algos.cpp 32.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/**
 * \file dnn/src/fallback/conv_bias/im2col/algos.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
 * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */

#include "src/fallback/conv_bias/im2col/algos.h"
13
#include "src/fallback/conv_bias/im2col/factory.h"
14 15 16 17 18
#include "megdnn/opr_param_defs.h"
#include "src/common/opr_delegate.h"
#include "src/fallback/conv_bias/common.h"
#include "src/fallback/conv_bias/opr_impl.h"
#include "src/naive/convolution/helper.h"
19

20
#include "midout.h"
21

22 23 24 25
MIDOUT_DECL(megdnn_fallback_im2col)

using namespace megdnn;
using namespace fallback;
26
using namespace im2col;
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

/*======================== AlgoIm2col=======================*/
/*!
 *  *\brief The index of all parts workspace in im2col workspace bundel
 *  *Through witch can convenient get the needed ptr
 */
struct Im2colBundelIndex {
    static constexpr size_t BUNDLE_PADDING_INDEX = 0_z;
    static constexpr size_t BUNDLE_PACKA_INDEX = 1_z;
    static constexpr size_t BUNDLE_THREAD_INDEX = 2_z;
};

using Pack_Mode=fallback::MatrixMulImpl::AlgoBase::PackMode;

//! Process one input channel copy padding
static void copy_padding_kern(WorkspaceBundle bundle,
                              const ConvBiasImpl::NCBKernParam& param,
44
                              const ConvBiasImpl::NCBKernIndex& ncb_index,
45 46
                              StrategyBase* im2colstrategy, size_t pack_oc_size) {
    im2colstrategy->copy_padding_kern(bundle, param, ncb_index, pack_oc_size);
47
}
48

49 50 51 52 53 54
//! packA_kern
static void packA_kern(WorkspaceBundle bundle,
                       const fallback::ConvBiasImpl::NCBKernParam& param,
                       fallback::MatrixMulImpl::KernSizeParam matmulparam,
                       fallback::MatrixMulImpl::AlgoBase* matmul_algo,
                       const fallback::ConvBiasImpl::NCBKernIndex& ncb_index,
55
                       StrategyBase* im2colstrategy, size_t pack_oc_size) {
56
    im2colstrategy->packA_kern(bundle, param, matmulparam, matmul_algo,
57
                               ncb_index, pack_oc_size);
58
}
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75

/*!
 * *\brief Im2colKerns collects all the im2col kerns in it
 */

template <Pack_Mode packmode>
class Im2colKerns;

template <>
class Im2colKerns<Pack_Mode::DEFAULT> {
public:
    //! conv kernel
    static void kerns(
            WorkspaceBundle bundle, WorkspaceBundle bundle_thread,
            const ConvBiasImpl::NCBKernParam& param,
            fallback::MatrixMulImpl::KernSizeParam matmul_kernsize_param,
            fallback::MatrixMulImpl::AlgoBase* matmul_algo,
76
            StrategyParam strategyparam,
77
            fallback::ConvBiasImpl::NCBKernIndex ncb_index,
78 79
            size_t ohw_tile_size, StrategyBase* im2colstrategy) {
        size_t OC = param.filter_meta.ocpg;
80
        size_t output_block_size = std::min(
81 82
                ohw_tile_size,
                strategyparam.ohw - ncb_index.ndrange_id[2] * ohw_tile_size);
83
        size_t output_block_oc_size = std::min(
84 85 86 87 88 89 90 91 92 93 94 95 96 97
                strategyparam.oc_tile_size,
                OC - ncb_index.ndrange_id[3] * strategyparam.oc_tile_size);

        strategyparam.batch_id = ncb_index.ndrange_id[0];
        strategyparam.group_id = ncb_index.ndrange_id[1];
        strategyparam.oc_cur_index =
                ncb_index.ndrange_id[3] *
                strategyparam.oc_tile_size;
        strategyparam.oc_end_index = strategyparam.oc_cur_index +
                                     output_block_oc_size;
        strategyparam.ohw_cur_index =
                ncb_index.ndrange_id[2] * ohw_tile_size;
        strategyparam.output_block_oc_size = output_block_oc_size;
        strategyparam.output_block_size = output_block_size;
98 99

        bundle.set(param.workspace_ptr);
100 101 102 103
        bundle_thread.set(
                static_cast<int8_t*>(
                        bundle.get(Im2colBundelIndex::BUNDLE_THREAD_INDEX)) +
                bundle_thread.total_size_in_bytes() * ncb_index.thread_id);
104 105 106 107
        fallback::MatrixMulImpl::KernParam matmul_param;
        static_cast<fallback::MatrixMulImpl::KernSizeParam&>(matmul_param) =
                matmul_kernsize_param;

