algos.cpp 29.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/**
 * \file dnn/src/fallback/conv_bias/im2col/algos.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
 * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */

#include "src/fallback/conv_bias/im2col/algos.h"
13
#include "src/fallback/conv_bias/im2col/factory.h"
14 15 16 17 18 19 20 21 22 23 24 25 26 27
#include "megdnn/opr_param_defs.h"
#include "src/common/opr_delegate.h"
#include "src/fallback/conv_bias/common.h"
#include "src/fallback/conv_bias/opr_impl.h"
#include "src/fallback/conv_bias/winograd/strategy.h"
#include "src/naive/convolution/helper.h"
#if MEGDNN_X86
#include "src/x86/conv_bias/postprocess_helper.h"
#endif
#include "midout.h"
MIDOUT_DECL(megdnn_fallback_im2col)

using namespace megdnn;
using namespace fallback;
28
using namespace im2col;
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
#if MEGDNN_X86
using namespace x86;
#endif

/*======================== AlgoIm2col=======================*/
/*!
 *  *\brief The index of all parts workspace in im2col workspace bundel
 *  *Through witch can convenient get the needed ptr
 */
struct Im2colBundelIndex {
    static constexpr size_t BUNDLE_PADDING_INDEX = 0_z;
    static constexpr size_t BUNDLE_PACKA_INDEX = 1_z;
    static constexpr size_t BUNDLE_THREAD_INDEX = 2_z;
};

using Pack_Mode=fallback::MatrixMulImpl::AlgoBase::PackMode;

//! Process one input channel copy padding
static void copy_padding_kern(WorkspaceBundle bundle,
                              const ConvBiasImpl::NCBKernParam& param,
49 50 51 52
                              const ConvBiasImpl::NCBKernIndex& ncb_index,
                              StrategyBase* im2colstrategy) {
    im2colstrategy->copy_padding_kern(bundle, param, ncb_index);
}
53

54 55 56 57 58 59 60 61 62 63
//! packA_kern
static void packA_kern(WorkspaceBundle bundle,
                       const fallback::ConvBiasImpl::NCBKernParam& param,
                       fallback::MatrixMulImpl::KernSizeParam matmulparam,
                       fallback::MatrixMulImpl::AlgoBase* matmul_algo,
                       const fallback::ConvBiasImpl::NCBKernIndex& ncb_index,
                       StrategyBase* im2colstrategy) {
    im2colstrategy->packA_kern(bundle, param, matmulparam, matmul_algo,
                               ncb_index);
}
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

/*!
 * *\brief Im2colKerns collects all the im2col kerns in it
 */

template <Pack_Mode packmode>
class Im2colKerns;

template <>
class Im2colKerns<Pack_Mode::DEFAULT> {
public:
    //! conv kernel
    static void kerns(
            WorkspaceBundle bundle, WorkspaceBundle bundle_thread,
            const ConvBiasImpl::NCBKernParam& param,
            fallback::MatrixMulImpl::KernSizeParam matmul_kernsize_param,
            fallback::MatrixMulImpl::AlgoBase* matmul_algo,
81
            StrategyParam strategyparam,
82
            fallback::ConvBiasImpl::NCBKernIndex ncb_index,
83 84
            size_t ohw_tile_size, StrategyBase* im2colstrategy) {
        size_t OC = param.filter_meta.ocpg;
85
        size_t output_block_size = std::min(
86 87
                ohw_tile_size,
                strategyparam.ohw - ncb_index.ndrange_id[2] * ohw_tile_size);
88
        size_t output_block_oc_size = std::min(
89 90 91 92 93 94 95 96 97 98 99 100 101 102
                strategyparam.oc_tile_size,
                OC - ncb_index.ndrange_id[3] * strategyparam.oc_tile_size);

        strategyparam.batch_id = ncb_index.ndrange_id[0];
        strategyparam.group_id = ncb_index.ndrange_id[1];
        strategyparam.oc_cur_index =
                ncb_index.ndrange_id[3] *
                strategyparam.oc_tile_size;
        strategyparam.oc_end_index = strategyparam.oc_cur_index +
                                     output_block_oc_size;
        strategyparam.ohw_cur_index =
                ncb_index.ndrange_id[2] * ohw_tile_size;
        strategyparam.output_block_oc_size = output_block_oc_size;
        strategyparam.output_block_size = output_block_size;
103 104

