,
//=========================== input int8 compute float32 =========
bool ConvBiasImpl::AlgoS8CF32WinogradF23_4x4_NCHW44::usable(
fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param,
const NCBKernSizeParam& param,
AlgoSelectionStrategy /*algo_selection_strategy*/) const {
MEGDNN_MARK_USED_VAR(param);
MIDOUT_BEGIN(megdnn_arm_common_conv_bias_int8,
......@@ -270,14 +271,14 @@ bool ConvBiasImpl::AlgoS8CF32WinogradF23_4x4_NCHW44::usable(
.get_matmul_kern_param(param));
return is_matmul_usable &&
m_matmul_algo->packmode() == PackMode::NO_PACK &&
((opr->param().format == param::ConvBias::Format::NCHW44 &&
((param.filter_meta.format == param::ConvBias::Format::NCHW44 &&
param.filter_type.enumv() == DTypeEnum::QuantizedS8) ||
((opr->param().format ==
((param.filter_meta.format ==
param::ConvBias::Format::NCHW44_WINOGRAD) &&
opr->param().output_block_size == 2 &&
param.output_block_size == 2 &&
param.winograd_matmul_format ==
param::MatrixMul::Format::MK4)) &&
opr->param().mode == param::ConvBias::Mode::CROSS_CORRELATION &&
!param.filter_meta.should_flip &&
(param.filter_meta.spatial[0] == param.filter_meta.spatial[1] &&
param.filter_meta.spatial[0] == 3) &&
(param.filter_meta.stride[0] == param.filter_meta.stride[1] &&
......@@ -302,40 +303,42 @@ MEGDNN_WINOGRAD_ALGO_FUN_DEFINE_ALL(AlgoS8CF32WinogradF23_4x4_NCHW44,
/* ======================= AlgoS8WinogradF23_8x8_NCHW44 ======================== */
bool ConvBiasImpl::AlgoS8WinogradF23_8x8_NCHW44::usable(
fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param,
const NCBKernSizeParam& param,
AlgoSelectionStrategy /*algo_selection_strategy*/) const {
MIDOUT_BEGIN(
megdnn_arm_common_conv_bias_int8,
midout_iv(
"arm_common_AlgoS8WinogradF23_8x8_NCHW44::usable"_hash)) {
if (param.filter_meta.icpg % 8 != 0 || param.filter_meta.ocpg % 8 != 0)
return false;
using Strategy = winograd::winograd_2x3_8x8_s8_nchw44;
Strategy strategy(param.src_type, param.filter_type, param.dst_type);
auto&& matmul_param =
megdnn::winograd::ConvBias<Strategy, param::MatrixMul::Format::MK8>(
strategy, m_tile_size, param)
.get_matmul_kern_param(param);
bool is_matmul_usable = m_matmul_algo->usable(matmul_param);
return is_matmul_usable &&
((opr->param().format == param::ConvBias::Format::NCHW44 &&
param.filter_type.enumv() == DTypeEnum::QuantizedS8) ||
(opr->param().format == param::ConvBias::Format::NCHW44_WINOGRAD &&
opr->param().output_block_size == 2 &&
param.winograd_matmul_format == param::MatrixMul::Format::MK8 &&
param.filter_type.enumv() == DTypeEnum::QuantizedS16)) &&
opr->param().mode == param::ConvBias::Mode::CROSS_CORRELATION &&
(param.filter_meta.spatial[0] == param.filter_meta.spatial[1] &&
param.filter_meta.spatial[0] == 3) &&
(param.filter_meta.stride[0] == param.filter_meta.stride[1] &&
param.filter_meta.stride[0] == 1) &&
(param.filter_meta.dilation[0] == param.filter_meta.dilation[1] &&
param.filter_meta.dilation[0] == 1) &&
param.compute_mode == param::ConvBias::ComputeMode::DEFAULT &&
param.src_type.enumv() == DTypeEnum::QuantizedS8 &&
param.bias_type.enumv() == DTypeEnum::QuantizedS32 &&
param.dst_type.enumv() == DTypeEnum::QuantizedS8;
midout_iv("arm_common_AlgoS8WinogradF23_8x8_NCHW44::usable"_hash)) {
if (param.filter_meta.icpg % 8 != 0 || param.filter_meta.ocpg % 8 != 0)
return false;
using Strategy = winograd::winograd_2x3_8x8_s8_nchw44;
Strategy strategy(param.src_type, param.filter_type, param.dst_type);
auto&& matmul_param =
megdnn::winograd::ConvBias<Strategy,
param::MatrixMul::Format::MK8>(
strategy, m_tile_size, param)
.get_matmul_kern_param(param);
bool is_matmul_usable = m_matmul_algo->usable(matmul_param);
return is_matmul_usable &&
((param.filter_meta.format == param::ConvBias::Format::NCHW44 &&
param.filter_type.enumv() == DTypeEnum::QuantizedS8) ||
(param.filter_meta.format ==
param::ConvBias::Format::NCHW44_WINOGRAD &&
param.output_block_size == 2 &&
param.winograd_matmul_format ==
param::MatrixMul::Format::MK8 &&
param.filter_type.enumv() == DTypeEnum::QuantizedS16)) &&
!param.filter_meta.should_flip &&
(param.filter_meta.spatial[0] == param.filter_meta.spatial[1] &&
param.filter_meta.spatial[0] == 3) &&
(param.filter_meta.stride[0] == param.filter_meta.stride[1] &&
param.filter_meta.stride[0] == 1) &&
(param.filter_meta.dilation[0] ==
param.filter_meta.dilation[1] &&
param.filter_meta.dilation[0] == 1) &&
param.compute_mode == param::ConvBias::ComputeMode::DEFAULT &&
param.src_type.enumv() == DTypeEnum::QuantizedS8 &&
param.bias_type.enumv() == DTypeEnum::QuantizedS32 &&
param.dst_type.enumv() == DTypeEnum::QuantizedS8;
}
MIDOUT_END();
return false;
......
......@@ -26,16 +26,13 @@ public:
const char* name() const override {
return m_large_group ? "S8STRD1_LARGE_GROUP" : "S8STRD1_SMALL_GROUP";
}
bool usable(fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param,
bool usable(const NCBKernSizeParam& param,
AlgoSelectionStrategy algo_selection_strategy) const override;
size_t get_workspace(fallback::ConvBiasImpl*,
const NCBKernSizeParam& param) const override;
size_t get_workspace(const NCBKernSizeParam& param) const override;
virtual SmallVector<NCBKern> dispatch_kerns(
fallback::ConvBiasImpl* opr,
const NCBKernSizeParam& param) const override;
bool is_preferred(megdnn::fallback::ConvBiasImpl*,
const NCBKernSizeParam& param) const override;
bool is_preferred(const NCBKernSizeParam& param) const override;
};
class ConvBiasImpl::AlgoS8DirectStride2 final : public AlgoBase {
......@@ -47,13 +44,11 @@ public:
const char* name() const override {
return m_large_group ? "S8STRD2_LARGE_GROUP" : "S8STRD2_SMALL_GROUP";
}
bool usable(fallback::ConvBiasImpl*, const NCBKernSizeParam& param,
bool usable(const NCBKernSizeParam& param,
AlgoSelectionStrategy algo_selection_strategy) const override;
size_t get_workspace(fallback::ConvBiasImpl*,
const NCBKernSizeParam& param) const override;
size_t get_workspace(const NCBKernSizeParam& param) const override;
virtual SmallVector<NCBKern> dispatch_kerns(
fallback::ConvBiasImpl* opr,
const NCBKernSizeParam& param) const override;
};
......@@ -62,15 +57,12 @@ public:
AlgoS8DirectNCHW44() {}
bool is_reproducible() const override { return true; }
const char* name() const override { return "S8_NCHW44_DIRECT"; }
bool usable(fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param,
bool usable(const NCBKernSizeParam& param,
AlgoSelectionStrategy algo_selection_strategy) const override;
size_t get_workspace(fallback::ConvBiasImpl*,
const NCBKernSizeParam& param) const override;
size_t get_workspace(const NCBKernSizeParam& param) const override;
virtual SmallVector<NCBKern> dispatch_kerns(
fallback::ConvBiasImpl* opr,
const NCBKernSizeParam& param) const override;
bool is_preferred(megdnn::fallback::ConvBiasImpl*,
const NCBKernSizeParam& param) const override;
bool is_preferred(const NCBKernSizeParam& param) const override;
};
class ConvBiasImpl::AlgoS8DirectNCHWNCHW44 final : public AlgoBase {
......@@ -78,27 +70,22 @@ public:
AlgoS8DirectNCHWNCHW44() {}
bool is_reproducible() const override { return true; }
const char* name() const override { return "S8_CONV_NCHW_NCHW44"; }
bool usable(fallback::ConvBiasImpl*, const NCBKernSizeParam& param,
bool usable(const NCBKernSizeParam& param,
AlgoSelectionStrategy algo_selection_strategy) const override;
size_t get_workspace(fallback::ConvBiasImpl*,
const NCBKernSizeParam& param) const override;
size_t get_workspace(const NCBKernSizeParam& param) const override;
virtual SmallVector<NCBKern> dispatch_kerns(
fallback::ConvBiasImpl* opr,
const NCBKernSizeParam& param) const override;
bool is_preferred(megdnn::fallback::ConvBiasImpl*,
const NCBKernSizeParam& param) const override;
bool is_preferred(const NCBKernSizeParam& param) const override;
};
class ConvBiasImpl::AlgoS8ChanWiseStride1NCHW44 final : public AlgoBase {
public:
bool is_reproducible() const override { return true; }
const char* name() const override { return "S8_CHAN_WISE_STRD1_NCHW44"; }
bool usable(fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param,
bool usable(const NCBKernSizeParam& param,
AlgoSelectionStrategy algo_selection_strategy) const override;
size_t get_workspace(fallback::ConvBiasImpl*,
const NCBKernSizeParam& param) const override;
size_t get_workspace(const NCBKernSizeParam& param) const override;
virtual SmallVector<NCBKern> dispatch_kerns(
fallback::ConvBiasImpl* opr,
const NCBKernSizeParam& param) const override;
};
......@@ -106,12 +93,10 @@ class ConvBiasImpl::AlgoS8ChanWiseStride2NCHW44 final : public AlgoBase {
public:
bool is_reproducible() const override { return true; }
const char* name() const override { return "S8_CHAN_WISE_STRD2_NCHW44"; }
bool usable(fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param,
bool usable(const NCBKernSizeParam& param,
AlgoSelectionStrategy algo_selection_strategy) const override;
size_t get_workspace(fallback::ConvBiasImpl*,
const NCBKernSizeParam& param) const override;
size_t get_workspace(const NCBKernSizeParam& param) const override;
virtual SmallVector<NCBKern> dispatch_kerns(
fallback::ConvBiasImpl* opr,
const NCBKernSizeParam& param) const override;
};
......@@ -121,13 +106,11 @@ class ConvBiasImpl::AlgoDotS8DirectNCHWNCHW44 final : public AlgoBase {
public:
bool is_reproducible() const override { return true; }
const char* name() const override { return "ARMDOTS8_NCHW_NCHW44"; }
bool usable(FallbackConvBiasImpl*, const NCBKernSizeParam&,
bool usable(const NCBKernSizeParam&,
AlgoSelectionStrategy algo_selection_strategy) const override;
size_t get_workspace(FallbackConvBiasImpl*,
const NCBKernSizeParam&) const override;
size_t get_workspace(const NCBKernSizeParam&) const override;
virtual SmallVector<NCBKern> dispatch_kerns(
fallback::ConvBiasImpl* opr,
const NCBKernSizeParam& param) const override;
};
......@@ -142,13 +125,11 @@ public:
return m_large_group ? "ARMDOTS8STRD1_LARGE_GROUP"
: "ARMDOTS8STRD1_SMALL_GROUP";
}
bool usable(FallbackConvBiasImpl*, const NCBKernSizeParam&,
bool usable(const NCBKernSizeParam&,
AlgoSelectionStrategy algo_selection_strategy) const override;
size_t get_workspace(FallbackConvBiasImpl*,
const NCBKernSizeParam&) const override;
size_t get_workspace(const NCBKernSizeParam&) const override;
virtual SmallVector<NCBKern> dispatch_kerns(
fallback::ConvBiasImpl* opr,
const NCBKernSizeParam& param) const override;
};
......@@ -163,13 +144,11 @@ public:
: "ARMDOTS8STRD2_SMALL_GROUP";
}
bool usable(FallbackConvBiasImpl*, const NCBKernSizeParam&,
bool usable(const NCBKernSizeParam&,
AlgoSelectionStrategy algo_selection_strategy) const override;
size_t get_workspace(FallbackConvBiasImpl*,
const NCBKernSizeParam&) const override;
size_t get_workspace(const NCBKernSizeParam&) const override;
virtual SmallVector<NCBKern> dispatch_kerns(
fallback::ConvBiasImpl* opr,
const NCBKernSizeParam& param) const override;
};
......@@ -178,21 +157,16 @@ public:
AlgoDotS8Direct_NCHW44() {}
bool is_reproducible() const override { return true; }
const char* name() const override {
return "ARMDOTS8DIRECT_NCHW44";
}
bool usable(FallbackConvBiasImpl*, const NCBKernSizeParam&,
const char* name() const override { return "ARMDOTS8DIRECT_NCHW44"; }
bool usable(const NCBKernSizeParam&,
AlgoSelectionStrategy algo_selection_strategy) const override;
size_t get_workspace(FallbackConvBiasImpl*,
const NCBKernSizeParam&) const override;
size_t get_workspace(const NCBKernSizeParam&) const override;
SmallVector<NCBKern> dispatch_kerns(
fallback::ConvBiasImpl* opr,
const NCBKernSizeParam& param) const override;
bool is_preferred(megdnn::fallback::ConvBiasImpl*,
const NCBKernSizeParam& param) const override;
bool is_preferred(const NCBKernSizeParam& param) const override;
};
#endif
......
......@@ -161,7 +161,7 @@ static void conv_kern(const WorkspaceBundle& bundle,
} // namespace
bool ConvBiasImpl::AlgoDotS8Direct_NCHW44::usable(
FallbackConvBiasImpl*, const NCBKernSizeParam& param,
const NCBKernSizeParam& param,
AlgoSelectionStrategy algo_selection_strategy) const {
MEGDNN_MARK_USED_VAR(algo_selection_strategy);
auto&& fm = param.filter_meta;
......@@ -199,19 +199,19 @@ bool ConvBiasImpl::AlgoDotS8Direct_NCHW44::usable(
}
bool ConvBiasImpl::AlgoDotS8Direct_NCHW44::is_preferred(
megdnn::fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const {
const NCBKernSizeParam& param) const {
MEGDNN_MARK_USED_VAR(param);
return true;
}
size_t ConvBiasImpl::AlgoDotS8Direct_NCHW44::get_workspace(
FallbackConvBiasImpl*, const NCBKernSizeParam& param) const {
const NCBKernSizeParam& param) const {
return get_bundle(param).total_size_in_bytes();
}
SmallVector<ConvBiasImpl::NCBKern>
ConvBiasImpl::AlgoDotS8Direct_NCHW44::dispatch_kerns(
FallbackConvBiasImpl*, const NCBKernSizeParam& param) const {
const NCBKernSizeParam& param) const {
MIDOUT_BEGIN(megdnn_arm_common_conv_bias_int8,
midout_iv("ALGODOTS8DIRECT_NCHW44"_hash)) {
auto fm = param.filter_meta;
......
......@@ -189,7 +189,7 @@ static void do_conv_kern(const WorkspaceBundle& bundle,
}
bool ConvBiasImpl::AlgoS8DirectNCHW44::usable(
fallback::ConvBiasImpl*, const NCBKernSizeParam& param,
const NCBKernSizeParam& param,
AlgoSelectionStrategy algo_selection_strategy) const {
MEGDNN_MARK_USED_VAR(algo_selection_strategy);
auto&& fm = param.filter_meta;
......@@ -213,22 +213,20 @@ bool ConvBiasImpl::AlgoS8DirectNCHW44::usable(
}
bool ConvBiasImpl::AlgoS8DirectNCHW44::is_preferred(
megdnn::fallback::ConvBiasImpl* conv_bias_impl_ptr,
const NCBKernSizeParam& param) const {
const NCBKernSizeParam& param) const {
// TODO: benchmark and fix
MEGDNN_MARK_USED_VAR(conv_bias_impl_ptr);
MEGDNN_MARK_USED_VAR(param);
return false;
}
size_t ConvBiasImpl::AlgoS8DirectNCHW44::get_workspace(
fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const {
const NCBKernSizeParam& param) const {
return get_bundle(param).total_size_in_bytes();
}
SmallVector<ConvBiasImpl::NCBKern>
ConvBiasImpl::AlgoS8DirectNCHW44::dispatch_kerns(
fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const {
const NCBKernSizeParam& param) const {
auto fm = param.filter_meta;
size_t N = param.n;
size_t IC = fm.icpg;
......
......@@ -214,7 +214,7 @@ static void do_conv_kern(const WorkspaceBundle& bundle,
}
bool ConvBiasImpl::AlgoS8DirectNCHWNCHW44::usable(
fallback::ConvBiasImpl*, const NCBKernSizeParam& param,
const NCBKernSizeParam& param,
AlgoSelectionStrategy algo_selection_strategy) const {
MEGDNN_MARK_USED_VAR(algo_selection_strategy);
auto&& fm = param.filter_meta;
......@@ -236,22 +236,20 @@ bool ConvBiasImpl::AlgoS8DirectNCHWNCHW44::usable(
}
bool ConvBiasImpl::AlgoS8DirectNCHWNCHW44::is_preferred(
megdnn::fallback::ConvBiasImpl* conv_bias_impl_ptr,
const NCBKernSizeParam& param) const {
// TODO: benchmark and fix
MEGDNN_MARK_USED_VAR(conv_bias_impl_ptr);
MEGDNN_MARK_USED_VAR(param);
return false;
}
size_t ConvBiasImpl::AlgoS8DirectNCHWNCHW44::get_workspace(
fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const {
const NCBKernSizeParam& param) const {
return get_bundle(param).total_size_in_bytes();
}
SmallVector<ConvBiasImpl::NCBKern>
ConvBiasImpl::AlgoS8DirectNCHWNCHW44::dispatch_kerns(
fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const {
const NCBKernSizeParam& param) const {
auto fm = param.filter_meta;
size_t N = param.n;
size_t OC = fm.ocpg;
......