108 109 110
        //! 1.Im2col
        im2colstrategy->exec_im2col(bundle, bundle_thread, strategyparam, param,
                                    matmul_param, matmul_algo);
111

112 113 114
        //! 2.packb and matmul compute
        im2colstrategy->exec_matmul(param, strategyparam, bundle, bundle_thread,
                                    matmul_param, matmul_algo, ncb_index);
115

116 117 118
        //! 3.postprocess and copy dst if need
        im2colstrategy->exec_postprocess(param, strategyparam, bundle_thread);
    }
119

120 121 122 123 124 125 126
    WorkspaceBundle get_thread_bundle(
            const fallback::ConvBiasImpl::NCBKernSizeParam& param,
            fallback::MatrixMulImpl::KernSizeParam im2col_kern_param,
            MatrixMulImpl::AlgoBase* matmul_algo, size_t ohw_tile_size,
            size_t oc_tile_size) {
        size_t IC = param.filter_meta.icpg, FH = param.filter_meta.spatial[0],
               FW = param.filter_meta.spatial[1];
127
        size_t pack_oc_size = pack_size(param.filter_meta.format);
128 129 130 131 132
        size_t im2col = 0, packb = 0, bias_temp = 0;
        bool default_pack = matmul_algo->packmode() == Pack_Mode::DEFAULT;
        megdnn_assert(default_pack, "only support default packa");
        size_t im2col_dst_size =
                IC * FH * FW * ohw_tile_size * sizeof(param.src_type);
133 134
        size_t matmul_dst_size = pack_oc_size * oc_tile_size * ohw_tile_size *
                                 sizeof(param.bias_type);
135 136 137 138 139 140 141 142
        //! matmul_dst and im2col_dst use the same memory
        WorkspaceBundle wb = matmul_algo->get_bundle(im2col_kern_param);
        packb = wb.get_size(1);
        im2col = std::max(im2col_dst_size, matmul_dst_size);
        if (param.bias_mode == megdnn::BiasMode::BIAS) {
            bias_temp = oc_tile_size * ohw_tile_size * sizeof(param.bias_type);
        }
        return {nullptr, {packb, im2col, bias_temp}};
143 144 145 146 147 148 149 150 151 152 153 154
    }
};

template <>
class Im2colKerns<Pack_Mode::ONLY_PACKA> {
public:
    //! conv kernel
    static void kerns(
            WorkspaceBundle bundle, WorkspaceBundle bundle_thread,
            const ConvBiasImpl::NCBKernParam& param,
            fallback::MatrixMulImpl::KernSizeParam matmul_kernsize_param,
            fallback::MatrixMulImpl::AlgoBase* matmul_algo,
155
            StrategyParam strategyparam,
156
            fallback::ConvBiasImpl::NCBKernIndex ncb_index,
157 158
            size_t ohw_tile_size, StrategyBase* im2colstrategy) {
        size_t OC = param.filter_meta.ocpg;
159
        size_t output_block_size = std::min(
160 161
                ohw_tile_size,
                strategyparam.ohw - ncb_index.ndrange_id[2] * ohw_tile_size);
162
        size_t output_block_oc_size = std::min(
163 164
                strategyparam.oc_tile_size,
                OC - ncb_index.ndrange_id[3] * strategyparam.oc_tile_size);
165 166

        bundle.set(param.workspace_ptr);
167 168 169 170
        bundle_thread.set(
                static_cast<int8_t*>(
                        bundle.get(Im2colBundelIndex::BUNDLE_THREAD_INDEX)) +
                bundle_thread.total_size_in_bytes() * ncb_index.thread_id);
171 172 173 174 175

        fallback::MatrixMulImpl::KernParam matmul_param;
        static_cast<fallback::MatrixMulImpl::KernSizeParam&>(matmul_param) =
                matmul_kernsize_param;

176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
        strategyparam.batch_id = ncb_index.ndrange_id[0];
        strategyparam.group_id = ncb_index.ndrange_id[1];
        strategyparam.oc_cur_index =
                ncb_index.ndrange_id[3] *
                strategyparam.oc_tile_size;
        strategyparam.oc_end_index = strategyparam.oc_cur_index +
                                     output_block_oc_size;
        strategyparam.ohw_cur_index =
                ncb_index.ndrange_id[2] * ohw_tile_size;
        strategyparam.output_block_oc_size = output_block_oc_size;
        strategyparam.output_block_size = output_block_size;

        //! 1.Im2col
        im2colstrategy->exec_im2col(bundle, bundle_thread, strategyparam, param,
                                    matmul_param, matmul_algo);

