algo.cpp 15.8 KB
Newer Older
1 2 3 4
/**
 * \file dnn/src/cuda/conv_bias/algo.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
5
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
6 7 8
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
9 10
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
 * implied.
11 12 13 14 15 16 17 18 19 20 21
 */

#include "src/cuda/conv_bias/algo.h"
#include "src/cuda/utils.h"

using namespace megdnn;
using namespace cuda;

ConvBiasForwardImpl::AlgoPack::AlgoPack() {
    non_cudnn_algos.push_back(&chanwise);
    non_cudnn_algos.push_back(&chanwise_small);
22
    non_cudnn_algos.push_back(&depthwise_large_filter);
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

    non_cudnn_algos.push_back(&inplace_matmul);
    non_cudnn_algos.push_back(&matmul);
    non_cudnn_algos.push_back(&matmul8x8x32);
    non_cudnn_algos.push_back(&batched_matmul);

    fill_cudnn_algos();
    for (auto&& algo : cudnn_conv_bias_activations) {
        all_algos.push_back(&algo);
    }

    //! add conv+nonlinear algos
    std::vector<AlgoBase*> conv_algos;
    conv_algos.push_back(&chanwise);
    conv_algos.push_back(&chanwise_small);
38
    conv_algos.push_back(&depthwise_large_filter);
39 40 41 42 43 44 45 46
    conv_algos.push_back(&chanwise8x8x32);
    for (auto&& algo : cudnn_convs) {
        conv_algos.push_back(&algo);
    }
    conv_algos.push_back(&inplace_matmul);
    conv_algos.push_back(&matmul);
    conv_algos.push_back(&matmul8x8x32);
    conv_algos.push_back(&batched_matmul);
47
    conv_algos.push_back(&group);
48 49 50 51 52

    for (auto&& algo : conv_algos) {
        all_algos.push_back(algo);
    }

53 54
    all_algos.push_back(&bfloat16);
    bfloat16_algos.push_back(&bfloat16);
55

56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
    size_t all_algo_size = all_algos.size();
#if CUDA_VERSION >= 10000
    fill_imma_algos();
    all_algos.push_back(&wmma_quint4x4x32);
    for (auto&& algo : int8_nchw4_imma) {
        all_algos.push_back(&algo);
    }
    for (auto&& algo : int8_chwn4_imma) {
        all_algos.push_back(&algo);
    }
    for (auto&& algo : int8_chwn4_imma_reorder_filter) {
        all_algos.push_back(&algo);
    }
    for (auto&& algo : int8_chwn4_imma_unroll_width) {
        all_algos.push_back(&algo);
    }
72 73 74 75
#if CUDA_VERSION >= 10020
    for (auto&& algo : int8_nchw32_imma) {
        all_algos.push_back(&algo);
    }
76 77 78
    for (auto&& algo : int8_nhwc_imma) {
        all_algos.push_back(&algo);
    }
79 80 81
    for (auto&& algo : int4_int4_nchw64_imma) {
        all_algos.push_back(&algo);
    }
82 83 84
    for (auto&& algo : uint4_int4_nchw64_imma) {
        all_algos.push_back(&algo);
    }
85 86 87 88 89 90
    for (auto&& algo : int4_int4_nhwc_imma) {
        all_algos.push_back(&algo);
    }
    for (auto&& algo : uint4_int4_nhwc_imma) {
        all_algos.push_back(&algo);
    }
91
#endif
92
#endif
93 94 95 96
    fill_dp4a_algos();
    for (auto&& algo : int8_nchw4_dotprod) {
        all_algos.push_back(&algo);
    }
97
    fill_dwconv_algos();
98
    all_algos.push_back(&int8_chwn4_dotprod);
99
    all_algos.push_back(&fallback_nchw_qs8);
100 101 102
    for (size_t i = all_algo_size; i < all_algos.size(); ++i) {
        non_cudnn_algos.push_back(all_algos[i]);
    }
103 104 105 106

    for (auto&& algo : all_algos) {
        m_all_algos_map.emplace(algo->info().desc, algo);
    }
107 108 109 110
}