        bundle.set(param.workspace_ptr);
105 106 107 108
        bundle_thread.set(
                static_cast<int8_t*>(
                        bundle.get(Im2colBundelIndex::BUNDLE_THREAD_INDEX)) +
                bundle_thread.total_size_in_bytes() * ncb_index.thread_id);
109 110 111 112
        fallback::MatrixMulImpl::KernParam matmul_param;
        static_cast<fallback::MatrixMulImpl::KernSizeParam&>(matmul_param) =
                matmul_kernsize_param;

113 114 115
        //! 1.Im2col
        im2colstrategy->exec_im2col(bundle, bundle_thread, strategyparam, param,
                                    matmul_param, matmul_algo);
116

117 118 119
        //! 2.packb and matmul compute
        im2colstrategy->exec_matmul(param, strategyparam, bundle, bundle_thread,
                                    matmul_param, matmul_algo, ncb_index);
120

121 122 123
        //! 3.postprocess and copy dst if need
        im2colstrategy->exec_postprocess(param, strategyparam, bundle_thread);
    }
124

125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
    WorkspaceBundle get_thread_bundle(
            const fallback::ConvBiasImpl::NCBKernSizeParam& param,
            fallback::MatrixMulImpl::KernSizeParam im2col_kern_param,
            MatrixMulImpl::AlgoBase* matmul_algo, size_t ohw_tile_size,
            size_t oc_tile_size) {
        size_t IC = param.filter_meta.icpg, FH = param.filter_meta.spatial[0],
               FW = param.filter_meta.spatial[1];

        size_t im2col = 0, packb = 0, bias_temp = 0;
        bool default_pack = matmul_algo->packmode() == Pack_Mode::DEFAULT;
        megdnn_assert(default_pack, "only support default packa");
        size_t im2col_dst_size =
                IC * FH * FW * ohw_tile_size * sizeof(param.src_type);
        size_t matmul_dst_size =
                oc_tile_size * ohw_tile_size * sizeof(param.bias_type);
        //! matmul_dst and im2col_dst use the same memory
        WorkspaceBundle wb = matmul_algo->get_bundle(im2col_kern_param);
        packb = wb.get_size(1);
        im2col = std::max(im2col_dst_size, matmul_dst_size);
        if (param.bias_mode == megdnn::BiasMode::BIAS) {
            bias_temp = oc_tile_size * ohw_tile_size * sizeof(param.bias_type);
        }
        return {nullptr, {packb, im2col, bias_temp}};
148 149 150 151 152 153 154 155 156 157 158 159
    }
};

template <>
class Im2colKerns<Pack_Mode::ONLY_PACKA> {
public:
    //! conv kernel
    static void kerns(
            WorkspaceBundle bundle, WorkspaceBundle bundle_thread,
            const ConvBiasImpl::NCBKernParam& param,
            fallback::MatrixMulImpl::KernSizeParam matmul_kernsize_param,
            fallback::MatrixMulImpl::AlgoBase* matmul_algo,
160
            StrategyParam strategyparam,
161
            fallback::ConvBiasImpl::NCBKernIndex ncb_index,
162 163
            size_t ohw_tile_size, StrategyBase* im2colstrategy) {
        size_t OC = param.filter_meta.ocpg;
164
        size_t output_block_size = std::min(
165 166
                ohw_tile_size,
                strategyparam.ohw - ncb_index.ndrange_id[2] * ohw_tile_size);
167
        size_t output_block_oc_size = std::min(
168 169
                strategyparam.oc_tile_size,
                OC - ncb_index.ndrange_id[3] * strategyparam.oc_tile_size);
170 171

        bundle.set(param.workspace_ptr);
172 173 174 175
        bundle_thread.set(
                static_cast<int8_t*>(
                        bundle.get(Im2colBundelIndex::BUNDLE_THREAD_INDEX)) +
                bundle_thread.total_size_in_bytes() * ncb_index.thread_id);
176 177 178 179 180

        fallback::MatrixMulImpl::KernParam matmul_param;
        static_cast<fallback::MatrixMulImpl::KernSizeParam&>(matmul_param) =
                matmul_kernsize_param;