......@@ -172,8 +172,7 @@ static void do_conv_kern(const WorkspaceBundle& bundle,
} // namespace
bool ConvBiasImpl::AlgoDotS8DirectNCHWNCHW44::usable(
fallback::ConvBiasImpl*, const NCBKernSizeParam& param,
AlgoSelectionStrategy) const {
const NCBKernSizeParam& param, AlgoSelectionStrategy) const {
auto&& fm = param.filter_meta;
auto fh = fm.spatial[0];
int oc = fm.ocpg;
......@@ -194,13 +193,13 @@ bool ConvBiasImpl::AlgoDotS8DirectNCHWNCHW44::usable(
}
size_t ConvBiasImpl::AlgoDotS8DirectNCHWNCHW44::get_workspace(
fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const {
const NCBKernSizeParam& param) const {
return get_bundle(param).total_size_in_bytes();
}
SmallVector<ConvBiasImpl::NCBKern>
ConvBiasImpl::AlgoDotS8DirectNCHWNCHW44::dispatch_kerns(
fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const {
const NCBKernSizeParam& param) const {
auto fm = param.filter_meta;
const int batch = param.n;
const int group = fm.group;
......
......@@ -83,7 +83,7 @@ void get_rectified_size_str2(size_t IH, size_t IW, size_t OH, size_t OW,
/* ===================== direct algo ===================== */
bool ConvBiasImpl::AlgoI8x8x16Direct::usable(
fallback::ConvBiasImpl*, const NCBKernSizeParam& param,
const NCBKernSizeParam& param,
AlgoSelectionStrategy algo_selection_strategy) const {
MIDOUT_BEGIN(megdnn_arm_common_conv_bias_int8816_kimpl, 1, 0) {
auto&& fm = param.filter_meta;
......@@ -129,7 +129,7 @@ WorkspaceBundle ConvBiasImpl::AlgoI8x8x16Direct::get_bundle(
return {nullptr, {part0, part1}};
}
size_t ConvBiasImpl::AlgoI8x8x16Direct::get_workspace(
fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const {
const NCBKernSizeParam& param) const {
MIDOUT_BEGIN(megdnn_arm_common_conv_bias_int8816_kimpl, 1, 1) {
auto bundle = get_bundle(param);
return bundle.total_size_in_bytes();
......@@ -293,7 +293,7 @@ SmallVector<ConvBiasImpl::NCBKern> ConvBiasImpl::AlgoI8x8x16Direct::get_kimpls(
}
SmallVector<ConvBiasImpl::NCBKern>
ConvBiasImpl::AlgoI8x8x16Direct::dispatch_kerns(
fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const {
const NCBKernSizeParam& param) const {
MIDOUT_BEGIN(megdnn_arm_common_conv_bias_int8816_kimpl, 1, 2) {
return get_kimpls(param);
}
......@@ -303,7 +303,7 @@ ConvBiasImpl::AlgoI8x8x16Direct::dispatch_kerns(
/* ===================== stride-2 algo ===================== */
bool ConvBiasImpl::AlgoI8x8x16Stride2::usable(
fallback::ConvBiasImpl*, const NCBKernSizeParam& param,
const NCBKernSizeParam& param,
AlgoSelectionStrategy algo_selection_strategy) const {
MIDOUT_BEGIN(megdnn_arm_common_conv_bias_int8816_kimpl, 2, 0) {
auto&& fm = param.filter_meta;
......@@ -350,7 +350,7 @@ WorkspaceBundle ConvBiasImpl::AlgoI8x8x16Stride2::get_bundle(
return {nullptr, {part0, part1}};
}
size_t ConvBiasImpl::AlgoI8x8x16Stride2::get_workspace(
fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const {
const NCBKernSizeParam& param) const {
MIDOUT_BEGIN(megdnn_arm_common_conv_bias_int8816_kimpl, 2, 1) {
auto bundle = get_bundle(param);
return bundle.total_size_in_bytes();
......@@ -513,7 +513,7 @@ SmallVector<ConvBiasImpl::NCBKern> ConvBiasImpl::AlgoI8x8x16Stride2::get_kimpls(
}
SmallVector<ConvBiasImpl::NCBKern>
ConvBiasImpl::AlgoI8x8x16Stride2::dispatch_kerns(
fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const {
const NCBKernSizeParam& param) const {
MIDOUT_BEGIN(megdnn_arm_common_conv_bias_int8816_kimpl, 2, 2) {
return get_kimpls(param);
}
......@@ -521,7 +521,7 @@ ConvBiasImpl::AlgoI8x8x16Stride2::dispatch_kerns(
return {};
}
bool ConvBiasImpl::AlgoI8x8x16Stride2Filter2::usable(
fallback::ConvBiasImpl*, const NCBKernSizeParam& param,
const NCBKernSizeParam& param,
AlgoSelectionStrategy /*algo_selection_strategy*/) const {
MIDOUT_BEGIN(megdnn_arm_common_conv_bias_int8816_kimpl, 3, 0) {
return param.bias_mode == BiasMode::NO_BIAS &&
......@@ -534,7 +534,7 @@ bool ConvBiasImpl::AlgoI8x8x16Stride2Filter2::usable(
}
size_t ConvBiasImpl::AlgoI8x8x16Stride2Filter2::get_workspace(
fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const {
const NCBKernSizeParam& param) const {
MIDOUT_BEGIN(megdnn_arm_common_conv_bias_int8816_kimpl, 3, 1) {
return conv_bias::get_workspace_in_bytes_conv_int8x8x16_stride2_flt2(
param);
......@@ -545,7 +545,7 @@ size_t ConvBiasImpl::AlgoI8x8x16Stride2Filter2::get_workspace(
SmallVector<ConvBiasImpl::NCBKern>
ConvBiasImpl::AlgoI8x8x16Stride2Filter2::dispatch_kerns(
fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const {
const NCBKernSizeParam& param) const {
// return {conv_bias::conv_int8x8x16_stride2_flt2,true};
auto kern = [](const NCBKernParam& param, const NCBKernIndex& ncb_index) {
MIDOUT_BEGIN(megdnn_arm_common_conv_bias_int8816_kimpl, 3, 2) {
......
......@@ -35,12 +35,10 @@ public:
return m_large_group ? "I8816DIRECT_LARGE_GROUP"
: "I8816DIRECT_SMALL_GROUP";
}
bool usable(fallback::ConvBiasImpl*, const NCBKernSizeParam& param,
bool usable(const NCBKernSizeParam& param,
AlgoSelectionStrategy algo_selection_strategy) const override;
size_t get_workspace(fallback::ConvBiasImpl*,
const NCBKernSizeParam& param) const override;
size_t get_workspace(const NCBKernSizeParam& param) const override;
virtual SmallVector<NCBKern> dispatch_kerns(
fallback::ConvBiasImpl* opr,
const NCBKernSizeParam& param) const override;
};
......@@ -64,13 +62,11 @@ public:
return m_large_group ? "I8816STRD2_LARGE_GROUP"
: "I8816STRD2_SMALL_GROUP";
}
bool usable(fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param,
bool usable(const NCBKernSizeParam& param,
AlgoSelectionStrategy algo_selection_strategy) const override;
size_t get_workspace(fallback::ConvBiasImpl*,
const NCBKernSizeParam& param) const override;
size_t get_workspace(const NCBKernSizeParam& param) const override;
virtual SmallVector<NCBKern> dispatch_kerns(
fallback::ConvBiasImpl* opr,
const NCBKernSizeParam& param) const override;
};
......@@ -79,13 +75,11 @@ public:
bool is_reproducible() const override { return true; }
const char* name() const override { return "I8816STRD2F2"; }
bool usable(fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param,
bool usable(const NCBKernSizeParam& param,
AlgoSelectionStrategy algo_selection_strategy) const override;
size_t get_workspace(fallback::ConvBiasImpl*,
const NCBKernSizeParam& param) const override;
size_t get_workspace(const NCBKernSizeParam& param) const override;
virtual SmallVector<NCBKern> dispatch_kerns(
fallback::ConvBiasImpl* opr,
const NCBKernSizeParam& param) const override;
};
......
......@@ -232,7 +232,7 @@ void* const ConvBiasImpl::sm_arm_common_algo_type =
&arm_common_algo_type_storage;
bool ConvBiasImpl::is_matmul_quantized_prefer(
const ConvBiasImpl::NCBKernSizeParam& param) {
const ConvBiasImpl::NCBKernSizeParam& param) const {
// fallback::ConvBiasImpl::NCBKernParam conv_ncb_param;
fallback::ConvBiasImpl::NCBKernSizeParam conv_ncb_param(
param, 0, param::MatrixMul::Format::DEFAULT, {}, 0,
......
......@@ -27,7 +27,7 @@ public:
SmallVector<AlgoBase*> algo_pack() override;
bool is_matmul_quantized_prefer(
const ConvBiasImpl::NCBKernSizeParam& ncb_param) override;
const ConvBiasImpl::NCBKernSizeParam& ncb_param) const override;
class AlgoPack;
protected:
......
......@@ -6,17 +6,18 @@
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
* implied.
*/
#include "src/arm_common/conv_bias/quint8/algos.h"
#include "midout.h"
#include "src/arm_common/conv_bias/quint8/stride1.h"
#include "src/arm_common/conv_bias/quint8/stride2.h"
#include "src/arm_common/conv_bias/quint8/stride1_dotprod.h"
#include "src/arm_common/conv_bias/quint8/stride2.h"
#include "src/arm_common/conv_bias/quint8/stride2_dotprod.h"
#include "src/arm_common/elemwise_op.h"
#include "src/fallback/conv_bias/common.h"
#include "midout.h"
MIDOUT_DECL(megdnn_arm_common_conv_bias_quint8)
......@@ -25,7 +26,7 @@ using namespace arm_common;
/* ===================== stride1 algo ===================== */
bool ConvBiasImpl::AlgoQU8DirectStride1::usable(
fallback::ConvBiasImpl*, const NCBKernSizeParam& param,
const NCBKernSizeParam& param,
AlgoSelectionStrategy algo_selection_strategy) const {
bool avaible = direct_quint8_stride1::can_conv_direct_stride1_quint8(param);
if (algo_selection_strategy ==
......@@ -37,14 +38,14 @@ bool ConvBiasImpl::AlgoQU8DirectStride1::usable(
}
size_t ConvBiasImpl::AlgoQU8DirectStride1::get_workspace(
fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const {
const NCBKernSizeParam& param) const {
auto bundle = direct_quint8_stride1::get_bundle(param, m_large_group);
return bundle.total_size_in_bytes();
}
SmallVector<ConvBiasImpl::NCBKern>
ConvBiasImpl::AlgoQU8DirectStride1::dispatch_kerns(
fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const {
const NCBKernSizeParam& param) const {
MIDOUT_BEGIN(megdnn_arm_common_conv_bias_quint8, 0, 0) {
return direct_quint8_stride1::get_kimpls(param, m_large_group);
}
......@@ -54,7 +55,7 @@ ConvBiasImpl::AlgoQU8DirectStride1::dispatch_kerns(
/* ===================== stride2 algo ===================== */
bool ConvBiasImpl::AlgoQU8DirectStride2::usable(
fallback::ConvBiasImpl*, const NCBKernSizeParam& param,
const NCBKernSizeParam& param,
AlgoSelectionStrategy algo_selection_strategy) const {
bool avaible = direct_quint8_stride2::can_conv_direct_stride2_quint8(param);
if (algo_selection_strategy ==
......@@ -66,14 +67,14 @@ bool ConvBiasImpl::AlgoQU8DirectStride2::usable(
}
size_t ConvBiasImpl::AlgoQU8DirectStride2::get_workspace(
fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const {
const NCBKernSizeParam& param) const {
auto bundle = direct_quint8_stride2::get_bundle(param, m_large_group);
return bundle.total_size_in_bytes();
}
SmallVector<ConvBiasImpl::NCBKern>
ConvBiasImpl::AlgoQU8DirectStride2::dispatch_kerns(
fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const {
const NCBKernSizeParam& param) const {
MIDOUT_BEGIN(megdnn_arm_common_conv_bias_quint8, 0, 1) {
return direct_quint8_stride2::get_kimpls(param, m_large_group);
}
......@@ -83,7 +84,7 @@ ConvBiasImpl::AlgoQU8DirectStride2::dispatch_kerns(
#if __ARM_FEATURE_DOTPROD
/* ===================== stride1 algo ===================== */
bool ConvBiasImpl::AlgoDotU8DirectStride1::usable(
fallback::ConvBiasImpl*, const NCBKernSizeParam& param,
const NCBKernSizeParam& param,
AlgoSelectionStrategy algo_selection_strategy) const {
bool avaible =
direct_dotprod_quint8_stride1::can_conv_direct_stride1_quint8(
......@@ -97,7 +98,7 @@ bool ConvBiasImpl::AlgoDotU8DirectStride1::usable(
}
size_t ConvBiasImpl::AlgoDotU8DirectStride1::get_workspace(
fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const {
const NCBKernSizeParam& param) const {
auto bundle =
direct_dotprod_quint8_stride1::get_bundle(param, m_large_group);
return bundle.total_size_in_bytes();
......@@ -105,7 +106,7 @@ size_t ConvBiasImpl::AlgoDotU8DirectStride1::get_workspace(
SmallVector<ConvBiasImpl::NCBKern>
ConvBiasImpl::AlgoDotU8DirectStride1::dispatch_kerns(
fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const {
const NCBKernSizeParam& param) const {
MIDOUT_BEGIN(megdnn_arm_common_conv_bias_quint8, 1, 0) {
return direct_dotprod_quint8_stride1::get_kimpls(param, m_large_group);
}
......@@ -115,7 +116,7 @@ ConvBiasImpl::AlgoDotU8DirectStride1::dispatch_kerns(
/* ===================== stride2 algo ===================== */
bool ConvBiasImpl::AlgoDotU8DirectStride2::usable(
fallback::ConvBiasImpl*, const NCBKernSizeParam& param,
const NCBKernSizeParam& param,
AlgoSelectionStrategy algo_selection_strategy) const {
bool avaible =
direct_dotprod_quint8_stride2::can_conv_direct_stride2_quint8(
......@@ -129,7 +130,7 @@ bool ConvBiasImpl::AlgoDotU8DirectStride2::usable(
}
size_t ConvBiasImpl::AlgoDotU8DirectStride2::get_workspace(
fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const {
const NCBKernSizeParam& param) const {
auto bundle =
direct_dotprod_quint8_stride2::get_bundle(param, m_large_group);
return bundle.total_size_in_bytes();
......@@ -137,7 +138,7 @@ size_t ConvBiasImpl::AlgoDotU8DirectStride2::get_workspace(
SmallVector<ConvBiasImpl::NCBKern>
ConvBiasImpl::AlgoDotU8DirectStride2::dispatch_kerns(
fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const {
const NCBKernSizeParam& param) const {
MIDOUT_BEGIN(megdnn_arm_common_conv_bias_quint8, 1, 1) {
return direct_dotprod_quint8_stride2::get_kimpls(param, m_large_group);
}
......
......@@ -6,7 +6,8 @@
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
* implied.
*/
#pragma once
......@@ -26,13 +27,11 @@ public:
return m_large_group ? "QU8STRD1_LARGE_GROUP" : "QU8STRD1_SMALL_GROUP";
}
bool usable(fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param,
bool usable(const NCBKernSizeParam& param,
AlgoSelectionStrategy algo_selection_strategy) const override;
size_t get_workspace(fallback::ConvBiasImpl*,
const NCBKernSizeParam& param) const override;
size_t get_workspace(const NCBKernSizeParam& param) const override;
virtual SmallVector<NCBKern> dispatch_kerns(
fallback::ConvBiasImpl* opr,
const NCBKernSizeParam& param) const override;
};
......@@ -45,16 +44,14 @@ public:
const char* name() const override {
return m_large_group ? "QU8STRD2_LARGE_GROUP" : "QU8STRD2_SMALL_GROUP";
}
bool usable(fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param,
bool usable(const NCBKernSizeParam& param,
AlgoSelectionStrategy algo_selection_strategy) const override;
size_t get_workspace(fallback::ConvBiasImpl*,
const NCBKernSizeParam& param) const override;
size_t get_workspace(const NCBKernSizeParam& param) const override;
virtual SmallVector<NCBKern> dispatch_kerns(
fallback::ConvBiasImpl* opr,
const NCBKernSizeParam& param) const override;
};
#if __ARM_FEATURE_DOTPROD
#if __ARM_FEATURE_DOTPROD
class ConvBiasImpl::AlgoDotU8DirectStride1 final : public AlgoBase {
bool m_large_group;
......@@ -66,13 +63,11 @@ public:
: "ARMDOTU8STRD1_SMALL_GROUP";
}
bool usable(fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param,
bool usable(const NCBKernSizeParam& param,
AlgoSelectionStrategy algo_selection_strategy) const override;
size_t get_workspace(fallback::ConvBiasImpl*,
const NCBKernSizeParam& param) const override;
size_t get_workspace(const NCBKernSizeParam& param) const override;
virtual SmallVector<NCBKern> dispatch_kerns(
fallback::ConvBiasImpl* opr,
const NCBKernSizeParam& param) const override;
};
......@@ -86,13 +81,11 @@ public:
return m_large_group ? "ARMDOTU8STRD2_LARGE_GROUP"
: "ARMDOTU8STRD2_SMALL_GROUP";
}
bool usable(fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param,
bool usable(const NCBKernSizeParam& param,
AlgoSelectionStrategy algo_selection_strategy) const override;
size_t get_workspace(fallback::ConvBiasImpl*,
const NCBKernSizeParam& param) const override;
size_t get_workspace(const NCBKernSizeParam& param) const override;
virtual SmallVector<NCBKern> dispatch_kerns(
fallback::ConvBiasImpl* opr,
const NCBKernSizeParam& param) const override;
};
#endif
......
