algos.cpp 31.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/**
 * \file dnn/src/fallback/conv_bias/im2col/algos.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
 * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */

#include "src/fallback/conv_bias/im2col/algos.h"
13
#include "src/fallback/conv_bias/im2col/factory.h"
14 15 16 17 18 19
#include "megdnn/opr_param_defs.h"
#include "src/common/opr_delegate.h"
#include "src/fallback/conv_bias/common.h"
#include "src/fallback/conv_bias/opr_impl.h"
#include "src/fallback/conv_bias/winograd/strategy.h"
#include "src/naive/convolution/helper.h"
20

21
#include "midout.h"
22

23 24 25 26
MIDOUT_DECL(megdnn_fallback_im2col)

using namespace megdnn;
using namespace fallback;
27
using namespace im2col;
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

/*======================== AlgoIm2col=======================*/
/*!
 *  *\brief The index of all parts workspace in im2col workspace bundel
 *  *Through witch can convenient get the needed ptr
 */
struct Im2colBundelIndex {
    static constexpr size_t BUNDLE_PADDING_INDEX = 0_z;
    static constexpr size_t BUNDLE_PACKA_INDEX = 1_z;
    static constexpr size_t BUNDLE_THREAD_INDEX = 2_z;
};

using Pack_Mode=fallback::MatrixMulImpl::AlgoBase::PackMode;

//! Process one input channel copy padding
static void copy_padding_kern(WorkspaceBundle bundle,
                              const ConvBiasImpl::NCBKernParam& param,
45
                              const ConvBiasImpl::NCBKernIndex& ncb_index,
46 47
                              StrategyBase* im2colstrategy, size_t pack_oc_size) {
    im2colstrategy->copy_padding_kern(bundle, param, ncb_index, pack_oc_size);
48
}
49

50 51 52 53 54 55
//! packA_kern
static void packA_kern(WorkspaceBundle bundle,
                       const fallback::ConvBiasImpl::NCBKernParam& param,
                       fallback::MatrixMulImpl::KernSizeParam matmulparam,
                       fallback::MatrixMulImpl::AlgoBase* matmul_algo,
                       const fallback::ConvBiasImpl::NCBKernIndex& ncb_index,
56
                       StrategyBase* im2colstrategy, size_t pack_oc_size) {
57
    im2colstrategy->packA_kern(bundle, param, matmulparam, matmul_algo,
58
                               ncb_index, pack_oc_size);
59
}
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76

/*!
 * *\brief Im2colKerns collects all the im2col kerns in it
 */

template <Pack_Mode packmode>
class Im2colKerns;

template <>
class Im2colKerns<Pack_Mode::DEFAULT> {
public:
    //! conv kernel
    static void kerns(
            WorkspaceBundle bundle, WorkspaceBundle bundle_thread,
            const ConvBiasImpl::NCBKernParam& param,
            fallback::MatrixMulImpl::KernSizeParam matmul_kernsize_param,
            fallback::MatrixMulImpl::AlgoBase* matmul_algo,
77
            StrategyParam strategyparam,
78
            fallback::ConvBiasImpl::NCBKernIndex ncb_index,
79 80
            size_t ohw_tile_size, StrategyBase* im2colstrategy) {
        size_t OC = param.filter_meta.ocpg;
81
        size_t output_block_size = std::min(
82 83
                ohw_tile_size,
                strategyparam.ohw - ncb_index.ndrange_id[2] * ohw_tile_size);
84
        size_t output_block_oc_size = std::min(
85 86 87 88 89 90 91 92 93 94 95 96 97 98
                strategyparam.oc_tile_size,
                OC - ncb_index.ndrange_id[3] * strategyparam.oc_tile_size);

        strategyparam.batch_id = ncb_index.ndrange_id[0];
        strategyparam.group_id = ncb_index.ndrange_id[1];
        strategyparam.oc_cur_index =
                ncb_index.ndrange_id[3] *
                strategyparam.oc_tile_size;
        strategyparam.oc_end_index = strategyparam.oc_cur_index +
                                     output_block_oc_size;
        strategyparam.ohw_cur_index =
                ncb_index.ndrange_id[2] * ohw_tile_size;
        strategyparam.output_block_oc_size = output_block_oc_size;
        strategyparam.output_block_size = output_block_size;
99 100

        bundle.set(param.workspace_ptr);
101 102 103 104
        bundle_thread.set(
                static_cast<int8_t*>(
                        bundle.get(Im2colBundelIndex::BUNDLE_THREAD_INDEX)) +
                bundle_thread.total_size_in_bytes() * ncb_index.thread_id);
105 106 107 108
        fallback::MatrixMulImpl::KernParam matmul_param;
        static_cast<fallback::MatrixMulImpl::KernSizeParam&>(matmul_param) =
                matmul_kernsize_param;