        //! 2.packb and matmul compute
        im2colstrategy->exec_matmul(param, strategyparam, bundle, bundle_thread,
                                    matmul_param, matmul_algo, ncb_index);

        //! 3.postprocess and copy dst if need
        im2colstrategy->exec_postprocess(param, strategyparam, bundle_thread);
    }
    WorkspaceBundle get_thread_bundle(
            const fallback::ConvBiasImpl::NCBKernSizeParam& param,
            fallback::MatrixMulImpl::KernSizeParam im2col_kern_param,
            MatrixMulImpl::AlgoBase* matmul_algo, size_t ohw_tile_size,
            size_t oc_tile_size) {
        size_t IC = param.filter_meta.icpg, FH = param.filter_meta.spatial[0],
               FW = param.filter_meta.spatial[1];

        size_t im2col = 0, packb = 0, matmul_dst = 0, bias_temp = 0;
        bool only_packA = matmul_algo->packmode() == Pack_Mode::ONLY_PACKA;
        megdnn_assert(only_packA, "onlysupport onlypackA mode");
        size_t im2col_dst_size =
                IC * FH * FW * ohw_tile_size * sizeof(param.src_type);
        size_t matmul_dst_size =
                oc_tile_size * ohw_tile_size * sizeof(param.bias_type);
        //! matmul_dst and im2col_dst use the same memory
        WorkspaceBundle wb = matmul_algo->get_bundle(im2col_kern_param);
        packb = wb.get_size(1);
        im2col = im2col_dst_size;
        matmul_dst = matmul_dst_size;
        if (param.bias_mode == megdnn::BiasMode::BIAS) {
            bias_temp = oc_tile_size * ohw_tile_size * sizeof(param.bias_type);
        }
222

223
        return {nullptr, {packb, im2col, matmul_dst, bias_temp}};
224 225 226 227 228 229 230 231 232 233 234 235
    }
};

template <>
class Im2colKerns<Pack_Mode::NO_PACK> {
public:
    //! conv kernel
    static void kerns(
            WorkspaceBundle bundle, WorkspaceBundle bundle_thread,
            const ConvBiasImpl::NCBKernParam& param,
            fallback::MatrixMulImpl::KernSizeParam matmul_kernsize_param,
            fallback::MatrixMulImpl::AlgoBase* matmul_algo,
236
            StrategyParam strategyparam,
237
            fallback::ConvBiasImpl::NCBKernIndex ncb_index,
238 239
            size_t ohw_tile_size, StrategyBase* im2colstrategy) {
        size_t OC = param.filter_meta.ocpg;
240
        size_t output_block_size = std::min(
241 242
                ohw_tile_size,
                strategyparam.ohw - ncb_index.ndrange_id[2] * ohw_tile_size);
243
        size_t output_block_oc_size = std::min(
244 245 246 247 248 249 250 251 252 253 254 255 256 257
                strategyparam.oc_tile_size,
                OC - ncb_index.ndrange_id[3] * strategyparam.oc_tile_size);

        strategyparam.batch_id = ncb_index.ndrange_id[0];
        strategyparam.group_id = ncb_index.ndrange_id[1];
        strategyparam.oc_cur_index =
                ncb_index.ndrange_id[3] *
                strategyparam.oc_tile_size;
        strategyparam.oc_end_index = strategyparam.oc_cur_index +
                                     output_block_oc_size;
        strategyparam.ohw_cur_index =
                ncb_index.ndrange_id[2] * ohw_tile_size;
        strategyparam.output_block_oc_size = output_block_oc_size;
        strategyparam.output_block_size = output_block_size;
258 259

        bundle.set(param.workspace_ptr);
260 261 262 263
        bundle_thread.set(
                static_cast<int8_t*>(
                        bundle.get(Im2colBundelIndex::BUNDLE_THREAD_INDEX)) +
                bundle_thread.total_size_in_bytes() * ncb_index.thread_id);
264 265 266 267 268

        fallback::MatrixMulImpl::KernParam matmul_param;
        static_cast<fallback::MatrixMulImpl::KernSizeParam&>(matmul_param) =
                matmul_kernsize_param;

269 270 271
        //! 1.Im2col
        im2colstrategy->exec_im2col(bundle, bundle_thread, strategyparam, param,
                                    matmul_param, matmul_algo);
272

273 274 275
        //! 2.packb and matmul compute
        im2colstrategy->exec_matmul(param, strategyparam, bundle, bundle_thread,
                                    matmul_param, matmul_algo, ncb_index);
276