......@@ -26,9 +26,8 @@ using namespace armv7;
/* ===================== matrix mul algo ===================== */
bool ConvBiasImpl::AlgoS8MatrixMul::usable(
FallbackConvBiasImpl* opr, const NCBKernSizeParam& param,
const NCBKernSizeParam& param,
AlgoSelectionStrategy /*algo_selection_strategy*/) const {
MEGDNN_MARK_USED_VAR(opr);
auto&& fm = param.filter_meta;
return param.src_type.enumv() == DTypeEnum::QuantizedS8 &&
param.dst_type.enumv() == DTypeEnum::QuantizedS8 &&
......
......@@ -27,14 +27,12 @@ public:
bool is_reproducible() const override { return true; }
const char* name() const override { return "S8MATMUL"; }
bool usable(FallbackConvBiasImpl* opr, const NCBKernSizeParam& param,
bool usable(const NCBKernSizeParam& param,
AlgoSelectionStrategy algo_selection_strategy) const override;
size_t get_workspace(FallbackConvBiasImpl*,
const NCBKernSizeParam& param) const override {
size_t get_workspace(const NCBKernSizeParam& param) const override {
return get_bundle(param).total_size_in_bytes();
}
SmallVector<NCBKern> dispatch_kerns(
FallbackConvBiasImpl*,
const NCBKernSizeParam& param) const override {
size_t group = param.filter_meta.group;
return {{kimpl, {group, 1_z, 1_z}}};
......
......@@ -26,9 +26,8 @@ using namespace armv7;
/* ===================== matrix mul algo ===================== */
bool ConvBiasImpl::AlgoQU8MatrixMul::usable(
FallbackConvBiasImpl* opr, const NCBKernSizeParam& param,
const NCBKernSizeParam& param,
AlgoSelectionStrategy /*algo_selection_strategy*/) const {
MEGDNN_MARK_USED_VAR(opr);
auto&& fm = param.filter_meta;
return param.src_type.enumv() == DTypeEnum::Quantized8Asymm &&
param.dst_type.enumv() == DTypeEnum::Quantized8Asymm &&
......
......@@ -27,15 +27,13 @@ public:
bool is_reproducible() const override { return true; }
const char* name() const override { return "QU8MATMUL"; }
bool usable(FallbackConvBiasImpl* opr, const NCBKernSizeParam& param,
bool usable(const NCBKernSizeParam& param,
AlgoSelectionStrategy algo_selection_strategy) const override;
size_t get_workspace(FallbackConvBiasImpl*,
const NCBKernSizeParam& param) const override {
size_t get_workspace(const NCBKernSizeParam& param) const override {
return get_bundle(param).total_size_in_bytes();
}
SmallVector<fallback::ConvBiasImpl::NCBKern> dispatch_kerns(
fallback::ConvBiasImpl* /*opr*/,
const NCBKernSizeParam& param) const override {
size_t group = param.filter_meta.group;
return {{kimpl, {group, 1_z, 1_z}}};
......
......@@ -10,6 +10,7 @@
*/
#include "src/fallback/conv_bias/algos.h"
#include "megdnn/opr_param_defs.h"
#include "src/common/opr_delegate.h"
#include "src/fallback/conv_bias/winograd/strategy.h"
#include "src/naive/convolution/helper.h"
......@@ -21,18 +22,28 @@ using namespace fallback;
namespace {
param::Convolution get_param_convolution(const param::ConvBias param) {
param::Convolution ret{param.mode, param.pad_h,
param.pad_w, param.stride_h,
param.stride_w, param.dilate_h,
param.dilate_w, param::Convolution::Sparse::DENSE,
param.format};
return ret;
param::Convolution get_param_convolution(
const ConvBiasImpl::NCBKernSizeParam& param) {
param::Convolution::Mode mode;
param::Convolution::Sparse sparse;
if (param.filter_meta.should_flip) {
mode = param::Convolution::Mode::CONVOLUTION;
} else {
mode = param::Convolution::Mode::CROSS_CORRELATION;
}
return param::Convolution{mode,
param.filter_meta.padding[0],
param.filter_meta.padding[1],
param.filter_meta.stride[0],
param.filter_meta.stride[1],
param.filter_meta.dilation[1],
param.filter_meta.dilation[0],
sparse = param::Convolution::Sparse::DENSE,
param.filter_meta.format};
}
TensorLayoutArray get_layouts(const param::ConvBias& param,
const ConvBiasImpl::NCBKernSizeParam& p) {
megdnn_assert(param.format == param::ConvBias::Format::NCHW);
TensorLayoutArray get_layouts(const ConvBiasImpl::NCBKernSizeParam& p) {
megdnn_assert(p.filter_meta.format == param::ConvBias::Format::NCHW);
UNPACK_CONV_NCB_KERN_SIZES(p);
MEGDNN_MARK_USED_VAR(SH);
MEGDNN_MARK_USED_VAR(SW);
......@@ -53,14 +64,14 @@ TensorLayoutArray get_layouts(const param::ConvBias& param,
return {src_layout, filter_layout, bias_layout, dst_layout};
}
void kern_default(param::ConvBias param, const ConvBiasImpl::NCBKernParam& p) {
void kern_default(const ConvBiasImpl::NCBKernParam& p) {
dt_byte* workspace_ptr = static_cast<dt_byte*>(p.workspace_ptr);
auto filter_meta_ptr =
reinterpret_cast<const ConvBiasForward::CanonizedFilterMeta*>(
&p.filter_meta);
auto filter_meta = *filter_meta_ptr;
auto layouts = get_layouts(param, p);
auto layouts = get_layouts(p);
TensorND src{reinterpret_cast<dt_byte*>(const_cast<void*>(p.src_ptr)),
layouts[0]};
......@@ -83,7 +94,7 @@ void kern_default(param::ConvBias param, const ConvBiasImpl::NCBKernParam& p) {
bias.layout.dtype.enumv() == \
DTypeTrait<dtype::bias_dt>::enumv) && \
sfb.layout.dtype.enumv() == DTypeTrait<dtype::out_dt>::enumv && \
param.compute_mode == param::ConvBias::ComputeMode::cmode) { \
p.compute_mode == param::ConvBias::ComputeMode::cmode) { \
func(src, filter, bias, sfb, workspace_ptr, filter_meta); \
}
#define DISPATCH(in_dt, out_dt) \
......@@ -118,7 +129,7 @@ void kern_default(param::ConvBias param, const ConvBiasImpl::NCBKernParam& p) {
auto res = sfb;
using NonlineMode = param::ConvBias::NonlineMode;
switch (param.nonlineMode) {
switch (p.nonlineMode) {
#define cb(_mode) \
case NonlineMode::_mode: { \
if (res.layout.dtype.category() != DTypeCategory::QUANTIZED) { \
......@@ -168,24 +179,23 @@ MIDOUT_DECL(megdnn_fallback_naive)
/* ======================= AlgoNaive ======================== */
bool ConvBiasImpl::AlgoNaive::usable(
ConvBiasImpl* opr, const NCBKernSizeParam&,
const NCBKernSizeParam& param,
AlgoSelectionStrategy /*algo_selection_strategy*/) const {
MIDOUT_BEGIN(megdnn_fallback_naive, 0) {
return opr->param().format == param::ConvBias::Format::NCHW;
return param.filter_meta.format == param::ConvBias::Format::NCHW;
}
MIDOUT_END();
return false;
}
size_t ConvBiasImpl::AlgoNaive::get_workspace(ConvBiasImpl* opr,
const NCBKernSizeParam& p) const {
size_t ConvBiasImpl::AlgoNaive::get_workspace(const NCBKernSizeParam& p) const {
MIDOUT_BEGIN(megdnn_fallback_naive, 1) {
auto layouts = get_layouts(opr->param(), p);
auto layouts = get_layouts(p);
//! When group>1 or n>1, this algo will parallel by group and n
size_t nr_threads = p.nr_threads;
auto conv_opr =
inplace_cpu_handle()->create_operator<ConvolutionForward>();
conv_opr->param() = get_param_convolution(opr->param());
conv_opr->param() = get_param_convolution(p);
if (p.dst_type.enumv() == DTypeEnum::QuantizedS8 ||
p.dst_type.enumv() == DTypeEnum::Quantized8Asymm) {
TensorLayout conv_dst_layout;
......@@ -201,15 +211,14 @@ size_t ConvBiasImpl::AlgoNaive::get_workspace(ConvBiasImpl* opr,
}
SmallVector<ConvBiasImpl::NCBKern> ConvBiasImpl::AlgoNaive::dispatch_kerns(
ConvBiasImpl* opr, const NCBKernSizeParam& p) const {
param::ConvBias opr_param = opr->param();
size_t workspace_size = get_workspace(opr, p);
const NCBKernSizeParam& p) const {
size_t workspace_size = get_workspace(p);
//! When group>1 or n>1, this algo will parallel by group and n
size_t nr_threads = p.nr_threads;
size_t GROUP = p.filter_meta.group;
size_t N = p.n;
size_t workspace_per_thread = workspace_size / nr_threads;
auto kern = [opr_param, workspace_per_thread](
auto kern = [workspace_per_thread](
const NCBKernParam& param,
const NCBKernIndex& ncb_index) {
MIDOUT_BEGIN(megdnn_fallback_naive, 2) {
......@@ -224,7 +233,7 @@ SmallVector<ConvBiasImpl::NCBKern> ConvBiasImpl::AlgoNaive::dispatch_kerns(
thread_param.dst_ptr = param.dst<void>(batch_id, group_id);
thread_param.src_ptr = param.src<void>(batch_id, group_id);
thread_param.bias_ptr = param.bias<void>(batch_id, group_id);
kern_default(opr_param, thread_param);
kern_default(thread_param);
}
MIDOUT_END();
};
......@@ -235,10 +244,9 @@ MIDOUT_DECL(megdnn_fallback_winograd)
/* ======================= AlgoWinogradF32 ======================== */
bool ConvBiasImpl::AlgoWinogradF32::usable(
ConvBiasImpl* opr, const NCBKernSizeParam& param,
const NCBKernSizeParam& param,
AlgoSelectionStrategy /*algo_selection_strategy*/) const {
MEGDNN_MARK_USED_VAR(param);
MEGDNN_MARK_USED_VAR(opr);
MIDOUT_BEGIN(megdnn_fallback_winograd, 1, 0) {
using Strategy = fallback::winograd::winograd_2x3_1x1_f;
Strategy strategy(param.src_type, param.filter_type, param.dst_type);
......@@ -246,13 +254,13 @@ bool ConvBiasImpl::AlgoWinogradF32::usable(
strategy, UNIT_TILE_SIZE, param)
.get_matmul_kern_param(param);
return m_matmul_algo->usable(matmul_param) &&
(opr->param().format == param::ConvBias::Format::NCHW ||
(opr->param().format ==
(param.filter_meta.format == param::ConvBias::Format::NCHW ||
(param.filter_meta.format ==
param::ConvBias::Format::NCHW_WINOGRAD &&
opr->param().output_block_size == 2 &&
param.output_block_size == 2 &&
param.winograd_matmul_format ==
param::MatrixMul::Format::DEFAULT)) &&
opr->param().mode == param::ConvBias::Mode::CROSS_CORRELATION &&
param.filter_meta.should_flip &&
(param.filter_meta.spatial[0] == param.filter_meta.spatial[1] &&
param.filter_meta.spatial[0] == 3) &&
(param.filter_meta.stride[0] == param.filter_meta.stride[1] &&
......@@ -268,7 +276,7 @@ bool ConvBiasImpl::AlgoWinogradF32::usable(
}
size_t ConvBiasImpl::AlgoWinogradF32::get_workspace(
ConvBiasImpl*, const NCBKernSizeParam& p) const {
const NCBKernSizeParam& p) const {
MEGDNN_MARK_USED_VAR(p);
MIDOUT_BEGIN(megdnn_fallback_winograd, 1, 1) {
fallback::winograd::winograd_2x3_1x1_f strategy(
......@@ -284,7 +292,7 @@ size_t ConvBiasImpl::AlgoWinogradF32::get_workspace(
SmallVector<ConvBiasImpl::NCBKern>
ConvBiasImpl::AlgoWinogradF32::dispatch_kerns(
ConvBiasImpl*, const NCBKernSizeParam& param) const {
const NCBKernSizeParam& param) const {
MEGDNN_MARK_USED_VAR(param);
MIDOUT_BEGIN(megdnn_fallback_winograd, 1, 2) {
fallback::winograd::winograd_2x3_1x1_f strategy(
......@@ -302,10 +310,9 @@ ConvBiasImpl::AlgoWinogradF32::dispatch_kerns(
/* ======================= AlgoWinogradF32 4x4 ======================== */
bool ConvBiasImpl::AlgoWinogradF32_4x4::usable(
ConvBiasImpl* opr, const NCBKernSizeParam& param,
const NCBKernSizeParam& param,
AlgoSelectionStrategy /*algo_selection_strategy*/) const {
MEGDNN_MARK_USED_VAR(param);
MEGDNN_MARK_USED_VAR(opr);
MIDOUT_BEGIN(megdnn_fallback_winograd, 2, 0) {
if (param.filter_meta.icpg % 4 != 0 || param.filter_meta.ocpg % 4 != 0)
return false;
......@@ -317,13 +324,13 @@ bool ConvBiasImpl::AlgoWinogradF32_4x4::usable(
strategy, UNIT_TILE_SIZE, param)
.get_matmul_kern_param(param);
return m_matmul_algo->usable(matmul_param) &&
(opr->param().format == param::ConvBias::Format::NCHW ||
(opr->param().format ==
(param.filter_meta.format == param::ConvBias::Format::NCHW ||
(param.filter_meta.format ==
param::ConvBias::Format::NCHW_WINOGRAD &&
opr->param().output_block_size == 2 &&
param.output_block_size == 2 &&
param.winograd_matmul_format ==
param::MatrixMul::Format::MK4)) &&
opr->param().mode == param::ConvBias::Mode::CROSS_CORRELATION &&
param.filter_meta.should_flip &&
(param.filter_meta.spatial[0] == param.filter_meta.spatial[1] &&
param.filter_meta.spatial[0] == 3) &&
(param.filter_meta.stride[0] == param.filter_meta.stride[1] &&
......@@ -339,7 +346,7 @@ bool ConvBiasImpl::AlgoWinogradF32_4x4::usable(
}
size_t ConvBiasImpl::AlgoWinogradF32_4x4::get_workspace(
ConvBiasImpl*, const NCBKernSizeParam& p) const {
const NCBKernSizeParam& p) const {
MEGDNN_MARK_USED_VAR(p);
MIDOUT_BEGIN(megdnn_fallback_winograd, 2, 1) {
fallback::winograd::winograd_2x3_4x4_f strategy(
......@@ -356,7 +363,7 @@ size_t ConvBiasImpl::AlgoWinogradF32_4x4::get_workspace(
SmallVector<ConvBiasImpl::NCBKern>
ConvBiasImpl::AlgoWinogradF32_4x4::dispatch_kerns(
ConvBiasImpl*, const NCBKernSizeParam& param) const {
const NCBKernSizeParam& param) const {
MEGDNN_MARK_USED_VAR(param);
MIDOUT_BEGIN(megdnn_fallback_winograd, 2, 2) {
fallback::winograd::winograd_2x3_4x4_f strategy(
......@@ -374,10 +381,9 @@ ConvBiasImpl::AlgoWinogradF32_4x4::dispatch_kerns(
/* ======================= AlgoWinogradQS8 ======================== */
bool ConvBiasImpl::AlgoWinogradQS8::usable(
ConvBiasImpl* opr, const NCBKernSizeParam& param,
const NCBKernSizeParam& param,
AlgoSelectionStrategy /*algo_selection_strategy*/) const {
MEGDNN_MARK_USED_VAR(param);
MEGDNN_MARK_USED_VAR(opr);
MIDOUT_BEGIN(megdnn_fallback_winograd, 3, 0) {
using Strategy = fallback::winograd::winograd_2x3_1x1_qs8;
Strategy strategy(param.src_type, param.filter_type, param.dst_type);
......@@ -386,13 +392,13 @@ bool ConvBiasImpl::AlgoWinogradQS8::usable(
.get_matmul_kern_param(param);
return m_matmul_algo->usable(matmul_param) &&
(opr->param().format == param::ConvBias::Format::NCHW ||
(opr->param().format ==
(param.filter_meta.format == param::ConvBias::Format::NCHW ||
(param.filter_meta.format ==
param::ConvBias::Format::NCHW_WINOGRAD &&
opr->param().output_block_size == 2 &&
param.output_block_size == 2 &&
param.winograd_matmul_format ==
param::MatrixMul::Format::DEFAULT)) &&
opr->param().mode == param::ConvBias::Mode::CROSS_CORRELATION &&
param.filter_meta.should_flip &&
(param.filter_meta.spatial[0] == param.filter_meta.spatial[1] &&
param.filter_meta.spatial[0] == 3) &&
(param.filter_meta.stride[0] == param.filter_meta.stride[1] &&
......@@ -408,7 +414,7 @@ bool ConvBiasImpl::AlgoWinogradQS8::usable(
}
size_t ConvBiasImpl::AlgoWinogradQS8::get_workspace(
ConvBiasImpl*, const NCBKernSizeParam& p) const {
const NCBKernSizeParam& p) const {
MEGDNN_MARK_USED_VAR(p);
MIDOUT_BEGIN(megdnn_fallback_winograd, 3, 1) {
fallback::winograd::winograd_2x3_1x1_qs8 strategy(
......@@ -424,7 +430,7 @@ size_t ConvBiasImpl::AlgoWinogradQS8::get_workspace(
SmallVector<ConvBiasImpl::NCBKern>
ConvBiasImpl::AlgoWinogradQS8::dispatch_kerns(
ConvBiasImpl*, const NCBKernSizeParam& param) const {
const NCBKernSizeParam& param) const {
MEGDNN_MARK_USED_VAR(param);
MIDOUT_BEGIN(megdnn_fallback_winograd, 3, 2) {
fallback::winograd::winograd_2x3_1x1_qs8 strategy(
......@@ -442,10 +448,9 @@ ConvBiasImpl::AlgoWinogradQS8::dispatch_kerns(
/* ======================= AlgoWinogradQS8 8x8 ======================== */
bool ConvBiasImpl::AlgoWinogradQS8_8x8::usable(
ConvBiasImpl* opr, const NCBKernSizeParam& param,
const NCBKernSizeParam& param,
AlgoSelectionStrategy /*algo_selection_strategy*/) const {
MEGDNN_MARK_USED_VAR(param);
MEGDNN_MARK_USED_VAR(opr);
MIDOUT_BEGIN(megdnn_fallback_winograd, 4, 0) {
if (param.filter_meta.icpg % 8 != 0 || param.filter_meta.ocpg % 8 != 0)
return false;
......@@ -457,13 +462,13 @@ bool ConvBiasImpl::AlgoWinogradQS8_8x8::usable(
strategy, UNIT_TILE_SIZE, param)
.get_matmul_kern_param(param);
return m_matmul_algo->usable(matmul_param) &&
(opr->param().format == param::ConvBias::Format::NCHW ||
(opr->param().format ==
(param.filter_meta.format == param::ConvBias::Format::NCHW ||
(param.filter_meta.format ==
param::ConvBias::Format::NCHW_WINOGRAD &&
opr->param().output_block_size == 2 &&
param.output_block_size == 2 &&
param.winograd_matmul_format ==
param::MatrixMul::Format::MK8)) &&
opr->param().mode == param::ConvBias::Mode::CROSS_CORRELATION &&
param.filter_meta.should_flip &&
(param.filter_meta.spatial[0] == param.filter_meta.spatial[1] &&
param.filter_meta.spatial[0] == 3) &&
(param.filter_meta.stride[0] == param.filter_meta.stride[1] &&
......@@ -479,7 +484,7 @@ bool ConvBiasImpl::AlgoWinogradQS8_8x8::usable(
}
size_t ConvBiasImpl::AlgoWinogradQS8_8x8::get_workspace(
ConvBiasImpl*, const NCBKernSizeParam& p) const {
const NCBKernSizeParam& p) const {
MEGDNN_MARK_USED_VAR(p);
MIDOUT_BEGIN(megdnn_fallback_winograd, 4, 1) {
fallback::winograd::winograd_2x3_8x8_qs8 strategy(
......@@ -496,7 +501,7 @@ size_t ConvBiasImpl::AlgoWinogradQS8_8x8::get_workspace(
SmallVector<ConvBiasImpl::NCBKern>
ConvBiasImpl::AlgoWinogradQS8_8x8::dispatch_kerns(
ConvBiasImpl*, const NCBKernSizeParam& param) const {
const NCBKernSizeParam& param) const {
MEGDNN_MARK_USED_VAR(param);
MIDOUT_BEGIN(megdnn_fallback_winograd, 4, 2) {
fallback::winograd::winograd_2x3_8x8_qs8 strategy(
......