109 110 111
        //! 1.Im2col
        im2colstrategy->exec_im2col(bundle, bundle_thread, strategyparam, param,
                                    matmul_param, matmul_algo);
112

113 114 115
        //! 2.packb and matmul compute
        im2colstrategy->exec_matmul(param, strategyparam, bundle, bundle_thread,
                                    matmul_param, matmul_algo, ncb_index);
116

117 118 119
        //! 3.postprocess and copy dst if need
        im2colstrategy->exec_postprocess(param, strategyparam, bundle_thread);
    }
120

121 122 123 124 125 126 127
    WorkspaceBundle get_thread_bundle(
            const fallback::ConvBiasImpl::NCBKernSizeParam& param,
            fallback::MatrixMulImpl::KernSizeParam im2col_kern_param,
            MatrixMulImpl::AlgoBase* matmul_algo, size_t ohw_tile_size,
            size_t oc_tile_size) {
        size_t IC = param.filter_meta.icpg, FH = param.filter_meta.spatial[0],
               FW = param.filter_meta.spatial[1];
128
        size_t pack_oc_size = get_format_pack_size(param.filter_meta.format);
129 130 131 132 133
        size_t im2col = 0, packb = 0, bias_temp = 0;
        bool default_pack = matmul_algo->packmode() == Pack_Mode::DEFAULT;
        megdnn_assert(default_pack, "only support default packa");
        size_t im2col_dst_size =
                IC * FH * FW * ohw_tile_size * sizeof(param.src_type);
134 135
        size_t matmul_dst_size = pack_oc_size * oc_tile_size * ohw_tile_size *
                                 sizeof(param.bias_type);
136 137 138 139 140 141 142 143
        //! matmul_dst and im2col_dst use the same memory
        WorkspaceBundle wb = matmul_algo->get_bundle(im2col_kern_param);
        packb = wb.get_size(1);
        im2col = std::max(im2col_dst_size, matmul_dst_size);
        if (param.bias_mode == megdnn::BiasMode::BIAS) {
            bias_temp = oc_tile_size * ohw_tile_size * sizeof(param.bias_type);
        }
        return {nullptr, {packb, im2col, bias_temp}};
144 145 146 147 148 149 150 151 152 153 154 155
    }
};

template <>
class Im2colKerns<Pack_Mode::ONLY_PACKA> {
public:
    //! conv kernel
    static void kerns(
            WorkspaceBundle bundle, WorkspaceBundle bundle_thread,
            const ConvBiasImpl::NCBKernParam& param,
            fallback::MatrixMulImpl::KernSizeParam matmul_kernsize_param,
            fallback::MatrixMulImpl::AlgoBase* matmul_algo,
156
            StrategyParam strategyparam,
157
            fallback::ConvBiasImpl::NCBKernIndex ncb_index,
158 159
            size_t ohw_tile_size, StrategyBase* im2colstrategy) {
        size_t OC = param.filter_meta.ocpg;
160
        size_t output_block_size = std::min(
161 162
                ohw_tile_size,
                strategyparam.ohw - ncb_index.ndrange_id[2] * ohw_tile_size);
163
        size_t output_block_oc_size = std::min(
164 165
                strategyparam.oc_tile_size,
                OC - ncb_index.ndrange_id[3] * strategyparam.oc_tile_size);
166 167

        bundle.set(param.workspace_ptr);
168 169 170 171
        bundle_thread.set(
                static_cast<int8_t*>(
                        bundle.get(Im2colBundelIndex::BUNDLE_THREAD_INDEX)) +
                bundle_thread.total_size_in_bytes() * ncb_index.thread_id);
172 173 174 175 176

        fallback::MatrixMulImpl::KernParam matmul_param;
        static_cast<fallback::MatrixMulImpl::KernSizeParam&>(matmul_param) =
                matmul_kernsize_param;

177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
        strategyparam.batch_id = ncb_index.ndrange_id[0];
        strategyparam.group_id = ncb_index.ndrange_id[1];
        strategyparam.oc_cur_index =
                ncb_index.ndrange_id[3] *
                strategyparam.oc_tile_size;
        strategyparam.oc_end_index = strategyparam.oc_cur_index +
                                     output_block_oc_size;
        strategyparam.ohw_cur_index =
                ncb_index.ndrange_id[2] * ohw_tile_size;
        strategyparam.output_block_oc_size = output_block_oc_size;
        strategyparam.output_block_size = output_block_size;