ConvBiasForwardImpl::AlgoPack ConvBiasForwardImpl::sm_algo_pack;

111 112
MEGDNN_DEF_GET_ALGO_FROM_DESC(ConvBiasForwardImpl)

M
Megvii Engine Team 已提交
113
ConvBiasForwardImpl::AlgoBase::SizeArgs::SizeArgs(
114
        const ConvBiasForwardImpl* o, const TensorLayout& src,
M
Megvii Engine Team 已提交
115 116 117 118 119
        const TensorLayout& filter, const TensorLayout& bias, const TensorLayout& z,
        const TensorLayout& dst, const PreprocessedFilter* preprocessed_filter)
        : SizeArgs(
                  o, src, filter, o->make_canonized_filter_meta(src.ndim, filter), bias,
                  z, dst, preprocessed_filter) {}
120 121

ConvBiasForwardImpl::AlgoBase::SizeArgs::SizeArgs(
122
        const ConvBiasForwardImpl* o, const TensorLayout& src,
123
        const TensorLayout& filter, const CanonizedFilterMeta& filter_meta,
M
Megvii Engine Team 已提交
124 125
        const TensorLayout& bias, const TensorLayout& z, const TensorLayout& dst,
        const PreprocessedFilter* preprocessed_filter)
126 127 128 129 130 131 132 133
        : BiasForwardSizeArgs{concrete_handle(o->handle()),
                              &src,
                              &filter,
                              &bias,
                              &z,
                              filter_meta,
                              &dst,
                              o->param().nonlineMode},
M
Megvii Engine Team 已提交
134 135
          opr{o},
          preprocessed_filter{preprocessed_filter} {}
136 137

ConvBiasForwardImpl::AlgoBase::ExecArgs::ExecArgs(
M
Megvii Engine Team 已提交
138 139 140 141 142 143
        ConvBiasForwardImpl* opr, _megdnn_tensor_in src, _megdnn_tensor_in filter,
        _megdnn_tensor_in bias, _megdnn_tensor_in z, _megdnn_tensor_out dst,
        _megdnn_workspace workspace, const PreprocessedFilter* preprocessed_filter)
        : SizeArgs(
                  opr, src.layout, filter.layout, bias.layout, z.layout, dst.layout,
                  preprocessed_filter),
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
          src_tensor{&src},
          filter_tensor{&filter},
          bias_tensor{&bias},
          z_tensor{&z},
          dst_tensor{&dst},
          workspace{workspace} {}

std::string ConvBiasForwardImpl::AlgoBase::SizeArgs::to_string() const {
    auto&& fm = filter_meta;
    MEGDNN_MARK_USED_VAR(fm);
    std::string nonlinear_mode_str;
    switch (nonlinear_mode) {
        case param::ConvBias::NonlineMode::RELU:
            nonlinear_mode_str = "RELU";
            break;
        case param::ConvBias::NonlineMode::SIGMOID:
            nonlinear_mode_str = "SIGMOID";
            break;
        case param::ConvBias::NonlineMode::IDENTITY:
            nonlinear_mode_str = "IDENTITY";
            break;
165 166 167
        case param::ConvBias::NonlineMode::H_SWISH:
            nonlinear_mode_str = "H_SWISH";
            break;
168 169 170
        default:
            megdnn_throw("invalid conv bias nonlinear mode");
    }
M
Megvii Engine Team 已提交
171
    return ssprintf(
172
            "src=%s, filter=%s, bias=%s, z=%s, dst=%s, "
173 174
            "pad=%ux%u, stride=%ux%u, dilate=%ux%u, xcorr=%d, dtype=%s,%s, "
            "nonlinear_mode=%s",
175 176
            src_layout->to_string().c_str(), filter_layout->to_string().c_str(),
            bias_layout->to_string().c_str(), z_layout->to_string().c_str(),
M
Megvii Engine Team 已提交
177 178 179
            dst_layout->to_string().c_str(), fm.padding[0], fm.padding[1], fm.stride[0],
            fm.stride[1], fm.dilation[0], fm.dilation[1], !fm.should_flip,
            src_layout->dtype.name(), dst_layout->dtype.name(),
M
Megvii Engine Team 已提交
180
            nonlinear_mode_str.c_str());
181 182 183
}