......@@ -22,12 +22,10 @@ class ConvBiasImpl::AlgoNaive final : public AlgoBase {
public:
bool is_reproducible() const override { return true; }
const char* name() const override { return "FALLBACK_NAIVE"; }
bool usable(ConvBiasImpl* opr, const NCBKernSizeParam& param,
bool usable(const NCBKernSizeParam& param,
AlgoSelectionStrategy algo_selection_strategy) const override;
size_t get_workspace(ConvBiasImpl*,
const NCBKernSizeParam& param) const override;
SmallVector<NCBKern> dispatch_kerns(ConvBiasImpl*,
const NCBKernSizeParam&) const override;
size_t get_workspace(const NCBKernSizeParam& param) const override;
SmallVector<NCBKern> dispatch_kerns(const NCBKernSizeParam&) const override;
};
class ConvBiasImpl::AlgoWinogradF32 final : public AlgoBase {
......@@ -43,12 +41,10 @@ public:
}
return m_name.c_str();
}
bool usable(ConvBiasImpl* opr, const NCBKernSizeParam& param,
bool usable(const NCBKernSizeParam& param,
AlgoSelectionStrategy algo_selection_strategy) const override;
size_t get_workspace(ConvBiasImpl*,
const NCBKernSizeParam& param) const override;
SmallVector<NCBKern> dispatch_kerns(ConvBiasImpl*,
const NCBKernSizeParam&) const override;
size_t get_workspace(const NCBKernSizeParam& param) const override;
SmallVector<NCBKern> dispatch_kerns(const NCBKernSizeParam&) const override;
private:
MatrixMulImpl::AlgoBase* m_matmul_algo;
......@@ -69,12 +65,10 @@ public:
}
return m_name.c_str();
}
bool usable(ConvBiasImpl* opr, const NCBKernSizeParam& param,
bool usable(const NCBKernSizeParam& param,
AlgoSelectionStrategy algo_selection_strategy) const override;
size_t get_workspace(ConvBiasImpl*,
const NCBKernSizeParam& param) const override;
SmallVector<NCBKern> dispatch_kerns(ConvBiasImpl*,
const NCBKernSizeParam&) const override;
size_t get_workspace(const NCBKernSizeParam& param) const override;
SmallVector<NCBKern> dispatch_kerns(const NCBKernSizeParam&) const override;
private:
MatrixMulImpl::AlgoBase* m_matmul_algo;
......@@ -95,12 +89,10 @@ public:
}
return m_name.c_str();
}
bool usable(ConvBiasImpl* opr, const NCBKernSizeParam& param,
bool usable(const NCBKernSizeParam& param,
AlgoSelectionStrategy algo_selection_strategy) const override;
size_t get_workspace(ConvBiasImpl*,
const NCBKernSizeParam& param) const override;
SmallVector<NCBKern> dispatch_kerns(ConvBiasImpl*,
const NCBKernSizeParam&) const override;
size_t get_workspace(const NCBKernSizeParam& param) const override;
SmallVector<NCBKern> dispatch_kerns(const NCBKernSizeParam&) const override;
private:
MatrixMulImpl::AlgoBase* m_matmul_algo;
......@@ -121,12 +113,10 @@ public:
}
return m_name.c_str();
}
bool usable(ConvBiasImpl* opr, const NCBKernSizeParam& param,
bool usable(const NCBKernSizeParam& param,
AlgoSelectionStrategy algo_selection_strategy) const override;
size_t get_workspace(ConvBiasImpl*,
const NCBKernSizeParam& param) const override;
SmallVector<NCBKern> dispatch_kerns(ConvBiasImpl*,
const NCBKernSizeParam&) const override;
size_t get_workspace(const NCBKernSizeParam& param) const override;
SmallVector<NCBKern> dispatch_kerns(const NCBKernSizeParam&) const override;
private:
MatrixMulImpl::AlgoBase* m_matmul_algo;
......
......@@ -140,22 +140,17 @@ using BiasMode = ConvBiasForward::BiasMode;
#define MEGDNN_WINOGRAD_ALGO_FUN_DECLARE() \
bool is_reproducible() const override { return true; } \
bool usable(fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param, \
bool usable(const NCBKernSizeParam& param, \
AlgoSelectionStrategy algo_selection_strategy) const override; \
size_t get_workspace(fallback::ConvBiasImpl*, \
const NCBKernSizeParam& param) const override; \
virtual SmallVector<NCBKern> dispatch_kerns(fallback::ConvBiasImpl* opr, \
const NCBKernSizeParam& param) \
size_t get_workspace(const NCBKernSizeParam& param) const override; \
virtual SmallVector<NCBKern> dispatch_kerns(const NCBKernSizeParam& param) \
const override; \
SmallVector<TensorLayout> deduce_preprocessed_filter_layout( \
fallback::ConvBiasImpl*, const NCBKernSizeParam& param) \
const override; \
size_t get_preprocess_workspace(fallback::ConvBiasImpl*, \
const NCBKernSizeParam& param) \
const NCBKernSizeParam& param) const override; \
size_t get_preprocess_workspace(const NCBKernSizeParam& param) \
const override; \
virtual SmallVector<NCBKern> dispatch_preprocess_kerns( \
fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param) \
const override; \
const NCBKernSizeParam& param) const override; \
\
private: \
fallback::MatrixMulImpl::AlgoBase* m_matmul_algo; \
......
......@@ -48,7 +48,7 @@ size_t ConvBiasImpl::AlgoConv1x1::get_oc_tile_size_heuristic(
}
size_t ConvBiasImpl::AlgoConv1x1::get_workspace(
ConvBiasImpl*, const NCBKernSizeParam& param) const {
const NCBKernSizeParam& param) const {
size_t OH = param.osz[0];
size_t OW = param.osz[1];
size_t compt_oc_block_size = get_oc_tile_size_heuristic(param);
......@@ -90,7 +90,7 @@ size_t ConvBiasImpl::AlgoConv1x1::get_workspace(
}
SmallVector<ConvBiasImpl::NCBKern> ConvBiasImpl::AlgoConv1x1::dispatch_kerns(
ConvBiasImpl* opr, const NCBKernSizeParam& param) const {
const NCBKernSizeParam& param) const {
SmallVector<ConvBiasImpl::NCBKern> ret_kern;
size_t OH = param.osz[0];
size_t OW = param.osz[1];
......@@ -138,11 +138,11 @@ SmallVector<ConvBiasImpl::NCBKern> ConvBiasImpl::AlgoConv1x1::dispatch_kerns(
//! get thread bundle
thread_bundle = utils::get_thread_bundle(param, matmul_bundle.get_size(2),
compt_oc_block_size);
compt_oc_block_size);
Conv1x1StrategyBase* conv1x1_strategy =
Conv1x1Factory::make_conv1x1_strategy(param, pack_mode,
opr->param().format);
param.filter_meta.format);
auto kern_packA = [this, whole_bundle, matmul_bundle, param,
compt_oc_block_size, conv1x1_strategy](
......@@ -180,13 +180,12 @@ SmallVector<ConvBiasImpl::NCBKern> ConvBiasImpl::AlgoConv1x1::dispatch_kerns(
return ret_kern;
}
bool ConvBiasImpl::AlgoConv1x1::usable(ConvBiasImpl* opr,
const NCBKernSizeParam& param,
bool ConvBiasImpl::AlgoConv1x1::usable(const NCBKernSizeParam& param,
AlgoSelectionStrategy) const {
MIDOUT_BEGIN(megdnn_fallback_conv1x1, 0, 2) {
if (opr->param().format != param::ConvBias::Format::NCHW &&
opr->param().format != param::ConvBias::Format::NCHW44 &&
opr->param().format != param::ConvBias::Format::NCHW44_DOT)
if (param.filter_meta.format != param::ConvBias::Format::NCHW &&
param.filter_meta.format != param::ConvBias::Format::NCHW44 &&
param.filter_meta.format != param::ConvBias::Format::NCHW44_DOT)
return false;
size_t FH = param.filter_meta.spatial[0],
......@@ -199,7 +198,7 @@ bool ConvBiasImpl::AlgoConv1x1::usable(ConvBiasImpl* opr,
if (FH != 1 || FW != 1 || PH || PW || SH != 1 || SW != 1)
return false;
if(param.src_type.enumv() != param.filter_type.enumv()) {
if (param.src_type.enumv() != param.filter_type.enumv()) {
return false;
}
......@@ -225,8 +224,8 @@ bool ConvBiasImpl::AlgoConv1x1::usable(ConvBiasImpl* opr,
}
}
if (opr->param().format == param::ConvBias::Format::NCHW44 ||
opr->param().format == param::ConvBias::Format::NCHW44_DOT) {
if (param.filter_meta.format == param::ConvBias::Format::NCHW44 ||
param.filter_meta.format == param::ConvBias::Format::NCHW44_DOT) {
if (param.filter_meta.icpg < 4_z || param.filter_meta.icpg == 1 ||
param.filter_meta.ocpg == 1) {
return false;
......@@ -236,13 +235,14 @@ bool ConvBiasImpl::AlgoConv1x1::usable(ConvBiasImpl* opr,
size_t OH = param.osz[0];
size_t OW = param.osz[1];
MatrixMulImpl::KernSizeParam matmul_param = utils::get_matmul_kern_param(
param, OH * OW, get_oc_tile_size_heuristic(param));
MatrixMulImpl::KernSizeParam matmul_param =
utils::get_matmul_kern_param(param, OH * OW,
get_oc_tile_size_heuristic(param));
bool matmul_usable = m_matmul_algo->usable(matmul_param);
auto pack_mode = m_matmul_algo->packmode();
bool strategy_usable = Conv1x1Factory::can_make_conv1x1_strategy(
param, pack_mode, opr->param().format);
param, pack_mode, param.filter_meta.format);
return matmul_usable && strategy_usable &&
(param.filter_meta.dilation[0] ==
......@@ -255,7 +255,7 @@ bool ConvBiasImpl::AlgoConv1x1::usable(ConvBiasImpl* opr,
}
bool ConvBiasImpl::AlgoConv1x1::is_preferred(
ConvBiasImpl*, const NCBKernSizeParam& param) const {
const NCBKernSizeParam& param) const {
size_t OH = param.osz[0];
size_t OW = param.osz[1];
if (OH * OW != 1) {
......@@ -265,8 +265,8 @@ bool ConvBiasImpl::AlgoConv1x1::is_preferred(
if (param.src_type.enumv() == DTypeEnum::Int8 &&
param.filter_type.enumv() == DTypeEnum::Int8 &&
param.dst_type.enumv() == DTypeEnum::Int16) {
return true;
}
return true;
}
#elif MEGDNN_X86
size_t OC = param.filter_meta.ocpg;
if (OC > 2 || param.src_type.enumv() == DTypeEnum::Float32)
......@@ -276,4 +276,4 @@ bool ConvBiasImpl::AlgoConv1x1::is_preferred(
}
}
// vim: syntax=cpp.doxygen
\ No newline at end of file
// vim: syntax=cpp.doxygen
......@@ -34,14 +34,13 @@ public:
return m_name.c_str();
}
bool usable(ConvBiasImpl* opr, const NCBKernSizeParam& param,
bool usable(const NCBKernSizeParam& param,
AlgoSelectionStrategy algo_selection_strategy) const override;
size_t get_workspace(ConvBiasImpl*,
const NCBKernSizeParam& param) const override;
size_t get_workspace(const NCBKernSizeParam& param) const override;
SmallVector<NCBKern> dispatch_kerns(
ConvBiasImpl* opr, const NCBKernSizeParam& param) const override;
const NCBKernSizeParam& param) const override;
bool is_preferred(ConvBiasImpl*, const NCBKernSizeParam&) const override;
bool is_preferred(const NCBKernSizeParam&) const override;
protected:
size_t get_oc_tile_size_heuristic(const NCBKernSizeParam& param) const;
......