        //! 1.Im2col
        im2colstrategy->exec_im2col(bundle, bundle_thread, strategyparam, param,
                                    matmul_param, matmul_algo);

        //! 2.packb and matmul compute
        im2colstrategy->exec_matmul(param, strategyparam, bundle, bundle_thread,
                                    matmul_param, matmul_algo, ncb_index);

        //! 3.postprocess and copy dst if need
        im2colstrategy->exec_postprocess(param, strategyparam, bundle_thread);
    }
    WorkspaceBundle get_thread_bundle(
            const fallback::ConvBiasImpl::NCBKernSizeParam& param,
            fallback::MatrixMulImpl::KernSizeParam im2col_kern_param,
            MatrixMulImpl::AlgoBase* matmul_algo, size_t ohw_tile_size,
            size_t oc_tile_size) {
        size_t IC = param.filter_meta.icpg, FH = param.filter_meta.spatial[0],
               FW = param.filter_meta.spatial[1];

        size_t im2col = 0, packb = 0, matmul_dst = 0, bias_temp = 0;
        bool only_packA = matmul_algo->packmode() == Pack_Mode::ONLY_PACKA;
        megdnn_assert(only_packA, "onlysupport onlypackA mode");
        size_t im2col_dst_size =
                IC * FH * FW * ohw_tile_size * sizeof(param.src_type);
        size_t matmul_dst_size =
                oc_tile_size * ohw_tile_size * sizeof(param.bias_type);
        //! matmul_dst and im2col_dst use the same memory
        WorkspaceBundle wb = matmul_algo->get_bundle(im2col_kern_param);
        packb = wb.get_size(1);
        im2col = im2col_dst_size;
        matmul_dst = matmul_dst_size;
        if (param.bias_mode == megdnn::BiasMode::BIAS) {
            bias_temp = oc_tile_size * ohw_tile_size * sizeof(param.bias_type);
        }
223

224
        return {nullptr, {packb, im2col, matmul_dst, bias_temp}};
225 226 227 228 229 230 231 232 233 234 235 236
    }
};

template <>
class Im2colKerns<Pack_Mode::NO_PACK> {
public:
    //! conv kernel
    static void kerns(
            WorkspaceBundle bundle, WorkspaceBundle bundle_thread,
            const ConvBiasImpl::NCBKernParam& param,
            fallback::MatrixMulImpl::KernSizeParam matmul_kernsize_param,
            fallback::MatrixMulImpl::AlgoBase* matmul_algo,
237
            StrategyParam strategyparam,
238
            fallback::ConvBiasImpl::NCBKernIndex ncb_index,
239 240
            size_t ohw_tile_size, StrategyBase* im2colstrategy) {
        size_t OC = param.filter_meta.ocpg;
241
        size_t output_block_size = std::min(
242 243
                ohw_tile_size,
                strategyparam.ohw - ncb_index.ndrange_id[2] * ohw_tile_size);
244
        size_t output_block_oc_size = std::min(
245 246 247 248 249 250 251 252 253 254 255 256 257 258
                strategyparam.oc_tile_size,
                OC - ncb_index.ndrange_id[3] * strategyparam.oc_tile_size);

        strategyparam.batch_id = ncb_index.ndrange_id[0];
        strategyparam.group_id = ncb_index.ndrange_id[1];
        strategyparam.oc_cur_index =
                ncb_index.ndrange_id[3] *
                strategyparam.oc_tile_size;
        strategyparam.oc_end_index = strategyparam.oc_cur_index +
                                     output_block_oc_size;
        strategyparam.ohw_cur_index =
                ncb_index.ndrange_id[2] * ohw_tile_size;
        strategyparam.output_block_oc_size = output_block_oc_size;
        strategyparam.output_block_size = output_block_size;
259 260

        bundle.set(param.workspace_ptr);
261 262 263 264
        bundle_thread.set(
                static_cast<int8_t*>(
                        bundle.get(Im2colBundelIndex::BUNDLE_THREAD_INDEX)) +
                bundle_thread.total_size_in_bytes() * ncb_index.thread_id);
265 266 267 268 269

        fallback::MatrixMulImpl::KernParam matmul_param;
        static_cast<fallback::MatrixMulImpl::KernSizeParam&>(matmul_param) =
                matmul_kernsize_param;

270 271 272
        //! 1.Im2col
        im2colstrategy->exec_im2col(bundle, bundle_thread, strategyparam, param,
                                    matmul_param, matmul_algo);
273