277 278 279 280 281 282 283 284 285 286 287
        //! 3.postprocess and copy dst if need
        im2colstrategy->exec_postprocess(param, strategyparam, bundle_thread);
    }
    WorkspaceBundle get_thread_bundle(
            const fallback::ConvBiasImpl::NCBKernSizeParam& param,
            fallback::MatrixMulImpl::KernSizeParam im2col_kern_param,
            MatrixMulImpl::AlgoBase* matmul_algo, size_t ohw_tile_size,
            size_t oc_tile_size) {
        size_t IC = param.filter_meta.icpg, FH = param.filter_meta.spatial[0],
               FW = param.filter_meta.spatial[1];
        size_t ohw = param.osz[0] * param.osz[1];
288

289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
        size_t im2col = 0, matmul_dst = 0, bias_temp = 0, matmul_compute = 0;
        bool no_pack = matmul_algo->packmode() == Pack_Mode::NO_PACK;
        megdnn_assert(no_pack, "only support no pack");
        bool is_dst_8bit =
                (param.src_type.enumv() == DTypeEnum::QuantizedS8 &&
                 param.dst_type.enumv() == DTypeEnum::QuantizedS8) ||
                (param.src_type.enumv() == DTypeEnum::Quantized8Asymm &&
                 param.dst_type.enumv() == DTypeEnum::Quantized8Asymm);
        size_t im2col_dst_size =
                IC * FH * FW * ohw_tile_size * sizeof(param.src_type);
        size_t matmul_dst_size =
                oc_tile_size * ohw_tile_size * sizeof(param.bias_type);
        im2col = im2col_dst_size;
        if (is_dst_8bit) {
            matmul_dst = matmul_dst_size;
        } else {
            matmul_dst = ohw_tile_size >= ohw ? 0 : matmul_dst_size;
        }
        matmul_compute = matmul_algo->get_workspace(im2col_kern_param);
        if (param.bias_mode == megdnn::BiasMode::BIAS) {
            bias_temp = oc_tile_size * ohw_tile_size * sizeof(param.bias_type);
        }
311

312
        return {nullptr, {im2col, matmul_dst, bias_temp, matmul_compute}};
313 314 315 316 317 318 319
    }
};

fallback::MatrixMulImpl::KernSizeParam
ConvBiasImpl::AlgoIm2col ::get_matmul_kern_param(const NCBKernSizeParam& param,
                                                 size_t ohw_tile_size,
                                                 size_t oc_tile_size) const {
320
    auto format = param::MatrixMul::Format::DEFAULT;
321
    size_t pack_oc_size = pack_size(param.filter_meta.format);
322 323
    if (param.filter_meta.format == param::ConvBias::Format::NCHW44) {
        format = param::MatrixMul::Format::MK4;
324 325
    } else if(param.filter_meta.format == param::ConvBias::Format::NCHW44_DOT){
        format = param::MatrixMul::Format::MK4_DOT;
326
    }
327 328 329 330
    size_t M = oc_tile_size;
    size_t N = ohw_tile_size;
    size_t K = param.filter_meta.icpg * param.filter_meta.spatial[0] *
               param.filter_meta.spatial[1];
331 332
    size_t LDA = pack_oc_size * K, LDB = pack_oc_size * N,
           LDC = N * pack_oc_size;
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
    bool is_dst_8bit = (param.src_type.enumv() == DTypeEnum::QuantizedS8 &&
                        param.dst_type.enumv() == DTypeEnum::QuantizedS8) ||
                       (param.src_type.enumv() == DTypeEnum::Quantized8Asymm &&
                        param.dst_type.enumv() == DTypeEnum::Quantized8Asymm);
    return {param.filter_type,
            param.src_type,
            is_dst_8bit ? param.bias_type : param.dst_type,
            M,
            N,
            K,
            LDA,
            LDB,
            LDC,
            false,
            false,
            param::MatrixMul::ComputeMode::DEFAULT,
349
            format};
350 351 352
}

void ConvBiasImpl::AlgoIm2col::choice_ohw_oc_block(
353 354
        const NCBKernSizeParam& param, size_t& oc_tile_size,
        size_t& ohw_tile_size, size_t block_m, size_t block_n,
355
        fallback::MatrixMulImpl::AlgoBase::PackMode pack_mode) const {
356 357 358
    size_t nr_threads = param.nr_threads;
    size_t OC = param.filter_meta.ocpg;
    size_t ohw = param.osz[0] * param.osz[1];
359 360
    oc_tile_size = DEFAULT_OC_TILE_SIZE;
    ohw_tile_size = m_ohw_tile_size;
361