181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
        strategyparam.batch_id = ncb_index.ndrange_id[0];
        strategyparam.group_id = ncb_index.ndrange_id[1];
        strategyparam.oc_cur_index =
                ncb_index.ndrange_id[3] *
                strategyparam.oc_tile_size;
        strategyparam.oc_end_index = strategyparam.oc_cur_index +
                                     output_block_oc_size;
        strategyparam.ohw_cur_index =
                ncb_index.ndrange_id[2] * ohw_tile_size;
        strategyparam.output_block_oc_size = output_block_oc_size;
        strategyparam.output_block_size = output_block_size;

        //! 1.Im2col
        im2colstrategy->exec_im2col(bundle, bundle_thread, strategyparam, param,
                                    matmul_param, matmul_algo);

        //! 2.packb and matmul compute
        im2colstrategy->exec_matmul(param, strategyparam, bundle, bundle_thread,
                                    matmul_param, matmul_algo, ncb_index);

        //! 3.postprocess and copy dst if need
        im2colstrategy->exec_postprocess(param, strategyparam, bundle_thread);
    }
    WorkspaceBundle get_thread_bundle(
            const fallback::ConvBiasImpl::NCBKernSizeParam& param,
            fallback::MatrixMulImpl::KernSizeParam im2col_kern_param,
            MatrixMulImpl::AlgoBase* matmul_algo, size_t ohw_tile_size,
            size_t oc_tile_size) {
        size_t IC = param.filter_meta.icpg, FH = param.filter_meta.spatial[0],
               FW = param.filter_meta.spatial[1];

        size_t im2col = 0, packb = 0, matmul_dst = 0, bias_temp = 0;
        bool only_packA = matmul_algo->packmode() == Pack_Mode::ONLY_PACKA;
        megdnn_assert(only_packA, "onlysupport onlypackA mode");
        size_t im2col_dst_size =
                IC * FH * FW * ohw_tile_size * sizeof(param.src_type);
        size_t matmul_dst_size =
                oc_tile_size * ohw_tile_size * sizeof(param.bias_type);
        //! matmul_dst and im2col_dst use the same memory
        WorkspaceBundle wb = matmul_algo->get_bundle(im2col_kern_param);
        packb = wb.get_size(1);
        im2col = im2col_dst_size;
        matmul_dst = matmul_dst_size;
        if (param.bias_mode == megdnn::BiasMode::BIAS) {
            bias_temp = oc_tile_size * ohw_tile_size * sizeof(param.bias_type);
        }
227

228
        return {nullptr, {packb, im2col, matmul_dst, bias_temp}};
229 230 231 232 233 234 235 236 237 238 239 240
    }
};

template <>
class Im2colKerns<Pack_Mode::NO_PACK> {
public:
    //! conv kernel
    static void kerns(
            WorkspaceBundle bundle, WorkspaceBundle bundle_thread,
            const ConvBiasImpl::NCBKernParam& param,
            fallback::MatrixMulImpl::KernSizeParam matmul_kernsize_param,
            fallback::MatrixMulImpl::AlgoBase* matmul_algo,
241
            StrategyParam strategyparam,
242
            fallback::ConvBiasImpl::NCBKernIndex ncb_index,
243 244
            size_t ohw_tile_size, StrategyBase* im2colstrategy) {
        size_t OC = param.filter_meta.ocpg;
245
        size_t output_block_size = std::min(
246 247
                ohw_tile_size,
                strategyparam.ohw - ncb_index.ndrange_id[2] * ohw_tile_size);
248
        size_t output_block_oc_size = std::min(
249 250 251 252 253 254 255 256 257 258 259 260 261 262
                strategyparam.oc_tile_size,
                OC - ncb_index.ndrange_id[3] * strategyparam.oc_tile_size);

        strategyparam.batch_id = ncb_index.ndrange_id[0];
        strategyparam.group_id = ncb_index.ndrange_id[1];
        strategyparam.oc_cur_index =
                ncb_index.ndrange_id[3] *
                strategyparam.oc_tile_size;
        strategyparam.oc_end_index = strategyparam.oc_cur_index +
                                     output_block_oc_size;
        strategyparam.ohw_cur_index =
                ncb_index.ndrange_id[2] * ohw_tile_size;
        strategyparam.output_block_oc_size = output_block_oc_size;
        strategyparam.output_block_size = output_block_size;
263 264