274 275 276
        //! 2.packb and matmul compute
        im2colstrategy->exec_matmul(param, strategyparam, bundle, bundle_thread,
                                    matmul_param, matmul_algo, ncb_index);
277

278 279 280 281 282 283 284 285 286 287 288
        //! 3.postprocess and copy dst if need
        im2colstrategy->exec_postprocess(param, strategyparam, bundle_thread);
    }
    WorkspaceBundle get_thread_bundle(
            const fallback::ConvBiasImpl::NCBKernSizeParam& param,
            fallback::MatrixMulImpl::KernSizeParam im2col_kern_param,
            MatrixMulImpl::AlgoBase* matmul_algo, size_t ohw_tile_size,
            size_t oc_tile_size) {
        size_t IC = param.filter_meta.icpg, FH = param.filter_meta.spatial[0],
               FW = param.filter_meta.spatial[1];
        size_t ohw = param.osz[0] * param.osz[1];
289

290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
        size_t im2col = 0, matmul_dst = 0, bias_temp = 0, matmul_compute = 0;
        bool no_pack = matmul_algo->packmode() == Pack_Mode::NO_PACK;
        megdnn_assert(no_pack, "only support no pack");
        bool is_dst_8bit =
                (param.src_type.enumv() == DTypeEnum::QuantizedS8 &&
                 param.dst_type.enumv() == DTypeEnum::QuantizedS8) ||
                (param.src_type.enumv() == DTypeEnum::Quantized8Asymm &&
                 param.dst_type.enumv() == DTypeEnum::Quantized8Asymm);
        size_t im2col_dst_size =
                IC * FH * FW * ohw_tile_size * sizeof(param.src_type);
        size_t matmul_dst_size =
                oc_tile_size * ohw_tile_size * sizeof(param.bias_type);
        im2col = im2col_dst_size;
        if (is_dst_8bit) {
            matmul_dst = matmul_dst_size;
        } else {
            matmul_dst = ohw_tile_size >= ohw ? 0 : matmul_dst_size;
        }
        matmul_compute = matmul_algo->get_workspace(im2col_kern_param);
        if (param.bias_mode == megdnn::BiasMode::BIAS) {
            bias_temp = oc_tile_size * ohw_tile_size * sizeof(param.bias_type);
        }
312

313
        return {nullptr, {im2col, matmul_dst, bias_temp, matmul_compute}};
314 315 316 317 318 319 320
    }
};

fallback::MatrixMulImpl::KernSizeParam
ConvBiasImpl::AlgoIm2col ::get_matmul_kern_param(const NCBKernSizeParam& param,
                                                 size_t ohw_tile_size,
                                                 size_t oc_tile_size) const {
321 322 323 324 325
    auto format = param::MatrixMul::Format::DEFAULT;
    size_t pack_oc_size = get_format_pack_size(param.filter_meta.format);
    if (param.filter_meta.format == param::ConvBias::Format::NCHW44) {
        format = param::MatrixMul::Format::MK4;
    }
326 327 328 329
    size_t M = oc_tile_size;
    size_t N = ohw_tile_size;
    size_t K = param.filter_meta.icpg * param.filter_meta.spatial[0] *
               param.filter_meta.spatial[1];
330 331
    size_t LDA = pack_oc_size * K, LDB = pack_oc_size * N,
           LDC = N * pack_oc_size;
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
    bool is_dst_8bit = (param.src_type.enumv() == DTypeEnum::QuantizedS8 &&
                        param.dst_type.enumv() == DTypeEnum::QuantizedS8) ||
                       (param.src_type.enumv() == DTypeEnum::Quantized8Asymm &&
                        param.dst_type.enumv() == DTypeEnum::Quantized8Asymm);
    return {param.filter_type,
            param.src_type,
            is_dst_8bit ? param.bias_type : param.dst_type,
            M,
            N,
            K,
            LDA,
            LDB,
            LDC,
            false,
            false,
            param::MatrixMul::ComputeMode::DEFAULT,
348
            format};
349 350 351
}

void ConvBiasImpl::AlgoIm2col::choice_ohw_oc_block(
352 353
        const NCBKernSizeParam& param, size_t& oc_tile_size,
        size_t& ohw_tile_size, size_t block_m, size_t block_n,
354 355 356 357
        bool need_pack) const {
    size_t nr_threads = param.nr_threads;
    size_t OC = param.filter_meta.ocpg;
    size_t ohw = param.osz[0] * param.osz[1];
358

359 360
    oc_tile_size = DEFAULT_OC_TILE_SIZE;
    ohw_tile_size = m_ohw_tile_size;
361