362 363
    oc_tile_size = std::min(oc_tile_size, OC);
    ohw_tile_size = std::min(ohw_tile_size, ohw);
364 365

    if (nr_threads > 1) {
366 367 368 369 370 371 372 373 374
        if (ohw / ohw_tile_size < nr_threads) {
            ohw_tile_size = round_up(div_ceil(ohw, nr_threads), block_n);
            if (ohw_tile_size < DEFAULT_OHW_MIN_TILE_SIZE) {
                ohw_tile_size = ohw;
                oc_tile_size = round_up(div_ceil(OC, nr_threads), block_m);
                if (oc_tile_size > DEFAULT_OC_MAX_TILE_SIZE) {
                    oc_tile_size = DEFAULT_OC_MAX_TILE_SIZE;
                } else if (oc_tile_size < DEFAULT_OC_MIN_TILE_SIZE) {
                    oc_tile_size = DEFAULT_OC_MIN_TILE_SIZE;
375 376 377 378
                }
            }
        }
    } else {
379 380
        //! in no_pack mode don't do block operation when using single thread
        if (pack_mode == fallback::MatrixMulImpl::AlgoBase::PackMode::NO_PACK) {
381 382
            ohw_tile_size = ohw;
            oc_tile_size = OC;
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
        }
    }
}

WorkspaceBundle ConvBiasImpl::AlgoIm2col::get_bundle(
        const NCBKernSizeParam& param) const {
    UNPACK_CONV_F32_NCB_KERN_SIZES(param);
    MEGDNN_MARK_USED_VAR(OC);
    MEGDNN_MARK_USED_VAR(OH);
    MEGDNN_MARK_USED_VAR(OW);
    MEGDNN_MARK_USED_VAR(FH);
    MEGDNN_MARK_USED_VAR(FW);
    MEGDNN_MARK_USED_VAR(SW);
    MEGDNN_MARK_USED_VAR(SH);

    auto IW2 = IH + 2 * PH;
    auto IH2 = IW + 2 * PW;
    bool no_need_pading = (PH == 0 && PW == 0);
    size_t padding = 0, packa_size = 0, packa_group_size = 0;
    size_t nr_threads = param.nr_threads;
    size_t GROUP = param.filter_meta.group;
    bool need_pack = m_matmul_algo->packmode() == Pack_Mode::DEFAULT;
    bool only_packA = m_matmul_algo->packmode() == Pack_Mode::ONLY_PACKA;
406
    size_t oc_tile_size = 0, ohw_tile_size = 0;
407 408
    if (need_pack || only_packA) {
        auto inner_block = m_matmul_algo->get_inner_block_size();
409
        choice_ohw_oc_block(param, oc_tile_size, ohw_tile_size, inner_block.m,
410
                            inner_block.n, m_matmul_algo->packmode());
411
        auto im2col_kern_param = get_matmul_kern_param(
412 413
                param, ohw_tile_size, only_packA ? oc_tile_size : OC);
        size_t oc_parallel_times = div_ceil<size_t>(OC, oc_tile_size);
414 415 416 417 418 419
        WorkspaceBundle wb = m_matmul_algo->get_bundle(im2col_kern_param);
        packa_group_size = only_packA ? oc_parallel_times * wb.get_size(0)
                                      : wb.get_size(0);
    } else {  //! not support pack,not need pack
        size_t nopack_default_blockm = 8;
        size_t nopack_default_blockn = 16;
420 421
        choice_ohw_oc_block(param, oc_tile_size, ohw_tile_size,
                            nopack_default_blockm, nopack_default_blockn,
422
                            m_matmul_algo->packmode());
423 424
        packa_group_size = 0;
    }
425

426 427 428 429 430 431
    if (no_need_pading) {
        padding = 0;  //! not need  padding
    } else {
        padding = (GROUP * N * IC * IH2 * IW2) *
                  sizeof(param.src_type);  //! for padding
    }
432

433
    packa_size = GROUP * packa_group_size;  //! for packA  size = GROUP * a_size
434
    WorkspaceBundle ws = {nullptr, {}};
435
    auto im2col_kern_param =
436
            get_matmul_kern_param(param, ohw_tile_size, oc_tile_size);
437

438 439 440
    if (m_matmul_algo->packmode() == Pack_Mode::DEFAULT) {
        Im2colKerns<Pack_Mode::DEFAULT> defaultkern;
        ws = defaultkern.get_thread_bundle(param, im2col_kern_param,
441 442
                                           m_matmul_algo, ohw_tile_size,
                                           oc_tile_size);
443 444 445
    } else if (m_matmul_algo->packmode() == Pack_Mode::ONLY_PACKA) {
        Im2colKerns<Pack_Mode::ONLY_PACKA> onlypackakern;
        ws = onlypackakern.get_thread_bundle(param, im2col_kern_param,
446 447
                                             m_matmul_algo, ohw_tile_size,
                                             oc_tile_size);
448
    } else {
449 450
        Im2colKerns<Pack_Mode::NO_PACK> nopackkern;
        ws = nopackkern.get_thread_bundle(param, im2col_kern_param,
451 452
                                          m_matmul_algo, ohw_tile_size,
                                          oc_tile_size);
453
    }
454