        bundle.set(param.workspace_ptr);
265 266 267 268
        bundle_thread.set(
                static_cast<int8_t*>(
                        bundle.get(Im2colBundelIndex::BUNDLE_THREAD_INDEX)) +
                bundle_thread.total_size_in_bytes() * ncb_index.thread_id);
269 270 271 272 273

        fallback::MatrixMulImpl::KernParam matmul_param;
        static_cast<fallback::MatrixMulImpl::KernSizeParam&>(matmul_param) =
                matmul_kernsize_param;

274 275 276
        //! 1.Im2col
        im2colstrategy->exec_im2col(bundle, bundle_thread, strategyparam, param,
                                    matmul_param, matmul_algo);
277

278 279 280
        //! 2.packb and matmul compute
        im2colstrategy->exec_matmul(param, strategyparam, bundle, bundle_thread,
                                    matmul_param, matmul_algo, ncb_index);
281

282 283 284 285 286 287 288 289 290 291 292
        //! 3.postprocess and copy dst if need
        im2colstrategy->exec_postprocess(param, strategyparam, bundle_thread);
    }
    WorkspaceBundle get_thread_bundle(
            const fallback::ConvBiasImpl::NCBKernSizeParam& param,
            fallback::MatrixMulImpl::KernSizeParam im2col_kern_param,
            MatrixMulImpl::AlgoBase* matmul_algo, size_t ohw_tile_size,
            size_t oc_tile_size) {
        size_t IC = param.filter_meta.icpg, FH = param.filter_meta.spatial[0],
               FW = param.filter_meta.spatial[1];
        size_t ohw = param.osz[0] * param.osz[1];
293

294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
        size_t im2col = 0, matmul_dst = 0, bias_temp = 0, matmul_compute = 0;
        bool no_pack = matmul_algo->packmode() == Pack_Mode::NO_PACK;
        megdnn_assert(no_pack, "only support no pack");
        bool is_dst_8bit =
                (param.src_type.enumv() == DTypeEnum::QuantizedS8 &&
                 param.dst_type.enumv() == DTypeEnum::QuantizedS8) ||
                (param.src_type.enumv() == DTypeEnum::Quantized8Asymm &&
                 param.dst_type.enumv() == DTypeEnum::Quantized8Asymm);
        size_t im2col_dst_size =
                IC * FH * FW * ohw_tile_size * sizeof(param.src_type);
        size_t matmul_dst_size =
                oc_tile_size * ohw_tile_size * sizeof(param.bias_type);
        im2col = im2col_dst_size;
        if (is_dst_8bit) {
            matmul_dst = matmul_dst_size;
        } else {
            matmul_dst = ohw_tile_size >= ohw ? 0 : matmul_dst_size;
        }
        matmul_compute = matmul_algo->get_workspace(im2col_kern_param);
        if (param.bias_mode == megdnn::BiasMode::BIAS) {
            bias_temp = oc_tile_size * ohw_tile_size * sizeof(param.bias_type);
        }
316

317
        return {nullptr, {im2col, matmul_dst, bias_temp, matmul_compute}};
318 319 320
    }
};

321 322
#undef FILL_IM2COL_STRATEGY_PARAM

323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
fallback::MatrixMulImpl::KernSizeParam
ConvBiasImpl::AlgoIm2col ::get_matmul_kern_param(const NCBKernSizeParam& param,
                                                 size_t ohw_tile_size,
                                                 size_t oc_tile_size) const {
    size_t M = oc_tile_size;
    size_t N = ohw_tile_size;
    size_t K = param.filter_meta.icpg * param.filter_meta.spatial[0] *
               param.filter_meta.spatial[1];
    size_t LDA = K, LDB = N, LDC = N;
    bool is_dst_8bit = (param.src_type.enumv() == DTypeEnum::QuantizedS8 &&
                        param.dst_type.enumv() == DTypeEnum::QuantizedS8) ||
                       (param.src_type.enumv() == DTypeEnum::Quantized8Asymm &&
                        param.dst_type.enumv() == DTypeEnum::Quantized8Asymm);
    return {param.filter_type,
            param.src_type,
            is_dst_8bit ? param.bias_type : param.dst_type,
            M,
            N,
            K,
            LDA,
            LDB,
            LDC,
            false,
            false,
            param::MatrixMul::ComputeMode::DEFAULT,
            param::MatrixMul::Format::DEFAULT};
}