......@@ -249,7 +249,7 @@ size_t ConvBiasImpl::AlgoConv1x1Gemv::get_oc_tile_size_heuristic(
}
size_t ConvBiasImpl::AlgoConv1x1Gemv::get_workspace(
ConvBiasImpl*, const NCBKernSizeParam& param) const {
const NCBKernSizeParam& param) const {
MIDOUT_BEGIN(megdnn_fallback_conv1x1_gemv,
midout_iv("AlgoConv1x1Gemv::get_workspace"_hash)) {
size_t compt_oc_block_size = get_oc_tile_size_heuristic(param);
......@@ -265,7 +265,7 @@ size_t ConvBiasImpl::AlgoConv1x1Gemv::get_workspace(
SmallVector<ConvBiasImpl::NCBKern>
ConvBiasImpl::AlgoConv1x1Gemv::dispatch_kerns(
ConvBiasImpl* opr, const NCBKernSizeParam& param) const {
const NCBKernSizeParam& param) const {
SmallVector<ConvBiasImpl::NCBKern> ret_kern;
size_t OC = param.filter_meta.ocpg;
size_t compt_oc_block_size = get_oc_tile_size_heuristic(param);
......@@ -311,7 +311,7 @@ ConvBiasImpl::AlgoConv1x1Gemv::dispatch_kerns(
} \
MIDOUT_END()
switch (opr->param().format) {
switch (param.filter_meta.format) {
case param::ConvBias::Format::NCHW:
cb1(param::ConvBias::Format::NCHW, dt_float32, dt_float32,
PostprocessMode::FLOAT, "NCHW::GEMV::FLOAT"_hash);
......@@ -401,18 +401,18 @@ ConvBiasImpl::AlgoConv1x1Gemv::dispatch_kerns(
return ret_kern;
}
bool ConvBiasImpl::AlgoConv1x1Gemv::usable(ConvBiasImpl* opr,
const NCBKernSizeParam& param,
bool ConvBiasImpl::AlgoConv1x1Gemv::usable(const NCBKernSizeParam& param,
AlgoSelectionStrategy) const {
MIDOUT_BEGIN(megdnn_fallback_conv1x1_gemv,
midout_iv("AlgoConv1x1Gemv::usable"_hash)) {
auto format = param.filter_meta.format;
#if MEGDNN_X86
if (opr->param().format != param::ConvBias::Format::NCHW)
if (format != param::ConvBias::Format::NCHW)
return false;
#elif MEGDNN_AARCH64 || MEGDNN_ARMV7
if (opr->param().format != param::ConvBias::Format::NCHW &&
opr->param().format != param::ConvBias::Format::NCHW44 &&
opr->param().format != param::ConvBias::Format::NCHW44_DOT)
if (format != param::ConvBias::Format::NCHW &&
format != param::ConvBias::Format::NCHW44 &&
format != param::ConvBias::Format::NCHW44_DOT)
return false;
#endif
......@@ -469,13 +469,13 @@ bool ConvBiasImpl::AlgoConv1x1Gemv::usable(ConvBiasImpl* opr,
return false;
}
#if MEGDNN_AARCH64 || MEGDNN_ARMV7
if (opr->param().format == param::ConvBias::Format::NCHW44) {
if (format == param::ConvBias::Format::NCHW44) {
if (param.src_type.enumv() != DTypeEnum::Float32 &&
param.src_type.enumv() != DTypeEnum::Int8 &&
param.src_type.enumv() != DTypeEnum::QuantizedS8) {
return false;
}
} else if (opr->param().format == param::ConvBias::Format::NCHW44_DOT) {
} else if (format == param::ConvBias::Format::NCHW44_DOT) {
if (param.src_type.enumv() != DTypeEnum::Int8 &&
param.src_type.enumv() != DTypeEnum::QuantizedS8) {
return false;
......@@ -492,11 +492,11 @@ bool ConvBiasImpl::AlgoConv1x1Gemv::usable(ConvBiasImpl* opr,
}
bool ConvBiasImpl::AlgoConv1x1Gemv::is_preferred(
ConvBiasImpl* opr, const NCBKernSizeParam& param) const {
const NCBKernSizeParam& param) const {
MIDOUT_BEGIN(megdnn_fallback_conv1x1_gemv,
midout_iv("AlgoConv1x1Gemv::is_preferred"_hash)) {
#if (MEGDNN_ARMV7 || MEGDNN_AARCH64)
if (opr->param().format == param::ConvBias::Format::NCHW &&
if (param.filter_meta.format == param::ConvBias::Format::NCHW &&
param.src_type.enumv() == DTypeEnum::Quantized8Asymm) {
return false;
}
......@@ -507,4 +507,4 @@ bool ConvBiasImpl::AlgoConv1x1Gemv::is_preferred(
return false;
}
// vim: syntax=cpp.doxygen
\ No newline at end of file
// vim: syntax=cpp.doxygen
......@@ -24,18 +24,15 @@ public:
bool is_reproducible() const override { return true; }
const char* name() const override {
return "CONV1x1_GEMV";
}
const char* name() const override { return "CONV1x1_GEMV"; }
bool usable(ConvBiasImpl* opr, const NCBKernSizeParam& param,
bool usable(const NCBKernSizeParam& param,
AlgoSelectionStrategy algo_selection_strategy) const override;
size_t get_workspace(ConvBiasImpl*,
const NCBKernSizeParam& param) const override;
size_t get_workspace(const NCBKernSizeParam& param) const override;
SmallVector<NCBKern> dispatch_kerns(
ConvBiasImpl* opr, const NCBKernSizeParam& param) const override;
const NCBKernSizeParam& param) const override;
bool is_preferred(ConvBiasImpl*, const NCBKernSizeParam&) const override;
bool is_preferred(const NCBKernSizeParam&) const override;
protected:
size_t get_oc_tile_size_heuristic(const NCBKernSizeParam& param) const;
......
......@@ -478,7 +478,7 @@ WorkspaceBundle ConvBiasImpl::AlgoIm2col::get_bundle(
}
size_t ConvBiasImpl::AlgoIm2col::get_workspace(
ConvBiasImpl*, const NCBKernSizeParam& p) const {
const NCBKernSizeParam& p) const {
MIDOUT_BEGIN(megdnn_fallback_im2col, 0, 0) {
return get_bundle(p).total_size_in_bytes();
}
......@@ -487,7 +487,7 @@ size_t ConvBiasImpl::AlgoIm2col::get_workspace(
}
SmallVector<ConvBiasImpl::NCBKern> ConvBiasImpl::AlgoIm2col::dispatch_kerns(
ConvBiasImpl*, const NCBKernSizeParam& param) const {
const NCBKernSizeParam& param) const {
MIDOUT_BEGIN(megdnn_fallback_im2col, 0, 1) {
UNPACK_CONV_F32_NCB_KERN_SIZES(param);
MEGDNN_MARK_USED_VAR(SH);
......@@ -660,12 +660,13 @@ SmallVector<ConvBiasImpl::NCBKern> ConvBiasImpl::AlgoIm2col::dispatch_kerns(
}
bool ConvBiasImpl::AlgoIm2col::usable(
ConvBiasImpl* opr, const NCBKernSizeParam& param,
const NCBKernSizeParam& param,
AlgoSelectionStrategy /*algo_selection_strategy*/) const {
MIDOUT_BEGIN(megdnn_fallback_im2col, 0, 2) {
if (opr->param().format != param::ConvBias::Format::NCHW &&
opr->param().format != param::ConvBias::Format::NCHW44_DOT &&
opr->param().format != param::ConvBias::Format::NCHW44) {
auto format = param.filter_meta.format;
if (format != param::ConvBias::Format::NCHW &&
format != param::ConvBias::Format::NCHW44_DOT &&
format != param::ConvBias::Format::NCHW44) {
return false;
}
......@@ -695,8 +696,8 @@ bool ConvBiasImpl::AlgoIm2col::usable(
}
fallback::MatrixMulImpl::AlgoBase::MatmulDescription mdesc =
m_matmul_algo->matmul_description();
if (opr->param().format == param::ConvBias::Format::NCHW44 ||
opr->param().format == param::ConvBias::Format::NCHW44_DOT) {
if (format == param::ConvBias::Format::NCHW44 ||
format == param::ConvBias::Format::NCHW44_DOT) {
//! current NCHW44 im2col only support DEFAULT mode matmul
if (mdesc.packmode != Pack_Mode::DEFAULT) {
return false;
......
......@@ -15,6 +15,8 @@
#include "src/common/utils.h"
#include "src/fallback/conv_bias/opr_impl.h"
#include "src/fallback/matrix_mul/opr_impl.h"
#include "src/common/opr_delegate.h"
namespace megdnn {
namespace fallback {
......@@ -54,16 +56,18 @@ public:
}
return m_name.c_str();
}
bool usable(ConvBiasImpl* opr, const NCBKernSizeParam& param,
bool usable(const NCBKernSizeParam& param,
AlgoSelectionStrategy algo_selection_strategy) const override;
size_t get_workspace(ConvBiasImpl*,
const NCBKernSizeParam& param) const override;
size_t get_workspace(const NCBKernSizeParam& param) const override;
SmallVector<NCBKern> dispatch_kerns(
ConvBiasImpl* opr, const NCBKernSizeParam& param) const override;
bool is_preferred(fallback::ConvBiasImpl* opr,
const NCBKernSizeParam& param) const override;
bool is_preferred(
const NCBKernSizeParam& param) const override {
if (param.src_type.category() == DTypeCategory::QUANTIZED) {
return opr->is_matmul_quantized_prefer(param);
static CpuOprDelegationStorage<1> storage;
auto conv_bias_opr = storage.get<ConvBias, 0>();
return static_cast<ConvBiasImpl*>(conv_bias_opr)
->is_matmul_quantized_prefer(param);
}
auto&& fm = param.filter_meta;
auto OC = fm.ocpg, IC = fm.icpg;
......
......@@ -54,7 +54,6 @@ class ConvBiasImpl::AlgoPack : NonCopyableObj {
public:
AlgoPack() {
refhold.emplace_back(new AlgoConv1x1Gemv());
all_algos.emplace_back(refhold.back().get());
......@@ -121,7 +120,7 @@ bool ConvBiasImpl::is_naive_algo(ConvBiasImpl::Algorithm* algo) {
}
#define NCB_ALGO_FUNC(name, algo, param) \
static_cast<AlgoBase*>(algo)->name(this, param)
static_cast<AlgoBase*>(algo)->name(param)
void ConvBiasImpl::exec(_megdnn_tensor_in src, _megdnn_tensor_in filter,
_megdnn_tensor_in bias, _megdnn_tensor_in z,
......@@ -243,11 +242,10 @@ ConvBiasImpl::Algorithm* ConvBiasImpl::get_algorithm_heuristic_with_ncb(
const NCBKernSizeParam& param, size_t workspace_limit_in_bytes,
bool reproducible) {
for (auto i : get_all_algorithms_with_ncb(param)) {
size_t need_workspace = NCB_ALGO_FUNC(get_workspace, i, param);
if (static_cast<AlgoBase*>(i)->usable_reproducible(
this, param, AlgoSelectionStrategy::HEURISTIC,
reproducible) &&
need_workspace <= workspace_limit_in_bytes) {
param, AlgoSelectionStrategy::HEURISTIC, reproducible) &&
NCB_ALGO_FUNC(get_workspace, i, param) <=
workspace_limit_in_bytes) {
return i;
}
}
......@@ -392,8 +390,8 @@ std::vector<ConvBiasImpl::Algorithm*> ConvBiasImpl::get_all_algorithms_with_ncb(
std::vector<Algorithm*> algos;
std::vector<Algorithm*> prefer_algos;
for (auto&& algo : algo_pack()) {
if (algo->usable(this, param, AlgoSelectionStrategy::FULL_RUN)) {
if (algo->is_preferred(this, param)) {
if (algo->usable(param, AlgoSelectionStrategy::FULL_RUN)) {
if (algo->is_preferred(param)) {
prefer_algos.push_back(algo);
} else {
algos.push_back(algo);
......
......@@ -193,7 +193,7 @@ public:
//! move arm_common to fallback
virtual bool is_matmul_quantized_prefer(
const ConvBiasImpl::NCBKernSizeParam& ncb_param) {
const ConvBiasImpl::NCBKernSizeParam& ncb_param) const {
MEGDNN_MARK_USED_VAR(ncb_param);
return true;
};
......@@ -209,43 +209,39 @@ public:
public:
virtual ~AlgoBase() = default;
virtual bool usable(
ConvBiasImpl* opr, const NCBKernSizeParam& param,
const NCBKernSizeParam& param,
AlgoSelectionStrategy algo_selection_strategy) const = 0;
virtual size_t get_workspace(ConvBiasImpl* opr,
const NCBKernSizeParam& param) const = 0;
virtual size_t get_workspace(const NCBKernSizeParam& param) const = 0;
virtual SmallVector<NCBKern> dispatch_kerns(
ConvBiasImpl* opr, const NCBKernSizeParam& param) const = 0;
const NCBKernSizeParam& param) const = 0;
virtual SmallVector<NCBKern> dispatch_preprocess_kerns(
ConvBiasImpl*, const NCBKernSizeParam&) const {
const NCBKernSizeParam&) const {
return {};
};
//! get the layouts of weight_prerocess dst
virtual SmallVector<TensorLayout> deduce_preprocessed_filter_layout(
ConvBiasImpl*, const NCBKernSizeParam&) const {
const NCBKernSizeParam&) const {
return {};
};
//! get the workspace when weight_prerocess
virtual size_t get_preprocess_workspace(ConvBiasImpl*,
const NCBKernSizeParam&) const {
virtual size_t get_preprocess_workspace(const NCBKernSizeParam&) const {
return 0_z;
};
//! Temporarily used to identify whether the matmul algorithm is
//! is_preferred.
virtual bool is_preferred(ConvBiasImpl*,
const NCBKernSizeParam&) const {
virtual bool is_preferred(const NCBKernSizeParam&) const {
return false;
}
bool usable_reproducible(ConvBiasImpl* opr,
const NCBKernSizeParam& param,
bool usable_reproducible(const NCBKernSizeParam& param,
AlgoSelectionStrategy algo_selection_strategy,
bool reproducible = true) const {
return (!reproducible || is_reproducible()) &&
usable(opr, param, algo_selection_strategy);
usable(param, algo_selection_strategy);
}
};
......