455 456
    return {nullptr,
            {padding, packa_size, ws.total_size_in_bytes() * nr_threads}};
457 458 459 460 461 462 463 464 465 466 467 468
}

size_t ConvBiasImpl::AlgoIm2col::get_workspace(
        ConvBiasImpl*, const NCBKernSizeParam& p) const {
    MIDOUT_BEGIN(megdnn_fallback_im2col, 0, 0) {
        return get_bundle(p).total_size_in_bytes();
    }
    MIDOUT_END();
    return 0;
}

SmallVector<ConvBiasImpl::NCBKern> ConvBiasImpl::AlgoIm2col::dispatch_kerns(
469
        ConvBiasImpl*, const NCBKernSizeParam& param) const {
470
    MIDOUT_BEGIN(megdnn_fallback_im2col, 0, 1) {
471 472 473 474 475 476 477
        UNPACK_CONV_F32_NCB_KERN_SIZES(param);
        MEGDNN_MARK_USED_VAR(SH);
        MEGDNN_MARK_USED_VAR(SW);
        MEGDNN_MARK_USED_VAR(IH);
        MEGDNN_MARK_USED_VAR(IW);
        MEGDNN_MARK_USED_VAR(FH);
        MEGDNN_MARK_USED_VAR(FW);
478
        size_t oc_tile_size = 0, ohw_tile_size = 0;
479
        size_t ohw = OH * OW;
480 481
        size_t GROUP = param.filter_meta.group;
        WorkspaceBundle bundle = get_bundle(param);
482
        WorkspaceBundle bundle_thread = {nullptr, {}};
483
        bool need_padding = (PH != 0 || PW != 0);
484 485 486 487
        Pack_Mode packmode = m_matmul_algo->packmode();
        bool default_pack = packmode == Pack_Mode::DEFAULT;
        bool no_pack = packmode == Pack_Mode::NO_PACK;
        bool only_packA = packmode == Pack_Mode::ONLY_PACKA;
488 489 490 491

        if (default_pack || only_packA) {
            auto inner_block = m_matmul_algo->get_inner_block_size();
            choice_ohw_oc_block(param, oc_tile_size, ohw_tile_size,
492 493 494
                                inner_block.m, inner_block.n,
                                m_matmul_algo->packmode());
        } else {  //! nopack_mode
495 496 497 498
            size_t nopack_default_blockm = 8;
            size_t nopack_default_blockn = 16;
            choice_ohw_oc_block(param, oc_tile_size, ohw_tile_size,
                                nopack_default_blockm, nopack_default_blockn,
499
                                m_matmul_algo->packmode());
500 501 502 503
        }

        size_t ohw_parallel_times = div_ceil(ohw, ohw_tile_size);
        size_t oc_parallel_times = div_ceil<size_t>(OC, oc_tile_size);
504
        size_t packa_parallel_times = 0;
505
        size_t pack_oc_size = pack_size(param.filter_meta.format);
506

507
        if (only_packA) {
508
            packa_parallel_times = div_ceil<size_t>(OC, oc_tile_size);
509
        } else if (default_pack) {
510
            packa_parallel_times = div_ceil<size_t>(
511
                    OC, m_matmul_algo->get_inner_block_size().m);
512 513 514
        }

        auto matmul_param = get_matmul_kern_param(
515
                param, ohw_tile_size, only_packA ? oc_tile_size : OC);
516 517 518
        if (m_matmul_algo->packmode() == Pack_Mode::DEFAULT) {
            Im2colKerns<Pack_Mode::DEFAULT> defaultkern;
            bundle_thread = defaultkern.get_thread_bundle(
519 520
                    param, matmul_param, m_matmul_algo, ohw_tile_size,
                    oc_tile_size);
521 522 523
        } else if (m_matmul_algo->packmode() == Pack_Mode::ONLY_PACKA) {
            Im2colKerns<Pack_Mode::ONLY_PACKA> onlypackakern;
            bundle_thread = onlypackakern.get_thread_bundle(
524 525
                    param, matmul_param, m_matmul_algo, ohw_tile_size,
                    oc_tile_size);
526 527 528
        } else {
            Im2colKerns<Pack_Mode::NO_PACK> nopackkern;
            bundle_thread = nopackkern.get_thread_bundle(
529 530
                    param, matmul_param, m_matmul_algo, ohw_tile_size,
                    oc_tile_size);
531
        }
532