void ConvBiasImpl::AlgoIm2col::choice_ohw_oc_block(
        const NCBKernSizeParam& param, size_t block_m, size_t block_n,
        bool need_pack) const {
    size_t nr_threads = param.nr_threads;
    size_t OC = param.filter_meta.ocpg;
    size_t ohw = param.osz[0] * param.osz[1];
    //! pay attention please, should not change the 2 line code,
    //! the opr use the same im2col algo, via choice_ohw_oc_block may change the
    //! m_ohw_tile_size and m_oc_tile_size, if the two value changed, the
    //! workspace size may change, will ocur workspace not match problem, so
    //! should use the original data init them to avoid the problem
    m_oc_tile_size = DEFAULT_OC_TILE_SIZE;
    m_ohw_tile_size = m_ohw_tile_origin;

    m_oc_tile_size = std::min(m_oc_tile_size, OC);
    m_ohw_tile_size = std::min(m_ohw_tile_size, ohw);

    if (nr_threads > 1) {
        if (ohw / m_ohw_tile_size < nr_threads) {
            m_ohw_tile_size = round_up(div_ceil(ohw, nr_threads), block_n);
            if (m_ohw_tile_size < DEFAULT_OHW_MIN_TILE_SIZE) {
                m_ohw_tile_size = ohw;
                m_oc_tile_size = round_up(div_ceil(OC, nr_threads), block_m);
                if (m_oc_tile_size > DEFAULT_OC_MAX_TILE_SIZE) {
                    m_oc_tile_size = DEFAULT_OC_MAX_TILE_SIZE;
                } else if (m_oc_tile_size < DEFAULT_OC_MIN_TILE_SIZE) {
                    m_oc_tile_size = DEFAULT_OC_MIN_TILE_SIZE;
                }
            }
        }
    } else {
        if (!need_pack) {  //! no pack ,usually in x86 save memroy
            m_ohw_tile_size = ohw;
            m_oc_tile_size = OC;
        }
    }
}

WorkspaceBundle ConvBiasImpl::AlgoIm2col::get_bundle(
        const NCBKernSizeParam& param) const {
    UNPACK_CONV_F32_NCB_KERN_SIZES(param);
    MEGDNN_MARK_USED_VAR(OC);
    MEGDNN_MARK_USED_VAR(OH);
    MEGDNN_MARK_USED_VAR(OW);
    MEGDNN_MARK_USED_VAR(FH);
    MEGDNN_MARK_USED_VAR(FW);
    MEGDNN_MARK_USED_VAR(SW);
    MEGDNN_MARK_USED_VAR(SH);