......@@ -501,9 +501,10 @@ public:
Strategy strategy = m_strategy;
SmallVector<NCBKern> kerns;
auto filter_process_kern =
[strategy, bundle, &preprocessed_dst](
[strategy, bundle, &preprocessed_dst, this](
const NCBKernParam& ncb_param,
const NCBKernIndex& ncb_index) mutable {
MEGDNN_MARK_USED_VAR(this);
MIDOUT_BEGIN(megdnn_fallback_conv_bias_winograd_common,
midout_iv("filter_preprocess"_hash)) {
bundle.set(ncb_param.workspace_ptr);
......@@ -569,9 +570,10 @@ public:
param.filter_meta.format == param::ConvBias::Format::NCHW88 ||
param.filter_meta.format == param::ConvBias::Format::NCHW44)) {
auto filter_process_kern =
[strategy = m_strategy, bundle_top, bundle_compute](
[strategy = m_strategy, bundle_top, bundle_compute, this](
const NCBKernParam& ncb_param,
const NCBKernIndex& ncb_index) mutable {
MEGDNN_MARK_USED_VAR(this);
MIDOUT_BEGIN(megdnn_fallback_conv_bias_winograd_common,
midout_iv("filter_process"_hash)) {
bundle_top.set(ncb_param.workspace_ptr);
......@@ -594,9 +596,10 @@ public:
}
auto winograd_compute_kern =
[strategy = m_strategy, bundle_top, bundle_compute, matmul_algo,
matmul_param, unit_tile_size,
unit_oc_size](const NCBKernParam& ncb_param,
const NCBKernIndex& ncb_index) mutable {
matmul_param, unit_tile_size, unit_oc_size,
this](const NCBKernParam& ncb_param,
const NCBKernIndex& ncb_index) mutable {
MEGDNN_MARK_USED_VAR(this);
MIDOUT_BEGIN(megdnn_fallback_conv_bias_winograd_common,
midout_iv("winograd_compute"_hash)) {
bundle_top.set(ncb_param.workspace_ptr);
......@@ -728,43 +731,43 @@ public:
} \
MIDOUT_END();
#define MEGDNN_WINOGRAD_ALGO_FUN_DEFINE_ALL(_class, _strategy, _midout_flag, \
_matmul_format) \
size_t ConvBiasImpl::_class::get_workspace( \
fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const { \
MEGDNN_WINOGRADS_ALGO_FUN_DEFINE(_class, get_workspace_size, \
_strategy, _midout_flag, \
_matmul_format); \
return 0; \
} \
size_t ConvBiasImpl::_class::get_preprocess_workspace( \
fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const { \
MEGDNN_WINOGRADS_ALGO_FUN_DEFINE( \
_class, get_preprocess_workspace_size, _strategy, \
_midout_flag, _matmul_format); \
return 0; \
} \
SmallVector<TensorLayout> \
ConvBiasImpl::_class::deduce_preprocessed_filter_layout( \
fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const { \
MEGDNN_WINOGRADS_ALGO_FUN_DEFINE( \
_class, deduce_preprocessed_filter_layout, _strategy, \
_midout_flag, _matmul_format); \
return {}; \
} \
SmallVector<ConvBiasImpl::NCBKern> \
ConvBiasImpl::_class::dispatch_preprocess_kerns( \
fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const { \
MEGDNN_WINOGRADS_ALGO_FUN_DEFINE(_class, get_preprocess_kerns, \
_strategy, _midout_flag, \
_matmul_format); \
return {}; \
} \
SmallVector<ConvBiasImpl::NCBKern> ConvBiasImpl::_class::dispatch_kerns( \
fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const { \
MEGDNN_WINOGRADS_ALGO_FUN_DEFINE(_class, get_kerns, _strategy, \
_midout_flag, _matmul_format); \
return {}; \
#define MEGDNN_WINOGRAD_ALGO_FUN_DEFINE_ALL(_class, _strategy, _midout_flag, \
_matmul_format) \
size_t ConvBiasImpl::_class::get_workspace(const NCBKernSizeParam& param) \
const { \
MEGDNN_WINOGRADS_ALGO_FUN_DEFINE(_class, get_workspace_size, \
_strategy, _midout_flag, \
_matmul_format); \
return 0; \
} \
size_t ConvBiasImpl::_class::get_preprocess_workspace( \
const NCBKernSizeParam& param) const { \
MEGDNN_WINOGRADS_ALGO_FUN_DEFINE( \
_class, get_preprocess_workspace_size, _strategy, \
_midout_flag, _matmul_format); \
return 0; \
} \
SmallVector<TensorLayout> \
ConvBiasImpl::_class::deduce_preprocessed_filter_layout( \
const NCBKernSizeParam& param) const { \
MEGDNN_WINOGRADS_ALGO_FUN_DEFINE( \
_class, deduce_preprocessed_filter_layout, _strategy, \
_midout_flag, _matmul_format); \
return {}; \
} \
SmallVector<ConvBiasImpl::NCBKern> \
ConvBiasImpl::_class::dispatch_preprocess_kerns( \
const NCBKernSizeParam& param) const { \
MEGDNN_WINOGRADS_ALGO_FUN_DEFINE(_class, get_preprocess_kerns, \
_strategy, _midout_flag, \
_matmul_format); \
return {}; \
} \
SmallVector<ConvBiasImpl::NCBKern> ConvBiasImpl::_class::dispatch_kerns( \
const NCBKernSizeParam& param) const { \
MEGDNN_WINOGRADS_ALGO_FUN_DEFINE(_class, get_kerns, _strategy, \
_midout_flag, _matmul_format); \
return {}; \
}
// vim: syntax=cpp.doxygen
......@@ -164,7 +164,7 @@ void kern_direct(const NCBKernParam& param) {
/* ===================== fallback algo ===================== */
bool ConvolutionImpl::AlgoFallback::usable(
ConvolutionImpl*, const NCBKernSizeParam& param,
const NCBKernSizeParam& param,
AlgoSelectionStrategy /*algo_selection_strategy*/) const {
auto&& fm = param.filter_meta;
return fm.format == param::Convolution::Format::NCHW &&
......@@ -175,7 +175,7 @@ bool ConvolutionImpl::AlgoFallback::usable(
}
size_t ConvolutionImpl::AlgoFallback::get_workspace(
ConvolutionImpl*, const NCBKernSizeParam& param) const {
const NCBKernSizeParam& param) const {
auto FH = param.filter_meta.spatial[0], FW = param.filter_meta.spatial[1];
size_t nr_threads = param.nr_threads;
if (param.filter_meta.should_flip) {
......@@ -190,11 +190,11 @@ size_t ConvolutionImpl::AlgoFallback::get_workspace(
SmallVector<ConvolutionImpl::NCBKern>
ConvolutionImpl::AlgoFallback::dispatch_kern(
ConvolutionImpl* opr, const NCBKernSizeParam& param) const {
const NCBKernSizeParam& param) const {
size_t group = param.filter_meta.group;
size_t N = param.n;
size_t nr_threads = param.nr_threads;
size_t workspace_per_thread = get_workspace(opr, param) / nr_threads;
size_t workspace_per_thread = get_workspace( param) / nr_threads;
auto kern_fallback = [workspace_per_thread](const NCBKernParam& p,
const NCBKernIndex& ncb_index) {
UNPACK_CONV_F32_NCB_KERN_SIZES(p);
......@@ -218,7 +218,7 @@ ConvolutionImpl::AlgoFallback::dispatch_kern(
/* ===================== naive algo ===================== */
bool ConvolutionImpl::AlgoNaive::usable(
ConvolutionImpl*, const NCBKernSizeParam& param,
const NCBKernSizeParam& param,
AlgoSelectionStrategy /*algo_selection_strategy*/) const {
bool ret = false;
......@@ -241,7 +241,7 @@ bool ConvolutionImpl::AlgoNaive::usable(
}
SmallVector<ConvolutionImpl::NCBKern> ConvolutionImpl::AlgoNaive::dispatch_kern(
ConvolutionImpl*, const NCBKernSizeParam& param) const {
const NCBKernSizeParam& param) const {
size_t N = param.n;
size_t group = param.filter_meta.group;
#define cb(dt, cmode, compute_type) \
......@@ -289,75 +289,42 @@ SmallVector<ConvolutionImpl::NCBKern> ConvolutionImpl::AlgoNaive::dispatch_kern(
/* ===================== default algo ===================== */
ConvolutionImpl::AlgoDefault::AlgoDefault(fallback::ConvBiasImpl* conv_bias_opr,
ConvBiasImpl::AlgoBase* algorithm)
: m_conv_bias_opr(conv_bias_opr), m_algorithm(algorithm) {
ConvolutionImpl::AlgoDefault::AlgoDefault(ConvBiasImpl::AlgoBase* algorithm)
: m_algorithm(algorithm) {
megdnn_assert_internal(algorithm);
m_name = ssprintf("CONVOLUTION_DEFAULT_%s", m_algorithm->name());
}
ConvBiasImpl::NCBKernSizeParam
ConvolutionImpl::AlgoDefault::AlgoDefault::init_convbias_opr_and_param(
ConvBiasImpl* conv_bias_opr, const NCBKernSizeParam& param) {
ConvolutionImpl::AlgoDefault::init_conv_bias_param(
const NCBKernSizeParam& param) {
DType bias_type = param.dst_type;
if (bias_type.category() == DTypeCategory::QUANTIZED) {
bias_type = dtype::QuantizedS32(
mul_scale(param.src_type, param.filter_type));
}
::ConvBiasImpl::NCBKernSizeParam conv_bias_size_param(
param, 0, param::MatrixMul::Format::DEFAULT, bias_type, 0,
BiasMode::NO_BIAS, param::ConvBias::NonlineMode::IDENTITY);
// nonline mode
conv_bias_opr->param().nonlineMode = conv_bias_size_param.nonlineMode;
// convolution mode
if (conv_bias_size_param.filter_meta.should_flip) {
conv_bias_opr->param().mode = param::ConvolutionV0::Mode::CONVOLUTION;
} else {
conv_bias_opr->param().mode =
param::ConvolutionV0::Mode::CROSS_CORRELATION;
}
// sparse
if (conv_bias_size_param.filter_meta.group > 1) {
conv_bias_opr->param().sparse = param::ConvolutionV0::Sparse::GROUP;
} else {
conv_bias_opr->param().sparse = param::ConvolutionV0::Sparse::DENSE;
}
// format
conv_bias_opr->param().format = conv_bias_size_param.filter_meta.format;
// pad stride dilate
conv_bias_opr->param().pad_h = conv_bias_size_param.filter_meta.padding[0];
conv_bias_opr->param().pad_w = conv_bias_size_param.filter_meta.padding[1];
conv_bias_opr->param().stride_h =
conv_bias_size_param.filter_meta.stride[0];
conv_bias_opr->param().stride_w =
conv_bias_size_param.filter_meta.stride[1];
conv_bias_opr->param().dilate_h =
conv_bias_size_param.filter_meta.dilation[0];
conv_bias_opr->param().dilate_w =
conv_bias_size_param.filter_meta.dilation[1];
// output_block_size
conv_bias_opr->param().output_block_size =
conv_bias_size_param.output_block_size;
// compute_mode
conv_bias_opr->param().compute_mode = conv_bias_size_param.compute_mode;
return conv_bias_size_param;
return {param,
0,
param::MatrixMul::Format::DEFAULT,
bias_type,
0,
BiasMode::NO_BIAS,
param::ConvBias::NonlineMode::IDENTITY};
}
bool ConvolutionImpl::AlgoDefault::is_preferred(
ConvolutionImpl*, const NCBKernSizeParam& param) const {
const NCBKernSizeParam& param) const {
::ConvBiasImpl::NCBKernSizeParam conv_bias_param =
init_convbias_opr_and_param(m_conv_bias_opr, param);
return m_algorithm->is_preferred(m_conv_bias_opr, conv_bias_param);
init_conv_bias_param(param);
return m_algorithm->is_preferred(conv_bias_param);
}
bool ConvolutionImpl::AlgoDefault::usable(
ConvolutionImpl*, const NCBKernSizeParam& param,
const NCBKernSizeParam& param,
AlgoSelectionStrategy algo_selection_strategy) const {
::ConvBiasImpl::NCBKernSizeParam conv_bias_param =
init_convbias_opr_and_param(m_conv_bias_opr, param);
return m_algorithm->usable(m_conv_bias_opr, conv_bias_param,
init_conv_bias_param(param);
return m_algorithm->usable(conv_bias_param,
static_cast<ConvBiasImpl::AlgoSelectionStrategy>(
algo_selection_strategy));
}
......@@ -365,69 +332,62 @@ bool ConvolutionImpl::AlgoDefault::usable(
WorkspaceBundle ConvolutionImpl::AlgoDefault::get_bundle(
const NCBKernSizeParam& param) const {
::ConvBiasImpl::NCBKernSizeParam conv_bias_param =
init_convbias_opr_and_param(m_conv_bias_opr, param);
m_conv_bias_opr->execution_policy() = {m_algorithm};
init_conv_bias_param(param);
return WorkspaceBundle(nullptr, {m_algorithm->get_workspace(
m_conv_bias_opr, conv_bias_param)});
conv_bias_param)});
}
size_t ConvolutionImpl::AlgoDefault::get_workspace(
ConvolutionImpl*, const NCBKernSizeParam& param) const {
const NCBKernSizeParam& param) const {
return get_bundle(param).total_size_in_bytes();
}
size_t ConvolutionImpl::AlgoDefault::get_preprocess_workspace(
ConvolutionImpl*, const NCBKernSizeParam& param) const {
const NCBKernSizeParam& param) const {
::ConvBiasImpl::NCBKernSizeParam conv_bias_param =
init_convbias_opr_and_param(m_conv_bias_opr, param);
m_conv_bias_opr->execution_policy() = {m_algorithm};
return m_algorithm->get_preprocess_workspace(m_conv_bias_opr,
conv_bias_param);
init_conv_bias_param(param);
return m_algorithm->get_preprocess_workspace(conv_bias_param);
}
SmallVector<TensorLayout>
ConvolutionImpl::AlgoDefault::deduce_preprocessed_filter_layout(
ConvolutionImpl*, const NCBKernSizeParam& param) const {
const NCBKernSizeParam& param) const {
::ConvBiasImpl::NCBKernSizeParam conv_bias_param =
init_convbias_opr_and_param(m_conv_bias_opr, param);
m_conv_bias_opr->execution_policy() = {m_algorithm};
return m_algorithm->deduce_preprocessed_filter_layout(m_conv_bias_opr,
conv_bias_param);
init_conv_bias_param( param);
return m_algorithm->deduce_preprocessed_filter_layout(conv_bias_param);
}
//! Return the implement preprocess kernel
SmallVector<ConvolutionImpl::NCBKern>
ConvolutionImpl::AlgoDefault::get_preprocess_kimpl(
::ConvBiasImpl* conv_bias_opr, ConvBiasImpl::AlgoBase* algo,
ConvBiasImpl::AlgoBase* algo,
const NCBKernSizeParam& param) {
MIDOUT_BEGIN(megdnn_fallback_conv, midout_iv("get_preprocess_kimpl"_hash)) {
// construct the conv_bias kern param
::ConvBiasImpl::NCBKernParam conv_bias_param;
::ConvBiasImpl::NCBKernSizeParam conv_bias_size_param =
init_convbias_opr_and_param(conv_bias_opr, param);
static_cast<::ConvBiasImpl::NCBKernSizeParam&>(conv_bias_param) =
conv_bias_size_param;
init_conv_bias_param(param);
auto conv_bias_preprocess_kerns =
algo->dispatch_preprocess_kerns(conv_bias_opr, conv_bias_param);
algo->dispatch_preprocess_kerns(conv_bias_param);
SmallVector<ConvolutionImpl::NCBKern> convolution_preprocess_kerns;
//! Set the conv_bias param using convolution param
auto set_copy_param_filter_workspace_ptr =
auto set_param_filter_workspace_ptr =
[](const NCBKernParam& conv_param,
::ConvBiasImpl::NCBKernParam& copied_param) {
copied_param.filter_ptr = conv_param.filter_ptr;
copied_param.workspace_ptr = conv_param.workspace_ptr;
copied_param.workspace_size = conv_param.workspace_size;
::ConvBiasImpl::NCBKernParam& conv_bias_param) {
conv_bias_param.filter_ptr = conv_param.filter_ptr;
conv_bias_param.workspace_ptr = conv_param.workspace_ptr;
conv_bias_param.workspace_size = conv_param.workspace_size;
};
for (size_t i = 0; i < conv_bias_preprocess_kerns.size(); i++) {
auto kernel = conv_bias_preprocess_kerns[i];
//! If the kerenl batch parallel
auto run = [=](const NCBKernParam& p,
const NCBKernIndex& ncb_index) {
auto copy_param = conv_bias_param;
set_copy_param_filter_workspace_ptr(p, copy_param);
kernel.kern(copy_param,
{ncb_index.thread_id, ncb_index.ndrange_id});
auto run = [param = conv_bias_param, kernel,
&set_param_filter_workspace_ptr](
const NCBKernParam& p,
const NCBKernIndex& ncb_index) mutable {
set_param_filter_workspace_ptr(p, param);
kernel.kern(param, {ncb_index.thread_id, ncb_index.ndrange_id});
};
convolution_preprocess_kerns.push_back({run, kernel.global_size});
}
......@@ -438,38 +398,35 @@ ConvolutionImpl::AlgoDefault::get_preprocess_kimpl(
//! Return the implement kernel
SmallVector<ConvolutionImpl::NCBKern> ConvolutionImpl::AlgoDefault::get_kimpl(
::ConvBiasImpl* conv_bias_opr, ConvBiasImpl::AlgoBase* algo,
ConvBiasImpl::AlgoBase* algo,
const NCBKernSizeParam& param) {
MIDOUT_BEGIN(megdnn_fallback_conv, midout_iv(0)) {
// construct the conv_bias kern param
::ConvBiasImpl::NCBKernParam conv_bias_param;
::ConvBiasImpl::NCBKernSizeParam conv_bias_size_param =
init_convbias_opr_and_param(conv_bias_opr, param);
static_cast<::ConvBiasImpl::NCBKernSizeParam&>(conv_bias_param) =
conv_bias_size_param;
auto conv_bias_kerns =
algo->dispatch_kerns(conv_bias_opr, conv_bias_param);
init_conv_bias_param(param);
auto&& conv_bias_kerns = algo->dispatch_kerns(conv_bias_param);
SmallVector<ConvolutionImpl::NCBKern> convolution_kerns;
//! Set the conv_bias param using convolution param
auto set_copy_param_compute_address =
[](const NCBKernParam& conv_param,
::ConvBiasImpl::NCBKernParam& copied_param) {
copied_param.src_ptr = conv_param.src_ptr;
copied_param.filter_ptr = conv_param.filter_ptr;
copied_param.dst_ptr = conv_param.dst_ptr;
copied_param.workspace_ptr = conv_param.workspace_ptr;
copied_param.workspace_size = conv_param.workspace_size;
::ConvBiasImpl::NCBKernParam& conv_bias_param) {
conv_bias_param.src_ptr = conv_param.src_ptr;
conv_bias_param.filter_ptr = conv_param.filter_ptr;
conv_bias_param.dst_ptr = conv_param.dst_ptr;
conv_bias_param.workspace_ptr = conv_param.workspace_ptr;
conv_bias_param.workspace_size = conv_param.workspace_size;
};
for (size_t i = 0; i < conv_bias_kerns.size(); i++) {
auto kernel = conv_bias_kerns[i];
auto&& kernel = conv_bias_kerns[i];
//! If the kerenl batch parallel
auto run = [=](const NCBKernParam& p,
const NCBKernIndex& ncb_index) {
auto copy_param = conv_bias_param;
set_copy_param_compute_address(p, copy_param);
kernel.kern(copy_param,
{ncb_index.thread_id, ncb_index.ndrange_id});
auto run = [param = conv_bias_param, kernel,
&set_copy_param_compute_address](
const NCBKernParam& p,
const NCBKernIndex& ncb_index) mutable {
set_copy_param_compute_address(p, param);
kernel.kern(param, {ncb_index.thread_id, ncb_index.ndrange_id});
};
convolution_kerns.push_back({run, kernel.global_size});
}
......
......@@ -6,7 +6,8 @@
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
* implied.