533 534 535 536 537 538 539
        StrategyParam strategyparam;
        strategyparam.ohw = ohw;
        strategyparam.is_dst_8bit =
                (param.src_type.enumv() == DTypeEnum::QuantizedS8 &&
                 param.dst_type.enumv() == DTypeEnum::QuantizedS8) ||
                (param.src_type.enumv() == DTypeEnum::Quantized8Asymm &&
                 param.dst_type.enumv() == DTypeEnum::Quantized8Asymm);
540
        strategyparam.is_ohw_size_bigger = (ohw_tile_size >= ohw);
541 542
        strategyparam.skip_copy_dst =
                strategyparam.is_ohw_size_bigger && !strategyparam.is_dst_8bit;
543
        strategyparam.oc_tile_size = oc_tile_size;
544
        strategyparam.pack_oc_size = pack_oc_size;
545

546 547 548 549
        SmallVector<ConvBiasImpl::NCBKern> ret_kern;
        MIDOUT_BEGIN(
                megdnn_fallback_im2col,
                midout_iv("ConvBiasImpl::AlgoIm2col::dispatch_kerns"_hash)) {
550 551 552 553
            StrategyBase* im2colstrategy =
                    Factory::get_im2col_strategy(param, m_matmul_algo);
            auto kern_padding = [bundle, im2colstrategy,
                                 pack_oc_size = pack_oc_size](
554 555
                                        const NCBKernParam& param,
                                        const NCBKernIndex& ncb_index) {
556 557
                copy_padding_kern(bundle, param, ncb_index, im2colstrategy,
                                  pack_oc_size);
558 559 560
            };

            auto kern_packA = [bundle, matmul_algo = m_matmul_algo,
561 562 563 564
                               matmul_param, im2colstrategy,
                               pack_oc_size = pack_oc_size](
                                      const NCBKernParam& param,
                                      const NCBKernIndex& ncb_index) {
565
                packA_kern(bundle, param, matmul_param, matmul_algo, ncb_index,
566
                           im2colstrategy, pack_oc_size);
567 568 569 570 571
            };
            if (default_pack) {
                auto kern_compute_default =
                        [bundle, bundle_thread, matmul_param,
                         matmul_algo = m_matmul_algo,
572
                         ohw_tile_size = ohw_tile_size,
573 574 575 576 577 578 579 580 581 582 583
                         strategyparam = strategyparam,
                         im2colstrategy](const NCBKernParam& param,
                                         const NCBKernIndex& ncb_index) {
                            Im2colKerns<Pack_Mode::DEFAULT>::kerns(
                                    bundle, bundle_thread, param, matmul_param,
                                    matmul_algo, strategyparam, ncb_index,
                                    ohw_tile_size, im2colstrategy);
                        };
                ret_kern.push_back({kern_packA, {GROUP, packa_parallel_times}});

                if (need_padding) {
584 585
                    ret_kern.push_back({kern_padding,
                                        {param.n, GROUP, IC / pack_oc_size}});
586 587 588 589 590 591 592 593 594
                }
                ret_kern.push_back(
                        {kern_compute_default,
                         {N, GROUP, ohw_parallel_times, oc_parallel_times}});
            } else if (only_packA) {
                auto kern_compute_onlypackA =
                        [bundle, bundle_thread, matmul_param,
                         matmul_algo = m_matmul_algo,
                         strategyparam = strategyparam,
595
                         ohw_tile_size = ohw_tile_size,
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
                         im2colstrategy](const NCBKernParam& param,
                                         const NCBKernIndex& ncb_index) {
                            Im2colKerns<Pack_Mode::ONLY_PACKA>::kerns(
                                    bundle, bundle_thread, param, matmul_param,
                                    matmul_algo, strategyparam, ncb_index,
                                    ohw_tile_size, im2colstrategy);
                        };
                ret_kern.push_back({kern_packA, {GROUP, packa_parallel_times}});
                if (need_padding) {
                    ret_kern.push_back({kern_padding, {param.n, GROUP, IC}});
                }
                ret_kern.push_back(
                        {kern_compute_onlypackA,
                         {N, GROUP, ohw_parallel_times, oc_parallel_times}});
            } else if (no_pack) {
                auto kern_compute_nopack =
                        [bundle, bundle_thread, matmul_param,
                         matmul_algo = m_matmul_algo,
                         strategyparam = strategyparam,
615
                         ohw_tile_size = ohw_tile_size,
616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
                         im2colstrategy](const NCBKernParam& param,
                                         const NCBKernIndex& ncb_index) {
                            Im2colKerns<Pack_Mode::NO_PACK>::kerns(
                                    bundle, bundle_thread, param, matmul_param,
                                    matmul_algo, strategyparam, ncb_index,
                                    ohw_tile_size, im2colstrategy);
                        };