void ConvBiasForwardImpl::AlgoPack::fill_cudnn_algos() {
184 185 186 187
    for (auto&& algo : CudnnAlgoPack::conv_fwd_algos()) {
        cudnn_conv_bias_activations.push_back(algo.first);
        cudnn_convs.push_back(algo.first);
    }
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
}

#if CUDA_VERSION >= 10000
void ConvBiasForwardImpl::AlgoPack::fill_imma_algos() {
    int8_chwn4_imma.push_back(
            {AlgoInt8CHWN4IMMAImplicitGemm::MMATileSize::IMMA16x16x16});
    int8_chwn4_imma.push_back(
            {AlgoInt8CHWN4IMMAImplicitGemm::MMATileSize::IMMA32x8x16});
    int8_chwn4_imma.push_back(
            {AlgoInt8CHWN4IMMAImplicitGemm::MMATileSize::IMMA8x32x16});
    int8_nchw4_imma.push_back(
            {AlgoInt8NCHW4IMMAImplicitGemm::MMATileSize::IMMA16x16x16});
    int8_nchw4_imma.push_back(
            {AlgoInt8NCHW4IMMAImplicitGemm::MMATileSize::IMMA32x8x16});
    int8_nchw4_imma.push_back(
            {AlgoInt8NCHW4IMMAImplicitGemm::MMATileSize::IMMA8x32x16});
    int8_chwn4_imma_reorder_filter.push_back(
M
Megvii Engine Team 已提交
205
            {AlgoInt8CHWN4IMMAImplicitGemmReorderFilter::MMATileSize::IMMA16x16x16});
206
    int8_chwn4_imma_reorder_filter.push_back(
M
Megvii Engine Team 已提交
207
            {AlgoInt8CHWN4IMMAImplicitGemmReorderFilter::MMATileSize::IMMA32x8x16});
208
    int8_chwn4_imma_reorder_filter.push_back(
M
Megvii Engine Team 已提交
209
            {AlgoInt8CHWN4IMMAImplicitGemmReorderFilter::MMATileSize::IMMA8x32x16});
210
    int8_chwn4_imma_unroll_width.push_back(
M
Megvii Engine Team 已提交
211
            {AlgoInt8CHWN4IMMAImplicitGemmUnrollWidth::MMATileSize::IMMA16x16x16});
212
    int8_chwn4_imma_unroll_width.push_back(
M
Megvii Engine Team 已提交
213
            {AlgoInt8CHWN4IMMAImplicitGemmUnrollWidth::MMATileSize::IMMA32x8x16});
214
    int8_chwn4_imma_unroll_width.push_back(
M
Megvii Engine Team 已提交
215
            {AlgoInt8CHWN4IMMAImplicitGemmUnrollWidth::MMATileSize::IMMA8x32x16});
216 217 218
#if CUDA_VERSION >= 10020
    {
        using AlgoParam = AlgoInt8NCHW32IMMAImplicitGemm::AlgoParam;
M
Megvii Engine Team 已提交
219 220 221 222 223 224 225 226 227
        int8_nchw32_imma.emplace_back(AlgoParam{128, 256, 64, 64, 64, 64, 8, 8, 16, 2});
        int8_nchw32_imma.emplace_back(AlgoParam{256, 128, 64, 64, 64, 64, 8, 8, 16, 2});
        int8_nchw32_imma.emplace_back(AlgoParam{128, 128, 64, 64, 64, 64, 8, 8, 16, 2});
        int8_nchw32_imma.emplace_back(AlgoParam{128, 64, 64, 64, 32, 64, 8, 8, 16, 2});
        int8_nchw32_imma.emplace_back(AlgoParam{64, 128, 64, 32, 64, 64, 8, 8, 16, 2});
        int8_nchw32_imma.emplace_back(AlgoParam{128, 64, 32, 64, 32, 32, 8, 8, 16, 1});
        int8_nchw32_imma.emplace_back(AlgoParam{128, 32, 32, 64, 32, 32, 8, 8, 16, 1});
        int8_nchw32_imma.emplace_back(AlgoParam{64, 128, 32, 32, 64, 32, 8, 8, 16, 1});
        int8_nchw32_imma.emplace_back(AlgoParam{32, 128, 32, 32, 64, 32, 8, 8, 16, 1});
228
    }
229 230
    {
        using AlgoParam = AlgoInt8NHWCIMMAImplicitGemm::AlgoParam;
M
Megvii Engine Team 已提交
231 232 233
        int8_nhwc_imma.emplace_back(AlgoParam{64, 16, 32, 64, 16, 32, 8, 8, 16, 2, 16});
        int8_nhwc_imma.emplace_back(AlgoParam{64, 16, 32, 64, 16, 32, 8, 8, 16, 2, 8});
        int8_nhwc_imma.emplace_back(AlgoParam{64, 16, 32, 64, 16, 32, 8, 8, 16, 2, 4});
234 235
        int8_nhwc_imma.emplace_back(
                AlgoParam{128, 32, 32, 64, 32, 32, 8, 8, 16, 1, 16});
M
Megvii Engine Team 已提交
236 237
        int8_nhwc_imma.emplace_back(AlgoParam{128, 32, 32, 64, 32, 32, 8, 8, 16, 1, 8});