    auto IW2 = IH + 2 * PH;
    auto IH2 = IW + 2 * PW;
    bool no_need_pading = (PH == 0 && PW == 0);
    size_t padding = 0, packa_size = 0, packa_group_size = 0;
    size_t nr_threads = param.nr_threads;
    size_t GROUP = param.filter_meta.group;
    bool need_pack = m_matmul_algo->packmode() == Pack_Mode::DEFAULT;
    bool only_packA = m_matmul_algo->packmode() == Pack_Mode::ONLY_PACKA;
    if (need_pack || only_packA) {
        auto inner_block = m_matmul_algo->get_inner_block_size();
        choice_ohw_oc_block(param, inner_block.m, inner_block.n, need_pack);
        auto im2col_kern_param = get_matmul_kern_param(
                param, m_ohw_tile_size, only_packA ? m_oc_tile_size : OC);
        size_t oc_parallel_times = div_ceil<size_t>(OC, m_oc_tile_size);
        WorkspaceBundle wb = m_matmul_algo->get_bundle(im2col_kern_param);
        packa_group_size = only_packA ? oc_parallel_times * wb.get_size(0)
                                      : wb.get_size(0);
    } else {  //! not support pack,not need pack
        size_t nopack_default_blockm = 8;
        size_t nopack_default_blockn = 16;
        choice_ohw_oc_block(param, nopack_default_blockm, nopack_default_blockn,
                            need_pack);
        packa_group_size = 0;
    }
    if (no_need_pading) {
        padding = 0;  //! not need  padding
    } else {
        padding = (GROUP * N * IC * IH2 * IW2) *
                  sizeof(param.src_type);  //! for padding
    }
    packa_size = GROUP * packa_group_size;  //! for packA  size = GROUP * a_size
431
    WorkspaceBundle ws = {nullptr, {}};
432 433
    auto im2col_kern_param =
            get_matmul_kern_param(param, m_ohw_tile_size, m_oc_tile_size);
434 435 436 437 438 439 440 441 442 443
    if (m_matmul_algo->packmode() == Pack_Mode::DEFAULT) {
        Im2colKerns<Pack_Mode::DEFAULT> defaultkern;
        ws = defaultkern.get_thread_bundle(param, im2col_kern_param,
                                           m_matmul_algo, m_ohw_tile_size,
                                           m_oc_tile_size);
    } else if (m_matmul_algo->packmode() == Pack_Mode::ONLY_PACKA) {
        Im2colKerns<Pack_Mode::ONLY_PACKA> onlypackakern;
        ws = onlypackakern.get_thread_bundle(param, im2col_kern_param,
                                             m_matmul_algo, m_ohw_tile_size,
                                             m_oc_tile_size);
444
    } else {
445 446 447 448
        Im2colKerns<Pack_Mode::NO_PACK> nopackkern;
        ws = nopackkern.get_thread_bundle(param, im2col_kern_param,
                                          m_matmul_algo, m_ohw_tile_size,
                                          m_oc_tile_size);
449
    }
450 451
    return {nullptr,
            {padding, packa_size, ws.total_size_in_bytes() * nr_threads}};
452 453 454 455 456 457 458 459 460 461 462 463
}

size_t ConvBiasImpl::AlgoIm2col::get_workspace(
        ConvBiasImpl*, const NCBKernSizeParam& p) const {
    MIDOUT_BEGIN(megdnn_fallback_im2col, 0, 0) {
        return get_bundle(p).total_size_in_bytes();
    }
    MIDOUT_END();
    return 0;
}

SmallVector<ConvBiasImpl::NCBKern> ConvBiasImpl::AlgoIm2col::dispatch_kerns(
464
        ConvBiasImpl* opr, const NCBKernSizeParam& param) const {
465
    MIDOUT_BEGIN(megdnn_fallback_im2col, 0, 1) {
466 467 468 469 470 471 472 473
        UNPACK_CONV_F32_NCB_KERN_SIZES(param);
        MEGDNN_MARK_USED_VAR(SH);
        MEGDNN_MARK_USED_VAR(SW);
        MEGDNN_MARK_USED_VAR(IH);
        MEGDNN_MARK_USED_VAR(IW);
        MEGDNN_MARK_USED_VAR(FH);
        MEGDNN_MARK_USED_VAR(FW);
        size_t ohw = OH * OW;
474 475 476 477
        size_t ohw_parallel_times = div_ceil(ohw, m_ohw_tile_size);
        size_t GROUP = param.filter_meta.group;

        WorkspaceBundle bundle = get_bundle(param);
478 479
        WorkspaceBundle bundle_thread = {nullptr, {}};
        size_t oc_parallel_times = div_ceil<size_t>(OC, m_oc_tile_size);
480
        bool need_padding = (PH != 0 || PW != 0);
481 482 483 484
        Pack_Mode packmode = m_matmul_algo->packmode();
        bool default_pack = packmode == Pack_Mode::DEFAULT;
        bool no_pack = packmode == Pack_Mode::NO_PACK;
        bool only_packA = packmode == Pack_Mode::ONLY_PACKA;
485 486
        size_t packa_parallel_times = 0;
        if (only_packA) {
487
            packa_parallel_times = div_ceil<size_t>(OC, m_oc_tile_size);
488
        } else if (default_pack) {
489 490
            packa_parallel_times = div_ceil<size_t>(
                    OC, m_matmul_algo->get_inner_block_size().m);
491 492 493 494
        }