362 363
    oc_tile_size = std::min(oc_tile_size, OC);
    ohw_tile_size = std::min(ohw_tile_size, ohw);
364 365

    if (nr_threads > 1) {
366 367 368 369 370 371 372 373 374
        if (ohw / ohw_tile_size < nr_threads) {
            ohw_tile_size = round_up(div_ceil(ohw, nr_threads), block_n);
            if (ohw_tile_size < DEFAULT_OHW_MIN_TILE_SIZE) {
                ohw_tile_size = ohw;
                oc_tile_size = round_up(div_ceil(OC, nr_threads), block_m);
                if (oc_tile_size > DEFAULT_OC_MAX_TILE_SIZE) {
                    oc_tile_size = DEFAULT_OC_MAX_TILE_SIZE;
                } else if (oc_tile_size < DEFAULT_OC_MIN_TILE_SIZE) {
                    oc_tile_size = DEFAULT_OC_MIN_TILE_SIZE;
375 376 377 378 379
                }
            }
        }
    } else {
        if (!need_pack) {  //! no pack ,usually in x86 save memroy
380 381
            ohw_tile_size = ohw;
            oc_tile_size = OC;
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
        }
    }
}

WorkspaceBundle ConvBiasImpl::AlgoIm2col::get_bundle(
        const NCBKernSizeParam& param) const {
    UNPACK_CONV_F32_NCB_KERN_SIZES(param);
    MEGDNN_MARK_USED_VAR(OC);
    MEGDNN_MARK_USED_VAR(OH);
    MEGDNN_MARK_USED_VAR(OW);
    MEGDNN_MARK_USED_VAR(FH);
    MEGDNN_MARK_USED_VAR(FW);
    MEGDNN_MARK_USED_VAR(SW);
    MEGDNN_MARK_USED_VAR(SH);

    auto IW2 = IH + 2 * PH;
    auto IH2 = IW + 2 * PW;
    bool no_need_pading = (PH == 0 && PW == 0);
    size_t padding = 0, packa_size = 0, packa_group_size = 0;
    size_t nr_threads = param.nr_threads;
    size_t GROUP = param.filter_meta.group;
    bool need_pack = m_matmul_algo->packmode() == Pack_Mode::DEFAULT;
    bool only_packA = m_matmul_algo->packmode() == Pack_Mode::ONLY_PACKA;
405
    size_t oc_tile_size = 0, ohw_tile_size = 0;
406 407
    if (need_pack || only_packA) {
        auto inner_block = m_matmul_algo->get_inner_block_size();
408 409
        choice_ohw_oc_block(param, oc_tile_size, ohw_tile_size, inner_block.m,
                            inner_block.n, need_pack);
410
        auto im2col_kern_param = get_matmul_kern_param(
411 412
                param, ohw_tile_size, only_packA ? oc_tile_size : OC);
        size_t oc_parallel_times = div_ceil<size_t>(OC, oc_tile_size);
413 414 415 416 417 418
        WorkspaceBundle wb = m_matmul_algo->get_bundle(im2col_kern_param);
        packa_group_size = only_packA ? oc_parallel_times * wb.get_size(0)
                                      : wb.get_size(0);
    } else {  //! not support pack,not need pack
        size_t nopack_default_blockm = 8;
        size_t nopack_default_blockn = 16;
419 420
        choice_ohw_oc_block(param, oc_tile_size, ohw_tile_size,
                            nopack_default_blockm, nopack_default_blockn,
421 422 423
                            need_pack);
        packa_group_size = 0;
    }
424

425 426 427 428 429 430
    if (no_need_pading) {
        padding = 0;  //! not need  padding
    } else {
        padding = (GROUP * N * IC * IH2 * IW2) *
                  sizeof(param.src_type);  //! for padding
    }
431

432
    packa_size = GROUP * packa_group_size;  //! for packA  size = GROUP * a_size
433
    WorkspaceBundle ws = {nullptr, {}};
434
    auto im2col_kern_param =
435
            get_matmul_kern_param(param, ohw_tile_size, oc_tile_size);
436

437 438 439
    if (m_matmul_algo->packmode() == Pack_Mode::DEFAULT) {
        Im2colKerns<Pack_Mode::DEFAULT> defaultkern;
        ws = defaultkern.get_thread_bundle(param, im2col_kern_param,
440 441
                                           m_matmul_algo, ohw_tile_size,
                                           oc_tile_size);
442 443 444
    } else if (m_matmul_algo->packmode() == Pack_Mode::ONLY_PACKA) {
        Im2colKerns<Pack_Mode::ONLY_PACKA> onlypackakern;
        ws = onlypackakern.get_thread_bundle(param, im2col_kern_param,
445 446
                                             m_matmul_algo, ohw_tile_size,
                                             oc_tile_size);
447
    } else {
448 449
        Im2colKerns<Pack_Mode::NO_PACK> nopackkern;
        ws = nopackkern.get_thread_bundle(param, im2col_kern_param,
450 451
                                          m_matmul_algo, ohw_tile_size,
                                          oc_tile_size);
452
    }
453