*/
#pragma once
......@@ -35,10 +36,10 @@ void kern_naive_forward(const ConvolutionImpl::NCBKernParam& p,
src.layout.dtype = p.src_type;
dst.layout.dtype = p.dst_type;
if (p.filter_meta.format == param::Convolution::Format::NCHW) {
istrd *= p.isz[0] * p.isz[1];
ostrd *= p.osz[0] * p.osz[1];
src.layout.init_contiguous_stride({1, IC, IH, IW});
dst.layout.init_contiguous_stride({1, OC, OH, OW});
istrd *= p.isz[0] * p.isz[1];
ostrd *= p.osz[0] * p.osz[1];
src.layout.init_contiguous_stride({1, IC, IH, IW});
dst.layout.init_contiguous_stride({1, OC, OH, OW});
} else {
// Must be NHWC
megdnn_assert(
......@@ -75,14 +76,12 @@ class ConvolutionImpl::AlgoFallback final : public AlgoBase {
public:
bool is_reproducible() const override { return true; }
const char* name() const override { return "FALLBACK_ALGO"; }
bool usable(ConvolutionImpl* opr, const NCBKernSizeParam& param,
bool usable(const NCBKernSizeParam& param,
AlgoSelectionStrategy algo_selection_strategy) const override;
size_t get_workspace(ConvolutionImpl* opr,
const NCBKernSizeParam& param) const override;
size_t get_workspace(const NCBKernSizeParam& param) const override;
SmallVector<NCBKern> dispatch_kern(
ConvolutionImpl* /*opr*/,
const NCBKernSizeParam& /*param*/) const override;
};
......@@ -90,66 +89,55 @@ class ConvolutionImpl::AlgoNaive final : public AlgoBase {
public:
bool is_reproducible() const override { return true; }
const char* name() const override { return "NAIVE_ALGO"; }
bool usable(ConvolutionImpl* /*opr*/, const NCBKernSizeParam& /*param*/,
bool usable(const NCBKernSizeParam& /*param*/,
AlgoSelectionStrategy algo_selection_strategy) const override;
size_t get_workspace(ConvolutionImpl*,
const NCBKernSizeParam&) const override {
return 0;
};
size_t get_workspace(const NCBKernSizeParam&) const override { return 0; };
SmallVector<NCBKern> dispatch_kern(
ConvolutionImpl* /*opr*/,
const NCBKernSizeParam& /*param*/) const override;
};
class ConvolutionImpl::AlgoDefault final : public AlgoBase {
static ConvBiasImpl::NCBKernSizeParam init_convbias_opr_and_param(
ConvBiasImpl* conv_bias_opr, const NCBKernSizeParam& param);
static ConvBiasImpl::NCBKernSizeParam init_conv_bias_param(
const NCBKernSizeParam& param);
WorkspaceBundle get_bundle(const NCBKernSizeParam& param) const;
static SmallVector<NCBKern> get_kimpl(ConvBiasImpl* conv_bias_opr,
ConvBiasImpl::AlgoBase* algo,
static SmallVector<NCBKern> get_kimpl(ConvBiasImpl::AlgoBase* algo,
const NCBKernSizeParam& param);
static SmallVector<NCBKern> get_preprocess_kimpl(
ConvBiasImpl* conv_bias_opr, ConvBiasImpl::AlgoBase* algo,
const NCBKernSizeParam& param);
ConvBiasImpl::AlgoBase* algo, const NCBKernSizeParam& param);
public:
AlgoDefault(fallback::ConvBiasImpl* conv_bias_opr, ConvBiasImpl::AlgoBase*);
AlgoDefault(ConvBiasImpl::AlgoBase*);
bool is_reproducible() const override { return true; }
const char* name() const override { return m_name.c_str(); }
bool usable(ConvolutionImpl* opr, const NCBKernSizeParam& param,
bool usable(const NCBKernSizeParam& param,
AlgoSelectionStrategy algo_selection_strategy) const override;
size_t get_workspace(ConvolutionImpl* opr,
const NCBKernSizeParam& param) const override;
size_t get_workspace(const NCBKernSizeParam& param) const override;
size_t get_preprocess_workspace(ConvolutionImpl*,
const NCBKernSizeParam&) const override;
size_t get_preprocess_workspace(const NCBKernSizeParam&) const override;
SmallVector<TensorLayout> deduce_preprocessed_filter_layout(
ConvolutionImpl*, const NCBKernSizeParam&) const override;
const NCBKernSizeParam&) const override;
SmallVector<NCBKern> dispatch_preprocess_kern(
ConvolutionImpl*, const NCBKernSizeParam& param) const override {
return get_preprocess_kimpl(m_conv_bias_opr, m_algorithm, param);
const NCBKernSizeParam& param) const override {
return get_preprocess_kimpl(m_algorithm, param);
}
SmallVector<NCBKern> dispatch_kern(
ConvolutionImpl* /*opr*/,
const NCBKernSizeParam& param) const override {
return get_kimpl(m_conv_bias_opr, m_algorithm, param);
return get_kimpl(m_algorithm, param);
}
void* type() const override { return sm_fallback_conv_algo_type; }
//! select matmul to the highest preference
bool is_preferred(ConvolutionImpl* opr,
const NCBKernSizeParam& param) const override;
bool is_preferred(const NCBKernSizeParam& param) const override;
private:
std::string m_name;
fallback::ConvBiasImpl* m_conv_bias_opr;
ConvBiasImpl::AlgoBase* m_algorithm;
};
......
......@@ -59,8 +59,7 @@ public:
static_cast<ConvBiasImpl*>(conv_bias_opr)->algo_pack();
for (auto&& algorithm : conv_bias_algo) {
// fallback algo
refhold.emplace_back(new AlgoDefault(
static_cast<ConvBiasImpl*>(conv_bias_opr), algorithm));
refhold.emplace_back(new AlgoDefault(algorithm));
all_algos.emplace_back(refhold.back().get());
}
......@@ -82,7 +81,7 @@ bool ConvolutionImpl::is_naive_algo(ConvolutionImpl::Algorithm* algo) {
}
#define NCB_ALGO_FUNC(name, algo, param) \
static_cast<AlgoBase*>(algo)->name(this, fparam)
static_cast<AlgoBase*>(algo)->name(param)
void ConvolutionImpl::exec(_megdnn_tensor_in src, _megdnn_tensor_in filter,
_megdnn_tensor_out dst,
......@@ -131,7 +130,7 @@ size_t ConvolutionImpl::get_workspace_in_bytes(
return naive::ConvolutionForwardImpl::get_workspace_in_bytes(
src, filter, dst, preprocessed_filter);
} else {
return static_cast<AlgoBase*>(algo)->get_workspace(this, fparam);
return NCB_ALGO_FUNC(get_workspace, algo, fparam);
}
}
......@@ -144,8 +143,7 @@ size_t ConvolutionImpl::get_preprocess_workspace_in_bytes(
return naive::ConvolutionForwardImpl::get_preprocess_workspace_in_bytes(
src, filter, dst);
} else {
return static_cast<AlgoBase*>(algo)->get_preprocess_workspace(this,
fparam);
return NCB_ALGO_FUNC(get_preprocess_workspace, algo, fparam);
}
}
......@@ -158,8 +156,7 @@ SmallVector<TensorLayout> ConvolutionImpl::deduce_preprocessed_filter_layout(
return naive::ConvolutionForwardImpl::deduce_preprocessed_filter_layout(
src, filter, dst);
} else {
return static_cast<AlgoBase*>(algo)->deduce_preprocessed_filter_layout(
this, fparam);
return NCB_ALGO_FUNC(deduce_preprocessed_filter_layout, algo, fparam);
}
}
......@@ -251,8 +248,7 @@ ConvolutionImpl::NCBKernParam ConvolutionImpl::make_ncb_kern_param(
void ConvolutionImpl::exec_preprocess_with_ncb_kern(const NCBKernParam& param,
Algorithm* algo) {
auto kerns =
static_cast<AlgoBase*>(algo)->dispatch_preprocess_kern(this, param);
auto kerns = NCB_ALGO_FUNC(dispatch_preprocess_kern, algo, param);
auto fallback_handle = handle();
for (auto kernel : kerns) {
megdnn_assert(
......@@ -272,14 +268,15 @@ void ConvolutionImpl::exec_preprocess_with_ncb_kern(const NCBKernParam& param,
void ConvolutionImpl::exec_with_ncb_kern(const NCBKernParam& param,
Algorithm* algo) {
auto kerns = static_cast<AlgoBase*>(algo)->dispatch_kern(this, param);
auto kerns = NCB_ALGO_FUNC(dispatch_kern, algo, param);
auto fallback_handle = handle();
for (auto kernel : kerns) {
megdnn_assert(param.filter_meta.format == Param::Format::NCHW ||
param.filter_meta.format == Param::Format::NHWC ||
param.filter_meta.format == Param::Format::NCHW88 ||
param.filter_meta.format == Param::Format::NCHW44,
"invalid conv format");
megdnn_assert(
param.filter_meta.format == Param::Format::NCHW ||
param.filter_meta.format == Param::Format::NHWC ||
param.filter_meta.format == Param::Format::NCHW88 ||
param.filter_meta.format == Param::Format::NCHW44,
"invalid conv format");
auto run = [param, kernel](size_t index, size_t thread_id) {
CpuNDRange ndrange_id(kernel.global_size, index);
kernel.kern(param, {thread_id, ndrange_id});
......@@ -293,13 +290,11 @@ ConvolutionImpl::Algorithm* ConvolutionImpl::get_algorithm_heuristic_with_ncb(
const NCBKernSizeParam& param, size_t workspace_limit_in_bytes,
bool reproducible) {
for (auto i : get_all_algorithms_with_ncb(param)) {
size_t need_workspace =
static_cast<AlgoBase*>(i)->get_workspace(this, param);
bool usable_reproducible =
static_cast<AlgoBase*>(i)->usable_reproducible(
this, param, AlgoSelectionStrategy::HEURISTIC,
reproducible);
if (usable_reproducible && need_workspace <= workspace_limit_in_bytes) {
param, AlgoSelectionStrategy::HEURISTIC, reproducible);
if (usable_reproducible && NCB_ALGO_FUNC(get_workspace, i, param) <=
workspace_limit_in_bytes) {
return i;
}
}
......@@ -311,8 +306,8 @@ ConvolutionImpl::get_all_algorithms_with_ncb(const NCBKernSizeParam& param) {
std::vector<Algorithm*> ret;
std::vector<Algorithm*> prefer_algos;
for (auto&& i : algo_pack()) {
if (i->usable(this, param, AlgoSelectionStrategy::FULL_RUN)) {
if (i->is_preferred(this, param)) {
if (i->usable(param, AlgoSelectionStrategy::FULL_RUN)) {
if (i->is_preferred(param)) {
prefer_algos.push_back(i);
} else {
ret.push_back(i);
......
......@@ -178,42 +178,38 @@ public:
class AlgoBase : public Algorithm {
public:
virtual ~AlgoBase() = default;
virtual bool usable(ConvolutionImpl* opr, const NCBKernSizeParam& param,
virtual bool usable(const NCBKernSizeParam& param,
AlgoSelectionStrategy) const = 0;
virtual size_t get_workspace(ConvolutionImpl* opr,
const NCBKernSizeParam& param) const = 0;
virtual size_t get_workspace(const NCBKernSizeParam& param) const = 0;
virtual SmallVector<NCBKern> dispatch_kern(
ConvolutionImpl* opr, const NCBKernSizeParam& param) const = 0;
const NCBKernSizeParam& param) const = 0;
virtual SmallVector<NCBKern> dispatch_preprocess_kern(
ConvolutionImpl*, const NCBKernSizeParam&) const {
const NCBKernSizeParam&) const {
return {};
};
//! get the layouts of weight_prerocess dst
virtual SmallVector<TensorLayout> deduce_preprocessed_filter_layout(
ConvolutionImpl*, const NCBKernSizeParam&) const {
const NCBKernSizeParam&) const {
return {};
};
//! get the workspace when weight_prerocess
virtual size_t get_preprocess_workspace(ConvolutionImpl*,
const NCBKernSizeParam&) const {
virtual size_t get_preprocess_workspace(const NCBKernSizeParam&) const {
return 0_z;
};
//! Temporarily used to identify whether the matmul algorithm is
//! is_preferred.
virtual bool is_preferred(ConvolutionImpl*,
const NCBKernSizeParam&) const {
virtual bool is_preferred(const NCBKernSizeParam&) const {
return false;
}
bool usable_reproducible(ConvolutionImpl* opr,
const NCBKernSizeParam& param,
bool usable_reproducible(const NCBKernSizeParam& param,
AlgoSelectionStrategy algo_selection_strategy,
bool reproducible = true) const {
return (!reproducible || is_reproducible()) &&
usable(opr, param, algo_selection_strategy);
usable(param, algo_selection_strategy);
}
};
......
......@@ -6,7 +6,8 @@
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
* implied.
*/
#include "src/x86/conv_bias/f32/algos.h"
......@@ -104,7 +105,7 @@ void get_rectified_size(size_t IH, size_t IW, size_t OH, size_t OW, size_t FH,
/* ===================== direct algo ===================== */
bool ConvBiasImpl::AlgoDirect::usable(
FallbackConvBiasImpl* /*opr*/, const NCBKernSizeParam& param,
const NCBKernSizeParam& param,
AlgoSelectionStrategy algo_selection_strategy) const {
auto&& fm = param.filter_meta;
bool aviliable = fm.format == Param::Format::NCHW && fm.spatial_ndim == 2 &&
......@@ -142,7 +143,7 @@ WorkspaceBundle ConvBiasImpl::AlgoDirect::get_bundle(
return {nullptr, {part0, part1}};
}
size_t ConvBiasImpl::AlgoDirect::get_workspace(
FallbackConvBiasImpl*, const NCBKernSizeParam& param) const {
const NCBKernSizeParam& param) const {
return get_bundle(param).total_size_in_bytes();
}
......@@ -280,7 +281,8 @@ void ConvBiasImpl::AlgoDirect::do_conv_kern(const WorkspaceBundle& bundle,
size_t workspace_group_id = workspace_ids[0],
workspace_batch_id = workspace_ids[1], oc = workspace_ids[2];
const float* sptr = kern_param.src<float>(batch_id, group_id);
const float* filter = kern_param.filter<float>(group_id) + oc * FH * FW * IC;
const float* filter =
kern_param.filter<float>(group_id) + oc * FH * FW * IC;
const float* bias_ptr =
kern_param.bias<float>(batch_id, group_id) + oc * bias_offset;
float* dst = kern_param.dst<float>(batch_id, group_id) + oc * OH * OW;
......@@ -318,7 +320,7 @@ SmallVector<ConvBiasImpl::NCBKern> ConvBiasImpl::AlgoDirect::get_kimpls(
}
/* ===================== direct-stride2 algo ===================== */
bool ConvBiasImpl::AlgoDirectStride2::usable(
FallbackConvBiasImpl*, const NCBKernSizeParam& param,
const NCBKernSizeParam& param,
AlgoSelectionStrategy algo_selection_strategy) const {
auto&& fm = param.filter_meta;
auto FH = fm.spatial[0];
......@@ -363,7 +365,7 @@ WorkspaceBundle ConvBiasImpl::AlgoDirectStride2::get_bundle(
}
size_t ConvBiasImpl::AlgoDirectStride2::get_workspace(
FallbackConvBiasImpl*, const NCBKernSizeParam& param) const {
const NCBKernSizeParam& param) const {
return get_bundle(param).total_size_in_bytes();
}
//! Process one input channel copy padding
......@@ -528,7 +530,7 @@ WorkspaceBundle ConvBiasImpl::AlgoMatrixMul::get_bundle(
}
bool ConvBiasImpl::AlgoMatrixMul::is_preferred(
FallbackConvBiasImpl* opr, const NCBKernSizeParam& param) const {
const NCBKernSizeParam& param) const {
auto&& fm = param.filter_meta;
if (fm.dilation[0] != 1 || fm.dilation[1] != 1) {
return false;
......@@ -550,7 +552,7 @@ bool ConvBiasImpl::AlgoMatrixMul::is_preferred(
int ic = find_nearest_elem<int>(fm.icpg, {4, 8, 16, 32, 64, 96, 128});
int on = std::round(geometric_mean(param.osz[0], param.osz[1]));
ProfileElement cur(f, oc, ic, on);
auto H = static_cast<HandleImpl*>(opr->handle());
auto H = static_cast<HandleImpl*>(inplace_cpu_handle().get());
auto&& target = std::lower_bound(H->profile_cache().begin(),
H->profile_cache().end(), cur);
megdnn_assert_internal(target->f == cur.f);
......
......@@ -6,7 +6,8 @@
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
* implied.
*/
#pragma once
......@@ -37,14 +38,13 @@ public:
return m_large_group ? "X86_CONV_BIAS_DIRECT_STRIDE1_LARGE_GROUP"
: "X86_CONV_BIAS_DIRECT_STRIDE1_SMALL_GROUP";
}
bool usable(FallbackConvBiasImpl* opr, const NCBKernSizeParam& param,
bool usable(const NCBKernSizeParam& param,
AlgoSelectionStrategy algo_selection_strategy) const override;
size_t get_workspace(FallbackConvBiasImpl* opr,
const NCBKernSizeParam& param) const override;
size_t get_workspace(const NCBKernSizeParam& param) const override;
virtual SmallVector<NCBKern> dispatch_kerns(
fallback::ConvBiasImpl*,
const NCBKernSizeParam& param) const override {
return get_kimpls(param);
}
......@@ -74,14 +74,13 @@ public:
return m_large_group ? "X86_CONV_BIAS_DIRECT_STRIDE2_LARGE_GROUP"
: "X86_CONV_BIAS_DIRECT_STRIDE2_SMALL_GROUP";
}
bool usable(FallbackConvBiasImpl* opr, const NCBKernSizeParam& param,
bool usable(const NCBKernSizeParam& param,
AlgoSelectionStrategy algo_selection_strategy) const override;
size_t get_workspace(FallbackConvBiasImpl* opr,
const NCBKernSizeParam& param) const override;
size_t get_workspace(const NCBKernSizeParam& param) const override;
virtual SmallVector<NCBKern> dispatch_kerns(
fallback::ConvBiasImpl*,
const NCBKernSizeParam& param) const override {
return get_kimpls(param);
}
......@@ -131,7 +130,7 @@ public:
bool is_reproducible() const override { return true; }
const char* name() const override { return "X86_CONV_BIAS_MATMUL"; }
bool usable(FallbackConvBiasImpl*, const NCBKernSizeParam& param,
bool usable(const NCBKernSizeParam& param,
AlgoSelectionStrategy) const override {
auto&& fm = param.filter_meta;
return fm.format == Param::Format::NCHW && fm.spatial_ndim == 2 &&
......@@ -145,15 +144,12 @@ public:
param.nr_threads == 1_z;
}
bool is_preferred(FallbackConvBiasImpl*,
const NCBKernSizeParam&) const override;
bool is_preferred(const NCBKernSizeParam&) const override;
size_t get_workspace(FallbackConvBiasImpl*,
const NCBKernSizeParam& param) const override {
size_t get_workspace(const NCBKernSizeParam& param) const override {
return get_bundle(param).total_size_in_bytes();
}
SmallVector<NCBKern> dispatch_kerns(
FallbackConvBiasImpl* /*opr*/,
const NCBKernSizeParam& param) const override {
size_t group = param.filter_meta.group;
return {{kimpl, {group, 1_z, 1_z}}};
......@@ -171,7 +167,7 @@ public:
AlgoMkldnnConv() {}
bool is_reproducible() const override { return true; }
const char* name() const override { return "MKLDNN_CONV_FP32"; }
bool usable(FallbackConvBiasImpl*, const NCBKernSizeParam& param,
bool usable(const NCBKernSizeParam& param,
AlgoSelectionStrategy) const override {
auto&& fm = param.filter_meta;
......@@ -184,13 +180,9 @@ public:
return ok;
};
size_t get_workspace(FallbackConvBiasImpl* /*opr*/,
const NCBKernSizeParam&) const override {
return 0;
}
size_t get_workspace(const NCBKernSizeParam&) const override { return 0; }
SmallVector<NCBKern> dispatch_kerns(
FallbackConvBiasImpl* /*opr*/,
const NCBKernSizeParam& /*param*/) const override {
auto kern = [](const NCBKernParam& param,
const NCBKernIndex& ncb_index) {
......