        auto matmul_param = get_matmul_kern_param(
                param, m_ohw_tile_size, only_packA ? m_oc_tile_size : OC);
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
        if (m_matmul_algo->packmode() == Pack_Mode::DEFAULT) {
            Im2colKerns<Pack_Mode::DEFAULT> defaultkern;
            bundle_thread = defaultkern.get_thread_bundle(
                    param, matmul_param, m_matmul_algo, m_ohw_tile_size,
                    m_oc_tile_size);
        } else if (m_matmul_algo->packmode() == Pack_Mode::ONLY_PACKA) {
            Im2colKerns<Pack_Mode::ONLY_PACKA> onlypackakern;
            bundle_thread = onlypackakern.get_thread_bundle(
                    param, matmul_param, m_matmul_algo, m_ohw_tile_size,
                    m_oc_tile_size);
        } else {
            Im2colKerns<Pack_Mode::NO_PACK> nopackkern;
            bundle_thread = nopackkern.get_thread_bundle(
                    param, matmul_param, m_matmul_algo, m_ohw_tile_size,
                    m_oc_tile_size);
        }
511

512 513 514 515 516 517 518 519 520 521 522
        StrategyParam strategyparam;
        strategyparam.ohw = ohw;
        strategyparam.is_dst_8bit =
                (param.src_type.enumv() == DTypeEnum::QuantizedS8 &&
                 param.dst_type.enumv() == DTypeEnum::QuantizedS8) ||
                (param.src_type.enumv() == DTypeEnum::Quantized8Asymm &&
                 param.dst_type.enumv() == DTypeEnum::Quantized8Asymm);
        strategyparam.is_ohw_size_bigger = (m_ohw_tile_size >= ohw);
        strategyparam.skip_copy_dst =
                strategyparam.is_ohw_size_bigger && !strategyparam.is_dst_8bit;
        strategyparam.oc_tile_size = m_oc_tile_size;
523

524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
        SmallVector<ConvBiasImpl::NCBKern> ret_kern;
        MIDOUT_BEGIN(
                megdnn_fallback_im2col,
                midout_iv("ConvBiasImpl::AlgoIm2col::dispatch_kerns"_hash)) {
            StrategyBase* im2colstrategy = Factory::get_im2col_strategy(
                    param, m_matmul_algo, opr->param().format);
            auto kern_padding = [bundle, im2colstrategy](
                                        const NCBKernParam& param,
                                        const NCBKernIndex& ncb_index) {
                copy_padding_kern(bundle, param, ncb_index, im2colstrategy);
            };

            auto kern_packA = [bundle, matmul_algo = m_matmul_algo,
                               matmul_param,
                               im2colstrategy](const NCBKernParam& param,
                                               const NCBKernIndex& ncb_index) {
                packA_kern(bundle, param, matmul_param, matmul_algo, ncb_index,
                           im2colstrategy);
            };
            if (default_pack) {
                auto kern_compute_default =
                        [bundle, bundle_thread, matmul_param,
                         matmul_algo = m_matmul_algo,
                         ohw_tile_size = m_ohw_tile_size,
                         strategyparam = strategyparam,
                         im2colstrategy](const NCBKernParam& param,
                                         const NCBKernIndex& ncb_index) {
                            Im2colKerns<Pack_Mode::DEFAULT>::kerns(
                                    bundle, bundle_thread, param, matmul_param,
                                    matmul_algo, strategyparam, ncb_index,
                                    ohw_tile_size, im2colstrategy);
                        };
                ret_kern.push_back({kern_packA, {GROUP, packa_parallel_times}});