        int8_nhwc_imma.emplace_back(AlgoParam{128, 32, 32, 64, 32, 32, 8, 8, 16, 1, 4});
238
    }
239 240
    {
        using AlgoParam = AlgoInt4Int4NCHW64IMMAImplicitGemm::AlgoParam;
241
        int4_int4_nchw64_imma.emplace_back(
242
                AlgoParam{128, 128, 128, 64, 64, 128, 8, 8, 32, 2});
243
        int4_int4_nchw64_imma.emplace_back(
244
                AlgoParam{128, 256, 128, 64, 64, 128, 8, 8, 32, 2});
245
        int4_int4_nchw64_imma.emplace_back(
246
                AlgoParam{128, 64, 128, 64, 64, 128, 8, 8, 32, 2});
247
        int4_int4_nchw64_imma.emplace_back(
248
                AlgoParam{128, 64, 64, 64, 64, 64, 8, 8, 32, 1});
249 250 251 252
    }
    {
        using AlgoParam = AlgoUInt4Int4NCHW64IMMAImplicitGemm::AlgoParam;
        uint4_int4_nchw64_imma.emplace_back(
253
                AlgoParam{128, 128, 128, 64, 64, 128, 8, 8, 32, 2});
254
        uint4_int4_nchw64_imma.emplace_back(
255
                AlgoParam{128, 256, 128, 64, 64, 128, 8, 8, 32, 2});
256
        uint4_int4_nchw64_imma.emplace_back(
257
                AlgoParam{128, 64, 128, 64, 64, 128, 8, 8, 32, 2});
258
        uint4_int4_nchw64_imma.emplace_back(
259
                AlgoParam{128, 64, 64, 64, 64, 64, 8, 8, 32, 1});
260
    }
261 262
    {
        using AlgoParam = AlgoInt4Int4NHWCIMMAImplicitGemm::AlgoParam;
263 264 265 266 267 268
        int4_int4_nhwc_imma.emplace_back(
                AlgoParam{128, 16, 64, 128, 16, 64, 8, 8, 32, 2, 32});
        int4_int4_nhwc_imma.emplace_back(
                AlgoParam{128, 16, 64, 128, 16, 64, 8, 8, 32, 2, 16});
        int4_int4_nhwc_imma.emplace_back(
                AlgoParam{128, 16, 64, 128, 16, 64, 8, 8, 32, 2, 8});
269
        int4_int4_nhwc_imma.emplace_back(
270
                AlgoParam{128, 32, 64, 64, 32, 64, 8, 8, 32, 1, 32});
271
        int4_int4_nhwc_imma.emplace_back(
272
                AlgoParam{128, 32, 64, 64, 32, 64, 8, 8, 32, 1, 16});
273
        int4_int4_nhwc_imma.emplace_back(
274
                AlgoParam{128, 32, 64, 64, 32, 64, 8, 8, 32, 1, 8});
275
        int4_int4_nhwc_imma.emplace_back(
276
                AlgoParam{128, 64, 64, 64, 64, 64, 8, 8, 32, 1, 32});
277
        int4_int4_nhwc_imma.emplace_back(
278
                AlgoParam{128, 64, 64, 64, 64, 64, 8, 8, 32, 1, 16});
279
        int4_int4_nhwc_imma.emplace_back(
280
                AlgoParam{128, 64, 64, 64, 64, 64, 8, 8, 32, 1, 8});
281 282 283
    }
    {
        using AlgoParam = AlgoUInt4Int4NHWCIMMAImplicitGemm::AlgoParam;
284 285 286 287 288 289
        uint4_int4_nhwc_imma.emplace_back(
                AlgoParam{128, 16, 64, 128, 16, 64, 8, 8, 32, 2, 32});
        uint4_int4_nhwc_imma.emplace_back(
                AlgoParam{128, 16, 64, 128, 16, 64, 8, 8, 32, 2, 16});
        uint4_int4_nhwc_imma.emplace_back(
                AlgoParam{128, 16, 64, 128, 16, 64, 8, 8, 32, 2, 8});
290
        uint4_int4_nhwc_imma.emplace_back(
291
                AlgoParam{128, 32, 64, 64, 32, 64, 8, 8, 32, 1, 32});
292
        uint4_int4_nhwc_imma.emplace_back(
293
                AlgoParam{128, 32, 64, 64, 32, 64, 8, 8, 32, 1, 16});
294
        uint4_int4_nhwc_imma.emplace_back(
295
                AlgoParam{128, 32, 64, 64, 32, 64, 8, 8, 32, 1, 8});
296
        uint4_int4_nhwc_imma.emplace_back(
297
                AlgoParam{128, 64, 64, 64, 64, 64, 8, 8, 32, 1, 32});
298
        uint4_int4_nhwc_imma.emplace_back(
299
                AlgoParam{128, 64, 64, 64, 64, 64, 8, 8, 32, 1, 16});
300
        uint4_int4_nhwc_imma.emplace_back(
301
                AlgoParam{128, 64, 64, 64, 64, 64, 8, 8, 32, 1, 8});
302
    }
303
#endif
304 305 306
}
#endif