454 455
    return {nullptr,
            {padding, packa_size, ws.total_size_in_bytes() * nr_threads}};
456 457 458 459 460 461 462 463 464 465 466 467
}

size_t ConvBiasImpl::AlgoIm2col::get_workspace(
        ConvBiasImpl*, const NCBKernSizeParam& p) const {
    MIDOUT_BEGIN(megdnn_fallback_im2col, 0, 0) {
        return get_bundle(p).total_size_in_bytes();
    }
    MIDOUT_END();
    return 0;
}

SmallVector<ConvBiasImpl::NCBKern> ConvBiasImpl::AlgoIm2col::dispatch_kerns(
468
        ConvBiasImpl*, const NCBKernSizeParam& param) const {
469
    MIDOUT_BEGIN(megdnn_fallback_im2col, 0, 1) {
470 471 472 473 474 475 476
        UNPACK_CONV_F32_NCB_KERN_SIZES(param);
        MEGDNN_MARK_USED_VAR(SH);
        MEGDNN_MARK_USED_VAR(SW);
        MEGDNN_MARK_USED_VAR(IH);
        MEGDNN_MARK_USED_VAR(IW);
        MEGDNN_MARK_USED_VAR(FH);
        MEGDNN_MARK_USED_VAR(FW);
477
        size_t oc_tile_size = 0, ohw_tile_size = 0;
478
        size_t ohw = OH * OW;
479 480
        size_t GROUP = param.filter_meta.group;
        WorkspaceBundle bundle = get_bundle(param);
481
        WorkspaceBundle bundle_thread = {nullptr, {}};
482
        bool need_padding = (PH != 0 || PW != 0);
483 484 485 486
        Pack_Mode packmode = m_matmul_algo->packmode();
        bool default_pack = packmode == Pack_Mode::DEFAULT;
        bool no_pack = packmode == Pack_Mode::NO_PACK;
        bool only_packA = packmode == Pack_Mode::ONLY_PACKA;
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501

        if (default_pack || only_packA) {
            auto inner_block = m_matmul_algo->get_inner_block_size();
            choice_ohw_oc_block(param, oc_tile_size, ohw_tile_size,
                                inner_block.m, inner_block.n, default_pack);
        } else {  //! not support pack,not need pack
            size_t nopack_default_blockm = 8;
            size_t nopack_default_blockn = 16;
            choice_ohw_oc_block(param, oc_tile_size, ohw_tile_size,
                                nopack_default_blockm, nopack_default_blockn,
                                no_pack);
        }

        size_t ohw_parallel_times = div_ceil(ohw, ohw_tile_size);
        size_t oc_parallel_times = div_ceil<size_t>(OC, oc_tile_size);
502
        size_t packa_parallel_times = 0;
503 504
        size_t pack_oc_size = get_format_pack_size(param.filter_meta.format);

505
        if (only_packA) {
506
            packa_parallel_times = div_ceil<size_t>(OC, oc_tile_size);
507
        } else if (default_pack) {
508
            packa_parallel_times = div_ceil<size_t>(
509
                    OC, m_matmul_algo->get_inner_block_size().m);
510 511 512
        }

        auto matmul_param = get_matmul_kern_param(
513
                param, ohw_tile_size, only_packA ? oc_tile_size : OC);
514 515 516
        if (m_matmul_algo->packmode() == Pack_Mode::DEFAULT) {
            Im2colKerns<Pack_Mode::DEFAULT> defaultkern;
            bundle_thread = defaultkern.get_thread_bundle(
517 518
                    param, matmul_param, m_matmul_algo, ohw_tile_size,
                    oc_tile_size);
519 520 521
        } else if (m_matmul_algo->packmode() == Pack_Mode::ONLY_PACKA) {
            Im2colKerns<Pack_Mode::ONLY_PACKA> onlypackakern;
            bundle_thread = onlypackakern.get_thread_bundle(
522 523
                    param, matmul_param, m_matmul_algo, ohw_tile_size,
                    oc_tile_size);
524 525 526
        } else {
            Im2colKerns<Pack_Mode::NO_PACK> nopackkern;
            bundle_thread = nopackkern.get_thread_bundle(
527 528
                    param, matmul_param, m_matmul_algo, ohw_tile_size,
                    oc_tile_size);
529
        }
530