                if (need_padding) {
                    ret_kern.push_back({kern_padding, {param.n, GROUP, IC}});
                }
                ret_kern.push_back(
                        {kern_compute_nopack,
                         {N, GROUP, ohw_parallel_times, oc_parallel_times}});
            }
            return ret_kern;
        }
        MIDOUT_END();
        return {};
635 636 637 638 639 640 641 642 643
    }
    MIDOUT_END();
    return {};
}

bool ConvBiasImpl::AlgoIm2col::usable(
        ConvBiasImpl* opr, const NCBKernSizeParam& param,
        AlgoSelectionStrategy /*algo_selection_strategy*/) const {
    MIDOUT_BEGIN(megdnn_fallback_im2col, 0, 2) {
644 645 646 647 648 649
        if (opr->param().format != param::ConvBias::Format::NCHW &&
            opr->param().format != param::ConvBias::Format::NCHW44_DOT &&
            opr->param().format != param::ConvBias::Format::NCHW44) {
            return false;
        }

650 651 652 653 654 655 656 657 658 659
        if (param.src_type.enumv() != param.filter_type.enumv() &&
            param.src_type.enumv() != DTypeEnum::Int8 &&
            param.src_type.enumv() != DTypeEnum::QuantizedS8 &&
            param.src_type.enumv() != DTypeEnum::Quantized8Asymm &&
#if !MEGDNN_DISABLE_FLOAT16
            param.src_type.enumv() != DTypeEnum::Float16 &&
#endif
            param.src_type.enumv() != DTypeEnum::Float32) {
            return false;
        }
660
        //! make sure 8x8x16 and 8x8x32 biasmode is  nobias and nonlineMode is
661 662
        //! identity otherwise return false mean that 8x8x32 and 8x8x16 not
        //! support PostProcess
663 664 665 666 667 668 669
        if (param.dst_type.enumv() == DTypeEnum::Int16 ||
            param.dst_type.enumv() == DTypeEnum::Int32 ||
            param.dst_type.enumv() == DTypeEnum::QuantizedS32) {
            if (param.bias_mode != megdnn::BiasMode::NO_BIAS ||
                param.nonlineMode != megdnn::NonlineMode::IDENTITY) {
                return false;
            }
670
        }
671 672
        if (opr->param().format == param::ConvBias::Format::NCHW44 ||
            opr->param().format == param::ConvBias::Format::NCHW44_DOT) {
673
            //! current NCHW44 im2col only support DEFAULT mode matmul
674
            if (m_matmul_algo->packmode() != Pack_Mode::DEFAULT) {
675 676 677 678 679 680 681
                return false;
                //! nchw44 hybird mode and channel wise is not support
            } else if (param.filter_meta.icpg < 4_z ||
                       param.filter_meta.icpg == 1 ||
                       param.filter_meta.ocpg == 1) {
                return false;
            }
682 683
        }

684 685 686 687 688 689 690 691
        size_t oc_tile_size = 0, ohw_tile_size = 0;
        Pack_Mode packmode = m_matmul_algo->packmode();
        bool default_pack = packmode == Pack_Mode::DEFAULT;
        bool only_packA = packmode == Pack_Mode::ONLY_PACKA;

        if (default_pack || only_packA) {
            auto inner_block = m_matmul_algo->get_inner_block_size();
            choice_ohw_oc_block(param, oc_tile_size, ohw_tile_size,
692 693
                                inner_block.m, inner_block.n,
                                m_matmul_algo->packmode());
694 695 696 697 698
        } else {  //! not support pack,not need pack
            size_t nopack_default_blockm = 8;
            size_t nopack_default_blockn = 16;
            choice_ohw_oc_block(param, oc_tile_size, ohw_tile_size,
                                nopack_default_blockm, nopack_default_blockn,
699
                                m_matmul_algo->packmode());
700
        }
701
        fallback::MatrixMulImpl::KernSizeParam matmul_param =
702
                get_matmul_kern_param(param, ohw_tile_size, oc_tile_size);
703 704
        bool matmulusable = m_matmul_algo->usable(matmul_param);
        return matmulusable &&
705 706
               (!(param.filter_meta.spatial[0] ==
                          param.filter_meta.spatial[1] &&
707
                  param.filter_meta.spatial[0] == 1 &&
708 709
                  param.filter_meta.stride[0] == param.filter_meta.stride[1] &&
                  param.filter_meta.stride[0] == 1)) &&
710 711 712 713 714 715 716 717 718 719
               (param.filter_meta.dilation[0] ==
                        param.filter_meta.dilation[1] &&
                param.filter_meta.dilation[0] == 1) &&
               param.compute_mode == param::ConvBias::ComputeMode::DEFAULT;
    }
    MIDOUT_END();
    return false;
}

// vim: syntax=cpp.doxygen