......@@ -6,16 +6,17 @@
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
* implied.
*/
#include "src/x86/conv_bias/f32/algos.h"
#include "src/common/utils.h"
#include "src/x86/conv_bias/f32/algos.h"
#include "src/x86/conv_bias/f32/strategy.h"
#include "src/x86/conv_bias/opr_impl.h"
#include "src/x86/conv_bias/postprocess_helper.h"
#include "src/x86/handle.h"
#include "src/x86/profile.h"
#include "src/x86/conv_bias/f32/strategy.h"
#include "midout.h"
......@@ -27,10 +28,9 @@ using namespace x86;
/* ======================= AlgoFP32WinogradF63_8*8 ======================== */
bool ConvBiasImpl::AlgoFP32WinogradF63_8x8::usable(
fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param,
const NCBKernSizeParam& param,
AlgoSelectionStrategy /*algo_selection_strategy*/) const {
MEGDNN_MARK_USED_VAR(param);
MEGDNN_MARK_USED_VAR(opr);
MIDOUT_BEGIN(megdnn_x86_winograd_fp32, 1, 0) {
//! TODO: now nchw88 winograd only support Dense mode
if (param.filter_meta.icpg % 8 != 0 ||
......@@ -44,13 +44,13 @@ bool ConvBiasImpl::AlgoFP32WinogradF63_8x8::usable(
strategy, m_tile_size, param)
.get_matmul_kern_param(param);
return m_matmul_algo->usable(matmul_param) &&
(opr->param().format == param::ConvBias::Format::NCHW88 ||
(opr->param().format ==
(param.filter_meta.format == param::ConvBias::Format::NCHW88 ||
(param.filter_meta.format ==
param::ConvBias::Format::NCHW88_WINOGRAD &&
opr->param().output_block_size == 6 &&
param.output_block_size == 6 &&
param.winograd_matmul_format ==
param::MatrixMul::Format::MK8)) &&
opr->param().mode == param::ConvBias::Mode::CROSS_CORRELATION &&
!param.filter_meta.should_flip &&
(param.filter_meta.spatial[0] == param.filter_meta.spatial[1] &&
param.filter_meta.spatial[0] == 3) &&
(param.filter_meta.stride[0] == param.filter_meta.stride[1] &&
......@@ -74,10 +74,9 @@ MEGDNN_WINOGRAD_ALGO_FUN_DEFINE_ALL(AlgoFP32WinogradF63_8x8,
/* ======================= AlgoFP32WinogradF23_8*8 ======================== */
bool ConvBiasImpl::AlgoFP32WinogradF23_8x8::usable(
fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param,
const NCBKernSizeParam& param,
AlgoSelectionStrategy /*algo_selection_strategy*/) const {
MEGDNN_MARK_USED_VAR(param);
MEGDNN_MARK_USED_VAR(opr);
MIDOUT_BEGIN(megdnn_x86_winograd_fp32, 2, 0) {
//! TODO: now nchw88 winograd only support Dense mode
if (param.filter_meta.icpg % 8 != 0 ||
......@@ -91,13 +90,13 @@ bool ConvBiasImpl::AlgoFP32WinogradF23_8x8::usable(
strategy, m_tile_size, param)
.get_matmul_kern_param(param);
return m_matmul_algo->usable(matmul_param) &&
(opr->param().format == param::ConvBias::Format::NCHW88 ||
(opr->param().format ==
(param.filter_meta.format == param::ConvBias::Format::NCHW88 ||
(param.filter_meta.format ==
param::ConvBias::Format::NCHW88_WINOGRAD &&
opr->param().output_block_size == 2 &&
param.output_block_size == 2 &&
param.winograd_matmul_format ==
param::MatrixMul::Format::MK8)) &&
opr->param().mode == param::ConvBias::Mode::CROSS_CORRELATION &&
!param.filter_meta.should_flip &&
(param.filter_meta.spatial[0] == param.filter_meta.spatial[1] &&
param.filter_meta.spatial[0] == 3) &&
(param.filter_meta.stride[0] == param.filter_meta.stride[1] &&
......
......@@ -36,7 +36,7 @@ using namespace megdnn;
using namespace x86;
bool ConvBiasImpl::AlgoChanWiseAvx2Stride1Qint8::usable(
FallbackConvBiasImpl* /*opr*/, const NCBKernSizeParam& param,
const NCBKernSizeParam& param,
AlgoSelectionStrategy /*algo_selection_strategy*/) const {
return chanwise_avx2_stride1_qint8_usable(param);
}
......@@ -66,7 +66,7 @@ WorkspaceBundle ConvBiasImpl::AlgoChanWiseAvx2Stride1Qint8::get_bundle(
}
size_t ConvBiasImpl::AlgoChanWiseAvx2Stride1Qint8::get_workspace(
FallbackConvBiasImpl*, const NCBKernSizeParam& param) const {
const NCBKernSizeParam& param) const {
return get_bundle(param).total_size_in_bytes();
}
......@@ -78,12 +78,12 @@ ConvBiasImpl::AlgoChanWiseAvx2Stride1Qint8::get_kimpls(
}
bool ConvBiasImpl::AlgoChanWiseAvx2Stride1Qint8::is_preferred(
FallbackConvBiasImpl*, const NCBKernSizeParam& param) const {
const NCBKernSizeParam& param) const {
return chanwise_avx2_stride1_qint8_preferred(param);
}
bool ConvBiasImpl::AlgoChanWiseAvx2Stride2Qint8::usable(
FallbackConvBiasImpl* /*opr*/, const NCBKernSizeParam& param,
const NCBKernSizeParam& param,
AlgoSelectionStrategy /*algo_selection_strategy*/) const {
return chanwise_avx2_stride2_qint8_usable(param);
}
......@@ -113,7 +113,7 @@ WorkspaceBundle ConvBiasImpl::AlgoChanWiseAvx2Stride2Qint8::get_bundle(
}
size_t ConvBiasImpl::AlgoChanWiseAvx2Stride2Qint8::get_workspace(
FallbackConvBiasImpl*, const NCBKernSizeParam& param) const {
const NCBKernSizeParam& param) const {
return get_bundle(param).total_size_in_bytes();
}
......@@ -125,12 +125,12 @@ ConvBiasImpl::AlgoChanWiseAvx2Stride2Qint8::get_kimpls(
}
bool ConvBiasImpl::AlgoChanWiseAvx2Stride2Qint8::is_preferred(
FallbackConvBiasImpl*, const NCBKernSizeParam& param) const {
const NCBKernSizeParam& param) const {
return chanwise_avx2_stride2_qint8_preferred(param);
}
bool ConvBiasImpl::AlgoDirectAvx2Stride1Int8::usable(
FallbackConvBiasImpl* /*opr*/, const NCBKernSizeParam& param,
const NCBKernSizeParam& param,
AlgoSelectionStrategy /*algo_selection_strategy*/) const {
return direct_avx2_stride1_int8_usable(param);
}
......@@ -170,7 +170,7 @@ WorkspaceBundle ConvBiasImpl::AlgoDirectAvx2Stride1Int8::get_bundle(
}
size_t ConvBiasImpl::AlgoDirectAvx2Stride1Int8::get_workspace(
FallbackConvBiasImpl*, const NCBKernSizeParam& param) const {
const NCBKernSizeParam& param) const {
return get_bundle(param).total_size_in_bytes();
}
......@@ -182,14 +182,13 @@ ConvBiasImpl::AlgoDirectAvx2Stride1Int8::get_kimpls(
}
bool ConvBiasImpl::AlgoDirectAvx2Stride1Int8::is_preferred(
FallbackConvBiasImpl*, const NCBKernSizeParam& param) const {
const NCBKernSizeParam& param) const {
return direct_avx2_stride1_int8_preferred(param);
}
/* ===================== avx2 int8 stride 2 ===================== */
bool ConvBiasImpl::AlgoAVX2DirectConvStride2::usable(
FallbackConvBiasImpl* /*opr*/, const NCBKernSizeParam& param,
AlgoSelectionStrategy) const {
const NCBKernSizeParam& param, AlgoSelectionStrategy) const {
return direct_avx2_stride2_int8_usable(param);
}
......@@ -229,7 +228,7 @@ WorkspaceBundle ConvBiasImpl::AlgoAVX2DirectConvStride2::get_bundle(
}
size_t ConvBiasImpl::AlgoAVX2DirectConvStride2::get_workspace(
FallbackConvBiasImpl*, const NCBKernSizeParam& param) const {
const NCBKernSizeParam& param) const {
return get_bundle(param).total_size_in_bytes();
}
......@@ -241,13 +240,12 @@ ConvBiasImpl::AlgoAVX2DirectConvStride2::get_kimpls(
}
bool ConvBiasImpl::AlgoAVX2DirectConvStride2::is_preferred(
FallbackConvBiasImpl*, const NCBKernSizeParam& param) const {
const NCBKernSizeParam& param) const {
return direct_avx2_stride2_int8_preferred(param);
}
#if MEGDNN_X86_WITH_MKL_DNN
bool ConvBiasImpl::AlgoMkldnnQint8::usable(FallbackConvBiasImpl*,
const NCBKernSizeParam& param,
bool ConvBiasImpl::AlgoMkldnnQint8::usable(const NCBKernSizeParam& param,
AlgoSelectionStrategy) const {
return mkldnn_qint8_usable(param);
}
......@@ -426,19 +424,18 @@ void ConvBiasImpl::AlgoMkldnnQint8::kern_mkldnn_s8x8x32(
#undef REORDER_MEMORY
bool ConvBiasImpl::AlgoMkldnnQint8::is_preferred(
FallbackConvBiasImpl*, const NCBKernSizeParam& param) const {
const NCBKernSizeParam& param) const {
return mkldnn_qint8_preferred(param);
}
/* ===================== mkldnn qint8 matmul algo ===================== */
bool ConvBiasImpl::AlgoMkldnnMatmulQint8::usable(FallbackConvBiasImpl*,
const NCBKernSizeParam& param,
bool ConvBiasImpl::AlgoMkldnnMatmulQint8::usable(const NCBKernSizeParam& param,
AlgoSelectionStrategy) const {
return mkldnn_matmul_qint8_usable(param);
}
bool ConvBiasImpl::AlgoMkldnnMatmulQint8::is_preferred(
FallbackConvBiasImpl*, const NCBKernSizeParam& param) const {
const NCBKernSizeParam& param) const {
return mkldnn_matmul_qint8_preferred(param);
}
......
......@@ -25,18 +25,15 @@ public:
const char* name() const override {
return "X86_CONV_BIAS_CHANWISE_AVX2_INT8_STRIDE1";
}
bool usable(FallbackConvBiasImpl* opr, const NCBKernSizeParam& param,
bool usable(const NCBKernSizeParam& param,
AlgoSelectionStrategy algo_selection_strategy) const override;
size_t get_workspace(FallbackConvBiasImpl* opr,
const NCBKernSizeParam& param) const override;
size_t get_workspace(const NCBKernSizeParam& param) const override;
virtual SmallVector<NCBKern> dispatch_kerns(
fallback::ConvBiasImpl*,
const NCBKernSizeParam& param) const override {
return get_kimpls(param);
}
void* type() const override;
bool is_preferred(FallbackConvBiasImpl*,
const NCBKernSizeParam& param) const override;
bool is_preferred(const NCBKernSizeParam& param) const override;
};
/* ===================== avx2 stride2 chanwise algo ===================== */
......@@ -49,18 +46,15 @@ public:
const char* name() const override {
return "X86_CONV_BIAS_CHANWISE_AVX2_INT8_STRIDE2";
}
bool usable(FallbackConvBiasImpl* opr, const NCBKernSizeParam& param,
bool usable(const NCBKernSizeParam& param,
AlgoSelectionStrategy algo_selection_strategy) const override;
size_t get_workspace(FallbackConvBiasImpl* opr,
const NCBKernSizeParam& param) const override;
size_t get_workspace(const NCBKernSizeParam& param) const override;
virtual SmallVector<NCBKern> dispatch_kerns(
fallback::ConvBiasImpl*,
const NCBKernSizeParam& param) const override {
return get_kimpls(param);
}
void* type() const override;
bool is_preferred(FallbackConvBiasImpl*,
const NCBKernSizeParam& param) const override;
bool is_preferred(const NCBKernSizeParam& param) const override;
};
/* ===================== avx2 stride1 direct algo ===================== */
......@@ -73,18 +67,15 @@ public:
const char* name() const override {
return "X86_CONV_BIAS_DIRECT_AVX2_INT8_STRIDE1";
}
bool usable(FallbackConvBiasImpl* opr, const NCBKernSizeParam& param,
bool usable(const NCBKernSizeParam& param,
AlgoSelectionStrategy algo_selection_strategy) const override;
size_t get_workspace(FallbackConvBiasImpl* opr,
const NCBKernSizeParam& param) const override;
size_t get_workspace(const NCBKernSizeParam& param) const override;
virtual SmallVector<NCBKern> dispatch_kerns(
fallback::ConvBiasImpl*,
const NCBKernSizeParam& param) const override {
return get_kimpls(param);
}
void* type() const override;
bool is_preferred(FallbackConvBiasImpl*,
const NCBKernSizeParam& param) const override;
bool is_preferred(const NCBKernSizeParam& param) const override;
};
/* ================== avx2 int8 direct conv stride2 algo ================== */
......@@ -97,18 +88,15 @@ public:
const char* name() const override {
return "X86_CONV_BIAS_DIRECT_AVX2_INT8_STRIDE2";
}
bool usable(FallbackConvBiasImpl* opr, const NCBKernSizeParam& param,
bool usable(const NCBKernSizeParam& param,
AlgoSelectionStrategy algo_selection_strategy) const override;
size_t get_workspace(FallbackConvBiasImpl* opr,
const NCBKernSizeParam& param) const override;
size_t get_workspace(const NCBKernSizeParam& param) const override;
SmallVector<NCBKern> dispatch_kerns(
fallback::ConvBiasImpl*,
const NCBKernSizeParam& param) const override {
return get_kimpls(param);
}
void* type() const override;
bool is_preferred(FallbackConvBiasImpl*,
const NCBKernSizeParam& param) const override;
bool is_preferred(const NCBKernSizeParam& param) const override;
};
#if MEGDNN_X86_WITH_MKL_DNN
......@@ -122,16 +110,14 @@ public:
AlgoMkldnnQint8() {}
bool is_reproducible() const override { return true; }
const char* name() const override { return "MKLDNN_INT8"; }
bool usable(FallbackConvBiasImpl* opr, const NCBKernSizeParam& param,
bool usable(const NCBKernSizeParam& param,
AlgoSelectionStrategy) const override;
size_t get_workspace(FallbackConvBiasImpl* /*opr*/,
const NCBKernSizeParam& param) const override {
size_t get_workspace(const NCBKernSizeParam& param) const override {
size_t nr_threads = param.nr_threads;
return get_bundle(param).total_size_in_bytes() * nr_threads;
}
SmallVector<NCBKern> dispatch_kerns(
FallbackConvBiasImpl* /*opr*/,
const NCBKernSizeParam& param) const override {
size_t group = param.filter_meta.group;
size_t n = param.n;
......@@ -147,8 +133,7 @@ public:
return {{kern, {group, n, 1_z}}};
}
void* type() const override;
bool is_preferred(FallbackConvBiasImpl*,
const NCBKernSizeParam& param) const override;
bool is_preferred(const NCBKernSizeParam& param) const override;
};
/* ===================== mkldnn qint8 matmul algo ===================== */
class ConvBiasImpl::AlgoMkldnnMatmulQint8 final : public AlgoBase {
......@@ -160,22 +145,19 @@ class ConvBiasImpl::AlgoMkldnnMatmulQint8 final : public AlgoBase {
public:
bool is_reproducible() const override { return true; }
const char* name() const override { return "MKLDNN_MATMUL_INT8"; }
bool usable(FallbackConvBiasImpl* opr, const NCBKernSizeParam& param,
bool usable(const NCBKernSizeParam& param,
AlgoSelectionStrategy) const override;
size_t get_workspace(FallbackConvBiasImpl* /*opr*/,
const NCBKernSizeParam& param) const override {
size_t get_workspace(const NCBKernSizeParam& param) const override {
return get_bundle(param).total_size_in_bytes();
}
SmallVector<NCBKern> dispatch_kerns(
FallbackConvBiasImpl* /*opr*/,
const NCBKernSizeParam& param) const override {
size_t group = param.filter_meta.group;
return {{kern_mkldnn_matmul_s8x8x32, {group, 1_z, 1_z}}};
}
//! select matmul to the highest preference
bool is_preferred(FallbackConvBiasImpl*,
const NCBKernSizeParam& param) const override;
bool is_preferred(const NCBKernSizeParam& param) const override;
void* type() const override;
};
......
......@@ -163,7 +163,7 @@ const char* ConvBiasImpl::get_algorithm_set_name() const {
}
bool ConvBiasImpl::is_matmul_quantized_prefer(
const ConvBiasImpl::NCBKernSizeParam& param) {
const ConvBiasImpl::NCBKernSizeParam& param) const {
bool conv_direct_chanwise_mkldnn_usable = true;
if (param.dst_type.enumv() == DTypeEnum::QuantizedS8 ||
param.dst_type.enumv() == DTypeEnum::QuantizedS32) {
......
......@@ -55,7 +55,7 @@ public:
const char* get_algorithm_set_name() const override;
bool is_matmul_quantized_prefer(
const ConvBiasImpl::NCBKernSizeParam& ncb_param) override;
const ConvBiasImpl::NCBKernSizeParam& ncb_param) const override;
};
} // namespace x86
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册