531 532 533 534 535 536 537
        StrategyParam strategyparam;
        strategyparam.ohw = ohw;
        strategyparam.is_dst_8bit =
                (param.src_type.enumv() == DTypeEnum::QuantizedS8 &&
                 param.dst_type.enumv() == DTypeEnum::QuantizedS8) ||
                (param.src_type.enumv() == DTypeEnum::Quantized8Asymm &&
                 param.dst_type.enumv() == DTypeEnum::Quantized8Asymm);
538
        strategyparam.is_ohw_size_bigger = (ohw_tile_size >= ohw);
539 540
        strategyparam.skip_copy_dst =
                strategyparam.is_ohw_size_bigger && !strategyparam.is_dst_8bit;
541
        strategyparam.oc_tile_size = oc_tile_size;
542
        strategyparam.pack_oc_size = pack_oc_size;
543

544 545 546 547
        SmallVector<ConvBiasImpl::NCBKern> ret_kern;
        MIDOUT_BEGIN(
                megdnn_fallback_im2col,
                midout_iv("ConvBiasImpl::AlgoIm2col::dispatch_kerns"_hash)) {
548 549 550 551
            StrategyBase* im2colstrategy =
                    Factory::get_im2col_strategy(param, m_matmul_algo);
            auto kern_padding = [bundle, im2colstrategy,
                                 pack_oc_size = pack_oc_size](
552 553
                                        const NCBKernParam& param,
                                        const NCBKernIndex& ncb_index) {
554 555
                copy_padding_kern(bundle, param, ncb_index, im2colstrategy,
                                  pack_oc_size);
556 557 558
            };

            auto kern_packA = [bundle, matmul_algo = m_matmul_algo,
559 560 561 562
                               matmul_param, im2colstrategy,
                               pack_oc_size = pack_oc_size](
                                      const NCBKernParam& param,
                                      const NCBKernIndex& ncb_index) {
563
                packA_kern(bundle, param, matmul_param, matmul_algo, ncb_index,
564
                           im2colstrategy, pack_oc_size);
565 566 567 568 569
            };
            if (default_pack) {
                auto kern_compute_default =
                        [bundle, bundle_thread, matmul_param,
                         matmul_algo = m_matmul_algo,
570
                         ohw_tile_size = ohw_tile_size,
571 572 573 574 575 576 577 578 579 580 581
                         strategyparam = strategyparam,
                         im2colstrategy](const NCBKernParam& param,
                                         const NCBKernIndex& ncb_index) {
                            Im2colKerns<Pack_Mode::DEFAULT>::kerns(
                                    bundle, bundle_thread, param, matmul_param,
                                    matmul_algo, strategyparam, ncb_index,
                                    ohw_tile_size, im2colstrategy);
                        };
                ret_kern.push_back({kern_packA, {GROUP, packa_parallel_times}});

                if (need_padding) {
582 583
                    ret_kern.push_back({kern_padding,
                                        {param.n, GROUP, IC / pack_oc_size}});
584 585 586 587 588 589 590 591 592
                }
                ret_kern.push_back(
                        {kern_compute_default,
                         {N, GROUP, ohw_parallel_times, oc_parallel_times}});
            } else if (only_packA) {
                auto kern_compute_onlypackA =
                        [bundle, bundle_thread, matmul_param,
                         matmul_algo = m_matmul_algo,
                         strategyparam = strategyparam,
593
                         ohw_tile_size = ohw_tile_size,
594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
                         im2colstrategy](const NCBKernParam& param,
                                         const NCBKernIndex& ncb_index) {
                            Im2colKerns<Pack_Mode::ONLY_PACKA>::kerns(
                                    bundle, bundle_thread, param, matmul_param,
                                    matmul_algo, strategyparam, ncb_index,
                                    ohw_tile_size, im2colstrategy);
                        };
                ret_kern.push_back({kern_packA, {GROUP, packa_parallel_times}});
                if (need_padding) {
                    ret_kern.push_back({kern_padding, {param.n, GROUP, IC}});
                }
                ret_kern.push_back(
                        {kern_compute_onlypackA,
                         {N, GROUP, ohw_parallel_times, oc_parallel_times}});
            } else if (no_pack) {
                auto kern_compute_nopack =
                        [bundle, bundle_thread, matmul_param,
                         matmul_algo = m_matmul_algo,
                         strategyparam = strategyparam,
613
                         ohw_tile_size = ohw_tile_size,
614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
                         im2colstrategy](const NCBKernParam& param,
                                         const NCBKernIndex& ncb_index) {
                            Im2colKerns<Pack_Mode::NO_PACK>::kerns(
                                    bundle, bundle_thread, param, matmul_param,
                                    matmul_algo, strategyparam, ncb_index,
                                    ohw_tile_size, im2colstrategy);
                        };