307 308
void ConvBiasForwardImpl::AlgoPack::fill_dwconv_algos() {
    using AlgoParam = AlgoCutlassConvolutionBase::AlgoParam;
309 310
    /// preferred algo
    f32_implicit_bmm.emplace_back(AlgoParam{64, 128, 8, 32, 64, 8, 1, 1, 1, 2});
311 312 313 314
    f32_implicit_bmm.emplace_back(AlgoParam{128, 128, 8, 32, 64, 8, 1, 1, 1, 2});
    f32_implicit_bmm.emplace_back(AlgoParam{128, 64, 8, 64, 32, 8, 1, 1, 1, 2});
    f32_implicit_bmm.emplace_back(AlgoParam{128, 32, 8, 64, 32, 8, 1, 1, 1, 2});
    f32_implicit_bmm.emplace_back(AlgoParam{32, 128, 8, 32, 64, 8, 1, 1, 1, 2});
315
    f32_implicit_bmm.emplace_back(AlgoParam{64, 64, 8, 32, 64, 8, 1, 1, 1, 2});
316 317 318 319 320 321
    f32_implicit_bmm.emplace_back(AlgoParam{32, 64, 8, 32, 64, 8, 1, 1, 1, 2});
    f32_implicit_bmm.emplace_back(AlgoParam{32, 32, 8, 32, 32, 8, 1, 1, 1, 2});
    f32_implicit_bmm.emplace_back(AlgoParam{64, 32, 8, 64, 32, 8, 1, 1, 1, 2});
    for (auto&& algo : f32_implicit_bmm) {
        all_algos.push_back(&algo);
    }
322
#if CUDA_VERSION >= 10010
323 324
    /// preferred algo
    f16_implicit_bmm.emplace_back(AlgoParam{64, 128, 32, 32, 32, 32, 8, 8, 4, 2});
325 326 327 328 329 330 331 332 333 334
    f16_implicit_bmm.emplace_back(AlgoParam{128, 128, 32, 32, 32, 32, 8, 8, 4, 2});
    f16_implicit_bmm.emplace_back(AlgoParam{128, 256, 32, 64, 64, 32, 8, 8, 4, 2});
    f16_implicit_bmm.emplace_back(AlgoParam{128, 64, 32, 32, 32, 32, 8, 8, 4, 2});
    f16_implicit_bmm.emplace_back(AlgoParam{64, 64, 32, 32, 32, 32, 8, 8, 4, 2});
    for (auto&& algo : f16_implicit_bmm) {
        all_algos.push_back(&algo);
    }
#endif
}