                if (need_padding) {
                    ret_kern.push_back({kern_padding, {param.n, GROUP, IC}});
                }
                ret_kern.push_back(
                        {kern_compute_default,
                         {N, GROUP, ohw_parallel_times, oc_parallel_times}});
            } else if (only_packA) {
                auto kern_compute_onlypackA =
                        [bundle, bundle_thread, matmul_param,
                         matmul_algo = m_matmul_algo,
                         strategyparam = strategyparam,
                         ohw_tile_size = m_ohw_tile_size,
                         im2colstrategy](const NCBKernParam& param,
                                         const NCBKernIndex& ncb_index) {
                            Im2colKerns<Pack_Mode::ONLY_PACKA>::kerns(
                                    bundle, bundle_thread, param, matmul_param,
                                    matmul_algo, strategyparam, ncb_index,
                                    ohw_tile_size, im2colstrategy);
                        };
                ret_kern.push_back({kern_packA, {GROUP, packa_parallel_times}});
                if (need_padding) {
                    ret_kern.push_back({kern_padding, {param.n, GROUP, IC}});
                }
                ret_kern.push_back(
                        {kern_compute_onlypackA,
                         {N, GROUP, ohw_parallel_times, oc_parallel_times}});
            } else if (no_pack) {
                auto kern_compute_nopack =
                        [bundle, bundle_thread, matmul_param,
                         matmul_algo = m_matmul_algo,
                         strategyparam = strategyparam,
                         ohw_tile_size = m_ohw_tile_size,
                         im2colstrategy](const NCBKernParam& param,
                                         const NCBKernIndex& ncb_index) {
                            Im2colKerns<Pack_Mode::NO_PACK>::kerns(
                                    bundle, bundle_thread, param, matmul_param,
                                    matmul_algo, strategyparam, ncb_index,
                                    ohw_tile_size, im2colstrategy);
                        };

                if (need_padding) {
                    ret_kern.push_back({kern_padding, {param.n, GROUP, IC}});
                }
                ret_kern.push_back(
                        {kern_compute_nopack,
                         {N, GROUP, ohw_parallel_times, oc_parallel_times}});
            }
            return ret_kern;
        }
        MIDOUT_END();
        return {};
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
    }
    MIDOUT_END();
    return {};
}

bool ConvBiasImpl::AlgoIm2col::usable(
        ConvBiasImpl* opr, const NCBKernSizeParam& param,
        AlgoSelectionStrategy /*algo_selection_strategy*/) const {
    MIDOUT_BEGIN(megdnn_fallback_im2col, 0, 2) {
        //! make sure 8x8x16 and 8x8x32 biasmode is  nobias and nonlineMode is
        //! identity otherwise return false mean that 8x8x32 and 8x8x16 not support
        //! PostProcess
        if (param.src_type.enumv() == param.filter_type.enumv() &&
            ((param.src_type.enumv() == DTypeEnum::Int8 &&
              (param.dst_type.enumv() == DTypeEnum::Int16 ||
               param.dst_type.enumv() == DTypeEnum::Int32)) ||
             ((param.src_type.enumv() == DTypeEnum::QuantizedS8 ||
               param.src_type.enumv() == DTypeEnum::Quantized8Asymm) &&
              param.dst_type.enumv() == DTypeEnum::QuantizedS32)) &&
            param.bias_mode != megdnn::BiasMode::NO_BIAS &&
            param.nonlineMode != megdnn::NonlineMode::IDENTITY) {
            return false;
        }
        fallback::MatrixMulImpl::KernSizeParam matmul_param =
                get_matmul_kern_param(param, m_ohw_tile_size, m_oc_tile_size);
        bool matmulusable = m_matmul_algo->usable(matmul_param);
        return matmulusable &&
               (opr->param().format == param::ConvBias::Format::NCHW) &&
637 638 639 640 641 642 643 644
               ((param.filter_meta.spatial[0] == param.filter_meta.spatial[1] &&
                 (param.filter_meta.spatial[0] <= 7) &&
                 (param.filter_meta.spatial[0] >= 2)) ||
                (param.filter_meta.spatial[0] != param.filter_meta.spatial[1] &&
                 (param.filter_meta.spatial[0] <= 7) &&
                 (param.filter_meta.spatial[0] >= 1) &&
                 (param.filter_meta.spatial[1] <= 7) &&
                 (param.filter_meta.spatial[1] >= 1))) &&
645 646 647 648 649 650 651 652 653 654
               (param.filter_meta.dilation[0] ==
                        param.filter_meta.dilation[1] &&
                param.filter_meta.dilation[0] == 1) &&
               param.compute_mode == param::ConvBias::ComputeMode::DEFAULT;
    }
    MIDOUT_END();
    return false;
}

// vim: syntax=cpp.doxygen