                if (need_padding) {
                    ret_kern.push_back({kern_padding, {param.n, GROUP, IC}});
                }
                ret_kern.push_back(
                        {kern_compute_nopack,
                         {N, GROUP, ohw_parallel_times, oc_parallel_times}});
            }
            return ret_kern;
        }
        MIDOUT_END();
        return {};
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
    }
    MIDOUT_END();
    return {};
}

bool ConvBiasImpl::AlgoIm2col::usable(
        ConvBiasImpl* opr, const NCBKernSizeParam& param,
        AlgoSelectionStrategy /*algo_selection_strategy*/) const {
    MIDOUT_BEGIN(megdnn_fallback_im2col, 0, 2) {
        //! make sure 8x8x16 and 8x8x32 biasmode is  nobias and nonlineMode is
        //! identity otherwise return false mean that 8x8x32 and 8x8x16 not support
        //! PostProcess
        if (param.src_type.enumv() == param.filter_type.enumv() &&
            ((param.src_type.enumv() == DTypeEnum::Int8 &&
              (param.dst_type.enumv() == DTypeEnum::Int16 ||
               param.dst_type.enumv() == DTypeEnum::Int32)) ||
             ((param.src_type.enumv() == DTypeEnum::QuantizedS8 ||
               param.src_type.enumv() == DTypeEnum::Quantized8Asymm) &&
              param.dst_type.enumv() == DTypeEnum::QuantizedS32)) &&
            param.bias_mode != megdnn::BiasMode::NO_BIAS &&
            param.nonlineMode != megdnn::NonlineMode::IDENTITY) {
            return false;
        }
656 657 658 659 660 661 662 663 664 665
        if (opr->param().format == param::ConvBias::Format::NCHW44) {
            //! current NCHW44 im2col only support DEFAULT mode matmul
            if(m_matmul_algo->packmode() != Pack_Mode::DEFAULT) {
                return false;
                //! nchw44 hybird mode and channel wise is not support
            } else if (param.filter_meta.icpg < 4_z ||
                       param.filter_meta.icpg == 1 ||
                       param.filter_meta.ocpg == 1) {
                return false;
            }
666 667
        }

668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
        size_t oc_tile_size = 0, ohw_tile_size = 0;
        Pack_Mode packmode = m_matmul_algo->packmode();
        bool default_pack = packmode == Pack_Mode::DEFAULT;
        bool no_pack = packmode == Pack_Mode::NO_PACK;
        bool only_packA = packmode == Pack_Mode::ONLY_PACKA;

        if (default_pack || only_packA) {
            auto inner_block = m_matmul_algo->get_inner_block_size();
            choice_ohw_oc_block(param, oc_tile_size, ohw_tile_size,
                                inner_block.m, inner_block.n, default_pack);
        } else {  //! not support pack,not need pack
            size_t nopack_default_blockm = 8;
            size_t nopack_default_blockn = 16;
            choice_ohw_oc_block(param, oc_tile_size, ohw_tile_size,
                                nopack_default_blockm, nopack_default_blockn,
                                no_pack);
        }
685
        fallback::MatrixMulImpl::KernSizeParam matmul_param =
686
                get_matmul_kern_param(param, ohw_tile_size, oc_tile_size);
687 688
        bool matmulusable = m_matmul_algo->usable(matmul_param);
        return matmulusable &&
689 690 691 692 693 694 695
               (opr->param().format == param::ConvBias::Format::NCHW ||
                opr->param().format == param::ConvBias::Format::NCHW44) &&
               (!(param.filter_meta.spatial[0] ==
                          param.filter_meta.spatial[1] &&
                  (param.filter_meta.spatial[0] == 1) &&
                  param.filter_meta.stride[0] == param.filter_meta.stride[1] &&
                  param.filter_meta.stride[0] == 1)) &&
696 697 698 699 700 701 702 703 704 705
               (param.filter_meta.dilation[0] ==
                        param.filter_meta.dilation[1] &&
                param.filter_meta.dilation[0] == 1) &&
               param.compute_mode == param::ConvBias::ComputeMode::DEFAULT;
    }
    MIDOUT_END();
    return false;
}

// vim: syntax=cpp.doxygen