335 336
void ConvBiasForwardImpl::AlgoPack::fill_dp4a_algos() {
    using AlgoParam = AlgoInt8NCHW4DotProdImplicitGemm::AlgoParam;
M
Megvii Engine Team 已提交
337 338 339 340 341 342 343 344 345
    int8_nchw4_dotprod.emplace_back(AlgoParam{128, 128, 32, 64, 32, 32, 1, 1, 4, 2});
    int8_nchw4_dotprod.emplace_back(AlgoParam{128, 64, 32, 64, 32, 32, 1, 1, 4, 2});
    int8_nchw4_dotprod.emplace_back(AlgoParam{64, 128, 32, 64, 32, 32, 1, 1, 4, 2});
    int8_nchw4_dotprod.emplace_back(AlgoParam{32, 128, 32, 32, 64, 32, 1, 1, 4, 2});
    int8_nchw4_dotprod.emplace_back(AlgoParam{128, 32, 32, 64, 32, 32, 1, 1, 4, 2});
    int8_nchw4_dotprod.emplace_back(AlgoParam{32, 64, 32, 32, 64, 32, 1, 1, 4, 2});
    int8_nchw4_dotprod.emplace_back(AlgoParam{64, 32, 32, 64, 32, 32, 1, 1, 4, 2});
    int8_nchw4_dotprod.emplace_back(AlgoParam{16, 128, 16, 16, 128, 16, 1, 1, 4, 1});
    int8_nchw4_dotprod.emplace_back(AlgoParam{16, 64, 8, 16, 64, 8, 1, 1, 4, 2});
346 347
}

M
Megvii Engine Team 已提交
348
ConvBiasForwardImpl::AlgoBase* ConvBiasForwardImpl::AlgoPack::cudnn_conv_from_enum(
349 350 351 352 353
        cudnnConvolutionFwdAlgo_t algo) {
    for (auto&& i : cudnn_convs) {
        if (i.cudnn_enum() == algo)
            return &i;
    }
M
Megvii Engine Team 已提交
354 355
    megdnn_throw(ssprintf(
            "can not find cudnn conv fwd algorithm %d", static_cast<int>(algo)));
356 357
}

M
Megvii Engine Team 已提交
358 359
ConvBiasForwardImpl::AlgoBase* ConvBiasForwardImpl::AlgoPack::
        cudnn_conv_bias_act_from_enum(cudnnConvolutionFwdAlgo_t algo) {
360 361 362 363
    for (auto&& i : cudnn_conv_bias_activations) {
        if (i.cudnn_enum() == algo)
            return &i;
    }
M
Megvii Engine Team 已提交
364 365
    megdnn_throw(ssprintf(
            "can not find cudnn conv bias act algorithm %d", static_cast<int>(algo)));
366 367 368
}

// vim: syntax=cpp.doxygen